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Although magnetically ordered at low temperatures, the spin-1
2 triangular antiferromagnet Cs2CuCl4 exhibits

remarkable spin dynamics that strongly suggest proximity to a spin-liquid phase. Here we ask whether a
proximate spin liquid may also occur in an applied magnetic field, leaving a similar imprint on the dynamical
spin correlations of this material. Specifically, we explore a spatially anisotropic Heisenberg spin-1

2 triangular
antiferromagnet at 1

3 magnetization from a dual vortex perspective, and indeed find a “critical” spin-liquid
phase described by quantum electrodynamics in !2+1"-dimensions with an emergent SU!6" symmetry. A
number of nontrivial predictions follow for the dynamical spin structure factor in this “algebraic vortex liquid”
phase, which can be tested via inelastic neutron scattering. We also discuss how well-studied “up-up-down”
magnetization plateaus can be captured within our approach, and further predict the existence of a stable
gapless solid phase in a weakly ordered up-up-down state. Finally, we predict several anomalous “roton”
minima in the excitation spectrum in the regime of lattice anisotropy where the canted Néel state appears.

DOI: 10.1103/PhysRevB.75.144411 PACS number!s": 75.10.Jm, 75.40.Gb

The quest for an unambiguous experimental realization of
a quantum spin liquid remains a central pursuit in condensed
matter physics, despite a long history dating back to Ander-
son’s suggestion that the nearest-neighbor Heisenberg trian-
gular antiferromagnet may realize a “resonating valence
bond” ground state.1 Quite generally, the theoretical search
for models realizing such exotic quantum ground states has
focused primarily on frustrated magnets in zero magnetic
field. The central goal of this paper is to take a first step at
analyzing the situation when a finite magnetic field is present
and ask to what extent spin liquids may occur in this broader
setting. Naively speaking, this may seem somewhat mis-
guided, since sufficiently strong magnetic fields quench
quantum fluctuations entirely and lead to a simple ferromag-
netically ordered ground state. However, at moderate-
strength fields, it is conceivable that the presence of numer-
ous competing phases arising from the geometric frustration
may lead rather to an enhanced role of quantum fluctuations
by the field.

The spin-1
2 triangular antiferromagnet provides a simple

and experimentally relevant test case for these ideas. One
noteworthy example is the spatially anisotropic material
Cs2CuCl4,2–4 which has garnered much attention as a prom-
ising experimental realization of a spin liquid at zero mag-
netic field. Though Cs2CuCl4 exhibits long-range spiral order
at the lowest temperatures, inelastic neutron-scattering ex-
periments reveal broad regions of continuum scattering at
intermediate energies throughout the Brillouin zone.4 This
anomalous scattering coexists with well-defined spin waves
in the ordered phase and, significantly, also persists at tem-
peratures above the Néel temperature where the spin waves
are absent. The origin of this continuum scattering presents
one of the foremost challenges for understanding the behav-
ior of this interesting material. While two groups find that
nonlinear spin-wave theory can account for much of the ob-
served weight in the ordered phase,5,6 spin-liquid physics has
been widely invoked as a possible explanation for the
continuum.7–14

Low-temperature magnetic order develops in the presence
of a magnetic field as well, leading to a rich phase diagram.15

Motivated in part by the observed zero-field phenomenology,
we will explore the following question here. Can spin-liquid
phases appear at nonzero magnetic field, which influence the
dynamics of Cs2CuCl4 at intermediate energies, just as it
appears to be the case in the absence of a field? Several
experimental features15 that make this scenario plausible are
worth noting. First, a broad temperature range characterized
by short-range order persists up to sizable fields of around
6 T. Second, the ordering temperature initially decreases
with the magnetic-field strength, thereby broadening this
short-range order regime. Finally, there is a stark contrast in
the experimentally determined phase diagrams for moderate
fields applied along the b and c axes in the plane of the
triangular layers, implying a high sensitivity of ordering to
small perturbations. These features together strongly point to
the presence of many nearly degenerate states and a
corresponding enhancement of quantum fluctuations by
intermediate-strength fields.

To explore possible field-induced spin-liquid phases rel-
evant for Cs2CuCl4, we study an anisotropic Heisenberg
spin-1

2 triangular antiferromagnet tuned to 1
3 magnetization

using a well-studied duality mapping.16 The present paper
significantly extends an earlier study of a !easy-plane" spin
model in the absence of a magnetic field.11 At zero field, it
was argued that reformulating the spin model in terms of
fermionized vortices leads naturally to a spin liquid of the
“critical” !versus topological" variety. This algebraic vortex
liquid !AVL" is a promising candidate for explaining the
zero-field Cs2CuCl4 phenomenology. As we describe below,
generalizing to the case of 1

3 magnetization again leads natu-
rally to a critical AVL phase, which like its zero-field prede-
cessor supports gapless spin excitations and power-law spin
correlations. The different AVL characterized here is de-
scribed by quantum electrodynamics in !2+1"-dimensions
!QED3" with an emergent SU!6" symmetry, which has im-
portant implications for the spin dynamics. Specifically, it
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follows that both the components of the dynamical spin
structure factor along the field and perpendicular to it exhibit
enhanced universal correlations with identical power laws at
various momenta in the Brillouin zone !i.e., the filled circles
in Fig. 1". Such anomalous scattering would be quite inter-
esting to search for in Cs2CuCl4 via inelastic neutron scatter-
ing. On a technical level, we emphasize two appealing fea-
tures of this AVL. First, the field explicitly breaks the SU!2"
spin symmetry down to U!1", so that our dual description is
valid even in the absence of a Dzyaloshinskii-Moriya inter-
action, thereby avoiding subtleties encountered at zero field.
Second, the QED3 theory describing this AVL is “larger-N”
than in the zero-field case, and thus, even more likely to exist
as a stable phase.

We also discuss the so-called up-up-down !UUD" 1
3 mag-

netization plateaus from our dual perspective. Such UUD
states have been well studied for the isotropic triangular an-
tiferromagnet using spin-wave theory17 and exact
diagonalization,18 and have recently been observed in the
anisotropic material Cs2CuBr4.19 We show how the 1

3 mag-
netization plateau can be captured within our approach when
the sublattice magnetization is near full polarization, and fur-
ther predict the presence of a critical solid when the sublat-
tice magnetization is weak. Signatures of this gapless solid
phase may be accessible in exact diagonalization and/or se-
ries expansion studies by examining the excitation spectrum
in an XXZ model with spin-space anisotropy tuned near the
transition to the UUD plateau.

Finally, we discuss the range of lattice anisotropy where
the ground state is the canted square-lattice Néel phase. In
this “frustrated square lattice” limit, we predict several
anomalous minima in the excitation spectrum at the mo-
menta indicated by open circles in Fig. 1, which are due to
vortex-antivortex “roton” excitations. These excitations can
be difficult to capture within spin-wave theory, but appear
naturally in our dual framework. Such features were also
predicted at zero field, in agreement with earlier series
expansions,20 and would be interesting to probe here as well
to !perhaps" further substantiate the vortex interpretation of
those results.

Turning to the details, the Hamiltonian we consider is

H = #
$rr!%

Jrr!Sr · Sr! + h#
r

Sr
z , !1"

where the magnetic field h lies in the triangular planes and
the anisotropic exchanges are as shown in Fig. 2. Throughout

we assume that the field is tuned so that the system is at 1
3

magnetization. Furthermore, we will ignore the small inter-
plane and Dzyaloshinskii-Moriya couplings present in
Cs2CuCl4, which is appropriate for the field orientations of
interest.21 Since the Hamiltonian has U!1" spin symmetry,
Eq. !1" can be mapped onto a quantum rotor model and
dualized using the standard transformation.16 Readers inter-
ested in the details of this transformation and the analysis to
follow are referred to Refs. 12 and 22, where the approach
we employ has been well developed in similar settings. Here
we will apply this technique to the different physical situa-
tion of a 1

3-magnetized triangular antiferromagnet, highlight-
ing the nontrivial physics it enables us to access but dispens-
ing with the unnecessary formalism developed elsewhere.

The quantum rotor mapping is implemented by replacing
Sr

+→ei!r and Sr
z →nr− 1

2 , where nr is an integer-valued boson
number and !r is the conjugate phase. While not exact, such
a transformation is expected to be inconsequential for de-
scribing the universal physics, which is our focus. The rotor
Hamiltonian can then be expressed as

H! = #
$rr!%

Jrr! cos!!r − !r!" + U#
r

!nr − 1
3"2

+ #
$rr!%

Jrr!!nr − 1
3"!nr! − 1

3" , !2"

where the U term above enforces energetically the constraint
of having either 0 or 1 boson per site as appropriate for
modeling a spin-1

2 system. In the quantum rotor language,
the condition of 1

3 magnetization translates into having, on
average, one boson for every three sites, which is manifested
in the above Hamiltonian.

The duality mapping applied to Eq. !2" proceeds in an
identical fashion as in Refs. 12 and 22; the only difference
between these references and the present system is that the
bosons are now at a different mean filling. In the dual pic-
ture, one equivalently reformulates the rotor model in terms
of quantum mechanical, bosonic vortex degrees of freedom,
which are topological defects in which the spins wind around
triangular plaquettes as shown in Fig. 2. These vortices are
mobile, pointlike particles that hop on the dual honeycomb
lattice !see Fig. 2" in a background of a fluctuating gauge
field axx!, whose flux encodes the boson number !or
equivalently the Sz component of spin, along the field", nr

z

&!"#a"r / !2$". Thus, the magnetic field manifests itself as
a nontrivial background flux “felt” by the vortices, which at
1
3 magnetization is a commensurate 2$ /3 flux per dual hexa-
gon on average. This background flux is where the present

FIG. 1. !Color online" Filled circles indicate momenta at which
the components of the spin structure perpendicular to the field !S+−"
and along the field !Szz" exhibit enhanced universal correlations
with the same power-law decay in the AVL. In the canted Néel
phase, anomalous “roton” minima in the excitation spectrum are
predicted at the momenta denoted by open circles.

FIG. 2. !Color online" Triangular lattice and the dual honey-
comb on which vortices reside. Spins shown illustrate a vortex.
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study departs from the zero-field analysis of Refs. 11 and 12,
where the vortices see $ flux, and is responsible for the
different physics we obtain here. The vortices interact via a
logarithmic repulsion mediated by the gauge field and, im-
portantly, are at half-filling due to the underlying frustration
in the original spin model. In terms of a vortex number op-
erator Nx and its conjugate phase %x, the dual Hamiltonian
takes the form

Hdual = − #
$xx!%

txx! cos!%x − %x! − axx!"

+ #
xx!

!Nx − 1
2"Vxx!!Nx! − 1

2" + Ha. !3"

The first term allows vortices to hop across nearest-neighbor
honeycomb sites. The hopping amplitudes are generally an-
isotropic since vortices hop more easily across weak spin
links; thus we take t! / t&J! /J !see Fig. 2". The second term
encodes the vortex repulsion, while the last describes the
gauge-field dynamics.

The large vortex density poses a significant challenge for
analyzing the dual theory as it stands. The strong vortex
interactions, however, actually make the problem more trac-
table, as they strongly suppress vortex density fluctuations
and lead to an incompressible vortex fluid. Vortex exchange
statistics is therefore of secondary importance, and one can
proceed by utilizing a formally exact mapping to convert the
bosonic vortices into fermions bound to 2$ flux tubes. This
statistical flux does not alter the average flux seen by the
vortices, since it averages to 2$ per hexagon !which is
equivalent to zero flux". Furthermore, as argued in detail in
Ref. 12, the incompressibility renders the flux attachment
irrelevant for describing low-energy physics of the vortex
fluid. This statistical transmutation at low energies from
bosonic to fermionic vortices is at the heart of our approach.

Physically, working with fermions is advantageous be-
cause the Pauli principle allows one to first focus on the
vortex kinetic energy while still maintaining a good interac-
tion energy. Thus, we initially consider a mean-field state
where we “smear” the 2$ /3 background flux !due to the 1

3
magnetization" uniformly across the lattice, though we will
relax this assumption later. Fluctuations around this flux-
smeared state can be systematically controlled as discussed
below. Within this mean field, one can work out the vortex
band structure, which captures the important intermediate
length-scale physics. In particular, we find that for t! / t
&21/3 the vortices are gapped, while for t! / t'21/3 they form
a critical state with six gapless Dirac points. The former
gapped state corresponds to the canted “square lattice” Néel
phase expected when J! is dominant, while the latter is the
mean-field description of the AVL which will be our main
focus.

We discuss the gapless regime first. Expanding around the
Dirac points and including gauge fluctuations around the
flux-smeared state, one obtains a low-energy effective theory
describing six flavors of two-component Dirac fermions (),
)=1, . . . ,6, which are minimally coupled to a U!1" gauge
field a* that mediates the vortex repulsion. The low-energy
effective theory so obtained is identical to QED3,

LQED3 = (̄)!!” − ia”"() +
1

2e2 !+*,-!,a-"2 + L4f . !4"

!Inclusion of the statistical 2$ flux tubes merely leads to
interactions that are irrelevant by power counting in the
above, as claimed earlier." The first term encodes the linearly
dispersing kinetic energy for our six flavors of vortices. The
second is the usual Maxwell term, while L4f represents
symmetry-allowed four-fermion interactions. Of central im-
portance is whether the critical nature of the mean-field state
survives in the full interacting theory above. A partial answer
to this question can be obtained by asking whether any fer-
mion mass terms, which would drive some type of ordering
in the original spin model and lead to a gap in the vortex
spectrum, are allowed by symmetry. Despite the loss of time-
reversal symmetry by the magnetic field, the answer is
“no”—the remaining symmetries of the original spin model
are still sufficient to preclude all possible mass terms in Eq.
!4". This is not the full story, however, since the four-fermion
interactions above, if relevant in the renormalization group
sense, could still potentially lead to ordering via spontaneous
mass generation. Hence to proceed, we must assess the role
of these terms in the theory.

In the limit of a large number N of fermion flavors, all
such four-fermion interactions are indeed known to be irrel-
evant, so that QED3 realizes a nontrivial stable critical
phase. !See QED3 references in Ref. 12" While the critical
value of N above which this holds is uncertain, calculations
to leading order in 1/N suggest that N=6 relevant here is
large enough. Hence, we proceed with the assumption that
Eq. !4" indeed describes a stable critical phase for our vorti-
ces, with an emergent SU!6" symmetry due to the presumed
irrelevance of L4f. In terms of the original spin model, this
can be qualitatively understood as follows. The presence of
numerous gapless Dirac points implies that there are many
competing orders in the spin model. With sufficiently many
competing orders !i.e., at large enough N", quantum fluctua-
tions can be so strong as to disorder the system even at zero
temperature. The resulting critical phase is precisely the
AVL, which respects all symmetries of the original spin
model and supports gapless vortex excitations and, in turn,
gapless spin excitations as we now discuss.

The key experimental prediction for this phase lies in the
behavior of the dynamical spin structure factor, since this can
be directly probed with inelastic neutron scattering. We first
discuss the spin correlations of S±, transverse to the field.
Recalling that Sz+ 1

2 &!"#a" / !2$", since S+ adds Sz=1, it
follows that the corresponding dual operators are “mono-
poles” which add 2$ gauge flux. The added flux gives rise to
six additional vortex zero modes, one for each fermion fla-
vor, and half of these must be filled to produce a physical
state. Thus there are 20 leading monopole excitations, which
can be shown to carry the momenta ! j displayed on the left
side of Fig. 1.12 Such monopoles exhibit nontrivial power-
law correlations, each with identical scaling dimension due
to the emergent SU!6" symmetry. Consequently, near each
! j, the transverse spin structure factor scales as
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S+−!k = ! j + q,." &
/!.2 − q2"

!.2 − q2"1−0+−/2 . !5"

Using the leading large-N result,23 the anomalous dimension
is 0+−'0.54N−1'2.2 for each ! j.

Consider now the correlations of Sz along the field. Near
zero momentum Sz appears as the dual gauge flux "#a. But
the vortex band structure also allows naturally for “particle-
hole” excitations which correspond to vortex currents, and
such currents generate modulated gauge flux that contributes
to Sz at other wave vectors. These appear in the continuum as
fermion bilinears, which provide the leading Sz spin correla-
tions at the 18 momenta denoted by filled circles on the right
side of Fig. 1. Near each of these momenta, the structure
factor Szz scales as in Eq. !5", but with a larger anomalous
dimension 0zz'2.3 estimated from the leading 1/N result.24

Note that the momenta denoted by filled circles in Fig. 1
shift along kx as the lattice anisotropy changes, lining up
along the dashed lines in the one-dimensional limit and re-
siding symmetrically around the hexagons shown in the iso-
tropic limit. We also mention that both 0+− and 0zz are esti-
mated to be larger than 2, in which case a cusp rather than a
divergence occurs in the structure factor. Enhanced scattering
should, nevertheless, be observable near the above momenta,
and moreover, in Cs2CuCl4 such divergences would be cut
off at the lowest energies due to the onset of magnetic order.

We now shift our attention to 1
3 magnetization plateaus,

focusing for simplicity on the isotropic limit J!=J. Returning
to the “flux-smeared” mean-field level, we now weakly
modulate the gauge flux away from 2$ /3 such that UUD
order is assumed at the outset. Introducing this flux modula-
tion, surprisingly, merely shifts the locations of the Dirac
nodes. Furthermore, the remaining symmetries of the spin
model are still sufficient to protect the gaplessness of this
state against small perturbations. That is, the critical nature
of the AVL is preserved upon introducing weak UUD order,
implying the interesting possibility of having a stable gapless
solid phase.

Where, then, is the gapped magnetization plateau? Such a
spin state is described by a ,=1 quantum Hall state for the
fermionic vortices. To see this, note that the first quantized
wave function for the bosonic vortices is 1bos
=(i'je−i/!xi−xj""ferm, where /!x" denotes the angle formed
by the vector x with respect to a fixed axis and 1ferm is the
fermionic vortex wave function. With 1ferm the usual ,=1
wave function, it has been shown25 that 1bos exhibits !quasi"
off-diagonal long-range order. Hence, the bosonic vortices
form a “superfluid,” which corresponds to an “insulating”
state for the original spin model. Indeed, due to the accom-
panying dual “Meissner effect,” the gauge field axx! picks up
a Higgs mass, and there are thus no gapless excitations in
this phase. This is the desired UUD plateau as claimed. Such
a ,=1 quantum Hall state can be driven by adding an imagi-
nary second neighbor vortex hopping with strength t2 larger
than a critical value t2c, which decreases as the sublattice
magnetization increases toward full polarization. This can be

explicitly demonstrated by computing the Chern numbers for
the occupied bands.26 Second neighbor hoppings with t2
' t2c lead to symmetry breaking, and are thus precluded in
accordance with the above discussion.

Finally, let us discuss the frustrated square lattice limit
where J! is dominant and the vortices are gapped. Again, this
regime corresponds to the expected canted Néel phase. Con-
sider the correlations of Sz at momentum q. Aside from spin
waves, the spin structure factor Szz receives contributions
from vortex-antivortex roton excitations. In spin language,
these correspond to vortex currents generating modulated Sz

as discussed above in the AVL. Such excitations are analo-
gous to Feynman’s rotons in He-4, and likewise should ap-
pear as minima in the structure factor. The energy required to
create a roton with momentum q is simply given by the
minimum energy required to promote a fermionic vortex in
an occupied band with momentum k to an unoccupied band
with momentum k-q.12 As J increases, enhancing frustration,
the vortex band gap shrinks leading to a sharp reduction in
the minimum roton energy at the commensurate wave vec-
tors denoted by open circles in Fig. 1. When the gap closes,
signaling the destruction of the canted Néel order, the roton
energy becomes gapless at these momenta. !For larger J, one
enters the AVL phase, and the additional momenta on the
right side of Fig. 1 denoted by filled circles then branch out
from these roton minima." The presence of these low-energy
rotons should lead to dramatic deviations from linear spin-
wave theory.

To conclude, we have provided a concrete theoretical pro-
posal for a spin liquid which may influence the intermediate-
energy dynamics of Cs2CuCl4 in a magnetic field. The pros-
pect of observing the spin-liquid physics described here is an
exciting one, and we hope experiments in this direction will
be pursued. Our nontrivial predictions for the dynamic spin
structure factor can be tested with inelastic neutron scattering
by measuring the lower edge of the continuum scattering at
the momenta specified in Fig. 1. Polarized neutrons, in par-
ticular, would provide a useful probe for the markedly dif-
ferent correlations identified parallel and transverse to the
field. We also identified a stable gapless phase with weak
UUD order, which would be interesting to search for via
exact diagonalization and series expansions. A renewed look
at the excitation spectrum in the UUD plateau as one adds
easy-plane anisotropy to suppress the solid order may prove
fruitful. Series expansion studies to search for the predicted
rotons in the frustrated square lattice limit with J! dominant
would also be interesting. More generally, the spin liquid
presented here suggests that it may be worthwhile to widen
the search for such exotic phases in other frustrated systems
by incorporating a finite magnetic field.
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