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We study the entropy of chiral 2+1-dimensional topological phases, where there are
both gapped bulk excitations and gapless edge modes. We show how the entanglement
entropy of both types of excitations can be encoded in a single partition function. This
partition function is holographic because it can be expressed entirely in terms of the
conformal field theory describing the edge modes. We give a general expression for
the holographic partition function, and discuss several examples in depth, including
abelian and non-abelian fractional quantum Hall states, and p + i p superconductors.
We extend these results to include a point contact allowing tunneling between two points
on the edge, which causes thermodynamic entropy associated with the point contact to
be lost with decreasing temperature. Such a perturbation effectively breaks the system
in two, and we can identify the thermodynamic entropy loss with the loss of the edge
entanglement entropy. From these results, we obtain a simple interpretation of the
non-integer ‘ground state degeneracy’ which is obtained in 1+1-dimensional quantum
impurity problems: its logarithm is a 2+1-dimensional topological entanglement entropy.

KEY WORDS: topological field theory, entanglement entropy, conformal field theory,
fractional quantum hall effect

1. INTRODUCTION

Entanglement is one of the characteristic peculiar features of quantum mechanics.
It lay at the heart of the debates between Bohr and Einstein, Podolski, and Rosen,
and it is essential for the Bell’s inequality violation which distinguishes quantum
mechanics from classical hidden variables theories. Entanglement between logical
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qubits is a resource for quantum computation; entanglement between physical
qubits and the environment is a threat to quantum computation; entanglement
between physical qubits is essential for error correction.

Entanglement entropy is one measure of entanglement. If a system can be
subdivided into two subsystems A and B, then even if the whole system is in a
pure quantum state |�〉, subsystem A will be in a mixed state with density matrix
ρ obtained by tracing out the subsystem B degrees of freedom:

ρA = trB(|�〉〈�|) (1)

The entropy of this density matrix will be zero if the state |�〉 is the direct product
of a pure state for subsystem A with a pure state for subsystem B or, equivalently,
if the matrix ρA has only a single non-zero eigenvalue. If the entropy

SA = −tr(ρA ln ρA) (2)

is non-zero, then the subsystems A and B are entangled.
The entanglement entropy SA is a measure of the correlations between the

degrees of freedom of the A and B subsystems. In a 1+1-dimensional quantum
system, the dependence of SA on the length L of subsystem A can be used
to distinguish critical from non-critical systems: it remains finite as the length
increases, except at criticality, where it diverges logarithmically with a universal
coefficient. (1,2) Of course, in this case, there are other measures of criticality,
such as the power-law decay of correlation functions. In a gapped system, the
leading term in the entanglement entropy is proportional to the surface area of the
boundary. The coefficient is cutoff-dependent. However, in a 2+1-dimensional
system in a gapped topological phase, the first subleading term is universal and
independent of the size or shape of A: (3,4)

SA = aL − lnD + · · · , (3)

where L is the length of the boundary of region A (in two spacetime dimensions,
the ‘surface area’ is a length). It is not immediately obvious that D in the above
Eq. (3) is uniquely defined since a is a cutoff-dependent coefficient. However,
by dividing a system into three or more subsystems and forming an appropriate
linear combination of the resulting entanglement entropies, the length term can
be canceled, leaving only the universal term. (3,4) Such a construction can be used
to give a more precise definition of the topological entanglement entropy, but
its essential meaning is captured by (3). The quantity D is the total quantum
dimension of the topological phase, which we define in Sec. 2.

This is potentially a very useful probe of a topological phase. In such a
phase, all correlation functions are topologically-invariant at distances longer than
some finite correlation length and energies lower than a corresponding energy
scale. Hence, in order to identify such a state, one must examine the ground state
degeneracy on higher-genus surfaces or the braiding properties of quasiparticle
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excitations. The entanglement entropy gives us a handle on this topological struc-
ture stemming from the ground state wavefunction alone.

Topological quantum field theories (TQFTs) were widely studied in the string-
theory community in the late ’80s and early ’90s, following Witten’s celebrated
work(5) on Chern-Simons field theory, conformal field theory (CFT), and the Jones
polynomial of knot theory. (6) There has been a recent revival of interest in TQFTs
due to the possible emergence of topological phases in electronic condensed-matter
systems and the proposed use of such phases as a platform for fault-tolerant
quantum computation. (7,8) The above definition of a topological phase can be
compactly (though tautologically) restated as a phase of matter for which the
long-distance effective field theory is a topological field theory. The entanglement
entropy is a way of extracting one of the basic parameters of a topological field
theory, its quantum dimension.

A chiral TQFT in 2+1 dimensions is related to 1+1-dimensional rational
conformal field theory (RCFT) in several ways. When the TQFT is defined on
a manifold with boundary, the boundary degrees of freedom form an RCFT.
The topological invariance of the theory means that there is no distinction between
spacelike and timelike boundaries. Hence, the RCFT describes both (a) the ground
state wavefunction(s) at some (2+0)-d equal-time slice when spacetime is M × I ,
for a compact surface M and time interval I , and (b) the dynamics of the (1+1)-d
boundary when spacetime is X × R, where X is a surface with boundary. In the
RCFT, the topological braiding/fusion structure of the TQFT is promoted to a
holomorphic structure with branch cuts implementing non-trivial monodromies.
This structure occurs in the TQFT ground state(s) (the (2+0)-d case) as a result
of the choice of holomorphic gauge. In the (1+1)-d case, however, it represents
the actual critical dynamics of the excitations of the edge of the system.

Although other possible settings are also suspected, there is only one place
in nature where topological phases are known for certain to exist: the quantum
Hall regime. In this regime, this ‘holographic’ relationship between the (2+1)-d
TQFT describing the bulk and the (1+1)-d RCFT describing edge excitations
is beautifully realized. Since it is easier to experimentally probe the edge, the
topological properties of quantum Hall states have, thus far, been mostly probed
through the constraints that they place on the dynamics of the edge.

One can continue to still lower dimensions and consider boundaries or defect
lines in 2d classical critical systems and impurities in (1+1)-d quantum critical
systems with dynamical critical exponent z = 1. (In many (2+1)-d or (3+1)-d
critical systems, only the s-wave channel interacts with the impurity. By perform-
ing a partial wave decomposition and keeping only this channel, one can map
the problem to a (1+1)-d problem. Hence, the restriction to (1+1)-d is not very
severe.) In these situations, the constraints of conformal invariance in the bulk
strongly constrain the low-energy behavior of the boundary/defect correlations
or impurity dynamics. The same methods can be applied to a point contact in a
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(2+1)-d system in a topological phase. The point contact allows tunneling be-
tween the gapless excitations at the edge and can, therefore, be understood as an
impurity in a (1+1)-d system.

In particular, we can write the entropy of the impurity problem as

Simp = f L + ln(g) + · · · (4)

where L is the size of one-dimensional space. The leading piece is non-universal,
but a universal part of the entanglement entropy proportional to the central charge
of the conformal field theory can be extracted. (9) In this paper, we will focus on
subleading pieces of the entropy like ln(g). Although ln(g) is often called the
“boundary entropy,” we see that this interpretation is not always useful: we will
see how such a term can be present even when there is no boundary to the 1+1
dimensional system. Moreover, if it were truly the entropy of the impurity, then g
would be an integer. However, if one computes it by first taking the thermodynamic
limit LT → ∞, and then taking T → 0, g is not always an integer.(10−13) This
makes this subleading contribution to the entropy somewhat mysterious to interpret
physically.

To make this clearer, we will examine in detail the situation in which the
(1+1)-d critical system is the edge of a (2+1)-d system in a chiral topological
phase. In particular, we will show that the value of g in (4) is closely related to that
of the quantum dimension D of the topological quantum phase, that occurs in the
entanglement entropy in (3). Although they are both subleading terms in entropies,
their relation is far from obvious. Indeed, their very definitions are quite different,
involving an interchanged order of limits. The entanglement entropy is a property
of the ground state obtained in the zero temperature limit, when the region size L
is subsequently taken to infinity. On the other hand, extracting the subleading ln(g)
correction of the thermodynamic entropy as in (4) requires taking L to infinity
before taking the zero temperature limit. Despite this opposite ordering of limits,
we will show that both quantities follow from the same deep results in conformal
field theory. (12,14)

The connection can be understood heuristically by considering the entropy
loss resulting from the impurity/point contact as the temperature is decreased. This
is convenient because it allows one to get rid of the contributions proportional to L
by considering the difference SU V − SI R , where SU V is the entropy in the absence
of the impurity/point contact (the ultraviolet limit), and SI R is the entropy in the
zero-temperature limit (the infrared limit). In the IR limit, the point contact in the
topological theory effectively cuts the edge in two. When the edge is cut into two,
the topological entanglement entropy(2) receives a contribution −2 lnD. Thus
SU V − SI R = lnD. As we will see, by definition, D > 1, so this is indeed positive
as one expects for a flow caused by a relevant perturbation. This demonstrates
that a “g-theorem”(13,15) applies to a point contact across a system in a topological
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phase. Likewise, in quantum impurity problems the impurity degrees of freedom
end up being screened (at least partially) by coupling to the degrees of freedom in
the one-dimensional bulk.

These results show that when a (1+1)-d critical system is the boundary of a
(2+1)-d system in a topological phase, the thermodynamic “boundary entropy”
of Eq. (4) is actually the topological entanglement entropy for the subsystems into
which the system has been dynamically split. This is reminiscent of the generation
of entropy by black hole formation. (The reader need not worry that by relating a
(0+1)-d entropy to a (2+1)-d entropy we are forgetting that a boundary cannot
have a boundary. The point contact is not the boundary of a (1+1)-d system,
but rather a defect in the middle of it – and, therefore, capable of cutting it in
two.)

In fact, the connection between the two kinds of entropy goes even deeper.
When a topological phase has quasiparticles with non-Abelian statistics, there is
an additional source of entanglement entropy. This arises because the Hilbert space
for identical particles obeying non-Abelian statistics must be multi-dimensional
(even when ignoring the position and momentum of the particles), so that the
system moves around in this space as the quasiparticles are braided. For example,
in a p + i p superconductor, two vortices form a two-state quantum system, which
therefore have an entanglement entropy ln(2). We dub this entropy the bulk entan-
glement entropy, because it comes from the gapped bulk quasiparticles. However,
we emphasize that this a subleading piece of the 2+1-dimensional bulk entropy: it
is independent of the size of the system, but rather depends only on the number
and type of quasiparticle excitations in a given state. The remarkable connection
is that this part of 2+1 dimensional bulk entropy can be encoded in a 1+1 di-
mensional partition function. In other words, the entanglement entropy of these
bulk quasiparticles is a property of the boundary of the system (just like a black
hole!). We show how to compute such holographic partition functions by using
conformal field theory.

In Sec. 2, we discuss the quantum dimensions of a topological state and of
the various quasiparticle excitations of such a state. We give a general way to
compute quantum dimensions using conformal field theory in Sec. 3, and do this
computation for a variety of examples in appendix (A). The examples include
the Laughlin states for the abelian fractional quantum Hall effect, the Moore-
Read(16) and Read-Rezayi (17) non-abelian quantum Hall states, and the p + i p
superconductor. (18,19) In Sec. 4 we derive the central results of our paper, which
define the holographic partition function and how it describes the topological
entanglement entropy. We show in Sec. 5 how these results can be applied to
understand how a point contact affects the entropy. This complements recent
results of ours, relating point contacts in the Moore-Read state and in p + i p
superconductors to the Kondo problem. (20,21)
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2. QUANTUM DIMENSIONS

A fundamental characteristic of a topological field theory is the quantum
dimensions of the excitations. The topological entanglement entropy of the systems
studied here on a space with smooth boundaries is entirely given in terms of these
numbers.

For the quantum Hall effect and related states, one can find the quantum
dimensions directly from the wavefunctions. (22,23) In this paper we find it useful
to instead compute them using the methods of conformal field theory. The formal
reason why this is possible is that the algebraic structure of rational conformal
field theory is virtually identical to that of topological field theory (this can be
understood precisely by using the mathematical language of category theory).
A more intuitive reason is that the gapless edge modes of the 2+1-dimensional
quantum theories studied here form an effectively 1+1 dimensional system. A
1+1-dimensional gapless system with linear dispersion has conformal invariance,
so the powerful methods of conformal field theory are applicable. The edge modes
are in one-to-one correspondence with the modes of the bulk system, so the da

computed using conformal field theory are those of the bulk system as well.
We introduce the full conformal field theory formalism in the next section. In

this section we explain how to define both the individual quantum dimensions of
the quasiparticles da , and the total quantum dimension D of a theory. We discuss
explicitly the simplest non-trivial example, the Ising model.

The quantum dimension is simple to define. Denote the number of linearly-
independent states having N quasiparticles of type a as Ha(N ). Then the quantum
dimension da of the excitation of type a is given by studying the behavior of Ha(N )
for large N , which behaves as

Ha(N ) ∝ dN
a .

To have non-abelian statistics, one must have da > 1; these degenerate states are
the ones which mix with each other under braiding. In such a situation one typically
has da which are not integers.

As we discussed in the introduction, the topological entanglement entropy is
related to the total quantum dimension D, which is defined as

D =
√∑

a

d2
a . (5)

The sum is over all the types of quasiparticles in the theory. Thus to compute
D, one must not only compute the da but be able to classify all the different
quasiparticles as well. Since da ≥ 1 by definition, for D to make sense there can
only be a finite number of different quasiparticles. We must therefore confine
ourselves to topological field theories where this is true. Luckily, the topological
theories of most importance in condensed-matter physics have this property.
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We will give a simple expression for D below in terms of the modular S
matrix of conformal field theory, but here we illustrate how it comes about. In the
fractional quantum Hall effect there is a very natural way of understanding the
structure of the topological theory. Quasiparticle states are defined “modulo an
electron.” This means that in the topological theory, two excitations which differ
by adding or removing an electron are treated as equivalent. Thus the charge-e
electron is in the identity sector of the theory, since in the topological theory the
identity and the electron are equivalent.

A simple example is in the abelian Laughlin states at filling fraction ν = 1/m.
We discuss in depth in the appendix how the consequence of modding out by an
electron is that states differing in charge by any integer times e are identified in
the topological theory. Only fractionally-charged quasiparticles result in sectors
other than the identity. In the Laughlin states, the fundamental quasiparticle has
charge −1/m. One can obviously consider more than one of these to get larger
fractional charge, but if one has m of the fundamental quasiparticles, they can
fuse into a hole (put another way, the hole can split apart into m fundamental
quasiparticles). Different sectors of the topological theory can therefore be labeled
by the charges ae/m where a is an integer obeying 0 ≤ a < m. There are thus m
different quasiparticle sectors. The quantum dimension of any quasiparticle in an
abelian theory is 1, so we have da = 1 for a = 0 · · · m − 1. Using this with (5)
gives the total quantum dimension of a Laughlin state at ν = 1/m to be

Dν=1/m = √
m. (6)

Finding D for non-abelian states requires knowing even more about the
structure of the theory. Not only does it require knowing what the quasiparticles
are, but finding the individual da requires knowing what the fusion rules are. The
fusion rules describe how to treat multi-particle states in the topological phase in
terms of single-particle states. In the abelian case, the fusion rules are simple: for
example, two charge-e/m particles fuse to effectively give a single charge-2e/m
particle. The non-abelian structure of the theory arises when two particles can fuse
in more than one way.

We illustrate this in the p + i p superconductor. As discussed in detail in a
number of places, (19,24) a vortex has a Majorana fermion zero mode in its core.
Then two vortices share a Dirac fermion (=2 Majorana fermions) zero mode. This
zero mode can be either empty or filled; thereby, two vortices form a two-state
system. Denoting the identity sector by I , the vortex by σ and the filled zero
mode by ψ , this means that the fusion rule for two vortices can be denoted by
σ · σ = I + ψ. Two different terms on the right-hand-side means that there are
two ways to fuse two sigma quasiparticles. (More precisely, this means that two
vortices have a two-dimensional Hilbert space.) One finds that the full set of fusion
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rules here are

ψ · ψ = I

σ · σ = I + ψ (7)

ψ · σ = σ

and, of course, fusion with the identity gives the same field back.
The quantum dimensions follow from the fusion rules. Two σ quasiparticles

here can fuse to give either the identity I , or the fermion ψ . Thus while Hσ (1) = 1,
these two possibilities for fusion of σ with itself means that the dimension of the
Hilbert space for two vortices is Hσ (2) = 2. Now include a third vortex. The
dimension of the Hilbert space is not 4, but rather is Hσ (3) = 2. This is because

σ · σ · σ = (I + ψ) · σ = σ + σ.

Fusion is associative, so it makes no difference in which order we fuse. Continuing
in this fashion, it is easy to see that

Hσ (N ) =
{

2N /2 N even

2(N−1)/2 N odd

The quantum dimension of the vortex is therefore dσ = √
2. Since ψ · ψ = I ,

Hψ (N ) = 1 for all N , so the quantum dimension of the fermion ψ is simply
dψ = 1. The quantum dimension of the identity field is obviously always dI = 1,
so only the vortices exhibit non-abelian statistics. The total quantum dimension of
the p + i p superconductor is therefore

Dp+i p =
√

12 + 12 + (
√

2)2 = 2. (8)

As we will discuss in detail in the next section, this all follows from studying the
Ising conformal field theory, which describes the edge modes of this supercon-
ductor.

3. COMPUTING THE QUANTUM DIMENSIONS USING

CONFORMAL FIELD THEORY

As discussed in the introduction, the bulk quasiparticles of a topological field
theory are in one-to-one correspondence with the ‘primary fields’ of a correspond-
ing rational conformal field theory. Here we explain how to use this correspondence
to give a systematic way to compute the quantum dimensions of the quasiparticles
in a topological phase.
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3.1. Primary Fields and Quasiparticles

We start by reviewing some of the conformal field theory results we will
be using. For an excellent introduction to much of this formalism, with detailed
applications to the Ising model, see Ginsparg’s lectures. (25)

We take two-dimensional space to be a disk, so that its one-dimensional edge
is a circle of radius R. At zero temperature the effective two-dimensional spacetime
for the conformal field theory is therefore the surface of a cylinder. We describe
this cylinder by a periodic variable 0 ≤ θ < 2π and a (dimensionless) Euclidean
time coordinate τ . It is often convenient to study the theory on the punctured plane
with complex coordinates z and z, and then use the conformal transformations
z = eτ+iθ and z = eτ−iθ to map the results onto the cylinder. We will often study
the theory at non-zero temperature 1/β, so that τ becomes periodic with period β.
At non-zero temperature, spacetime therefore is a torus. All the conformal field
theories we study are chiral, which means that all fields depend only on τ + iθ
or z, and not τ − iθ or z. This is possible because of the time-reversal symmetry
breaking of the 2+1 dimensional theory, coming, for example, from the magnetic
field required for the Hall effect.

Many powerful techniques can be used to analyze conformal field theories.
In two spacetime dimensions, conformal symmetry has an infinite number of
generators. The symmetry is generated by the chiral part of the energy-momentum
tensor T (z) and its antichiral conjugate T (z). The generators of chiral conformal
transformations are the modes of T (z), i.e. the coefficients Ln in the Laurent
expansion T (z) = ∑

n Lnz−n−2 on the punctured plane. The energy-momentum
tensor has dimension 2, so we have normalized the modes so that Ln has dimension
n. The Hamiltonian of the non-chiral system on the cylinder is

H = 2π

R
(L0 + L0) − πc

6R
.

The constant c is known as the central charge of the conformal field theory.
The term proportional to c arises from the conformal transformation of the
plane to the cylinder; it can be interpreted as the ground-state or Casimir en-
ergy of the system in finite spatial volume 2π R. (26) Conformal symmetry requires
that [L0, Ln] = −nLn , so acting on an energy eigenstate with L−n gives another
eigenstate with energy shifted by 2πn/R. Furthermore, an L0 eigenstate has
eigenvalue which is equal to the dimension of the operator which creates it. It is
convenient to define a “chiral Hamiltonian” by

H = 2π (L0 − c/24), (9)

so that H = (H + H)/R.
Since there are an infinite number of symmetry generators, the irreducible

representations of conformal symmetry are infinite-dimensional. Thus one might
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hope to classify all the states of a 1+1-dimensional field theory in terms of a finite
number of irreducible representations of conformal symmetry. In other words,
there will be a finite number of highest-weight states, and all the other states of
the theory will be obtained by acting on the highest-weight states with the Ln with
n < 0. This is quite similar to decomposing states into irreducible representations
of any non-abelian symmetry algebra such as, for instance, spin. In fact, one often
can extend the conformal symmetry algebra to a larger algebra by also including
symmetries such as spin, supersymmetry, or even more exotic possibilities called
W algebras. One can then organize all the states of the theory into irreducible rep-
resentations of these extended infinite-dimensional symmetry algebras. Theories
with a finite number of highest-weight representations of such extended symme-
try algebras are called rational conformal field theories. The fields creating the
highest-weight states are called primary fields, and those obtained by acting on
these with the symmetry generators are called descendants.

For the theories of interest here, there are in general an infinite number of
primary fields under the conformal symmetry, but a finite number under a larger
symmetry group. There is a marvelous physical interpretation of the presence
of this extended symmetry algebra. We discussed in the previous section how in
the Hall effect, the topological field theory arises by considering all the states
“modulo an electron.” In the edge conformal field theory, the symmetry algebra
can be extended by including the electron annihilation/creation operators. Thus
the primary fields of the conformal field theory are in one-to-one correspondence
with the quasiparticles in the topological phase. Descendant states arise by at-
taching electrons or holes to the quasiparticles—acting with the electron creating
or annihilation operator moves one around inside an irreducible representation of
the extended symmetry algebra. We will give explicit examples below of how this
works.

3.2. Quantum Dimensions from the Fusion Rules

There are several equivalent ways of using conformal field theory to compute
the quantum dimensions of the quasiparticles. All amount to finding the fusion
coefficients. Since all the fields of the theory are expressed by acting with the
symmetry generators on the primary fields, the operator-product expansion of two
primary fields can be written as a sum over the primary fields. Namely, the “fusion
rules” of a conformal field theory are written as

φa · φb =
∑

c

N c
abφc (10)

where the fusion coefficients N c
ab are non-negative integers, which count the

number of times the primary field φc appears in the operator-product expansion of
φa and φb. This algebra is associative, and one has N c

ab = N c
ba = N a

bc. For all the
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theories considered here, we have N c
ab = 0 or 1, but it is possible to have larger

integers in more complicated theories.
Each quasiparticle in the topological field theory corresponds to a primary

field, and the fusion of these quasiparticles is the same as that of the corresponding
primary fields. Thus to have non-abelian statistics, N c

ab for some a and b must
be non-zero for more than one c. A simple example of non-abelian statistics is
given by the Ising model, which has three primary fields: the identity field I , the
fermion ψ , and the spin field σ , which have the fusion rules given in (8) above.
The reason for the correspondence with vortices in a p + i p superconductor is that
the Ising CFT is describes the edge excitations of a p + i p superconductor. (19,24)

This can be shown, for example, by using the Bogoliubov-de Gennes equations for
the superconductor, as reviewed in Ref. 21. The corresponding non-zero fusion
coefficients are therefore N I

σσ = Nψ
σσ = N σ

σψ = N I
ψψ = 1. These fusion rules are

compatible with the spin-flip symmetry σ → −σ , ψ → ψ .
We detailed in the previous section how to compute the quantum dimensions

for the Ising fusion rules. The general procedure is similar. If we fuse M φa fields
together and use (10) recursively on the right-hand side:

φa · φa · . . . · φa = N c1
aa N c2

ac1
· · · N cM−1

acM−2
φcM−1

(11)

This is the product of M − 1 copies of the matrix

(Qa)c
b = N c

ab . (12)

In the M → ∞ limit, the product will be dominated by the largest eigenvalue of
Qa . This is the quantum dimension da .

This eigenvalue can easily be written in terms of the modular S matrix, which
we will define and discuss in the next subsec. 3.3. A profound result of conformal
field theory is the Verlinde formula, (14) which expresses the fusion rules in terms
of the elements of S, namely,

N c
ab =

∑
j

S j
a S j

b Sc
j

S j
0

(13)

where 0 denotes the identity field and the sum is over all primaries. In general S is
unitary and hermitian; in all of our examples S is also real and hence symmetric.
We therefore give the formulas for this case; they are simple to generalize.

To find the eigenvalues and eigenvectors of Qa , we multiply the Verlinde
formula by Sb

k /Sk
0 and sum over b. This yields

∑
b

(Qa)c
b

Sb
k

Sk
0

= Sk
a

Sk
0

Sc
k

Sc
0

The bth element of the eigenvector of Qa with eigenvalue Sk
a/Sk

0 is therefore given
by Sb

k /Sk
0 . The modular S matrix is the matrix of the eigenvectors of Qa . The
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largest eigenvalue is the one with k = 0, so we have

da = S0
a

S0
0

. (14)

There is a simple expression for the total quantum dimension D in terms
of the modular S matrix. Using (14) along with the fact that S is unitary and
symmetric gives

D =
√√√√∑

a

(
S0

a

S0
0

)2

= 1

S0
0

. (15)

This formula will prove useful in relating the topological and thermodynamic
entropies.

3.3. The Modular S Matrix

Rational conformal field theories have a variety of profound mathematical
properties. We have exploited one of them in using the Verlinde formula (13)
to give a compact expression (14) for the quantum dimensions in terms of the
modular S matrix. In this section we will discuss what S is and how to compute it.

To define S and to use the Verlinde formula, we study conformal field theory
on a torus, i.e. in finite size in both the Euclidean time and spatial directions.
Physically, this corresponds to a non-zero temperature, so that the Euclidean time
coordinate is periodic with period β. One must compute the partition function in
the sector of states associated with each primary field a and its descendants. In
mathematical language, this is called a character, and is defined as

χa(q) ≡ trae−βH = q−c/24 traq L0 , (16)

where q ≡ e−2πβ/R , R is the spatial length of the system, and the trace tra is
over all the states in the irreducible representation of the extended symmetry
algebra corresponding to the primary field a (i.e. the highest-weight state and its
descendants). The partition function of the chiral theory is then of the form

Z =
∑

a

Naχa(q), (17)

where the Na are integers, representing how many copies of each primary field
appears in a given theory. In a non-chiral theory, one defines analogous antichiral
partition functions χa(q), and the full partition function of a rational conformal
field theory is given by a sum over products of the form χa(q)χb(q), again with
integer coefficients. In both chiral and non-chiral rational conformal field theories,
the sums are over a finite number of characters. We will give explicit examples of
these characters below.
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The modular S matrix describes how the characters behave when one ex-
changes the roles of space and time:

χa (̃q) =
∑

b

Sb
aχb(q). (18)

where q̃ ≡ e−2π R/β . Keep in mind, however, that a 1+1-dimensional quantum
theory in Euclidean time is equivalent to a two-dimensional classical theory. Going
back from the two-dimensional classical theory to a 1+1-dimensional quantum
theory, one is free to choose either of the directions to be space and the other
to be time. We thus conclude that the theory should be invariant under modular
transformations of the torus. Hence,

Z =
∑

a

Ñaχa (̃q) (19)

However, the Ña = ∑
b Sb

a Nb are usually not integers; we will have much more to
say about this in Sec. 4.

Computing the characters is a problem in the representation theory of the
extended symmetry algebra. In the cases of interest here the computation is
straightforward; we give several examples in appendix A. Finding the integers
Na for a given bulk topological state is the crucial computation in this paper, and
we discuss how these arise, and what they have to do with the entropy, in Sec. 4.

4. HOLOGRAPHIC PARTITION FUNCTIONS

In this section we arrive at a central result of this paper. We first define the
edge entropy in terms of the chiral conformal field theory describing the edge
modes. The edge entropy is not merely reminiscent of the topological entangle-
ment entropy (2) discussed in the introduction, but has an identical universal part
−ln(D). We then extend the correspondence between entanglement entropy and
thermodynamic entropy by studying the bulk entanglement entropy, which arises
from the different fusion channels of the bulk quasiparticles. We show that both of
these entropies can be encoded in a single holographic partition function, which
we interpret as the topological entanglement entropy of a region of a system in a
topological phase.

4.1. Edge and “Boundary” Entropies

We are studying 2+1 dimensional systems which are gapped in the bulk but
gapless at the edge. Their edge modes are described by chiral rational conformal
field theories. In the previous sections, we have defined and discussed the char-
acters of conformal field theories, which are essentially chiral partition functions.
Here we use these to characters to define the edge entropy.
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time

Fig. 1. The edge modes with spacetime a cylinder (illustrated on the left) have only one chirality. The
physics of these is closely related to that of a non-chiral system with spacetime a strip (illustrated on
the right), where the boundary conditions couple the left and right movers.

To motivate our definition of the entropy, we first discuss a closely-related
system, a non-chiral rational conformal field theory with boundaries. This means
that spacetime at zero temperature is a strip of width π R instead of a cylinder.
At non-zero temperature, spacetime becomes a finite-width cylinder with period
β in the Euclidean time direction, instead of a torus. The left and right movers on
the strip are coupled by the boundary conditions, as illustrated schematically in
Fig. 1. This means the chiral and antichiral conformal symmetries are also coupled.
Conformal invariance is preserved only with certain boundary conditions, and even
then, only a single algebra remains. (27) This symmetry algebra is exactly the same
as that of a single chiral theory. The partition function for the model on the strip is
then a sum over characters of a single algebra. These characters are exactly those
in (16), and the partition function takes the same form (17), with Na integer. (12,28)

The connections between the chiral theory on the cylinder and the non-chiral
theory on the strip go even deeper. The boundary conditions which preserve con-
formal invariance are in one-to-one correspondence with the primary fields of this
chiral rational conformal field theory, so each can be labeled by the same indices
we use to label primary fields. (More precisely, conformal boundary conditions
form a vector space, basis vectors of which can be labeled by the primary fields.)
Then a key result of Cardy’s (12) is that the partition function Z jk on the strip with
boundary conditions j and k at the two ends is

Z jk =
∑

a

N a
jkχa(q) (20)

where N a
jk is the same N a

jk which appears in the fusion rules! Furthermore, by
using the Verlinde formula it is simple to find boundary conditions which result
in a partition function given by a single character χa .

These results were used by Affleck and Ludwig to define and compute what
they called the “boundary entropy”. (13) Consider an RCFT on the finite-width
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cylinder with boundary conditions j and k, so that the partition function is Z jk .
Then take the width of the cylinder R → ∞ while holding the temperature, and
hence the radius β of the cylinder, fixed at some non-zero finite value. Then, on
general grounds, one must have

ln Z jk = f R + ln(g) + · · · (21)

where we neglect terms that vanish as R → ∞. This is precisely the form (4).
We can compute f and g by using a modular transformation, because the limit
R/β → ∞ corresponds to q̃ = 0. From (18) we have

Z jk =
∑
a,b

N a
jk Sb

aχb (̃q).

By definition, in this limit, the character χa behaves as

lim
q̃→0

ln χa = 2π R(c/24 − ha)

β

So unless j and k are such that
∑

a N a
jk S0

a = 0, the identity character χ0 dominates
and one has

f = πc

12β
, g =

∑
a

N a
jk S0

a . (22)

It is then natural to interpret g as a ground-state degeneracy, and ln(g) as a
boundary entropy, since clearly this subleading term in the full entropy depends
on the boundary conditions j and k. However, g is not necessarily an integer, so
as we discussed in the introduction, it cannot, strictly speaking, be a ground-state
degeneracy. Neither is it solely associated with the boundaries of the strip, since
there is no particular reason that subleading terms from the 1+1 dimensional bulk
cannot contribute to ln(g).

We now return to studying topological theories whose edge modes are de-
scribed by chiral conformal field theories on the torus. Although the torus has no
boundaries, there are still boundary conditions on the fields. For example, in the
p + i p superconductor, the edge fermions have antiperiodic or periodic boundary
conditions around the spatial cycle of the torus depending on whether there are
an even or an odd number of vortices in the two-dimensional bulk. So let us first
consider the case where there are no bulk quasiparticles. In the language of topo-
logical field theory, this corresponds to trivial topological charge on the disk. The
partition function of the edge RCFT is then

Z0 = χ0(q)

where, as above, the 0 label on χ0 means the identity sector. To extract the piece
of interest from this, we take the same R/β → ∞ limit. Z0 then can be expanded
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in the form (21), i.e.

ln(Z0) = f0 R + ln(γ0), (23)

where γ in this chiral theory is the analog of the g in (21) in the impurity theory.
Following through the same modular transformation described in the preceding
paragraph, we obtain the subleading contribution to ln(χ0) in this limit:

γ0 = N 0
00S0

0 = S0
0 .

Recall, however, that we showed in (15) that S0
0 = 1/D, where D is the quantum

dimension we have gone to great lengths to compute. We thus conclude

Sedge ≡ ln(γ0) = − ln(D) (24)

is the universal part of the edge entropy. There is no particular reason for γ0 to be
an integer, since it is a subleading term in the large R/β expansion.

Note that Sedge is identical to the universal piece of the topological entan-
glement entropy in (2). Although the two quantities are defined in different ways,
this is hardly a coincidence. Sedge is defined for a system with a real edge, while
the topological entanglement entropy is defined on the boundary between two
regions A and B, not a physical edge. Nevertheless, one expects the two to be
the same. Edge modes arise formally in a topological theory to cancel the chiral
anomaly. (29) The topological entanglement entropy arises formally by integrating
out the system beyond the boundary, i.e. subsystem B. When integrating out the
degrees of freedom of B, one of course integrates out an anomaly-free theory, so
this must include the edge modes of B as well. The remaining A theory then, in
some sense, must include “edge modes” as well which are required to cancel those
on B. This required cancellation is one way of seeing that systems A and B are
indeed entangled. Thus, the value of the topological entanglement entropy should
be identical to our computation of the edge entropy. We have checked by direct
computation that this is indeed the case.

4.2. Bulk Entanglement Entropy

The correspondence between thermodynamic and entanglement entropies
goes much deeper. Let us now consider the bulk entanglement entropy. This arises
in non-abelian topological phases because of multiple possible fusion channels.
For example, two vortices in a p + i p superconductor form a two-state quantum
system, so their entanglement entropy is ln(2).

We can derive a simple formula for the bulk entanglement entropy in general.
We define the topological degeneracy of a given state to be the number of ways
one can fuse the quasiparticles present to get a particular overall fusion channel.
This is easily written in terms of the matrix Qa defined in (12). When there are na



Topological Entanglement Entropy from the Holographic Partition Function 1127

of each of the quasiparticles labeled by a, define the matrix T by

T =
∏

a

(Qa)na (25)

It makes no difference in which order we multiply the Qa because different Qa

commute with each other (as we showed from the Verlinde formula, they have the
same eigenvectors). The topological degeneracy of channel c is then the c, 0 entry
of this matrix T . Note that this is a simple generalization of the way we computed
the quantum dimension to the case in which different types of particles are allowed
to be present.

Let us illustrate this in terms of the p + i p superconductor, where there are
three states in the topological field theory, labeled by I , ψ and σ . If there are
no bulk quasiparticles present, we have degeneracy 1 in the identity channel.
If we have only ψ quasiparticles, the fusing is simple: for an even number of
ψ quasiparticles the degeneracy is 1 in the identity channel, while for an odd
number the degeneracy is 1 in the ψ channel. It gets more interesting for bulk σ

quasiparticles. A single bulk σ quasiparticle corresponds to degeneracy 1 in the σ

channel. However, two bulk σ quasiparticles does not correspond to degeneracy
2. Since σ · σ = I + ψ , two bulk σ quasiparticles corresponds to degeneracy 1
in both the I channel and in the ψ channel. Degeneracy 2 in the σ channel occurs
for three bulk σ quasiparticles. In general, for an even number 2M of bulk σ

quasiparticles, we have degeneracy 2M−1 in the I and ψ channels while for an odd
number 2M+1, we have degeneracy 2M in the σ channel. Including any number
of ψ quasiparticles doesn’t change the degeneracies (except for M = 0).

The bulk entanglement entropy arises from the uncertainty in knowing which
quantum state the bulk quasiparticles are in. For example, if there are two bulk σ

quasiparticles, we do not know without doing a measurement whether they are in
the I or ψ channel. The entropy is therefore ln(2). But what if there is just one
σ quasiparticle in a region? It can be entangled with a σ quasiparticle in another
region of the droplet, giving a total entropy of ln(2). Since entropy is additive, the
only consistent possibility is for the single σ quasiparticle to have entropy ln(

√
2).

In general, a single quasiparticle of type a has entropy ln(da), where da is the
quantum dimension discussed at great length above. The general expression for
the bulk entropy can be expressed easily in terms of the topological degeneracies,
namely

Sbulk = ln

(∑
c

T0cdc

)
. (26)

This can be simplified by rewriting dc and Tc0 in terms of the modular S matrix.
We can use the Verlinde formula (13) for Q and the relation dc = S0

c /S0
0 . The

latter is the eigenvector of any Qa , having eigenvalue S0
a/S0

0 = da . Thus it is an
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eigenvector of T as well, so

Sbulk =
∑

a

na ln(da) . (27)

Each quasiparticle of quantum dimension da contributes ln(da) to the bulk entan-
glement entropy. Note that this “bulk” entropy is extensive not in the size of the
sample, but rather in the number of bulk quasiparticles.

4.3. The Bulk and Edge Entropies from the Holographic

Partition Functions

We show here that the entire topological entanglement entropy can be seen
in terms of the edge conformal field theory. We interpret this as an example of
holography. In a topological field theory, the degrees of freedom live on the edge.
In the fractional quantum Hall effect, these are, of course, the edge modes we have
been discussing all along. Holography simply means that all the information of
the bulk topological field theory is encoded in the edge modes.

As we have discussed above, adding or removing bulk quasiparticles changes
the boundary conditions on the edge modes. This will change the chiral partition
function for the edge. To illustrate this, consider the p + i p superconductor, where
there are three characters: χI , χψ and χσ , with a modular S matrix given in (A1).
The presence of σ quasiparticles (the vortices) in the bulk has an important effect
on the edge. As we reviewed in Ref. 21, an odd number of σ quasiparticles
changes the boundary conditions of the edge Majorana fermion from antiperiodic
around the circle to periodic. For a fermion with periodic boundary conditions on
the 1+1 dimensional torus, the chiral partition function is χσ . Thus we define the
holographic partition function for a single bulk σ quasiparticle to be Zσ = χσ . This
partition function yields the correct entanglement entropy. Taking the L/β → ∞
limit as in (23) yields

γσ = Sσ
I = 1√

2
.

For a p + i p superconductor with one vortex in region A, the entanglement entropy
is indeed

Sbulk + Sedge = ln(
√

2) − ln(2) = − ln(
√

2).

We define the holographic partition function for a single bulk ψ quasiparticle in a
similar fashion: Zψ = χψ . The corresponding entropy is then ln(Sψ

I ) = ln(1/2) =
−lnD. This is just Sedge, which is indeed what we expect, because there is no bulk
topological entropy for ψ quasiparticles.

Given our definition of the bulk entanglement entropy, it should be obvious
how to define the holographic partition function for an arbitrary number of bulk
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particles. The effect of adding a bulk quasiparticle is given by the same fusion rules
as for the primary fields. For example, in the p + i p superconductor, the fusion
rule ψ · ψ = I means that with no σ quasiparticles and an even (odd) number
of ψ quasiparticles, we define the holographic partition function to be χI (χψ ).
In both cases the entropy remains − lnD, since there is no bulk entanglement
entropy. A less trivial case is when we have two bulk σ quasiparticles. Here the
holographic partition function follows from the fusion rule σ · σ = I + ψ , so we
get

Z2σ = χI + χψ.

For three, the topological degeneracy is 2 in the σ channel, so we get

Z3σ = 2χσ ,

and so on.
The definition of the holographic partition function for arbitrary numbers

of quasiparticles in the bulk should now be obvious. In general, for na bulk
quasiparticles of each type a, the holographic partition function is

Z =
∑

a

T0aχa(q) (28)

where T is the topological degeneracy matrix defined in (25). This is the par-
tition function obtained by computing the path integral for the appropriate 2+1
dimensional topological field theory (e.g. Chern-Simons theory) with spacetime
D × S1, where D is a disk of radius R, and S1 a circle of radius β. To get the
correct degeneracies T0a one needs to insert na Wilson loops of each type a which
puncture the disk and wrap around the S1.

As advertised, the holographic partition function (28) gives the correct en-
tanglement entropy in the the R/β → ∞ limit. In this limit,

Z =
∑

a

T0a S0
aχ0(̃q) + · · · .

We define the total thermodynamic entropy S via our usual expansion

ln(Z ) = f R + S + · · · .

Using db = Sb
0/S0

0 along with the expressions for the bulk and edge entropies (26)
and (27) gives

S = ln

(∑
a

T0a S0
a

)

= ln

(∑
a

T0ada

)
+ ln

(
S0

0

)



1130 Fendley, Fisher and Nayak

=
∑

a

na ln(da) − ln(D) . (29)

Thus we see that indeed once we have taken the R/β → ∞ limit, we have

S = Sbulk + Sedge . (30)

The holographic partition includes both bulk and edge entanglement entropies.
We close this section by returning to where it started, a discussion of the

relation between chiral conformal field theory with spacetime a torus and non-
chiral conformal field theory on a finite-width cylinder. The partition functions in
both cases are expressed in the form

Z =
∑

a

Naχa

where the Na are integers, describing how many times each character appears.
In the latter case, however, there is one important restriction which we need not
demand of the holographic partition function. For a partition function describing
a unitary field theory on the finite-width strip with physical boundary conditions,
the identity character usually appears at most once (i.e. N0 = 0 or 1). The reason
is that there is only one identity field in a unitary theory, so only with peculiar
boundary conditions can one have N0 > 1. In the holographic partition function,
N0 can be any non-negative integer: it is the number of ways the bulk quasiparticles
in the 2+1 dimensional topological theory can fuse to get the identity channel. Thus
although the partition functions are defined in a very similar fashion, they really
are different objects.

5. DYNAMICAL ENTROPY LOSS AT A POINT CONTACT

The relation between the thermodynamic and entanglement entropies man-
ifests itself most dramatically through the dynamics of a point contact connect-
ing two points on the boundary of the disk. Quasiparticles can tunnel between
the two points connected by the contact, thereby perturbing the edge modes at
these two points. This can change the edge entropy. When the tunneling operator
is a relevant perturbation, it causes the system to flow to an infrared fixed point at
which any edge excitation which is incident upon the contact necessarily tunnels
across the system. In other words, an imaginary boundary between the two halves
evolves dynamically into a real edge. As we shall see below, this process causes
the entanglement entropy between the two halves to be, in a sense, “reborn” as the
actual thermodynamic entropy of the two resulting droplets. We have discussed a
point contact in a non-abelian topological state in depth in a companion paper, (21)

and the results in this section complement those results.
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As mentioned in the introduction, if we compute the density matrix for half
of a system by tracing out the degrees of freedom of the other half, the resulting
density matrix has an entanglement entropy

SA = aL − lnD + · · ·
The second, universal term is negative. What it tells us is that there is a little less
uncertainty in the state of half of the system than one might have naively expected
purely from local correlations. (3,4) A priori, this has absolutely nothing to do with
the thermodynamic entropy of the system since it is obtained from an arbitrary
division of the ground state wavefunction alone, with nothing about the spectrum
taken into account. However, when the strong tunneling fixed point is reached, the
disk is effectively split into two. The imaginary division into two halves becomes
a real division. Entropy is lost as a result of this process because the edge entropy
for two disks is −2 ln(D), compared to − ln(D) for a single disk. As in the case
of the entanglement entropy, this extra negative contribution is due to the fact that
we know more about the system: the negative contribution − ln(D) to the entropy
of a disk represents the information that we know about the system when we know
that it has trivial total topological charge. However, one half of the system could
have arbitrary topological charge a, so long as the other half has the compensating
topological charge ā. If the point contact breaks the system into two systems, each
with trivial topological charge, then this uncertainty is lost. The information which
we now know about the two disks is −2 ln(D).

Defining SU V to be the entropy in the limit in which there is no tunneling
across the sample (the UV limit), and SI R to be the entropy in the limit in which
tunneling is strong (the IR limit), we have

SU V − SI R = − ln(D) − (−2 ln(D)) = ln(D) . (31)

Here, we have assumed that there are no quasiparticles in the bulk, and that the
system breaks into two halves each with no quasiparticles. However, the entropy
change is the same even when quasiparticles are present, which we will discuss
below.

Let us first illustrate entropy loss due to a point contact in the abelian case,
when the edge theory consists of a free boson. This has been widely studied in
the context of the Laughlin fractional quantum Hall states. (30) By using a series of
mappings, the chiral problem on the torus can be shown to be exactly equivalent
to a non-chiral problem on the finite-width cylinder. In other words, the analogy
we made in the previous section is an exact equivalence in this case. The point
contact results in a boundary with Neumann boundary conditions on the boson in
the UV limit, and Dirichlet boundary conditions in the IR. (31) The edge entropies
can be computed in both cases, and one obtains (31,32) for ν = 1/m

SU V − SI R = ln(
√

m).
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This is exactly what one obtains from our results by assuming that the IR limit
consists of two separate disks. We show in (A6) that D = √

m for the ν = 1/m
Laughlin states. Thus we indeed have SU V − SI R = ln(D) as in (31).

Using the results derived above, we can check (31) in several non-abelian
cases. As we showed in Ref. 21, a point contact in the p + i p superconductor is
equivalent to the single-channel anisotropic Kondo problem. The entropy change
is well-known here. The Kondo problem consists of a single impurity spin anti-
ferromagnetically coupled to an electron gas. In the single-channel spin-1/2 case,
the spin is decoupled in the UV limit, while it is completely screened in the IR
limit. Therefore SU V = ln(2), while SI R = ln(1) = 0. We showed in (8) that for
the Ising model, Dp+i p = 2, so (31) holds.

A point contact in the Moore-Read Pfaffian state at ν = 1/2 (or ν = 5/2)
turns out to be a variant of the two-channel overscreened Kondo problem. In Ref.
20, we showed that the entropy loss here is SU V − SI R = 2 ln(

√
2). In (A 10), we

show that DM R = 2
√

2, so again (31) holds. For a point contact in a Read-Rezayi
state or for SU (2)k for general k, it is not yet known how to map the tunneling
operator onto a Kondo-like problem, so we do not have an independent result
against which to check the prediction which can be obtained from (31) along with
the quantum dimension in (A13).

The entropy change (31) can also be seen in terms of the holographic partition
functions. The partition function for two independent systems is simply the product
of the partition functions for the two systems. Thus when the point contact splits
the system into two, the holographic partition function should be the product of
two holographic partition functions. Let us first examine this in the case where
there are no bulk quasiparticles. In the IR limit, the system decouples into two
independent discs, each with no bulk quasiparticles. Thus the partition function is
Z0 = χ0(q) for the UV, and

Z0,0 = χ0(q1)χ0(q2)

for the IR. We have denoted q1 = exp(−2πβ/R1) and q2 = exp(−2πβ/R2), where
R1 and R2 are the sizes of the discs into which the point contact splits the system in
the IR limit. The universal piece of the entropy extracted from χa(q) is independent
of how q is taken to 1, so we obtain entropies of − ln(D) for the entropy associated
with each of the two disks. Thus from Z0,0 we obtain SI R = −2 ln(D), as required.

When there are bulk quasiparticles, they must end up on one side or the other
once the disk is split. The UV holographic partition function for a quasiparticle
of type a is denoted χa(q), which from (29) gives the entanglement entropy of
SU V = ln(da) − ln(D). When there is one bulk quasiparticle, it must end up on
one half or another, but it cannot end in both. There are therefore two possibilities
for the IR partition function:

Za,0 = χa(q1)χ0(q2), or Z0,a = χ0(q1)χa(q2).
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UV:

a

a

a
a

IR: a

aor

Fig. 2. In the UV, bulk quasiparticles can be anywhere. In the IR, they must end up on one of the two
sides. For two bulk quasiparticles of type a, they can both end up on one side, or on separate sides.

We cannot predict which one is realized, but one or the other will happen. Either
of the two yields the correct entanglement entropy

SI R = ln(da) − 2 ln(D).

For multiple particles, we must apply the fusion rules just as we did for
the UV holographic partition functions. For two quasiparticles of type a, there
are three possibilities for how they might end up, as illustrated schematically in
Fig. 2. If one quasiparticle ends up on each disk, then the IR holographic partition
is Za,a = χa(q1)χa(q2). If both quasiparticles end up on the same disk, then e.g.

Z2a,0 = Z2a(q1)Z0(q2) =
(∑

b

N b
aaχb(q1)

)
χ0(q2).

For example, for the p + i p superconductor with two bulk σ quasiparticles, we
have

Z2σ,0 = (χI (q1) + χψ (q1))χI (q2),

Zσ,σ = χσ (q1)χσ (q2).

Thus the general rule is simple: for a given subdivision, the holographic partition
on each half is the same as it would be for an isolated disc. Then multiply the
characters for the two separated halves together.

With this holographic partition for the IR, the bulk part of the entropy remains∑
a na ln(da) in the IR. It does not matter which half the bulk quasiparticle is on: it

still contributes ln(da) in accord with the intuition that a point contact should not
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affect the bulk of the sample. As we have seen in (31), the edge entropy changes,
doubling from − ln(D) to −2 ln(D).

6. DISCUSSION

The ideas presented here grew out of our attempts to understand quasiparticle
tunneling at a point contact in a Moore-Read Pfaffian non-Abelian quantum Hall
state. (20,21) A key technical challenge in this problem was to formulate a bosonized
description of the tunneling of twist fields (or Ising spin fields) σ between Majorana
fermion edge modes. We found that this could be done if one introduced a spin-
1/2 degree of freedom at the point contact which served a ‘bookkeeping’ purpose
of keeping track of how many σ fields had tunneled. We thereby saw that the
tunneling Hamiltonian for this problem could be mapped onto various versions
(depending on filling fraction of the quantum Hall state) of the Kondo model.
Therefore, the issue of entropy loss due to the point contact was inescapable,
although the same issue arises in simpler cases such as Abelian quantum Hall states
but could be ignored there. Our interpretation(20) on which we have elaborated
here, is that this entropy loss cannot be ascribed to the point contact per se.
Rather, it should be understood as a (2+1)-dimensional entanglement entropy.
When tunneling at a point contact causes a Hall droplet to be effectively broken in
two, the topological entanglement entropy between the two sides becomes actual
thermodynamic entropy. Since this entropy is negative, S = − lnD, the entropy
of the system decreases.

One implication of our results is that an attempt to formulate a tractable
representation of tunneling in other non-Abelian quantum Hall states, such as the
Read-Rezayi states, will require introducing an ‘impurity’ degree of freedom at
the point contact, analogous to the Kondo spin in the Moore-Read Pfaffian case,
to give us the correct entropy loss.

It would be interesting to see which of these results apply to gapless 2+1
dimensional theories in a topological phase. Such theories are often closely related
to conformal field theories, but these theories are not describing the edge modes,
but rather the behavior in two-dimensional space. The entanglement entropy for
such systems is quite similar to the entropies discussed here, (33) and it would be
interesting to pursue the analogies further.

It would also be interesting to explore the connection of these results with
those motivated by gauge theory, string theory, and black holes. Results quite
analogous to ours have been derived using the AdS/CFT correspondence. (34,35)

The conformal field theories here are simpler than those which generally arise
from the AdS/CFT correspondence (ours are unitary and rational), and it would
be interesting to understand how quantum Hall physics fits into this more general
setting.
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APPENDIX A: EXAMPLES OF QUANTUM DIMENSIONS

A.1. Ising Model/ p + i p Superconductor

The Ising conformal field theory is equivalent to a free massless Majorana
fermion. The partition function on the torus – and hence the characters of interest
– can be computed using the properties of free fermions; the main subtlety is that
to compute characters for all the primary fields I, ψ, σ one needs to utilize both
periodic and antiperiodic boundary conditions on the fermion. The connection
between the different characters and the different boundary conditions is reviewed
in depth in, for instance, Ref. 25. In the p + i p superconductor, inserting a σ

quasiparticle (i.e. a vortex) in the bulk flips the boundary conditions on the fermion
between periodic and antiperiodic around the disk (see e.g. Ref. 21).

It is natural and convenient to write conformal-field-theory characters in
terms of Jacobi theta functions. The behavior of theta functions under modular
transformations is simple, so it is then straightforward to work out the modular S
matrix. Explicit expressions for the characters can be found in Refs. 25,36. The
modular S matrix for the Ising model is(36)

SIsing =

⎛
⎜⎜⎝

1
2

1
2

1√
2

1
2

1
2 − 1√

2

1√
2

− 1√
2

0

⎞
⎟⎟⎠ (A1)

where we write the fields in the order I, ψ, σ . Note that S2 = 1, as required.
Using (14), we find dI = 1, dψ = 1 and dσ = √

2, as we saw directly from
the fusion rules. Using (15), we find the total quantum dimension Dp+i p = 2, as
we saw in (8).

A.2. Free Boson/Laughlin States

Before studying the non-abelian Moore-Read Pfaffian state, it is first useful
to study the abelian Laughlin state at ν = 1/3. The latter is the first state in the
a sequence of quantum Hall states, with the Moore-Read Pfaffian second. The
quasiparticles and quasiholes in the Laughlin state at ν = 1/3 are abelian anyons,
with charges ±1/3.

The conformal field theory describing the edge modes of the Laughlin states
is simply a free chiral boson ϕ(z). (29) Here (and in most situations of interest), the
boson is compact, meaning in our chiral context that operators must be invariant
under the shifting ϕ(z) to ϕ(z) + 2πr for some “radius” r (not to be confused
with the radius R of the disk; calling r a radius is a relic of string theory). Then
standard manipulations show that a free boson has central charge c = 1, and that
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the primary fields on the punctured plane under conformal symmetry are(25)

Vγ (z) ≡ eiγ ϕ(z), γ = n

r
(A2)

for integer n. The operator eiγ ϕ appears frequently in the Coulomb-gas approach
to 2d statistical mechanical models, and in string theory as a vertex operator.

With the conventional normalization of ϕ, Vγ has scaling dimension γ 2/2.
This means that the eigenvalue ofH acting on the state created by Vγ is 2π (γ 2/2 −
1/24)/R. More standard calculations show that the operator product expansion is

eiγ ϕ(z)eiδϕ(w) = (z − w)γ δeiγ ϕ(z)+iδϕ(w). (A3)

To obtain correlation functions on the cylinder, it is usually most convenient to
first work them out on the punctured plane, and then conformally transform them
to the cylinder. In general, a primary field �(z, z) of dimensions (h, h) transforms
under the conformal transformation z′ = f (z) as (again, see e.g. Ref. 25)

�(z, z) →
(

∂ f

∂z

)h
(

∂ f

∂z

)h

�( f (z), f (z)).

For the transformation from the punctured plane to the cylinder, we have τ + iσ =
R ln(z)/2π , so for the operators Vγ (z), we have

Vγ (z) →
(

R

2π z

)γ 2/2

Vγ (τ + iσ ). (A4)

The fact that there is only one primary field on the right-hand-side of
the operator product expansion (A3) means that the quantum dimension of all
the operators Vγ are dγ = 1. Computing the total quantum dimension D for
a free boson is more work, because there are an infinite number of primaries if
we use only conformal symmetry since the operator product expansion for N
operators Vγ gives the operator VNγ . One interesting symmetry generator is the
U (1) current ∂zϕ. In the fractional quantum Hall effect, this is the electrical charge
current. To define D, we must find the largest possible symmetry algebra. For any
rational r2, one can extend the symmetry algebra by some integer-dimension oper-
ator and obtain a finite number of primary fields, thus giving a rational conformal
field theory.

However, for the ν = 1/m Laughlin states in the fractional quantum Hall
effect, the extended symmetry is even larger. As we discussed above, one needs
to extend the algebra by the electron annihilation/creation operators. These have
dimension m/2. (29) A field with half-integer dimension is fermionic; symmetries
with such generators occur for example in the Gross-Neveu model for an odd
number of Majorana fermions. (37) (Incidentally, in these Gross-Neveu models,
the massive quasiparticles end up having a quantum dimension of

√
2. (38)) For
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the simplest non-trivial case m = 3, the generators are of dimension 3/2. The
symmetry here is supersymmetry. (39) It is called N = 2 supersymmetry, because
there are two generators: the electron creation and annihilation operators. The
entire sequence of Read-Rezayi states, (17) of which the ν = 1/3 Laughlin state is
the first member and the Moore-Read state the second, has N = 2 supersymmetry
as its extended symmetry.

Using the operator product expansion, it is simple to see what the primary
fields are for the ν = 1/3 Laughlin state. The supersymmetry generators are
G± = e±i

√
3ϕ , which indeed have dimension 3/2 and charge ±1. From (A3), we

have

G±(z)Vγ (w) = (z − w)±
√

3γ Vγ±√
3(w) (1 + · · ·) (A5)

where the terms omitted are regular in z − w. The transformation rule (A4) means
that when G±(z) is transformed from the punctured plane to the cylinder, it is mul-
tiplied by a factor of z3/2. Thus the antiperiodicity of the electron/supersymmetry
generators on the cylinder means that they are periodic on the punctured plane.
Since we are only interested in this sector, the primary fields are those for which
the exponent of the (z − w) piece in (A5) is an integer. The lowest non-zero value
of |γ | for which this is true is γ = 1/

√
3, so we must have r = 1/

√
3. Thus the

allowed operators Vγ here must have γ = n/
√

3 for integer n. In this language,
the supersymmetry generators themselves correspond to n = ±3. Thus the only
primary fields under the extended algebra have n = 0 (the identity field), and
n = ±1 (which have dimension 1/6). The remaining values of n can be obtained
by acting with G± on these three primaries, as is clear from the operator product
expansion (A5). For example, one obtains V2/

√
3 by acting with G+ on V−1/

√
3.

Physically, this means that all the edge modes can be obtained from these three
by attaching a hole or an electron. There are thus three types of quasiparticles in
the Laughlin state at ν = 1/3, so D1/3 = √

3. For general integer m = 1/ν, the
extended symmetry generator is V√

m , so by the same type of argument, one finds
m primary fields. This yields

Dν=1/m = √
m (A6)

as noted in the introduction.
One important subtlety to note is that this is the sector of the theory corre-

sponding to antiperiodic boundary conditions around the cylinder for fermionic
fields such as the supersymmetry generator. In the language of supersymmetry,
this is called the Neveu-Schwarz sector. As we noted previously, periodic boundary
conditions on fermions in an edge theory arise from a vortex in the bulk. Fields
local with respect to a supersymmetry generator with periodic boundary condi-
tions are in the Ramond sector. In an N = 2 supersymmetric theory, there must
be the same number of primary fields in the Ramond sector as the Neveu-Schwarz
sector, so D remains the same. For the boson with r = 1/

√
3, the fields Vn/

√
3
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for half-integer n are local with respect to G± with periodic boundary conditions.
The Ramond primaries are then those with n = ±1/2 and n = 3/2, so D indeed
remains

√
3. Note that n = −3/2 is not a primary because it can be obtained by

acting on V√
3/2 with G−.

Models with non-abelian statistics need not have da = 1 like the free boson
does. Thus one needs to work out the fusion algebra, which is simplest to do by
using the modular S matrix. Since many interesting models (e.g. all models of the
fractional quantum Hall effect) involve a free boson, we display here the characters
for the free boson. This also will provide a check on the above result for D.

For a free boson, the highest-weight states under the symmetry algebra in-
cluding the U (1) current ∂ϕ are created by the primary fields Vγ defined in (A2).
The highest-weight state created by Vγ has dimension γ 2/2, so the leading term
in the character must have exponent γ 2/2 − 1/24. The full characters with this
symmetry algebra are (see e.g. Ref. 25)

χγ (q) =
⎧⎨
⎩

qγ 2/2

η
γ �= p/

√
2

q p2/4−q (p+2)2/4

η
γ = p/

√
2

(A7)

for p integer. The denominator is the Dedekind eta function, which is defined as

η(q) ≡ q1/24
∞∏

n=1

(1 − qn).

Its key property is that when q−1/24η is expanded in powers of q, the coefficient of
qm is the number of partitions of m, i.e. the number of ways m can be written as
the sum of positive integers. This often occurs in characters, because descendant
states are given by acting on primary states with the L−ns for n a positive integer.

The characters for the symmetry algebra extended to include supersymmetry
are a sum over the characters χm/

√
3, because the supersymmetry generators V±√

3
acting on Vm/

√
3 take it to V(m±3)/

√
3, as shown in (A5). To avoid confusion with

the Ising characters and with the χγ , we denote the character in the identity sector
here as χ [0], and those for the primaries with m = ±1 as χ [±1/3]. One then finds
that

χ [0] =
∞∑

n=−∞
χn

√
3 = J (q3)

η

χ [±1/3] = 1

2

∞∑
n=−∞

(χn/
√

3 − χn
√

3) = J (q1/3) − J (q3)

2η
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where we have defined

J (p) ≡
∞∑

n=−∞
pn2/2,

so that for small p, J (p) = 1 + 2p1/2 + 2p2 + · · ·. It is a straightforward exercise
to generalize these free-boson characters to the ν = 1/m case, where the extended-
symmetry generators are of dimension m/2.

To find the modular S matrix, we need to rewrite the characters as functions
of q̃ . Luckily, doing such modular transformations is a well-understood branch
of mathematics. We have defined J (p) as a special case of a Jacobi elliptic theta
function. Then, from standard mathematical texts, one finds that

J (̃q1/�) = (−� ln q/2π )1/2 J (q�) ,

η(̃q) = (− ln q/2π )1/2η(q) . (A8)

A little algebra then gives the modular transformations

χ [0](̃q) = 1√
3η(q)

J (q1/3) ,

χ [±1/3](̃q) =
√

3

2η(q)
J (q3) − 1

2
√

3η(q)
J (q1/3) .

We now need to rewrite the right-hand-side in terms of χ [0](q) and χ [±1/3](q).
We can exploit the equality χ [1/3](q) = χ [−1/3](q) to find the modular S matrix
which is both symmetric and unitary. We find

Sν=1/3 =

⎛
⎜⎜⎝

1√
3

1√
3

1√
3

1√
3

1
2 − 1

2
√

3
− 1

2 − 1
2
√

3

1√
3

− 1
2 − 1

2
√

3
1
2 − 1

2
√

3

⎞
⎟⎟⎠

From this modular S matrix we can read off the quantum dimensions da = 1 for all
three quasiparticles, and D = 1/S0

0 = √
3, in agreement with our earlier results.

A.3. Moore-Read State

The edge theory for the ν = 5/2 Moore-Read state consists of a free boson
(usually called the charge mode), and a Majorana fermion (usually called the
neutral mode). (39) This conformal field theory has c = 3/2. The edge electron/hole
creation operators (i.e. the supersymmetry generators) are

G± = ψ e±i
√

2ϕ.
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Because the fermion ψ has dimension 1/2, the generators have dimension 3/2,
and it is simple to show that as in the case of the ν = 1/3 Laughlin state, the
extended symmetry is N = 2 supersymmetry.

The primaries of the combined field theory must be products of the primaries
I, ψ, σ of the Ising model with the primaries Vγ for a free boson. The Ising primary
fields have dimensions 0, 1/2, 1/16 respectively, so by using the OPE (A3) and the
Ising fusion rules (8), it is simple to work out the powers of z − w in the operator
products in the combined theory. Demanding that the electron/superconformal
generators be periodic on the punctured plane gives the primaries of the extended
symmetry algebra to be

I, σ V±1/(2
√

2), ψ, V±1/
√

2. (A9)

All primaries are all invariant under the combined transformations σ → −σ ,
ψ → ψ and ϕ → ϕ + 2π

√
2; this is the condition that ensures locality. Fields

that are odd under this symmetry comprise the Ramond sector.
We can compute the quantum dimensions without the full computation of the

modular S matrix. The reason is that in (A9) we have decomposed the operators into
products of Ising fields with bosonic operators, and we know the fusion algebra of
both. Since the boson and the Ising theory are independent, the quantum dimension
of the product of fields from the two is just the product of the two quantum
dimensions. Namely, I , ψ and Vγ have dI = dψ = dγ = 1, while dσ = √

2. The
total quantum dimension for the Moore-Read state is thus

DM R = √
1 + 2 + 2 + 1 + 1 + 1 = 2

√
2. (A10)

To check this, we find the characters for the fields in the Moore-Read state.
These involve both the Ising characters and the free-boson characters, but are not
just simple products. The reason is that we want only the states in the antiperiodic
(Neveu-Schwarz) sector, which are invariant under ϕ → ϕ + 2π

√
2, σ → −σ . We

want to include descendants which are found by acting with the supersymmetry
generators G±, which is invariant under the symmetry. The characters for the six
primary fields listed in (A9) are then

I : χI
J (q8)

η
+ χψ

J (q2) − J (q8)

η

σ V±1/2
√

2 : χσ

J (q1/8) − J (q1/2)

2η

ψ : χψ

J (q8)

η
+ χI

J (q2) − J (q8)

η

V±1/
√

2 : (χI + χψ )
J (q1/2) − J (q2)

2η
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Using the Ising modular S matrix and the modular transformations in (A8) one
can work out the Moore-Read modular S matrix. For the quantum dimensions, we
only need the first row, which is

Sa
0 =

(
1

2
√

2
,

1

2
,

1

2
,

1

2
√

2
,

1

2
√

2
,

1

2
√

2

)
.

We recover of course the individual quantum dimensions of
√

2 for the two
quasiparticles involving the σ field, and 1 for the other four, as well as the total
quantum dimension DM R = 1/S0

0 = 2
√

2.
Just to test the formalism a little more, let us compute the quantum dimensions

for the Moore-Read state for a system of bosons at ν = 1. The edge theory is very
similar, except now the extended symmetry is not supersymmetry, but rather
SU (2). The conformal field theory is still an Ising model and a free boson, except
now the boson is at a different radius. At this radius, the boson can be fermionized.
The resulting Dirac fermion can be split into two Majorana fermions which,
combined with the Majorana fermion from the neutral sector, form an SU (2)
triplet. (40) This model is equivalent, via non-Abelian bosonization, to the SU (2)2

Wess-Zumino-Witten model, with the extended symmetry being the corresponding
Kac-Moody algebra. The extra SU (2) generators are

J± = ψ e±iϕ

while Jz is the U (1) current ∂φ. Since the theory is bosonic, the symmetry gener-
ators are periodic on the cylinder; because J± and Jz have dimension 1, they are
periodic on the punctured plane as well. The primary fields are therefore

I, σ V1/2, ψ

The total quantum dimension of this theory is therefore

DSU (2)2 = √
1 + 2 + 1 = 2.

Note that σ V−1/2 is not primary because it can be obtained by acting with J− on
σ V1/2. This is just a fancy way of saying that the two form a doublet under SU (2).
Likewise, the fields ψ, eiϕ, e−iϕ form a triplet under SU (2).

A.4. Read-Rezayi

For a level-kth bosonic Read-Rezayi state, (17) the edge conformal field theory
is the Wess-Zumino-Witten model SU (2)k . This has been well studied in the
literature, and the modular S matrix is given by Ref. 41

Sb
a =

√
2

k + 2
sin

(
π (a + 1)(b + 1)

k + 2

)
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for 0 ≥ a, b, k. The quantum dimensions are therefore

da = sin(πa/(k + 2))

sin(π/(k + 2))
(A11)

and the total quantum dimension is

DSU (2)k =
√

k + 2√
2 sin(π/(k + 2))

. (A12)

For the Read-Rezayi fermionic fractional quantum Hall states, we cannot
instantly read off the modular S matrix from the literature. The reason is that
we need the characters for the extended symmetry in the Neveu-Schwarz sector
of the N = 2 supersymmetric minimal models, which do not seem to be in the
literature. However, we can compute the quantum dimensions by utilizing the fact
that the N = 2 primaries are closely related to SU (2)k fields. Namely, the SU (2)k

fields are labeled by their SU (2) quantum numbers, a spin l/2 with l = 0, 1, · · · k
and a charge m = −l,−l+2, · · · , l. The primary fields in the Neveu-Schwarz
sector of the superconformal field theory are labeled in the same way, and differ
only in multiplying by a field involving the charge boson, namely Vγ with γ =
−m/

√
2(k + 2). (42,43) This changes the field’s dimension, but not the fusion rules,

because m is a conserved quantum number in fusion (in the Hall effect the physical
charge of the quasiparticle created by the field is me/(k + 2)). Thus a given field’s
quantum dimension depends only on the index l, and all the quantum dimensions
of the Read-Rezayi fractional quantum Hall states are given by (A11). There are
more primary fields in the supersymmetric case, because in the SU (2)k case, the
l+1 fields with a given l form an SU (2) multiplet, and so correspond to only
one primary field of the SU (2)-extended algebra. The total quantum dimension
for the kth Read-Rezayi state for the fractional quantum Hall effect is therefore

DRR =
(

k∑
l=0

(l + 1)
sin2(π (l + 1)/(k + 2))

sin2(π/(k + 2))

)1/2

= k + 2

2 sin(π/(k + 2))
. (A13)
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