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Starting from the graphene lattice tight-binding Hamiltonian with an on-site U and long-range Coulomb
repulsion, we derive an interacting continuum Dirac theory governing the low-energy behavior of graphene in
an applied magnetic field. Initially, we consider a clean graphene system within this effective theory and
explore integer quantum Hall ferromagnetism stabilized by exchange from the long-range Coulomb repulsion.
We study in detail the ground state and excitations at �=0 and �= ±1, taking into account small symmetry-
breaking terms that arise from the lattice-scale interactions, and also explore the ground states selected at �

= ±3, ±4, and ±5. We argue that the ferromagnetic regime may not yet be realized in current experimental
samples, which at the above filling factors perhaps remain paramagnetic due to strong disorder. In an attempt
to access the latter regime where the role of exchange is strongly suppressed by disorder, we apply Hartree
theory to study the effects of interactions. Here, we find that Zeeman splitting together with symmetry-breaking
interactions can in principle produce integer quantum Hall states in a paramagnetic system at �=0, ±1, and ±4,
but not at �= ±3 or ±5, consistent with recent experiments in high magnetic fields. We make predictions for the
activation energies in these quantum Hall states which will be useful for determining their true origin.
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I. INTRODUCTION

Recent experimental advances have made possible the
isolation of high-quality two-dimensional graphene sheets,1

thus opening up a new arena for exploring quantum Hall
physics. As illustrated in Fig. 1, graphene is a collection of
carbon atoms arranged on a honeycomb lattice. At half-
filling and in the absence of a magnetic field, graphene is
semimetallic with a Fermi surface consisting of two distinct
nodes residing at the Brillouin zone corners. Low-energy ex-
citations about the two nodes are well characterized by two
“flavors” of Dirac fermions whose energies obey a linear
dispersion relation, E�k�= ±�v�k�, where for graphene v
�106 m/s.2,3 Applying a magnetic field rearranges the spec-
trum into Landau levels, each of which is approximately
fourfold degenerate near the Fermi level owing to the pres-
ence of flavor and spin. The underlying Dirac structure gives
rise to an unconventional quantum Hall effect which has
been observed experimentally2–5 and explored theoretically
from numerous perspectives.6–16

Initial experiments on the graphene quantum Hall effect
reported quantized Hall plateaus at �xy =�e2 /h=4�n
+1/2�e2 /h, where n is an integer.2,3 The appearance of these
integer quantum Hall states is quite natural from a noninter-
acting, single-particle perspective, given the approximate
fourfold Landau-level degeneracy. There are, however, at
least two mechanisms by which additional integer quantum
Hall states in graphene may be induced. First, such states can
in principle be stabilized by explicit symmetry-breaking
fields and/or interactions, the simplest mechanism being Zee-
man splitting. In this situation the system would be appropri-
ately characterized as a “quantum Hall paramagnet.” Second,
provided disorder is sufficiently weak the poorly screened
Coulomb interactions in graphene can dramatically modify
the single-particle picture, in analogy with the well-studied
“quantum Hall ferromagnetism” in GaAs heterostructures.17

In the latter system, for instance, exchange interactions
strongly stabilize the integer quantum Hall state at �=1, even
in the limit of vanishing Zeeman coupling—that is, the
ground state is a ferromagnet. Generally speaking, this
mechanism is actually far more common than the first since
the Coulomb energy scale is typically much larger than the
energy scale associated with symmetry-breaking terms such
as the Zeeman energy. Additional exchange-driven integer
quantum Hall states can similarly be expected to appear in a
sufficiently clean graphene system. In fact, quantum Hall
ferromagnetism in graphene promises to be even richer than
in GaAs due to the additional flavor degree of freedom,
which as we will discuss offers the interesting possibility of
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FIG. 1. �Color online� Schematic lattice-scale order in the �
=−1 integer quantum Hall state. “1” and “2” label the two sublat-
tices of the honeycomb. Electrons in the highest-occupied Landau
level reside only on sublattice 1 �for instance� and undergo circu-
lating currents around second-neighbor plaquettes oriented along
the arrows.
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lattice-scale order coexisting with the integer quantum Hall
effect. The problem is thus more analogous to quantum Hall
bilayer and Si metal-oxide-semiconductor field-effect tran-
sistor �MOSFET� physics,18 where layer and valley indices
play a role similar to flavor in graphene.

Interestingly, more recent experiments utilizing higher
magnetic fields have in fact resolved additional quantized
Hall plateaus at filling factors �=0, ±1, and ±4.5 The activa-
tion energy measured at �= ±4 was found, somewhat sur-
prisingly, to be dominated by the single-particle Zeeman en-
ergy, suggesting that at these filling factors the system
resides in the paramagnetic regime due to strong disorder.
The origin of the quantum Hall states at �=0 and �= ±1 is
unclear at present and presents an interesting puzzle. In a
very recent paper Nomura and MacDonald suggest that these
states are due to the onset of quantum Hall ferromagnetism.15

Given the apparent spin-splitting origin of the states at �
= ±4, however, it is perhaps worth exploring an alternative
scenario where the quantum Hall states at �=0 and �= ±1
are similarly due to explicit symmetry breaking, rather than
Coulomb exchange.

The purpose of the present paper is twofold. In the first
part, we carry out a detailed exploration of quantum Hall
ferromagnetism, focusing on a clean graphene sample. Fol-
lowing this analysis, we consider a dirty system and ask
whether symmetry-breaking terms can stabilize integer quan-
tum Hall states in the paramagnetic regime. To this end, we
start with the lattice Hamiltonian including on-site U and
long-range Coulomb interactions, and derive a continuum
interacting Dirac formulation suitable for studying these phe-
nomena. In addition to the usual long-range Coulomb repul-
sion, we retain shorter-range terms that arise from the micro-
scopic interactions and explicitly break the flavor degeneracy
exhibited in a noninteracting theory. Such symmetry-
breaking terms have not been taken into account previously
and are important for analyzing the physics both in the fer-
romagnetic and paramagnetic limits. In the ferromagnetic re-
gime, we analyze the ground state and excitations within this
theory at integer filling factors in the lowest two Landau
levels. At filling factors �= ±1, we show that interactions
favor “easy-axis” flavor polarization, leading to a ground
state exhibiting charge density wave order on the lattice
scale. The �=0 ground state is found to depend on the
strength of interactions relative to the Zeeman coupling and
will either be a uniform spin-polarized state or a spin-singlet
exhibiting the same lattice-scale structure as at �= ±1. We
calculate the spin-wave and particle-hole excitation energies
at these filling factors, as well as identify the relevant Skyr-
mions which are expected to set the transport gap. Interest-
ingly, interactions favor “easy-plane” flavor polarization at
�= ±3 and ±5, leading to a ground state that spontaneously
breaks U�1� flavor symmetry. Thus, a finite-temperature
Kosterlitz-Thouless transition can be expected at these filling
factors. Finally, a uniform, spin-polarized ground state is ex-
pected at �= ±4. We establish that Skyrmions continue to
provide the minimum-energy charge excitations at �= ±3,
±4, and ±5 as well, at least in the absence of anisotropy
terms.

To explore the paramagnetic regime in a dirty system, we
use the expectation that the effects of exchange should be

strongly suppressed by disorder and incorporate interactions
within Hartree theory. Here, we argue that in principle inter-
actions can give rise to quantum Hall states at �=0, ±1, and
±4, but not at �= ±3 or ±5, which is consistent with recent
high-field experiments. We provide estimates for the activa-
tion energies in these additional quantum Hall states, which
will be useful for determining experimentally whether the
�=0 and ±1 states originate from explicit symmetry breaking
or quantum Hall ferromagnetism.

II. CONTINUUM INTERACTING THEORY

We start with the zero-field lattice Hamiltonian for
graphene written as

H = Ht + HU + HCoul, �1�

where Ht describes hopping of electrons across nearest-
neighbor honeycomb sites,

Ht = − t �
�xx��

�
�=↑,↓

�c�x
† c�x� + H.c.	 , �2�

and HU and HCoul contain the on-site repulsion and long-
range Coulomb interaction, respectively:

HU = U�
x

1

4
�nx�2 −

1

3
S�x�2� , �3�

HCoul =
1

2 �
x�x�

V�x − x��nxnx�. �4�

Here nx=n↑x+n↓x is the electron number operator and S�x�
= 1

2c�x
† ���c�x is the usual spin operator with � a vector of

Pauli matrices. The Coulomb potential is V�x�= e2

4��
1

�x� , with �
an appropriately chosen dielectric constant �see below�. We
will introduce the magnetic field upon entering the con-
tinuum, which is justified since for experimental field ranges
the magnetic length �B=�� / �eB� is much larger than the
lattice spacing a0.

As mentioned above, with one electron per site, the hon-
eycomb band structure exhibits two gapless Dirac points at
the Fermi energy, occurring at wave vectors ±Q
= ± �4� /3 ,0�. Focusing on the linearly dispersing excitations
near the two nodes, the Fourier-transformed lattice fermion
operators may be conveniently expanded in terms of two
flavors of continuum Dirac fermion fields �denoted R and L�
as follows:

c�q+Qa  	
�Ra�q� , �5�

c�q−Qa  	i� ab
y 
�Lb�q� . �6�

Here and below we reserve the indices � and � for spin, A
and B for flavor, and a and b for the honeycomb sublattice.
Moreover, � ��

j , � AB
j , and � ab

j denote Pauli matrices that con-
tract with the spin, flavor, and sublattice indices, respec-
tively. �Note that according to Eqs. �5� and �6�, 
R1 and 
L2
correspond to sublattice 1, while 
R2 and 
L1 correspond to
sublattice 2.	 We will use the convention that suppressed
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indices on the fields are implicitly summed �i.e., 
†

���Aa
�Aa

† 
�Aa�. The normalization on the right-hand side
of Eqs. �5� and �6� is chosen to be 	=�2/ �31/4L� so that the
continuum fields satisfy the canonical anticommutation rela-
tions �
�Aa�q� ,
�Bb

† �q���=��ABab�2��2 2�q−q��. Real-
space Dirac fields are defined according to


�Aa�q� =� d2xe−iq·x
�Aa�x� �7�

and satisfy �
�Aa�x� ,
�Bb
† �x���=��ABab 2�x−x��. Note

that consistency requires 
�x� to be a slowly varying field or,
equivalently, that 
�q� be nonzero only within some
momentum-space cutoff �. The lattice electron number op-
erator nxa for sublattice a can now be expressed in terms of
real-space Dirac fields as follows:

nx1 =
�3a0

2

2
��R1 + �L2 + e2iQ·xJ+

† + e−2iQ·xJ+	 , �8�

nx2 =
�3a0

2

2
��R2 + �L1 − e2iQ·xJ−

† − e−2iQ·xJ−	 , �9�

where �Aa=��=↑,↓
�Aa
† 
�Aa contains uniform pieces of the

density and J+=
R1
† 
L2 and J−=
R2

† 
L1 contain oscillatory
components of the density. The spin operators on each sub-
lattice take on similar forms, with 1

2� inserted between each

† and 
 above. It follows that in the continuum, the uniform
part of the total density is �tot=
†
, while the uniform spin
density is Stot=

1
2
†�
.

Using the continuum expansion above and turning on the
external magnetic field, we arrive at the desired continuum
Hamiltonian, which we write as

H = H0 + H1. �10�

Here H0 denotes the part of the Hamiltonian that is invariant
under global SU�4�=SU�2�spin�SU�2�flavor rotations,

H0 = − i�v� d2x
†��xDx + � yDy	


+
1

2
� d2xd2x��tot�x�V�x − x���tot�x�� , �11�

with Dj =� j − i�e /��Aj. H1 encodes the remaining anisotropy
terms which break this SU�4� symmetry down to U�1�spin

� �U�1��Z2	flavor,

H1 =� d2x
− g�BB · Stot +
1

4
u0��tot

2 + �stag
2

−
8

3
�SR1

2 + SL2
2 + 6SR1 · SL2 + �1 ↔ 2�	�

− �
r

v1�r��stag�x + r��stag�x� − u2�J+
†J+ + J−

†J−
†	� ,

�12�

where �stag=
†� z�z
 represents the staggered electron den-
sity between sublattices 1 and 2 of the honeycomb and

SAa= 1
2
Aa

† �
Aa. The sum in Eq. �12� is over triangular lattice
vectors r=me++ne−, where m ,n are integers and
e±= �a0 /2��±1,�3�. The first two lines of Eq. �12� contain the
Zeeman coupling and the continuum form of the on-site U,
with

u0 = �3a0
2U/4. �13�

For concreteness we take the magnetic field B perpendicular
to the graphene plane along the +ẑ direction throughout.
Apart from the long-range density-density repulsion exhib-
ited in H0, the lattice Coulomb interaction also gives rise to
the shorter-range terms in the last two lines of Eq. �12�,
reflecting lattice-scale physics. The v1 term represents an in-
tersublattice repulsion that reflects the smaller Coulomb en-
ergy cost for electrons residing on the same sublattice versus
opposite sublattices. The u2 term represents the intrasublat-
tice repulsion between oscillating components of the density
in Eqs. �8� and �9�. The coupling constants for these terms
are given by

v1�r� =
�3a0

2

8
�V�r + 1/�3ŷ� − �1 − r,0�V�r�	 , �14�

u2 = − �
r�0

�3a0
2

2
V�r�cosQ · r �

4

3
a0

2� e2

4��a0
� . �15�

For later use we note that

u1 � �
r

v1�r� �
�3

4
u2. �16�

Some comments are worthwhile here. The above con-
tinuum formulation is expected to remain appropriate out to
a cutoff �� / �4a0� or so from the Dirac nodes, which con-
stitutes an appreciable fraction of the Brillouin zone. Elimi-
nation of modes outside of this radius will renormalize the
parameters in the theory somewhat, though for simplicity we
have retained the bare values for the coupling constants. Fur-
thermore, other symmetry-allowed interactions will in prin-
ciple be generated as well; however, we shall assume these
are subdominant. We also remark that in Eq. �12� we have
only retained terms arising from the lattice Coulomb repul-
sion that are nonvanishing upon assuming a local form in the
continuum �namely, v1 and u2�; other terms are expected to
essentially average out and will thus be unimportant. Given
that 
 is a slowly varying field, it is tempting to approximate
v1 as a local interaction �as we have done for u2�. For most
purposes this is in fact adequate, and we shall often make
this assumption to simplify our analysis. However, as we will
discuss below, despite appearances assuming a purely local
form of v1 leaves the SU�2� flavor symmetry unbroken in the
ferromagnetic ground state at filling factors �= ±1, which is
why we have retained the finite range of this interaction.

We now turn to screening in the Dirac theory. Since the v1
and v2 terms are effective only on short length scales, these
interactions are essentially unmodified by screening, and we
thus assume that the bare dielectric constant for graphene
appears in Eqs. �14� and �15�. With air on one side of the
graphene plane and SiO2 on the other, the unscreened dielec-

GRAPHENE INTEGER QUANTUM HALL EFFECT IN THE¼ PHYSICAL REVIEW B 74, 075422 �2006�

075422-3



tric constant is estimated to be �����+
−1+�−

−1� /2	−1�1.6�0,
where �+��0 and �−�4�0 correspond to air and SiO2, re-
spectively. The long-range part of the Coulomb interaction in
H0 is, however, expected to be �weakly� screened. To esti-
mate the screening, we first note that the presence of the
applied magnetic field is expected to become important on
length scales longer than roughly the magnetic length, which
is much larger than the inverse cutoff �−1. Thus the screened
dielectric constant for the zero-field case should not be dra-
matically modified by the presence of the field. We therefore
use the zero-field screened dielectric constant for the long-
range Coulomb repulsion in Eq. �11�, obtained within the
random phase approximation19 which yields �RPA��+e2 /
�8�v��5�0.

III. OVERVIEW OF DIRAC LANDAU LEVELS

Before analyzing the full interacting theory, it will be use-
ful to briefly recall the Landau level spectrum for the nonin-
teracting case.6,20 Throughout the paper we implicitly work
in the symmetric gauge. As a consequence of the Dirac struc-
ture, the Landau-level energies in the noninteracting theory
are given by

E↑/↓,n = �
1

2
g�BB + sgn�n��2e�v2B�n� , �17�

where n is an integer. Zeeman coupling weakly spin splits
the Landau levels, leaving a twofold flavor degeneracy in the
absence of interactions. The two-component wave function
for spin � and flavor A in the nth Landau level can be written

��A
n = 
�n

�n � . �18�

For n�0, the elements �n and �n are simply wave functions
for Schrödinger-equation Landau levels with indices �n�−1
and �n�, respectively. In the symmetric gauge, the elements
are related by �n= �n�−1/2sgn�n�a†�n, where a† is the usual
raising operator for Schrödinger-equation Landau levels.
One can show that the total probability weight is divided
equally between the upper and lower elements of the wave
function; in other words, an electron with wave function
��A

n�0 is equally likely to be found on either honeycomb sub-
lattice. In contrast, the n=0 Landau-level wave functions
have �n=0=0, while �n=0 is a Schrödinger-equation lowest-
Landau-level wave function. By examining Eqs. �5� and �6�
we see that ��R

n=0 has weight only on sublattice 2 of the hon-
eycomb, while ��L

n=0 has weight only on sublattice 1. This
qualitative distinction between the n=0 and n�0 Landau-
level wave functions has important consequences when we
incorporate interactions below.

We note that this feature of the n=0 Landau-level wave
functions is robust against introducing spin-orbit coupling,
which admits a term HSO=�SO�d2x
†�z� z
 to the
Hamiltonian.21 In contrast, in the presence of this term the
probability density for n�0 Landau-level wave functions
will no longer be evenly distributed between both sublattices.
This correction is quite small, as the induced density differ-

ence between the sublattices will be proportional to
�SO�B / ��v��1 and will hereafter be neglected.

IV. INTEGER QUANTUM HALL FERROMAGNETISM

In this section we focus on a clean graphene system at
integer filling factors and explore “quantum Hall ferromag-
netism” using the interacting theory derived above. We will
first analyze the n=0 Landau level and then turn our atten-
tion to the n=1 Landau level. In the last part of this section
we briefly discuss current experimental relevance for our re-
sults.

A. n=0 Landau level

We will employ two simplifying assumptions in our
analysis of quantum Hall ferromagnetism in the n=0 Landau
level. First, we make the standard approximation of ignoring
Landau-level mixing and project out states away from the
n=0 Landau level. This is reasonable given that the spacing
between the n=0 and n= ±1 Landau levels is roughly
420�B�T	 K, where B�T	 is the magnetic field in teslas,
while the Coulomb energy scale

EC �
e2

4��RPA�B
� 130�B�T	 K �19�

is around 3 times smaller. Second, since the noninteracting
wave functions reside on only one sublattice or the other, we
will set 
�R/L1→0. With the electron kinetic energy
quenched, H0 then becomes

H0
n=0 =

1

2
� d2xd2x��tot�x�V�x − x���tot�x�� . �20�

The anisotropy terms in H1 are dramatically simplified upon
projection,

H1
n=0 =� d2x
− g�BB · Stot +

u0

2 �
A=R/L

��A2
2 −

4

3
SA2

2 �
− �

r
v1�r��stag�x + r��stag�x�� . �21�

In the projected subspace, �tot=�L2+�R2, Stot=SL2+SR2, and
�stag=�L2−�R2. Note that the u2 interaction in Eq. �12� has
dropped out altogether.

In the SU�4�-invariant limit with H1
n=0=0, despite the

fourfold degeneracy of the n=0 Landau level the system is
an exchange ferromagnet at filling factors �=−1, 0, and +1
�corresponding to a quarter-filled, half-filled, and three-
quarter-filled levels� and exhibits a quantized Hall conduc-
tance �xy =�e2 /h. The SU�4� spin-flavor symmetry is broken
spontaneously in the absence of anisotropy terms, though in
accordance with the Mermin-Wagner theorem22 true long-
range order can exist only at zero temperature. This sponta-
neous symmetry breaking gives rise to three gapless Gold-
stone modes at �= ±1 and four at �=0. These SU�4� “spin
waves” have the following dispersion at small momentum:23

E0�q� = ���bq�2, �22�

where the stiffness is given by
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� =
1

4
��

2
EC. �23�

The lowest-energy charge excitations in these integer quan-
tum Hall states are known to be SU�4� Skyrmions,17,24,25

whose energies are determined by the stiffness �. These to-
pological excitations were explored in Ref. 23. Due to the
Coulomb repulsion the minimum-energy Skyrmions are infi-
nitely large and the energy cost for creating a Skyrmion–anti-
Skyrmion pair is

Esk/ask = 2� , �24�

which is half that for an electron-hole pair.
The goal of the remainder of this subsection will be to

address how this picture is modified by anisotropy terms in
H1

n=0. In particular, we will discuss the nature of the ground
states selected by these symmetry-breaking terms and exam-
ine their effects on excitations out of the resulting ordered
states.

1. Filling factors �= ±1

Consider now the �=−1 state, corresponding to a quarter-
filled n=0 Landau level ��= +1 is related by particle-hole
symmetry and will not be discussed separately�. Zeeman
coupling favors a ground state occupied solely by spin-up
electrons. Moreover, the v1 term provides an “easy-axis” fla-
vor symmetry that favors having ��stag��0 by occupying
either all flavor-R or all flavor-L states. It follows that in the
presence of interactions the �=−1 ground state exhibits a
spontaneously broken Z2 flavor symmetry and can therefore
sustain long-range order at finite temperature. Filling, say,
the flavor-R states, the ground state can be written

�� = − 1� = �
m

c↑R,m
† �vac� , �25�

where �vac� is the fermion vacuum and c�A,m
† adds an electron

in the n=0 Landau level with spin �, flavor A, and angular
momentum m. Since flavors L and R correspond to sublat-
tices 1 and 2 in the projected subspace, the �=−1 ground
state is a spin-polarized charge density wave �CDW�, having
a larger electron density on one of the two honeycomb sub-
lattices. The charge order is illustrated schematically in Fig.
1. Physically, this CDW arises because electrons can remain
farther apart by occupying one sublattice before the other,
thereby minimizing their Coulomb energy. We emphasize,
however, that only the relatively small number of electrons
participating in the n=0 Landau level �roughly 1.4
�10−5B�T	 electrons per hexagon� contribute to this order,
which might make it difficult to observe with a scanning
tunneling microscope �STM�. Another experimental signa-
ture of the CDW at �=−1 may come from carbon NMR
measurements. First, there is a net electron spin only on the
higher-density sublattice, producing a magnetic moment per
site of roughly 1.4�10−5B�T	�B with which the �relatively
rare� carbon atoms with nuclear spin can interact. A second
effect arises from more subtle lattice-scale structure that ex-
ists in the �=−1 state. Indeed, it follows from Eqs. �5� and
�6� that electrons on the higher-density sublattice participate

in currents circulating around second-neighbor plaquettes,
oriented along the arrows in Fig. 1. This circulation in turn
gives rise to a magnetic moment along the applied field di-
rection that couples to atoms in the lower-density sublattice.
Using our zero-field relation between the lattice and con-
tinuum fields, we crudely estimate the magnitude of this in-
duced moment to be 5�10−5B�T	�B. These effects should
induce a small splitting in the nuclear spin precession fre-
quencies for carbon atoms on the two sublattices, which may
be measurable.

We turn next to excitations in the presence of anisotropy
terms. The three Goldstone modes present in the SU�4�-
invariant limit become gapped. These generalized “spin-
wave” gaps contain important information regarding the sta-
bility of the spin and CDW order in the ground state, as well
as for the transport gap. Employing the usual lowest-Landau-
level projection, the energies for these three branches can be
obtained essentially exactly. We follow closely the approach
in the review in Ref. 17, generalized to the SU�4� case. The
procedure is straightforward though tedious, and here we
shall only outline the calculation. Define

S�� =
1

2

†� ���
 , �26�

where � and � run over 0, x, y, and z and �0 and �0 are
identity matrices. We wish to calculate the energies of
S0x�q���=−1�, Sx0�q���=−1�, and Sxx�q���=−1�, which turn
out to be exact eigenstates of the projected interacting
Hamiltonian. Here the overbar indicates a lowest-Landau-
level projection, S0x�q� creates a spin wave with momentum
q, Sx0�q� creates a “flavor wave,” and Sxx�q� creates a mixed
spin-flavor wave. The energies of these excited states are
conveniently calculated in first quantization. The Hamil-
tonian in momentum space becomes

H0
n=0 =

1

2
�

k
V�k��̄tot�k��̄tot�− k� , �27�

H1
n=0 = − g�BBS0z�k = 0� +

1

4
u0�

k
��̄tot�k��̄tot�− k�

+ 4Sz0�k�Sz0�− k� −
4

3
�Szi�k�Szi�− k�

+ S0i�k�S0i�− k�	� − 4�
r

v1�r��
k

eik·rSz0�k�Sz0�− k� ,

�28�

where i is summed over x, y, and z. The projected first quan-
tized operators are given explicitly by

�̄tot�k� = e−��Bk�2/4�
j

pk�j� ,

S���k� =
1

2
e−��Bk�2/4�

j

pk�j����j����j� , �29�

where j runs over each electron in the ground state and pk�j�
is a unitary operator satisfying
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pk�j�pq�j� = ei��B
2 /2�kÙqpk+q�j� , �30�

�pk�i�,pq�j�	 = 2iij sin��B
2k Ù q/2�pk+q�j� , �31�

with kÙq= ẑ · �k�q�. Evaluating the commutators
�H0

n=0+H1
n=0 ,S0x�q�	, etc., on the ground state yields the cor-

responding excitation energies.
At small momentum, we obtain the following energies for

spin-wave, flavor-wave, and mixed spin–flavor-wave excita-
tions, respectively:

E��q� � g�BB + ����Bq�2, �32�

Ef�q� ���3

24
� a0

�B
�u1�0 + � f��Bq�2, �33�

E�f�q� = g�BB + Ef�q� , �34�

where �0=1/ �2��B
2� and the stiffnesses are

�� = �u0 − u1��0 + � , �35�

� f = u1�0 + � . �36�

At large momentum �q�→�, these excitations correspond to
the three types of separated particle-hole excitations out of
the ferromagnetic state �particle-hole excitations can be cre-
ated by flipping a spin, flavor, or both�. Their energies are

E���� = g�BB + 2�u0 − u1��0 + 4� , �37�

Ef��� = 2u1�0 + 4� , �38�

E�f��� = g�BB + 2u1�0 + 4� . �39�

The most noteworthy feature of these excitation energies
is the small value of the gap for flavor-wave excitations,
which is Ef�0��4�10−3�B�T	�3/2 K. In fact, had we ignored
the finite-range of v1 here, we would incorrectly conclude
that the flavor-wave gap vanishes. Assuming a local form,
the sublattice repulsion becomes proportional to Sz0�x�2,
which is simply a constant when acting on a uniform density
states in the quarter-filled Landau level. The lack of symme-
try breaking from such local interactions has been noted pre-
viously in studies of quantum Hall bilayers.26 As a result the
flavor-wave gap is down by an additional factor of a0 /�B
from what one might naively anticipate. Nevertheless, long-
range CDW order is expected to persist up to a transition
temperature of order � f / ln�� f /Ef�0�	.27 The spin order is
comparatively more robust, as the spin-wave gap is g�BB
B�T	 K,5 which for typical field ranges is around 50 times
larger or so than the flavor wave gap.

The smallness of the flavor-wave gap has important im-
plications for Skyrmions as well, which will continue to set
the charge gap. In particular, Skyrmions will be cheaper to
create solely in flavor space, leaving the spin order intact.
The competition between the sublattice repulsion v1, which
favors small Skyrmions, and the long-range Coulomb, which
favors infinite Skyrmions, will set a length scale for the
minimum-energy Skyrmions. However, the ratio of the

flavor-wave gap to the Coulomb energy scale EC is quite
small, given approximately by 3�10−5B�T	. For compari-
son, the ratio of the Zeeman gap to the Coulomb energy in
GaAs is roughly 6�10−3�B�T	,28 which at 10 T is around
60 times larger. Hence, corrections to the energies of flavor
Skyrmions arising from the nonzero flavor-wave gap are ex-
pected to be small. Approximating their energies by those for
infinite Skyrmions in the absence of a flavor-wave gap, the
activation energy arising from flavor Skyrmions is estimated
to be ��=−1�� f.

24 These results imply that the CDW order
will diminish extremely rapidly as one tunes away from �
=−1, whereas the spin order will be much more robust. One
possible test of these predictions would be to measure the
activation energy at constant perpendicular magnetic field
with varying in-plane fields.29 The activation energy arising
from flavor Skyrmions, being independent of spin, will be
insensitive to changes in the latter.

2. Filling factor �=0

The ground state at �=0, corresponding to a half-filled
n=0 Landau level, will depend on the strength of the Zee-
man coupling and on-site U relative to the sublattice repul-
sion v1. If the former terms dominate, the ground state will
be a spin-polarized flavor-singlet

�� = 0�sp = �
m

c↑R,m
† c↑L,m

† �vac� , �40�

which in contrast to �=−1 respects all graphene lattice sym-
metries. If the sublattice repulsion dominates, however, the
ground state will be a flavor-polarized spin-singlet

�� = 0�fp = �
m

c↑R,m
† c↓R,m

† �vac� , �41�

and thus also exhibit the lattice-scale CDW order illustrated
in Fig. 1. Comparing the energies of these two states, one
finds that the ground state will be spin polarized if g�BB
+2u0�0�4u1�0, while a flavor-polarized ground state
emerges if g�BB+2u0�0�4u1�0. According to Eqs. �13� and
�16�, we have u0�0�0.08U�eV	B�T	 K and u1�0

�0.4B�T	 K, where U�eV	 is the strength of the on-site re-
pulsion evaluated in electron volts �eV�. Ascertaining which
scenario prevails is complicated by the rather large uncer-
tainty in the value of the on-site U. Previous estimates have
suggested U5–12 eV,30 though here a slightly lower range
of values may be appropriate due to the presence of the SiO2
substrate. With g=1.4, which is the smallest value reported
in recent high-field experiments,5 the critical value for U
above which the ground state is spin polarized is estimated to
be Uc4 eV. Hence we cannot conclusively determine
whether the ground state is spin polarized, though this re-
gime can always be reached by increasing the effective Zee-
man coupling via the introduction of an in-plane magnetic
field component. Below we will discuss excitations in both
regimes.

Consider first the situation where the ground state is spin
polarized. Here there are four low-lying branches of excita-
tions, generated by Sxx�q�± iSyx�q� and S0x�q�±Szx�q�, which
create spin waves by breaking flavor singlets as required by
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the Pauli principle. Schematically, the former breaks singlets
by sending ��R��L�− �L��R��→ �R��R� �or �L��L��, while the
latter sends ��R��L�− �L��R��→ �R��L� �or �L��R��. That is,
Sxx�q�± iSyx�q� creates a spin wave by doubly occupying a
given flavor, while S0x�q�±Szx�q� does not. Proceeding as in
�=−1, at small momentum the respective energies for the
first and second pairs of spin waves are

E1±
sp �q� � g�BB + 2u0�0 − 4u1�0 + � f��Bq�2, �42�

E2±
sp �q� � g�BB + ����Bq�2, �43�

while at �q�→� we have

E1,2±
sp ��� = g�BB + 2u0�0 − 2u1�0 + 4� . �44�

The stiffnesses � f and �� are the same as at �=−1. Note that
having E1±

sp �0��0 requires that g�BB+2u0�0�4u1�0, which
is the same condition given above for realizing a spin-
polarized ground state.

We will assume that u0−2u1�0, implying that E1±
sp �0�

�E2±
sp �0�. This occurs for U�10 eV, which we believe is

reasonable. Due to the smaller gap for exciting spin waves
by doubly occupying a given flavor, it follows that the charge
gap will be set by mixed spin–flavor-textured Skyrmions.
Unfortunately, the large uncertainty in the strength of the
on-site U does not permit us to make a quantitative estimate
for the activation energy set by these Skyrmions. We can at
least say qualitatively that as one tunes away from �=0 they
should induce a depletion in the total spin of the system
along with a simultaneous revival of the sublattice CDW
order. How rapidly this occurs will of course depend on the
optimal Skyrmion size, which we are unable to determine.

Consider now the case where the sublattice repulsion
dominates, leading to a flavor-polarized ground state. There
are again four low-lying branches of excitations, generated
by Sxx�q�± iSxy�q� and Sx0�q�±Sxz�q�, which create flavor
waves by breaking spin singlets. The first pair of operators
break singlets by sending ��↑ ��↓ �− �↓ ��↑ ��→ �↑ ��↑ � �or
�↓��↓��, while the latter operators send ��↑ ��↓ �− �↓ ��↑ ��
→ �↑ ��↓ � �or �↓��↑��. The energies for the first and second
pairs of flavor waves are

E1±
fp �q� � � g�BB + 2�2u1 − u0��0 + � f��Bq�2, �45�

E2±
fp �q� � 2�2u1 − u0��0 + � f��Bq�2, �46�

at small momentum, while

E1±
fp ��� = � g�BB + 2�3u1 − u0��0 + 4� , �47�

E2±
fp ��� = 2�3u1 − u0��0 + 4� . �48�

Here the gap is smallest for flavor waves exciting by doubly
occupying spin-up states as favored by Zeeman coupling, so
the charge gap will be set by mixed spin–flavor-textured
Skyrmions in this case as well. Away from �=0 such Skyr-
mions will produce a rapid depletion of the CDW order and
revival of spin polarization.

Distinguishing experimentally between these two ground
states can be achieved by measuring the activation energy in

the presence of an in-plane magnetic field that enhances the
effective g factor. If the ground state is spin polarized, then
the activation energy should increase with the in-plane field
since the larger g factor favors smaller �and thus higher-
energy� Skyrmions. On the other hand, if the ground state is
flavor polarized, a decrease in the activation would be
expected—at least initially, before the condition for having a
flavor-polarized ground state is violated. Here, the enhanced
g factor reduces the energy cost for slowly varying spin-
flavor fluctuations according to Eq. �45�, leading to an in-
crease in optimal Skyrmion size and hence a reduction in the
optimal Skyrmion energy.

B. n=1 Landau level

Next, we will discuss quantum Hall ferromagnetism at �
=3, 4, and 5, corresponding to a quarter-filled, half-filled,
and three-quarter-filled n=1 Landau level. �n=−1 is related
by particle-hole symmetry.� We will again ignore Landau-
level mixing and project onto the n=1 level. Since the wave
functions now reside on both sublattices, we must return to
the full interacting theory defined by Eqs. �11� and �12�.

In the SU�4�-invariant limit with H1=0, the system will
again be an exchange ferromagnet at filling factors �=3, 4,
and 5. It is interesting to explore the lowest-energy charge
excitations here and in particular to ask whether the transport
gap is set by topological Skyrmions or separated particle-
hole excitations. In the case of Schrödinger-equation Landau
levels, it is known that Skyrmions constitute the minimum-
energy charge excitation only in the lowest Landau level.25

Since we are dealing here with two-component wave func-
tions whose elements consist of lowest-Landau-level and
next-lowest-Landau level Schrödinger-equation wave func-
tions, the answer in the present case is not a priori obvious.

To address this issue, we calculate the energies of the
generalized SU�4� “spin-wave” branches in the SU�4�-
invariant limit. While the convenient first-quantized formal-
ism described in the previous subsection is no longer at our
disposal, these energies can be computed directly using sec-
ond quantization. For simplicity, let us consider �=3 and
assume the following symmetry-broken ground state:

�0� = �
m

c↑R,m
† �vac� , �49�

where c↑R,m
† adds an electron into the n=1 Landau level. �Our

attention will be restricted to this filling factor since the en-
ergies are unchanged at �=4 and 5.� We evaluate explicitly
the energy of spin-wave excitations created by the operator
S�

−�q���xe−iq·x�S0x�x�− iS0y�x�	, where S0x and S0y are de-
fined in Eq. �26�. This choice is arbitrary, since which branch
we evaluate is immaterial due to the assumed SU�4� symme-
try. Upon projecting onto the n=1 Landau level, we have
S�

−�q�→S�
−�q�, with

S�
−�q� = �

x
e−iq·x�

l,m
��l

n=1�x�	†�m
n=1�x�

� �c↓R,l
† c↑R,m + c↓L,l

† c↑L,m	 . �50�

Here �l,m
n=1�x� are two-component wave functions defined in

GRAPHENE INTEGER QUANTUM HALL EFFECT IN THE¼ PHYSICAL REVIEW B 74, 075422 �2006�

075422-7



Eq. �18�, with l and m labeling the angular momentum �we
have suppressed the spin and flavor indices since the wave
functions do not depend on these�. A spin wave in the pro-
jected space is thus given by �q�=S�

−�q��0� and has an exci-
tation energy

E��q� =
�q�H0�q�

�q�q�
−

�0�H0�0�
�0�0�

, �51�

where H0 is the SU�4�-invariant part of the Hamiltonian pro-
jected onto the n=1 Landau level. Letting L2 be the system
size, we obtain

E��q� = 2�
k

V�k�sin2��B
2k Ù q/2�N�k� , �52�

N�k� =
2�

L2 �
xy

eik·�x−y��
l,m

��l
n=1�x�	†�m

n=1�x�

� ��m
n=1�y�	†�l

n=1�y� = e−��Bk�2/2�1 − ��Bk�2/4	2.

�53�

Note that replacing the wave functions in Eq. �53� by one-
component Schrödinger-equation Landau-level wave func-
tions reproduces the known spin-wave energies for the latter
case.25 Thus, Eqs. �52� and �53� constitute a straightforward
generalization of the spin-wave energies to the case of two-
component wave functions.

Equation �52� yields the following energy dispersion at
small momentum:

E0��q� � ����Bq�2, �54�

�� =
7

64
��

2
EC. �55�

This implies that a Skyrmion–anti-Skyrmion pair costs an
energy

Esk/ask� = 2��. �56�

The energy of a particle-hole excitation meanwhile is given
by

Ep/h� = E0���� =
11

16
��

2
EC. �57�

Comparing these, we see that Esk/ask� /Ep/h� =7/22�1; conse-
quently, in the SU�4�-invariant limit Skyrmions will set the
transport gap in the n=1 Landau level as well.

1. Filling factor �=3

We will now incorporate the anisotropy terms in H1 to
deduce the probable ground states selected by interactions,
considering �=3 first. Due to the Zeeman coupling, we will
assume a spin-polarized ground state here. The ordering in
flavor space remains to be determined. The most general
flavor-polarized state favored by the long-range Coulomb re-
pulsion can be expressed as

��,�� = �
m=0

� 
cos
�

2
c↑R,m

† + sin
�

2
ei�c↑L,m

† ��vac� . �58�

The angles � and � specify the polarization direction in fla-
vor space. With the ground state spin polarized, the only
terms in H1 remaining that break the flavor degeneracy are
the v1 and u2 interactions. Naively, the former favors a state
with ��stag��0, while the latter favors having �J±��0. It is
easy to show, however, that both expectation values vanish
for any choice of � and � in Eq. �58�. The vanishing of
��stag� follows from the fact that the n=1 wave functions
carry equal weight on both sublattices. The vanishing of �J±�
is a consequence of the fact that the elements �n=1 and �n=1

in Eq. �18� are given by wave functions for different
Schrödinger-equation Landau levels; hence, �m��m

n=1	*�m
n=1

=0. In other words, as opposed to what we saw at �=−1, the
direct contributions from the interactions leave the flavor
symmetry unbroken here.

There is, nevertheless, subtler flavor symmetry breaking
by interactions that arises due to exchange. Specifically, v1
favors in-plane flavor polarization ��=� /2�, while u2 favors
out-of-plane flavor polarization �e.g., �=0�. Denoting the
projected v1 and u2 interactions as Hv1

and Hu2
, respectively,

we obtain the following variational energies:

��/2,��Hv1
+ Hu2

��/2,�� =
�0L2

8
u2�0, �59�

�0,��Hv1
+ Hu2

�0,�� =
�0L2

2
u1�0. �60�

Since u1��3u2 /4, it follows that the in-plane polarized state
has lower energy so that the �=3 ground state is given by

�� = 3�  �
m=0

�

�c↑R,m
† + ei�c↑L,m

† 	�vac� , �61�

with a spontaneously chosen in-plane polarization angle �.
This state is characterized by a nonzero order parameter
�
†��x+ i� y�
��0 and in general breaks translation, rotation,
and reflection lattice symmetries for graphene. Using Eqs.
�5� and �6�, one can show that this discrete symmetry break-
ing is due to lattice-scale fermion currents circulating around
nearest-neighbor honeycomb plaquettes, with a specific pat-
tern determined by the polarization angle �.

Since this state spontaneously breaks U�1� flavor symme-
try, a finite-temperature Kosterlitz-Thouless transition is ex-
pected here. The physics associated with this transition has
been examined in detail previously in the context of quantum
Hall bilayers, where the layer degree of freedom plays the
role of flavor.18,26,31 One obstacle for observing such a tran-
sition in the bilayer problem is the finite tunneling amplitude
between layers, which explicitly breaks the U�1� psuedospin
symmetry that is analogous to the U�1� flavor symmetry in
our case. Here, however, the U�1� flavor symmetry appears
to be more robust. Graphene may therefore eventually pro-
vide a clean setting for studying the physics of a Kosterlitz-
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Thouless transition in the quantum Hall effect. Further theo-
retical exploration of this phenomenon in the present context
would certainly be interesting.

2. Filling factor �=4

Similarly to what we found at �=0, the ground state at
�=4 depends on the strength of Zeeman coupling and the
on-site U relative to that of the interactions v1 and u2. The
former terms again favor a spin-polarized flavor-singlet state,
while the latter interactions now favor an in-plane flavor-
polarized spin-singlet state. Evaluating the variational ener-
gies of these states, we find that the spin-polarized state has
a lower energy if g�BB+u0�0�u1�0+u2�0 /4. This inequal-
ity is satisfied even with a vanishing on-site U and a g factor
as small as unity. Thus we will assume here that �=4 ground
state is spin polarized:

�� = 4� = �
m

c↑R,m
† c↑L,m

† �vac� . �62�

We note, however, that the gaps for spin waves out of this
state are positive only if g�BB+2u0�0�2u1�0+u2�0 /2,
which provides a slightly more restrictive condition for hav-
ing a fully spin-polarized ground state. With g=1.4, the latter
inequality is satisfied provided U�2 eV.

3. Filling factor �=5

Finally, the situation at �=5 is analogous to that at �=3.
The ground state will have all spin-up states in the n=1
Landau level occupied to satisfy the Zeeman coupling. Due
to the sublattice repulsion v1, the remaining spin-down elec-
trons in the ground state are expected to be in-plane flavor
polarized:

�� = 5�  �
m

�c↓R,m
† + ei�c↓L,m

† 	�� = 4� . �63�

This state exhibits the same type of lattice-scale order as the
�=3 ground state and also spontaneously breaks U�1� flavor
symmetry so that a Kosterlitz-Thouless transition is expected
here as well.

C. Experimental relevance

Initial sightings of the graphene quantum Hall effect ob-
served integer quantum Hall states only at filling factors �
= ±2, ±6, ±10, etc.,2,3 corresponding to filled nearly fourfold-
degenerate Landau levels. Quantum Hall ferromagnetism
was thus entirely absent in these experiments. This is almost
certainly due to a collapse of the exchange gap responsible
for quantum Hall ferromagnetism by strong disorder, a phe-
nomenon that has been established both theoretically15,32,33

and experimentally.34,35

As discussed in the Introduction, more recent experiments
utilizing higher magnetic fields observed additional quan-
tized Hall plateaus at �=0, ±1, and ±4.5 A natural question to
ask is whether the appearance of these plateaus is a manifes-
tation of quantum Hall ferromagnetism. Nomura and Mac-
Donald, who very recently derived an experimental criterion
for realizing quantum Hall ferromagnetism in graphene, sug-

gest that this is indeed the case. However, the measured ac-
tivation energy at �= ±4 was found to be dominated by the
single-particle Zeeman splitting, suggesting that here the sys-
tem is perhaps more appropriately characterized as a para-
magnet. At present it is unclear whether the same is true for
the plateaus at �=0 or �= ±1. Measurements of the activa-
tion energies there will likely provide some hints as to their
origin.

In the following section, we will explore the possibility
that the system is indeed paramagnetic at these newly ob-
served quantized Hall plateaus and that their origin is due to
explicit symmetry-breaking terms in the Hamiltonian �rather
than exchange� as appears to be the case at �= ±4. In an
attempt to access this regime, we will assume that the effects
of exchange are effectively “canceled” by disorder and uti-
lize Hartree theory to examine the spin and flavor splitting of
the n=0 and n=1 Landau levels by such terms. This analysis
will hopefully provide useful input for determining the true
nature of the �=0 and �= ±1 states.

V. PARAMAGNETIC REGIME

It will be instructive to begin our analysis of the paramag-
netic regime by applying Hartree theory initially in a clean
system. Disorder effects will be discussed at the end of this
section. Since in our treatment of the ferromagnetic regime
we found that the u2 interaction dropped out at the n=0
Landau level and was effective only through exchange at n
=1, we will ignore this term here. Doing so will greatly
streamline our discussion, and our results do not depend on
this simplification. We retain the remaining symmetry-
breaking terms in H1 and consider the following interacting
Hamiltonian:

H̃ =� d2x�− i�v
†��xDx + � yDy	
 − g�BB · Stot

+ u0��↑,tot�↓,tot + �↑,stag�↓,stag	 − u1�stag
2 � , �64�

where ��,tot and ��,stag are the total and staggered densities
for spin � �e.g., �↑,stag=
↑

†� z�z
↑�. We have ignored the finite
range of the sublattice repulsion v1, as a local form will now
be adequate. Furthermore, we have dispensed with the mani-
festly SU�2�spin-invariant form of the on-site U term in favor
of a form which will be more convenient to work with here.
Note also that we have dropped pieces of the on-site U in-
teraction involving J±, since again these will be unimportant.

Our aim will be to employ Hartree theory to obtain effec-
tive single-particle energy levels for the interacting system
and in particular to extract the resulting particle-hole excita-
tion energies which will be of potential relevance for experi-
mentally measured activation energies. To proceed we de-
couple the interactions by linearizing in fluctuations of the
total and staggered densities about their mean values, yield-
ing an effective mean-field Hamiltonian
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H̃MF =� d2x�− i�v
†��xDx + � yDy	
 − g�BB · Stot

+ �
�=↑,↓

���,t��,tot + ��,s��,stag	 − �s�stag� + Econst.

�65�

The constant-energy term that arises upon decoupling is
given by

Econst =� d2x�− u0���↑,tot���↓,tot� + ��↑,stag���↓,stag�	

+ u1��stag�2� . �66�

Furthermore, the new coupling constants appearing in Eq.
�65� are defined as follows:

�↑/↓,t = u0��↓/↑,tot� , �67�

�↑/↓,s = u0��↓/↑,stag� , �68�

�s = 2u1��stag� . �69�

The ��,t and ��,s terms represent effective chemical poten-
tials for the total and staggered densities for spin �, while �s
behaves as an overall staggered chemical potential. Assum-
ing uniform expectation values for the total and staggered
densities, it is now straightforward to diagonalize the mean-
field Hamiltonian HMF to obtain the desired effective single-
particle levels for the interacting theory. Below we examine
the resulting level structure at integer filling factors in the
n=0 and n=1 Landau levels.

A. n=0 Landau level

The two-component n=0 Landau-level wave functions
for flavor A and spin � retain the same form as in the non-
interacting case �see Sec. III�. Their energies, however, are
now shifted as follows:

E↑/↓,R = �
1

2
g�BB + �↑/↓,t − �↑/↓,s + �s, �70�

E↑/↓,L = �
1

2
g�BB + �↑/↓,t + �↑/↓,s − �s. �71�

In particular, we see that the flavor degeneracy exhibited in
the noninteracting case is generically lifted by interactions.
Below we specialize to filling factors �= ±1 and �=0 to
obtain the effective level structure in the respective ground
states. We will find here that Hartree theory predicts the same
ground states as in the ferromagnetic case, due to the fact
that direct contributions from interactions rather than ex-
change selected the ordering in the latter case. Excitation
energies, however, which are our main interest, will be dra-
matically modified by the loss of exchange.

1. Filling factors �= ±1

We will again consider only �=−1 since �= +1 is related
by particle-hole symmetry. The mean-field energy at �=−1 is

minimized by filling all spin-up, flavor-R states �or all spin-
up, flavor-L states�. Setting ��↑,tot�=−��↑,stag�=�0 and ��↓,tot�
= ��↓,stag�=0, we obtain the following effective single-particle
levels:

E↑R = −
1

2
g�BB − 2u1�0, �72�

E↑L = −
1

2
g�BB + 2u1�0, �73�

E↓R = +
1

2
g�BB + 2u0�0 − 2u1�0, �74�

E↓L = +
1

2
g�BB + 2u1�0. �75�

By examining Eqs. �72�–�75�, we see that the minimum en-
ergy required to make a particle-hole excitation out of the
ground state is either 4u1�0 or g�BB+2u0�0, whichever is
smaller. Again we note that from Eqs. �13� and �16� we have
u0�0�0.08U�eV	B�T	 K and u1�0�0.4B�T	 K, where
U�eV	 is expected to be on the order of a few electron volts.
Figure 2�a� illustrates schematically the effective single-
particle levels in these two cases.

2. Filling factor �=0

Just as we saw in the ferromagnetic regime, the �=0
ground state here depends on the strength of Zeeman cou-
pling and the on-site U relative to the sublattice repulsion u1.
Evaluating the mean-field energetics for these states, we
again find that the ground state will be spin polarized if
g�BB+2u0�0�4u1�0, while a flavor-polarized ground state
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FIG. 2. Schematic effective single-particle energy levels ob-
tained within a Hartree analysis of the interacting theory at �a� �
=−1, �b� �=0, and �c� �=4. Here �s=g�BB+2u0�0, while �u1
=4u1�0. For �=−1 and 0, the levels on the left-side correspond to
�s��u1

, while the right side corresponds to �s��u1
.
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exhibiting lattice-scale CDW order occurs if g�BB+2u0�0
�4u1�0.

Let us first deal with the case where the ground state is
spin polarized. Here, we set ��↑,tot�=2�0 and ��↓,tot�
= ��↑/↓,stag�=0, yielding the following energy levels:

E↑R/L
sp = −

1

2
g�BB , �76�

E↓R/L
sp = +

1

2
g�BB + 2u0�0. �77�

Since all spin-up states are occupied, the energy for a
particle-hole excitation is clearly given by g�BB+2u0�0.
Consider alternatively the case where the ground state is fla-
vor polarized, and we have ��↑/↓,tot�=−��↑/↓,stag�=�0 corre-
sponding to occupying all flavor R states. The effective
single-particle levels are now

E↑/↓R
fp = �

1

2
g�BB + 2u0�0 − 4u1�0, �78�

E↑/↓L
fp = �

1

2
g�BB + 4u1�0. �79�

Consequently, the minimum energy for a particle-hole exci-
tation is 8u1�0−2u0�0−g�BB. The single-particle levels for
both scenarios are illustrated schematically in Fig. 2�b�.

B. n=1 Landau level

We will make an additional simplification in our treatment
of the n=1 Landau level and set ��,s=�s=0 at the outset.
This is not necessary and does not affect our results, and we
do so only for the sake of simplicity. On physical grounds
one expects these terms to vanish given that the noninteract-
ing n=1 wave functions carry equal weight on both sublat-
tices. Furthermore, it is easy to show that in any case they do
not lead to a splitting of the flavor degeneracy in the n=1
Landau level.

With this simplification, the wave functions are un-
changed from the noninteracting case, while the energies for
flavor A become

E↑/↓A� = �
1

2
g�BB + �↑/↓,t + �2e�v2B . �80�

In contrast to the n=0 Landau level, the flavor degeneracy
remains unbroken by interactions here. The important physi-
cal implication is that there are gapless charge excitations at
�=3 and 5, and thus no quantum Hall effect would be pre-
dicted by Hartree theory at these filling factors. This is not
too surprising since in our analysis of the ferromagnetic re-
gime we found that interactions broke the flavor degeneracy
at �=3 and 5 only via exchange.

The levels are spin split, however, and there is a gap at
�=4. All spin-up orbitals are occupied in the ground state, so
here we have ��↑,tot�=2�0 and ��↑,tot�=0. The effective
single-particle energies are thus given by

E↑A� = −
1

2
g�BB + �2e�v2B , �81�

E↓A� = +
1

2
g�BB + 2u0�0 + �2e�v2B , �82�

and the particle-hole excitation energy is g�BB+2u0�0. The
energy levels here are illustrated in Fig. 2�c�.

C. Discussion

To summarize, our disorder-free Hartree analysis suggests
that Zeeman coupling together with symmetry-breaking in-
teractions can in principle induce quantum Hall states in a
paramagnetic system at filling factors �=0, ±1, and ±4, but
not at �= ±3 or ±5. The activation energies at �= ±4 ob-
tained in Hartree theory—corresponding to one-half of the
particle-hole energies—are

��=±4 =
1

2
g�BB + u0�0. �83�

At filling factors �= ±1 and �=0, the activation energies
depend on whether �i� g�BB+2u0�0�4u1�0 or �ii� g�BB
+2u0�0�4u1�0. In case �i� the activation energies at these
filling factors are predicted to be

��=±1
�i� = 2u1�0, �84�

��=0
�i� =

1

2
g�BB + u0�0, �85�

while for case �ii� we have

��=±1
�ii� =

1

2
g�BB + u0�0, �86�

��=0
�ii� = 4u1�0 − u0�0 −

1

2
g�BB . �87�

We note that in the second case the activation energy at �
=0 is larger than that for �= ±1 and ±4.

These results will of course be modified by the inclusion
of disorder. In particular, one may ask whether the lattice-
scale character of the wave functions, which was essential
for the flavor symmetry breaking at n=0 and lack thereof at
n=1, survives upon disordering the system. We expect that
microscopic features of the wave functions will indeed re-
main robust, provided the length scale associated with the
disorder is long compared with the lattice spacing. Further-
more, it is clear that assuming uniform expectation values for
the total and staggered densities as we did above will not be
valid in the presence of disorder. This introduces a consider-
able degree of complexity, as the mean-field Hamiltonian in
this case is not easily diagonalized and must be solved self-
consistently. However, we expect that disorder can be effec-
tively accounted for by a �possibly magnetic field-dependent�
broadening of the effective single-particle levels found
above, leading to a reduction in the activation energies we
predicted by considering a clean system. A more serious

GRAPHENE INTEGER QUANTUM HALL EFFECT IN THE¼ PHYSICAL REVIEW B 74, 075422 �2006�

075422-11



treatment of disorder and interactions will clearly be desir-
able, but will not be pursued here.

Even at the crude level of our treatment, it is interesting to
compare our predictions from Hartree theory with the high-
field experiments mentioned above that resolved additional
quantum Hall states at �=0, ±1, and ±4. First, Hartree theory
is consistent with the appearance of these quantum Hall
states and also can potentially provide a simple explanation
for the conspicuous absence of those at �= ±3 and
±5—namely, a lack of flavor symmetry breaking due to the
form of the higher-Landau-level wave functions. Second, the
activation energy predicted at �= ±4 is given by the Zeeman
energy plus a contribution from the on-site U that is linear in
the perpendicular magnetic field, the latter being unchanged
by the addition of an in-plane magnetic field component �see
Eq. �83�	. The measured energy gap for the spin-split Landau
levels was similarly found to be given by the Zeeman energy,
supplemented by a phenomenological Landau-level broaden-
ing varying linearly with the perpendicular magnetic field.5 If
one interprets this Landau-level broadening as a contribution
to the energy splitting arising from the on-site U, one obtains
U2 eV, which is of the right order of magnitude. Finally,
if g�BB+2u0�0�4u1�0, then one obtains activation energies
in Hartree theory which are identical at �= ±1 and ±4, while
a larger energy is predicted at �=0 �see Eqs. �83�, �86�, and
�87�	. It is intriguing to note that experimentally the quan-
tized Hall plateau at �=0 sets in at B�11 T, while the �
= ±1 and ±4 plateaus are resolved at similar fields around
B�17 T, which may be consistent with the relative magni-
tudes of the above Hartree energies.

We emphasize that the preceding discussion is by no
means intended to be conclusive, but only to suggest one
possible mechanism for the appearance of the additional
quantum Hall plateaus at high magnetic fields. Again, assess-
ing the origin of the quantum Hall states at �=0 and �= ±1
requires further experiments, which we hope this work may
stimulate. Measuring the activation energies at these filling
factors as a function of an in-plane magnetic field may pro-
vide some guidance as to whether the quantum Hall states at
these filling factors are due to quantum Hall ferromagnetism,
explicit symmetry breaking, or perhaps some other mecha-
nism. For instance, if g�BB+2u0�0�4u1�0, our Hartree es-
timates predict that the �=0 gap will increase with an in-
plane magnetic field component, while the gaps at �= ±1
will remain unchanged. On the other hand, for g�BB
+2u0�0�4u1�0 the gaps at both �=0 and �= ±1 vary with
an increasing in-plane field, the former decreasing while the
latter increases.

VI. CONCLUDING REMARKS

As technological progress enables the fabrication of
higher-quality graphene samples, quantum Hall ferromag-
netism will likely provide an interesting avenue of explora-
tion along the road to the fractional quantum Hall effect. One
of the remarkable aspects of quantum Hall ferromagnetism
in graphene is the connection between quantum Hall physics
operating on long length scales of order the magnetic length
and lattice-scale physics. The clearest manifestation of this
interplay occurs at filling factors �= ±1 and possibly also �
=0, where lattice-scale charge density wave order, albeit
weak, coexists with the integer quantum Hall effect. Estab-
lishing the presence of such lattice-scale structure experi-
mentally would be quite interesting, although doing so will
likely prove challenging as the signatures of such order are
expected to be small. Another remarkable aspect of quantum
Hall ferromagnetism in graphene that would be worth pursu-
ing is the potential for observing a Kosterlitz-Thouless tran-
sition, which we argued should occur at filling factors �
= ±3 and ±5. Further experimental and theoretical studies of
Skyrmion physics in graphene would also be interesting.

In the more immediate future, further experiments to de-
termine the origin of the additional integer quantum Hall
states appearing at high magnetic fields would be extremely
useful. We have provided here Hartree estimates for the ac-
tivation energies in these states which, at least in principle,
should be straightforward to compare with by exploring the
dependence of the transport gap on an in-plane magnetic
field. Finally, studies that incorporate disorder into our analy-
sis of the paramagnetic regime in a more systematic way
would of course be welcome.

Note added in proof. After submission of this manuscript,
a third scenario for the appearance of additional quantum
Hall states in graphene at high magnetic fields �apart from
quantum Hall ferromagnetism and explicit symmetry break-
ing� was proposed in Ref. 36 based on the formation of an
excitonic gap together with Zeeman splitting. Future experi-
ments will hopefully provide insight into which of these
mechanisms underlies the interesting high-field behavior ob-
served in graphene.
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