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There is growing evidence from both experiment and numerical studies that low half-odd integer quantum
spins on a kagome lattice with predominant antiferromagnetic near-neighbor interactions do not order mag-
netically or break lattice symmetries even at temperatures much lower than the exchange interaction strength.
Moreover, there appears to be a plethora of low-energy excitations, predominantly singlets but also spin
carrying, which suggests that the putative underlying quantum spin liquid is a gapless “critical spin liquid”
rather than a gapped spin liquid with topological order. Here, we develop an effective field theory approach for
the spin-1

2 Heisenberg model with easy-plane anisotropy on the kagome lattice. By employing a vortex duality
transformation, followed by a fermionization and flux smearing, we obtain access to a gapless yet stable critical
spin liquid phase, which is described by !2+1"-dimensional quantum electrodynamics !QED3" with an emer-
gent SU!8" flavor symmetry. The specific heat, thermal conductivity, and dynamical structure factor are ex-
tracted from the effective field theory, and contrasted with other theoretical approaches to the kagome
antiferromagnet.
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I. INTRODUCTION

Kagome antiferromagnets are among the most extreme
examples of frustrated spin systems realized with nearest-
neighbor interactions. Both the frustration in each triangular
unit and the rather loose “corner-sharing” aggregation of
these units into the kagome lattice suppress the tendency to
magnetically order. On the classical level, kagome spin sys-
tems are known to exhibit rather special properties: nearest-
neighbor Ising and XY models remain disordered even in the
zero-temperature limit, while the O!3" system undergoes
order-by-disorder into a coplanar spin structure.1

Quantum kagome antiferromagnets, which are much less
understood, provide a fascinating arena for the possible real-
ization of spin liquids. Early exact diagonalization and series
expansion studies,2–5 as well as further exhaustive numerical
works,6–9 provide strong evidence for the absence of any
magnetic order or other symmetry breaking in the nearest-
neighbor spin-1

2 system. Moreover, a plethora of low-energy
singlet excitations is found, below a small !if nonzero" spin
gap. But the precise nature of the putative spin liquid phase
in this model has remained elusive.

On the experimental front, several quasi-two-dimensional
materials with magnetic moments in a kagome arrangement
have been studied, including SrCr8−xGa4+xO19 with Cr3+ !S
=3/2" moments,10–14 jarosites KM3!OH"6!SO4"2 with M
=Cr3+ or Fe3+ !S=5/2" moments,15–17 and volborthite
Cu3V2O7!OH"2 ·2H2O with Cu2+ !S=1/2" moments.18 Re-
cently, herbertsmithite ZnCu3!OH"6Cl2 which also has Cu2+

moments on a kagome lattice was synthesized for which no
magnetic order is observed down to 50 mK despite the esti-
mated exchange constant of 300 K.19–21 The second layer of
3He absorbed on graphoile is also believed to realize the
kagome magnet.22,23 The suppression of long-range spin cor-
relations or other signs of symmetry breaking down to tem-
peratures much lower than the characteristic exchange en-

ergy scale is manifest in all of these materials, consistent
with expectations. Moreover, there is evidence for low-
energy excitations, both spin carrying and singlets. But the
ultimate zero-temperature spin liquid state is often masked in
these systems by magnetic ordering or glassy behavior at the
lowest temperatures, perhaps due to additional interactions
or impurities, rendering the experimental study of the spin
liquid properties problematic. New materials and other ex-
perimental developments are changing this situation, and the
question of the quantum spin liquid ground state of the
kagome antiferromagnet is becoming more prominent.

There are two broad classes of spin liquids which have
been explored theoretically, both in general terms and for the
kagome antiferromagnet in particular. The first class com-
prise the “topological” spin liquids, which have a gap to all
excitations and have particlelike excitations with fractional
quantum numbers above the gap. Arguably, the simplest to-
pological liquids are the so-called Z2 spin liquids, which sup-
port a vortex like excitation—a vison—in addition to the
spin one-half spinon. For the kagome antiferromagnet,
Sachdev24 and more recently Wang and Vishwanath25 have
employed a Schwinger boson approach to systematically ac-
cess several different Z2 spin liquids. For a kagome antifer-
romagnet with easy axis anisotropy and further neighbor in-
teractions, Balents et al.26 unambiguously established the
presence of a Z2 spin liquid, obtaining an exact ground state
wave function in a particular limit. Quantum dimer models
on the kagome lattice can also support a Z2 topological
phase.27 Spin liquids with topological order and time-
reversal symmetry breaking, the chiral spin liquids which are
closely analogous to fractional quantum Hall states, have
been found on the kagome lattice28,29 within a fermionic rep-
resentation of the spins. But all of these topological liquids
are gapped, and cannot account for the presence of many
low-energy excitations found in the exact diagonalization
studies and suggested by the experiments.
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A second class of spin liquids—the “critical” or “alge-
braic spin liquids” !ASL"—have gapless singlet and spin car-
rying excitations. Although these spin liquids share many
properties with quantum critical points such as correlation
functions falling off as power laws with nontrivial expo-
nents, they are believed to be stable quantum phases of mat-
ter. Within a fermionic representation of the spins, Hastings30

explored an algebraic spin liquid on the kagome lattice, and
more recently Ran et al.31 have extended his analysis in an
attempt to explain the observed properties of herbertsmithite
ZnCu3!OH"6Cl2.

In this paper, motivated by the experiments on the
kagome materials and the numerical studies, we pursue yet a
different approach to the possible spin liquid state of the
kagome antiferromagnet. As detailed below, for a kagome
antiferromagnet with easy-plane anisotropy we find evidence
for a new critical spin liquid, an “algebraic vortex liquid”
!AVL" phase. Earlier we had introduced and explored the
AVL in the context of the triangular XXZ antiferromagnet in
Refs. 32–34. Compared to the slave particle techniques for
studying frustrated quantum antiferromagnets, the AVL ap-
proach is less microscopically faithful to a specific spin
Hamiltonian, but has the virtue of being unbiased.

Our approach requires the presence of an easy-plane an-
isotropy, which for a spin-1

2 system can come from the
Dzyaloshinskii-Moriya interaction, although this is usually
quite small. But for higher half-integer spin systems, spin-
orbit coupling allows for a single ion anisotropy D!Sz"2

which can be appreciable. With D!0 this leads to an easy-
plane spin character, and from a symmetry stand point our
analysis should be relevant. Moreover, a very interesting ex-
act diagonalization study by Sindzingre35 suggests that an
unusual spin liquid phase is also realized for the nearest-
neighbor quantum XY antiferromagnet. He finds a small gap
to Sz=1 excitations, but below this gap there is a plethora of
Sz=0 states, which is reminiscent of the many singlet exci-
tations below the triplet gap in the Heisenberg SU!2" spin
model.6 Thus, based on the exact diagonalization studies, the
easy-plane anisotropy does not appear to gap out the putative
critical spin liquid of the Heisenberg model, although it will
presumably modify its detailed character.

Our approach to easy-plane frustrated quantum antiferro-
magnets focuses on vortex defects in the spin configurations,
rather than the spins themselves. In this picture, the magneti-
cally ordered phases do not have vortices present in the
ground state. But there will be gapped vortices, and these can
lead to important effects on the spectrum. For example,
vortex-antivortex !i.e., roton" excitations can lead to minima
in the structure factor at particular wave vectors in the Bril-
louin zone,36–38 in analogy to superfluid He-4. As we dem-
onstrated for the triangular antiferromagnet and explore be-
low for the kagome lattice, our approach predicts specific
locations in the Brillouin zone for the roton minima, which
could perhaps be checked by high order spin-wave expan-
sion techniques. On the other hand, the presence of mobile
vortex defects in the ground state can destroy magnetic or-
der, giving access to various quantum paramagnets. If the
vortices themselves condense, the usual result is the breaking
of lattice symmetries, such as in a spin Peierls state. But if
the vortices remain gapless one can access a critical spin
liquid phase.

For frustrated spin models the usual duality transforma-
tion to vortex degrees of freedom does not resolve the geo-
metric frustration since the vortices are at finite density.
However, binding 2"-flux to each vortex, converting them
into fermions coupled to a Chern-Simons gauge field, fol-
lowed by a simple flux-smearing mean-field treatment gives
a simple way to describe the vortices. The long-range inter-
action of vortices actually works to our advantage here since
it suppresses their density fluctuations and leads essentially
to incompressibility of the vortex fluid. As demonstrated in
the easy-plane quantum antiferromagnet on the triangular
lattice,33,34 including fluctuations about the flux-smeared
mean field enables one to access a critical spin liquid with
gapless vortices. The theory has the structure of a
!2+1"-dimensional #!2+1"D$ quantum electrodynamics
!QED3", with relativistic fermionic vortices minimally
coupled to a noncompact U!1" gauge field. The resulting
algebraic vortex liquid phase is a critical spin liquid phase
that exhibits neither magnetic nor any other symmetry-
breaking order. This approach also allows one to study many
competing orders in the vicinity of the gapless phase.

When applied to the spin-1
2 easy-plane antiferromagnet on

the kagome lattice, the duality transformation combined with
fermionization and flux smearing also leads to a low-energy
effective QED3 theory with eight flavors of Dirac fermions
with an emergent SU!8" flavor symmetry. Amusingly, AVL’s
with SU!2",32 SU!4",33,34 and SU!6" !Ref. 39" emergent sym-
metries were obtained previously for quantum XY antiferro-
magnets on the triangular lattice, with integer spin, half-
integer spin, and half-integer spin in an applied magnetic
field, respectively. QED3 theory with N flavors of Dirac fer-
mions is known to realize a stable critical phase for suffi-
ciently large N!Nc. While numerical attempts to determine
Nc are so far inconclusive,40,41 an estimate from the large-N
expansion suggests Nc%4.32 It seems very likely that N=8 is
large enough, implying the presence of a stable critical spin
liquid ground state for the easy-plane spin-1

2 quantum anti-
ferromagnet on the kagome lattice.

Although the algebraic vortex liquid and the algebraic
spin liquid30,31 obtained for the kagome lattice are accessed
in rather different ways, they share a number of commonali-
ties, both theoretically and with regard to their experimental
implications. Both approaches end with a QED3 theory, the
former a noncompact gauge field theory with fermionic vor-
tices carrying an emergent SU!8" symmetry, and the latter a
compact gauge theory with fermionic spinons with SU!4"
symmetry. The noncompact nature of the gauge field in the
AVL follows from the fact that the Sz component of spin
appears as the gauge flux in the dualized theory. Hence the
states with zero flux and 2" flux are physically distinct;
moreover, it follows that since the total Sz is conserved, so
also is the total gauge flux. This should be contrasted with
the slave particle approach, where a compact gauge theory
arises on the lattice and there is no such conservation law.
Physically, this means that dynamical monopole operators,
which could potentially destabilize the spin liquid and open a
gap in the excitation spectrum, are not allowed in our low-
energy theory for the AVL, while they are allowed in a low-
energy description of spin liquids obtained using a slave par-
ticle framework.
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With regard to experimentally accessible quantities, both
theories predict a power law specific heat C%T2 at low tem-
peratures, which follows from the linear dispersion of the
fermions, and which would dominate the phonon contribu-
tion to the specific heat for magnets with exchange interac-
tions significantly smaller that the Debye frequency.42–45 Be-
cause the spinons couple directly to magnetic fields, one
would expect the specific heat in the ASL to be more sensi-
tive to an external applied magnetic field than the AVL
phase. Both theories predict a thermal conductivity which
vanishes as #%T,46,47 which is an interesting experimental
signature reflecting the dynamical mobility of the gapless
excitations.

The momentum resolved dynamical spin structure factor
which can be extracted from inelastic neutron experiments
can in principle give very detailed information about the spin
dynamics. Following the framework developed on the trian-
gular lattice,32–34,39 for the kagome AVL we can extract the
wave vectors in the magnetic Brillouin zone which have gap-
less spin carrying excitations, and find 12 of them as shown
in Fig. 4. In contrast, the kagome ASL phase is predicted to
have gapless spin excitations at only four of these 12 mo-
menta. The momentum space location of the gapless excita-
tions is perhaps the best way to try and distinguish experi-
mentally between these two !and any other" critical spin
liquids.

The rest of the paper is organized as follows. We start by
introducing our model in Sec. II. The low-energy effective
field theory is then developed in Sec. III. In Sec. IV, the
properties of the critical spin liquid phase !AVL phase" are
discussed, especially the spin excitation !roton spectrum"
!Fig. 5", the Sz dynamical structure factor #Eq. !19"$, and the
in-plane dynamical structure factor #Eq. !22"$. We conclude
in Sec. V. Some details of the analysis are presented in three
Appendixes.

II. EXTENDED KAGOME MODEL

Our primary interest is the kagome lattice spin-1
2 model

with easy-plane anisotropy !quantum XY model",

H =
1
2 &

r,r!

!Jr,r!Sr
+Sr!

− + H.c." + &
r,r!

Jr,r!
z Sr

zSr!
z , !1"

with Jr,r!!Jr,r!
z . We consider the system with dominant

nearest-neighbor exchange J1, but will also allow some
second- and third-neighbor exchanges J2 and J3.

To set the stage, the model with only nearest-neighbor
coupling has an extensive degeneracy of classical ground
states, which is lifted by further-neighbor interactions. For
example, with antiferromagnetic J2!0, the so-called q=0
phase is stabilized !Fig. 1". On the other hand, for ferromag-
netic J2$0, the so-called '3%'3 structure is the classical
ground state !Fig. 1". These ordered phases are also realized
in the quantum spin-1

2 Heisenberg model for large enough
J2,6 while the case with J2 /J1(0 is most challenging as
mentioned in the Introduction.

The easy-plane spin system can be readily reformulated in
terms of vortices. But in order to apply the fermionized vor-

tex approach more simply, we consider a wider class of mod-
els which includes the nearest-neighbor kagome model. Spe-
cifically, we add one extra site at the center of each hexagon,
on which we set an integer spin !Fig. 1". !Technical reasons
for doing this are discussed at the end of Sec. III." In the
rotor representation of spins, with a phase & canonically con-
jugate to the integer boson number, n%Sz+1/2 on the
kagome sites and n%Sz at the centers of each hexagon, such
an extended model reads

H = &
r,r!

Jr,r! cos!&r − &r!" + &
r

Ur!nr − nr
0"2, !2"

where n0=1/2 for the kagome lattice sites, while n0=0 for
the added hexagon center sites. We have dropped the Jz term
for simplicity since it amounts to a mere renormalization of
the interactions in the effective field theory that we will de-
rive. As shown in Fig. 1, we take the interaction to be J for
the nearest-neighbor half-integer spins, while the coupling
that connects integer and half-integer spins is J!. When the
on-site interaction U is infinitely large, U→', there remain
two low-energy states realizing the Hilbert space of a S= 1

2
spin at the kagome sites, whereas the frozen sector with nr
=0 is selected at the hexagon center sites. In the quantum
rotor model, we “soften” this constraint and take U to be
finite.

The additional integer-spin degrees of freedom do not
spoil any symmetries of the original model, which for the

FIG. 1. !Color online" !Top" The quantum spin model with easy-
plain anisotropy, Eq. !2", on the kagome lattice !thick line" supple-
mented by an extra site at the center of each hexagon. There is a
half-integer spin for each kagome site whereas integer spins are
placed at each center of hexagons. Four spins in a unit cell are
labeled by j=1,2 ,3 ,4. For this triangular extension of the kagome
lattice, the dual lattice is the honeycomb lattice indicated in the
upper left-hand part. !Bottom" The q=0 state !left-hand side" and
the '3%'3 state !right-hand side". Positive-negative vorticities
!chiralities" for each triangle are denoted by (/).
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record include lattice translations, reflections, and rotations,
as well as XY spin symmetries. If we integrate over the extra
degrees of freedom, the model looks very close to the origi-
nal one. For example, in the limit when J!*U, we obtain the
kagome model with additional ferromagnetic second and
third neighbor exchanges J2=J3=−!J!"2 / !2U", together with
a renormalized nearest-neighbor exchange J1=J
− !J!"2 / !2U". Such exchanges would slightly favor the '3
%'3 state in the classical limit, but as we will see, the spin
liquid phase that we obtain by analyzing the extended
kagome model will have enhanced correlations correspond-
ing to both the q=0 and '3%'3 phases that are nearby. Thus
the small bias introduced by the added integer-spin sites ap-
pears to be not so important for the generic spin liquid phase
that we want to describe.

III. FERMIONIZED VORTEX DESCRIPTION

The triangular extension of the kagome XY antiferromag-
net discussed above is somewhat similar to the triangular
lattice spin-1

2 XY antiferromagnet studied in Refs. 33 and 34,
except that one-quarter of the sites are occupied by integer
spins. The duality transformation for the present model pro-
ceeds identically to Refs. 33 and 34, and turns the original
spin Hamiltonian !2" into the dual Hamiltonian describing
vortices hopping on the honeycomb lattice and interacting
with a gauge field residing on the dual lattice links,

H = 2"2&
xx!

Jxx!exx!
2 +

U

!2""2&
r

!! % a"r
2

− 2&
xx!

txx! cos!+x − +x! − axx! − axx!
0 " . !3"

Here x ,x! label sites on the honeycomb lattice !see Fig. 1",
e±i+x is a vortex creation-annihilation operator at site x, and
axx! ,exx! represent a gauge field on the link connecting x and
x!. Jxx! is given by Jxx!=J!J!" when the dual link )xx!*
crosses the original lattice link )rr!* with Jrr!=J!J!". The
last term in the dual Hamiltonian represents the vortex hop-
ping where the hopping amplitude txx! is given by txx!
= t!t!" when the link )xx!* crosses the link )rr!* with Jrr!
=J!J!". Crudely, we have t / t!%J! /J since vortices hop more
easily across weak links !Fig. 2". Finally, the static gauge
field a0 encodes the average flux seen by the vortices when
they move; this is described in more detail below.

In the dual description, because of the frustration in the
spin model, the average density of vortices is one-half per
site. On the other hand, the original boson density is viewed
as a gauge flux,

nr =
1

2"
!! % a"r =

1
2"

&
)xx!* around r

axx!. !4"

Therefore, vortices experience on average " flux going
around the triangular lattice sites with half-integer spins, but
they see zero flux going around the sites with integer spins.
Thus, one-quarter of the hexagons will have zero flux as seen
by the vortices, and this is where the present model departs
from the considerations in Refs. 33 and 34.

To treat the system of interacting vortices at finite density,
we focus on the two low-energy states with vortex number
Nx=0 and Nx=1 at each site and view vortices as hard-core
bosons. We can then employ the fermionization as in Refs.
33 and 34 and arrive at the following hopping Hamiltonian
for fermionized vortices dx:

Hferm = − &
xx!

!txx!dx
†dx!e

−i!axx!+axx!
0

+Axx!" + H.c." , !5"

where we have introduced a Chern-Simons field A whose
flux is tied to the vortex density, !!%A"x=2"Nx.

Before proceeding with the analysis of the fermionized
vortex Hamiltonian, we now point out the technical reasons
for considering the extended kagome model. If we apply the
duality transformation to the kagome model with nearest-
neighbor antiferromagnetic coupling J1 only, we would ob-
tain a dual vortex theory on the dice lattice, which is the dual
of the kagome lattice. In this theory, in order to reproduce the
rich physics while restricting the vortex Hilbert space at each
site to something more manageable like the hard-core vorti-
ces described earlier, we would need to keep two low-energy
states of vortices for each triangle of the kagome lattice !i.e.,
for each threefold coordinated site of the dice lattice",
whereas there are three such states to keep for each hexagon
!i.e., sixfold coordinated dice site". The latter degrees of free-
dom are rather difficult to represent in terms of fermions. On
the other hand, in the dual treatment of the extended model,
such a sixfold coordinated dice lattice site is effectively split
into six sites. Each such new site now has two low-energy
states but the sites are coupled together, and this provides
some caricature of the original important vortex states on the
problematic dice sites. This representation now admits stan-
dard fermionization, and it was “found” in a rather natural
way without any prior bias regarding how to treat the diffi-
cult dice sites with three important vortex states.

FIG. 2. !Color online" The flux-smeared mean-field background
for fermionized vortices. Each hexagon is threaded by either zero or
"-flux. !Hexagons with zero-flux are specified by “0” whereas all
the other hexagons are pierced by "-flux." A convenient choice of a
gauge is also shown: for links labeled by ↔, we assign the Peierls

phase factor e−iaxx!
0

=ei". The unit cell in this gauge consists of 16
sites as labeled in the figure. For links represented by a solid line we
assign hopping amplitude t!=1" whereas for links denoted by a
broken line we assign hopping t!. We take % in the figure as an
origin.
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Flux smearing mean-field and low-energy effective theory.
The flux attachment implemented above is formally exact,
and there have been no approximations so far, although we
have softened the discreteness constraints on the gauge
fields. To arrive at a low-energy effective field theory, we
now pick a saddle point configuration of the gauge field,
incorporating a flux-smeared mean-field ansatz, and later
will include fluctuations around it. That is, we first distribute
!or “smear”" the 2" flux attached to each vortex on a dual
site to the three !dual" plaquettes surrounding it. Since the
vortices are at half-filling and each hexagon contains six
sites, the total smeared flux through each hexagon is 2",
which is equivalent to no additional flux. Therefore we as-
sume Axx!=0 in the mean field. Also, we take axx!=0 on
average, including the fluctuations after we identify the im-
portant low-energy degrees of freedom for the fermionic vor-
tices. Thus, at the mean-field level, the original Hamiltonian
!2" is converted into a problem of fermions hopping on the
honeycomb lattice,

Hferm,MF = &
xx!

!txx!e
−iaxx!

0
dx

†dx! + H.c." . !6"

In the mean field, three out of four hexagons are pierced by
"-flux, while the remaining hexagons with an integer spin at
the center have zero-flux, see Fig. 2. Our choice of the gauge
is shown in Fig. 2. The unit cell consists of 16 sites, the area
of which is 2 times as large as the physical unit cell of the
original kagome spin system.

This Hamiltonian can be solved easily by the Fourier
transformation. The lattice vectors that translate the unit cell
are given by

E1 = !4,0", E2 = !− 1,'3" , !7"

and the first Brillouin zone !BZ" is specified as the Wigner-
Seitz cell of the reciprocal lattice vectors

G1 = +"

2
,

"

2'3
,, G2 = +0,

2"

'3
, . !8"

This is shown in Fig. 3. Note that, on the other hand, the
physical unit cell is defined by E1

phys=E1 /2= !2,0", and

E2
phys=E2= !−1,'3". Thus the physical BZ is determined as

the Wigner-Seitz cell of the reciprocal lattice vectors G1
phys

= !" ," /'3" and G2
phys= !0,2" /'3", and is also shown in

Figs. 3 and 4.
Because of the particle-hole symmetry of the original

quantum rotor Hamiltonian, which in terms of the fermion-
ized vortices is realized as a vortex particle-hole symmetry
!see Appendix B", the band structure of the flux-smeared
mean-field Hamiltonian !6" is symmetric around zero energy,
and consists of eight bands with positive energy and eight
with negative energy. The seventh and eighth bands have
negative energy spectra and are completely degenerate,48

each having four Fermi points Q1,2,3,4 that touch zero energy.
In the same way, the ninth and tenth bands have positive
energy spectra and are completely degenerate, and each of
them touches zero energy at the same four Fermi points
Q1,2,3,4 thus completing the Dirac nodal spectrum. With the
gauge choice specified in Fig. 2, the locations of the Fermi
points in the BZ are

Q1 = − Q3 = + "

12
,

"

4'3
, , !9"

Q2 = − Q4 = + "

12
,−

3"

4'3
, , !10"

!see Fig. 3". The low-energy spectrum consists of eight gap-
less two-component Dirac fermions with identical Fermi ve-
locities given by !here we take t=1 for convenience"

vF =' 6t!2

!3 + t!2"!3 + 2t!2"
. !11"

Hence the low-energy effective theory enjoys an emergent
SU!8" symmetry among eight Dirac cones, which is pro-
tected at the kinetic-energy level by the underlying discrete

FIG. 3. !Color online" The first Brillouin zone for the flux-
smeared mean-field ansatz and the location of the nodes Q1,. . .,4.
The hexagonal physical Brillouin zone is also presented. Small
hexagons are a guide for the eyes.

FIG. 4. !Color online" Summary of the main characterizations of
the kagome AVL phase. The low-energy excitations are located at
wave vectors 0, ±Q, M1,2,3, and ±P1,2,3 in the physical Brillouin
zone of the kagome lattice, where Q= !" /3 ," /'3"; M1= (" /2 ,
−" / !2'3"), M2= (" /2 ," / !2'3"), M3= !0," /'3"; P1= !" /3 ,0",
P2= (−" /6 ," / !2'3"), and P3= (−" /6 ,−" / !2'3"). Both Sz and S+

exhibit power law correlations at all these momenta, Eqs. !19" and
!22". The Sz correlations are “enhanced” !,z-2.46" for the subset
±Q, ±P1,2,3 and not enhanced !,z=3" for the remaining wave vec-
tors. On the other hand, all S+ correlations are characterized by the
same exponent ,±-3.24.
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symmetries in the problem !see Appendix C".
The lattice fermionized vortex operator is conveniently

expanded in terms of slowly varying continuum fields
-i.a!x" by

dx % &
.=1

4

&
i=I,II

&
a=1,2

eiQ.·x/i.a!n"-i.a!x" , !12"

where indices .=1, . . . ,4, i=I , II, and a=1,2, refer to the
four Fermi momenta, two sublattices of the honeycomb lat-
tice, and two degenerate bands, respectively, while n
=1, . . . ,16 specifies the site label in the unit cell, cf. Fig. 2.
The 16-component wave functions /i.a!n" represent modes
at the Fermi points and are specified in Appendix A.

Working with these continuum fields, we find that the
low-energy Hamiltonian has the same form vF!−01p̂x
+02p̂y" near each Dirac node, where 01,2,3 are Pauli matrices
that act on the “Lorentz” indices i=I , II. Correspondingly, by
introducing the gamma matrices in !2+1"D,

10 = 03, 11 = − 02, 12 = − 01,

1213 + 1312 = 2423, 2,3 = 0,1,2, !13"

the Euclidean low-energy effective action is given by

Seff =. d3x &
!."=1

8

-̄!."12"2-!.", !14"

where !."=.a is a collective index running from 1 to 8;
x2=0,1,2 represents imaginary time as well as spatial coordi-
nates; -̄=-†10; and we have scaled out vF.

Having identified the low-energy fermionic degrees of
freedom, we now reinstate gauge field fluctuations. The com-
plete effective action is that of SU!8" QED3 coupled in ad-
dition with the Chern-Simons field A2 and given by

Seff =. d3x+ &
!."=1

8

-̄!."12!"2 − ia2 − iA2"-!." + L2f + L4f

+
1

2e2 !5236"3a6"2 +
i

4"
5236A2"3A6, . !15"

Here we also included possible fermion bilinears L2f and
four fermion interactions L4f. e2%U−1 stands for the cou-
pling constant of the gauge field a2.

As discussed in Refs. 33 and 34, the Chern-Simons field
A2 is irrelevant. The microscopic symmetries of the spin
Hamiltonian prohibit fermion mass terms L2f from appearing
in the effective action !see Appendix C". Furthermore, four
fermion interactions L4f in Eq. !15" are irrelevant when the
number of fermion flavors is large enough, N!Nc. Thus,
provided Nc$8, we have obtained a stable algebraic vortex
liquid phase that is described by QED3 with an emergent
SU!8" symmetry. Using the available theoretical understand-
ing of such theories, we will now describe the main proper-
ties of the AVL phase, which in terms of the original spins is
a gapless spin-liquid phase.

IV. PROPERTIES OF THE AVL PHASE

A. Roton spectrum

First note that the specific momenta of the Dirac points
Eq. !10" and Fig. 3 are gauge dependent. We are interested in
the physical properties of the system, which are gauge in-
variant. One such property is the vortex-antivortex excitation
spectrum: By moving a vortex from an occupied state k with
energy E−!k" to an unoccupied state k! with energy E+!k!",
we are creating an excitation that carries energy E+!k!"
−E−!k". Some care is needed if we want to construct such a
state with a definite momentum in the physical BZ, since we
need to consider both k!−k and k!−k+G1. By examining
Fig. 3, we find that the vortex-antivortex continuum goes to
zero at 12 points 0, ±Q, M1,2,3, ±P1,2,3 in the BZ of the
kagome lattice shown in Fig. 4.

An accompanying plot of the lower edge of the vortex-
antivortex continuum,

7rot!p" = mink#E+!k + p" − E−!k"$ , !16"

which can be interpreted as a roton excitation energy, is
shown in Fig. 5 !top panel" along several BZ cuts. Various
proximate phases, e.g., magnetically ordered states, will in-
stead have gapped vortices. But if such a gap is small, we
expect that the lower edge of the full excitation spectrum
will be dominated by deep roton minima near the same wave
vectors !except where the rotons are masked by spin waves".

As a contrasting example, in Fig. 5 !bottom panel" we
also show the spin-wave spectrum in the q=0 magnetically
ordered phase,49,50 assuming this state is stabilized by some
means. !Actually, starting from any of the classically degen-
erate ground states of the nearest-neighbor kagome XY
model leads to the same linear spin-wave theory if one ro-
tates the spin quantization axis suitably for each site." There
are three branches. For the XY antiferromagnet, these are

81,2,3
sw !p" = SJ'4 − 61,2,3!p" ,

FIG. 5. !Color online" !Top" Lower edge of the vortex-
antivortex continuum along several cuts in the Brillouin zone as
shown in Fig. 4 for parameter values t! / t=0.5 and t! / t=0.2 from
the higher to lower curve. !Bottom" Spin-wave excitations, Eq.
!17", of the kagome XY antiferromagnet with the nearest-neighbor
exchange J only along the same cuts in the Brillouin zone.
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61!p" = − 2,

62,3!p" = 1 9 '1 + 8 cos p1 cos p2 cos p3, !17"

where p1= px, p2= px /2+'3py /2, and p3= px /2−'3py /2.
Clearly, the spin-wave frequency is large and of order J
throughout the BZ except near zero momentum. It is possible
that higher order in 1/S spin-wave corrections will lead to
roton minima. It would be interesting to explore the possi-
bility of such roton minima in the magnetically ordered
phase to see if they are coincident with the gapless momenta
of the AVL phase as shown in Fig. 4. Such a coincidence
between the roton minima obtained with spin-wave perturba-
tion theory36–38 and with the AVL approach34 was indeed
found within the magnetically ordered phase of the square
lattice spin-1

2 quantum antiferromagnet with a weak second-
neighbor exchange across one diagonal of each elementary
square !a spatially anisotropic triangular lattice". It would be
useful to look for such signatures in the kagome experi-
ments.

The momenta of the low-energy or gapless excitations
capture important lattice- to intermediate-scale physics and
provide one of the simplest characteristics that can be used to
distinguish between different spin liquid phases. For ex-
ample, in the algebraic spin liquid state proposed by Hast-
ings and Ran et al.30,31 for the S= 1

2 nearest-neighbor Heisen-
berg model, the gapless spinon-antispinon excitations occur
at four momenta /0, M1,2,30 in the BZ. On the other hand,
Sachdev24 and Wang and Vishwanath25 discuss four different
gapped Z2 spin liquid phases on the kagome lattice using
Schwinger bosons. One of the states has minimum in the
gapped spin excitations at 0; one has minima at ±Q; and the
two remaining spin liquids have minima at the same 12 mo-
menta as the AVL phase, Fig. 4.

B. SzSz correlator

A more formal approach towards characterizing the sys-
tem with gauge interactions is to deduce the PSG transfor-
mations for a particular mean-field state.54 Specifically, the
notion of symmetry is enlarged to also include gauge trans-
formations in order to maintain invariance of the mean-field
Hamiltonian under the usual symmetry operations.

Some details are presented in Appendix C, where we
show the calculated transformation properties of the con-
tinuum fermion fields -̄ ,-. In particular, with the PSG analy-
sis, the low-energy roton excitations can be studied by ana-
lyzing fermion bilinears.

The Sz component of the spin is expressed as a gauge flux
in our QED3 theory of vortices. Both the flux induced by the
dynamical U!1" gauge field itself and the flux induced by
vortex currents contribute to the SzSz correlation. Formally,
the Sz operator can be expressed in terms of the gauge flux
and appropriate fermion bilinears -̄G- representing the con-
tributions by vortex currents,

Sr
z %

! % a
2"

+ &
i

Aie
−iKi·r-̄Gi- + ¯ , !18"

where the summation over i runs over bilinears -̄Gi- with
appropriate symmetry properties so that the right-hand side
transforms identically to Sz. The factor e−iKi·r represents the
momenta carried by these bilinears, which are the same as
the roton minima shown in Fig. 4, and Ai is some amplitude
for the bilinear Gi #in fact, one needs to specify four such
amplitudes Ai!j" since there are four sites j=1, . . . ,4 in the
unit cell, Fig. 1$.

Assuming the N=8 QED3 is critical, all correlation func-
tions decay algebraically. We then expect to find power law
correlation at all momenta shown in Fig. 4. As a conse-
quence, the singular part of the structure factor at zero tem-
perature near such wave vector K is given by

Szz!k = K + q,8" :
;!82 − q2"

!82 − q2"!2−,z"/2
. !19"

The exponent ,z characterizes the strength of the Sz correla-
tions, and smaller values correspond to more singular and
therefore more pronounced correlations. In QED3, the corre-
sponding exponent value for the flux !%a that contributes
to the Sz correlation near zero momentum is ,z=3, and the
same exponent also characterizes fermionic bilinears that are
conserved currents, see Appendix C. On the other hand, bi-
linears that are not conserved currents have their scaling di-
mensions enhanced by the gauge field fluctuations as com-
pared with the mean field. Upon analyzing the
transformation properties of the fermionic bilinears, we con-
clude that there are indeed such enhanced contributions to Sz

near the momenta ±Q and ±P1,2,3 !explicit expressions are
given in Appendix C". The new exponent can be estimated
from the large-N treatments of the QED3 !Refs. 43 and 44" to
be ,z-3−128/ !3"2N"=2.46 for N=8.

C. S+S− correlator

Since Sz%!!%a" / !2"", the spin raising operator S+ in
the dual theory is realized as an operator that creates 2"
gauge flux. Following Ref. 34, we treat such flux insertion
!“monopole insertion”" classically as a change of the back-
ground gauge field configuration felt by fermions. By deter-
mining quantum numbers carried by the monopole insertion
operators, we can find the wave vectors of the dominant S+

correlations.
Here we only outline the procedure !for details, see Refs.

32 and 34". In the presence of 2" background flux inserted at
x=0, each Dirac fermion species !."=1, . . . ,8 has a quasilo-
calized zero-energy state near the inserted flux. We will de-
note the creation operators for such fermionic zero modes by
f !."

† . The corresponding two-component wave functions have
the form &!x"% 1

1x1
! 1

0
", which allows us to relate the transfor-

mation properties of f !."
† to those of the first component of

-!."
† !the latter are summarized in Appendix B".

The monopole creation operators M† are defined by the
combination of the flux insertion and the subsequent filling
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of four out of eight fermionic zero modes in order to ensure
gauge neutrality,

M†1DS0* = f !."
† f !<"

† f !1"
† f !4"

† 1DS+* , !20"

where 1DS0* and 1DS+* are the Fermi-Dirac sea in the ab-
sence and presence of +2" flux, respectively. There is a total
of 70 distinct such monopoles. The quantum numbers of the
monopole operators are then determined by the transforma-
tion properties of the operators f !."

† f !<"
† f !1"

† f !4"
† and those of

1DS+* relative to 1DS0*.
Both 1DS+* and 1DS0* are expected to be eigenstates of the

translation operator T4r, and we denote the ratio of the eigen-
values as ei!offset·4r. On the other hand, we can diagonalize
the action of T4r on f !."

† f !<"
† f !1"

† f !4"
† to get a set of eigenvalues

ei!i·4r, i=1, . . . ,70. Thus, the momenta of the monopole op-
erators !at zero energy" are determined by /!i0 which are
offset by the hitherto unknown wave vector !offset. However,
once we examine /!i0, we find that the offset is in fact
uniquely fixed by the requirement that the monopole mo-
menta are distributed in the physical BZ in a way that re-
spects all lattice symmetries.

Monopole momenta determined in this manner are found
to be given by the very same wave vectors 0, ±Q, M1,2,3, and
±P1,2,3, as the leading Sz correlation !Fig. 4". For the record,
we find the following monopole multiplicities given in the
parentheses: 0 !12 monopoles", ±Q !five each", M1,2,3 !eight
each", and ±P1,2,3 !four each".

The monopole insertions which add Sz=1 have overlap
with the exact lowest energy spin carrying eigenstates in the
AVL. At the lowest energies such eigenstates will be cen-
tered around the monopole wave vectors in the Brillouin
zone, and we expect that they will disperse with an energy
growing linearly with small deviations in the momenta. But
presumably any local operator that adds spin-1 will create a
linearly dispersing but overdamped “particle” excitation.
More formally, we can expand the S+ operator in terms of the
continuum fields as follows:

Sr
+ % &

i
Aie

i!i·rMi
†, !21"

where !i is the momentum of the monopole Mi. The right-
hand side has correct transformation properties under the
translations, but not all of the monopole operators contribute
to S+ when other symmetries are taken into account. For
example, some of the zero momentum monopoles have op-
posite eigenvalues under the lattice inversion, and the same
happens for the momenta M1,2,3. However, given the large
monopole multiplicities, it appears very likely that all mo-
menta shown in Fig. 4 will be present in S+ !but we have not
performed an analysis of all quantum numbers so far".

The in-plane dynamical structure factor S+− around each
!i is thus expected to have the same critical form as Szz,

S+−!k = ! + q,8" :
;!82 − q2"

!82 − q2"!2−,±"/2 , !22"

but the characteristic exponent ,± is now appropriate for the
monopole operators and is expected to be the same for all
momenta. Reference 51 calculated this in the large-N QED3:

,mon-0.53N−1. Setting N=8, we estimate ,±-3.24, which
is larger than even the nonenhanced exponent ,z=3 entering
the Sz correlations.

The above results with ,±!,z suggest that within the
AVL phase the system is “closer” to an Ising ordering of Sz

than of an in-plane XY ordering of S+. This is rather puzzling
for an easy-plane spin model, where one would expect XY
order to develop more readily than Ising order. This conclu-
sion is reminiscent of the classical kagome spin model,
where the easy-plane anisotropy present in the XY model
destroys the zero temperature coplanar order of the Heisen-
berg model. However, this interpretation of the inequality
,±!,z is perhaps somewhat misleading. Indeed, as we dis-
cuss in Appendix C, condensation of any of the enhanced
fermionic bilinears that contribute to Sz would drive XY or-
der in addition to Sz order—forming a supersolid phase of
the bosonic spins. Thus, care must be taken when translating
the long-distance behavior of the AVL correlators into order-
ing tendencies.

The exact diagonalization study by Sindzingre35 finds that
in the nearest-neighbor kagome XY antiferromagnet the S+

correlations are larger than the Sz correlations, which is dif-
ferent from the AVL prediction. It would be interesting to
examine this further, perhaps also in a model with further-
neighbor exchanges. With regards to such numerical studies,
we also want to point out that the discussed dynamical spin
structure factor, Eqs. !19" and !22", translate into equal-time
spin correlations that decay as r−1−,z,±. For the estimated val-
ues of ,z,±, the decay is rather quick, and could be hard to
distinguish from short-range correlations.

V. CONCLUSION

Using fermionized vortices, we have studied the easy-
plane spin-1

2 Heisenberg antiferromagnet on the kagome lat-
tice and accessed a gapless spin liquid phase. The effective
field theory for the resulting algebraic vortex liquid phase is
!2+1"D QED3 with an emergent SU!8" flavor symmetry.
This large number of flavors can be thought to have its origin
in many competing ordered states that are intrinsic to the
“loose” network of the corner-sharing triangles in the
kagome lattice. It is also likely that for this number of Dirac
fermions the critical QED3 theory is stable against the dy-
namical gap formation, which allows us to expect that the
AVL phase is stable.

The gapless nature of the AVL phase has important ther-
modynamic consequences. For example, we predict the spe-
cific heat to behave as C%T2 at low temperatures. Since
vortices carry no spin, we expect this contribution to be un-
affected by the application of a magnetic field. Interestingly,
such behavior was observed in SrCr8−xGa4+xO19 and was in-
terpreted in terms of singlets dominating the many-body
spectrum.8,14 Since the vortices are mobile and carry energy,
we furthermore predict significant thermal conductivity,
which would be interesting to measure in such candidate
gapless spin liquids.

The more detailed properties of the kagome AVL phase
were studied by the PSG analysis, leading to detailed predic-
tions for the spin structure factor. We found that the domi-
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nant low-energy spin correlations occur at 12 specific loca-
tions in the BZ shown in Fig. 4. These wave vectors encode
important intermediate-scale physics and can be looked for
in experiments and numerical studies. They may be also used
to compare and contrast with other theoretical proposals of
spin liquid states.

The recent experiments19–21 for the spin-1
2 kagome mate-

rial ZnCu3!OH"6Cl2 observed power law behavior in 8 of
the structure factor S!k ,8" in a powder sample. The specific
heat measurements and local magnetic probes also suggest
gapless spin liquid physics in this compound. Unfortunately,
no detailed momentum-resolved information is available so
far. It should be also noted that our results were derived
assuming easy-plane character of the spin interactions, and
do not apply directly if the material has no significant such
spin anisotropy.52 Hopefully, more experiments in the near
future will provide detailed microscopic characterization of
this material, such as the presence-absence of the
Dzyaloshinskii-Moriya interaction,53 and clarify the appro-
priate spin modeling. In the case of the Heisenberg spin sym-
metry and nearest-neighbor exchanges, Refs. 30 and 31 offer
another candidate critical spin liquid for the kagome lattice,
obtained using a slave fermion construction. This algebraic
spin liquid state differs significantly from the presented AVL
phase as discussed in some detail at the end of the Introduc-
tion and towards the end of Sec. IV A. Briefly, within the
ASL the momentum space locations of the gapless spin car-
rying excitations are only a small subset of those predicted
for the AVL. Moreover, while both phases support gapless
Dirac fermions that contribute a T2 specific heat, in the AVL
phase the fermions !vortices" are spinless in contrast to the
fermionic spinons in the ASL. Thus, one would expect the
specific heat to be more sensitive to an applied magnetic
field in the ASL than in the AVL.

Contrary to SrCr8−xGa4+xO19, the experimental data on
ZnCu3!OH"6Cl2 shows that the specific heat is affected by
the magnetic field in the low temperature regime.19 However,
as pointed out by Ran et al.,31 T%10 K is likely to be an
appropriate temperature scale to test several theoretical ap-
proaches to this material, since spin liquid physics might be
masked by, for example, impurity effects, Dzyaloshinskii-
Moriya coupling, or other complicating spin interactions, at
the lowest temperature scales. !Indeed, the susceptibility data
are perhaps consistent with the presence of impurities, al-
though it is unclear at this stage if the peculiar temperature
dependence of the specific heat also has its origins in impu-
rities." The theoretical prediction of the T2 specific heat is
consistent with the experiments for T!10 K.

A general outstanding issue is the connection, if any, be-
tween the critical spin liquids obtained with slave fermions
and with fermionic vortices. Perhaps our AVL phase corre-
sponds to some algebraic spin liquid ansatz, but at the mo-
ment this is unclear.
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APPENDIX A: ZERO MODE WAVE FUNCTIONS AT THE
FERMI POINTS

In this appendix, the 16-component wave functions
/i,.,a!n" !n=1, . . . ,16" representing zero modes at the Fermi
points are presented explicitly. These wave functions are
necessary for the PSG analysis.

At the node Q1,

/I,1,1 = ei"/4+=A+
Q1

0
,, /I,1,2 = ei"/12+=A−

Q1

0
, ,

/II,1,1 = e−i"/4+ 0

=B+
Q1
,, /II,1,2 = e−i"/12+ 0

=B−
Q1
,; !A1"

at the node Q2,

/I,2,1 = +=A+
Q2

0
,, /I,2,2 = ei"/6+=A−

Q2

0
, ,

/II,2,1 = + 0

=B−
Q2
,, /II,2,2 = e−i"/6+ 0

=B+
Q2
,; !A2"

at the node Q3,

/I,3,1 = ei5"/4+ 0

=B−
Q3
,, /I,3,2 = ei13"/12+ 0

=B+
Q3
, ,

/II,3,1 = e−i"/4+=A+
Q3

0
,, /II,3,2 = e−i"/12+=A−

Q3

0
,; !A3"

and at the node Q4,

/I,4,1 = − + 0

=B+
Q4
,, /I,4,2 = ei7"/6+ 0

=B−
Q4
, ,

/II,4,1 = +=A+
Q4

0
,, /II,4,2 = e−i"/6+=A−

Q4

0
,; !A4"

where a convenient choice for the eight-component zero en-
ergy wave functions =A and =B is

=A,s
Q. = NA2

1

.

!xy"2#y4 + !xy*"2$
− .!xy"2#y4 − !xy*"2$

− xy*3 + .xy*#y4 − !xy*"2$
t!!x*y*3 + .xy*3"

− x3y*#y4 + !xy*"2$ − .x*y*3

t!x3y*/y4x*2 + y*2 − .#y4 − !xy*"2$0

3 ,

!A5"
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=B,s
Q. = NB2

1

<

!x*y*"2#y*4 + !x*y"2$
− <!x*y*"2#y*4 − !x*y"2$

− t!!x*y3 + <xy3"
x*y#y*4 + !x*y"2$ + <x*y3

t!x*3y#<!y*4x2 − y2" − y*4 − !x*y"2$
xy3 − <x*3y#y*4 − !x*y"2$

3 .

!A6"

Here xªeikx/2, yªeiky/!2'3" for Q= !kx ,ky",

. =
s3'2x*3y*3 − !1 + x6y6"!x4 + x*4"

2x−2!3 − x2y*6 − x*2y6"
,

< =
si3'2x*3y*3 − !1 − x6y6"!x4 + x*4"

2x−2!3 − x2y*6 − x*2y6"
, !A7"

and NA and NB are t!-dependent normalization factors. These
zero modes are chosen in such a way that the s= ±1 wave
functions are orthogonal to each other for any t!.

In order to work with the continuum Dirac fields Eq. !12",
it is convenient to introduce four sets of the Pauli matrices
which act on different gradings. In the following, Pauli ma-
trices denoted by ># !#=0,1 ,2 ,3" act on italic indices a
=1,2 !>0 is an identity matrix". Pauli matrices denoted by 0#

#and hence 1# introduced in Eq. !13"$ act on italic indices i
=I , II. We separate the node momenta into two groups
!Q1 ,Q3" and !Q2 ,Q4". Then, Pauli matrices denoted by ?#

act within a given group, either !Q1 ,Q3" or !Q2 ,Q4". Finally,
Pauli matrices denoted by 2# act on the space spanned by
!Q1,3 ,Q2,4". We will also use the notation ?±=?1± i?2.

APPENDIX B: PROJECTIVE SYMMETRY GROUP
ANALYSIS

Any symmetry of the original lattice spin model has a
representation in terms of vortices. Unfortunately, upon fer-
mionization, time-reversal symmetry transformation be-
comes highly nonlocal and we do not know how to imple-
ment it in the low-energy effective field theory.

Since a specific configuration of the Chern-Simons gauge
field was picked in the flux smearing mean field, we had to
fix the gauge and work with the enlarged unit cell. The spa-
tial symmetries of the original lattice spin model are, how-
ever, still maintained if the symmetry transformations are
followed by subsequent gauge transformations—the original
symmetries become “projective symmetries” in the effective
field theory. The projective symmetry group !PSG" analysis
is necessary when we try to make a connection between the
original spin model and the effective field theory.

The original spin system has the following symmetries
besides the global U!1":

TE1/2, translation by E1/2;

TE2
, translation by E2;

R", rotation by " around a kagome site;

Rx, reflection with respect to y axis;

C, particle hole;

T, time reversal. !B1"

We can also include a rotation by " /3 about the honeycomb
center but will not consider it here.

The first four transformations T4r, R+, Rx act on
spatial coordinates r= !x ,y", r→r+4r, r→ !x cos +
−y sin + ,x sin ++y cos +", r→ !−x ,y", respectively. On the
other hand, the particle-hole symmetry C and the time rever-
sal T act on spin operators as

C, Sz → − Sz, Sx ± iSy → Sx 9 iSy ,

T, S → − S, i → − i . !B2"

Here, the antiunitary nature of the time reversal is reflected
in its action on the complex number i→−i.

Symmetries in terms of the rotor representation can then
be deduced as

C, n → − n, & → − & ,

T, n → − n, & → & + ", i → − i . !B3"

Symmetry properties of bosonic and fermionic vortices
are deduced from their defining relations. Due to the Chern-
Simons flux attachment, the mirror and time-reversal sym-
metries are implemented in a nonlocal fashion in the fermi-
onized theory. However, if we combine T with Rx and C, the
resulting modified reflection R̃xªRxCT can still be realized
locally. We summarize the symmetry properties of the fermi-
ons d ,d† in Table I. We also introduce a formal fermion time
reversal by

Tferm, d → d, i → − i . !B4"

The necessary explanations are the same as in Refs. 32 and
34 and are not repeated here.

Finally, the symmetry properties of the slowly varying
continuum fields -̄ ,- can be deduced from Eq. !12". As ex-
plained, these are realized projectively,54 and the symmetry
transformations for the continuum fermion fields are summa-
rized in Table II.

APPENDIX C: FERMION BILINEARS

Once we determine the symmetry properties of the con-
tinuum fermion fields -̄ ,-, we can discuss symmetry prop-
erties of the gauge invariant bilinears -̄G- where G is a 16
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%16 matrix. Using the gradings specified at the end of Ap-
pendix A, the bilinears can be conveniently written as

-̄0#26?.><- , !C1"

where # ,6 ,. ,< run from 0 to 3 and hence there are 44

=64%4 such bilinears. Among these bilinears, 64%3 bilin-
ears with the Lorentz index #=1,2 ,3 represent U!8" cur-
rents,

-̄01,2,326?.><- . !C2"

On the other hand, there are 64 remaining bilinears with #
=0,

-̄0026?.><- . !C3"

Since the bilinears !C2" are conserved currents, they
maintain their engineering scaling dimensions even in the
presence of the gauge fluctuations. On the other hand, the
bilinears of the form !C3" !“enhanced bilinears”" develop
anomalous dimensions when we include the gauge fluctua-
tions.

Let us give some relevant examples of bilinears. The '3
%'3 magnetically ordered state !shown in Fig. 1" corre-
sponds to the staggered charge density wave of vortices,
which is obtained by adding the corresponding staggered
chemical potential !i.e., ±42 on the up-down kagome tri-
angles". Using the listed symmetries, it is readily verified that
the following two bilinears in the expression

B'3%'3 = .-̄0020?3>0- + <-̄0323?0>3- !C4"

transform in the manner expected of the staggered chemical
potential !the coefficients . and < are generically indepen-
dent". This can be also checked explicitly by writing such
chemical potential in terms of the continuum fields obtaining
some t!-dependent coefficients . and <. In the similar vein,

the q=0 state !also shown in Fig. 1" corresponds to the uni-
form chemical potential for vortices on the up and down
kagome triangles, which is realized with the following bilin-
ears:

Bq=0 = .!-̄0023?3>3- + <!-̄0320?0>0- . !C5"

Note that each B'3%'3 and Bq=0 contains an enhanced bilinear
of the QED3 theory, and therefore both orders are “present”
in the AVL phase as enhanced critical fluctuations. It is in
such sense that the enhanced bilinears encode the potential
nearby orders.

With Table II at hand, it is a simple matter to check that
spatial symmetries !translation, rotations, and reflection" and
particle-hole symmetry prohibit all fermion bilinears from
appearing in the effective action !15", except -̄- and
-̄0323?3>3-. If we are allowed to require the invariance un-
der Tferm, then these bilinears would be prohibited as well.
However, even if we do not use Tferm, we exclude these
bilinears from the continuum theory using the following ar-
gument from Ref. 34: Consider first adding the bilinear -̄-
to the action and analyze the resulting phase for the original
spin model. This bilinear opens a gap in the fermion spec-
trum, and proceeding as in Ref. 34 we conclude that this
phase is in fact a chiral spin liquid that breaks the physical
time reversal. Therefore, if we are interested in a time-
reversal invariant spin liquid, we are to exclude this term.
The situation with the -̄0323?3>3- term is less clear since by
itself it would lead to small Fermi pockets, and it is then
difficult to deduce the physical state of the original spin sys-
tem. In the presence of both terms, depending on their rela-
tive magnitude one may have either a gap or Fermi pockets.
However, we can plausibly argue that these pockets tend to
be unstable towards a gapped phase that is continuously con-
nected to the same chiral phase obtained when the mass term

TABLE I. Summary of symmetry transformations for spin, rotor, vortex, and fermionized vortex operators
on the lattice. The sign factor !−1"i in the action of the particle-hole transformation on the fermionized
vortices, C :d→ !−1"id†, is 1 on one of the sublattices of the dual lattice whereas it is −1 on the other.

Spin S Rotor &, n

C Sy→−Sy, Sz→−Sz n→−n, &→−&

T S→−S, i→−i n→−n, &→&+", i→−i

R̃x
Sx→−Sx, i→−i, x→−x n→ +n, &→−&+", i→−i, x→−x

Vortex + ,N and gauge field a, e Fermion d ,d†

C a→−a, +→−+, e→−e, N→1−N d→ !−1"id†

T a→−a, +→−+, e→e, N→N, i→−i

R̃x
a→−a, +→−+, e→e, N→N, i→−i, x→−x d→d, x→−x, i→−i

TABLE II. Summary of symmetry transformations for continuum fermion fields #up to unimportant U!1" phase factors$.

TE1/2 TE2
R̃x R" C Tfermi

- → 22e−i"?3/3>1- 23ei"?3/6- e+i"?3/12?3e+i"22>1/4>3- 03>2?1ei5"?3/1223- ?101#-†$T ?202-
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-̄- dominates. Since we are primarily interested in the states
that are not chiral spin liquid !e.g., states that appear from
the AVL description by spontaneously generating some other
mass terms like B'3%'3 or Bq=0", we drop the bilinears -̄-

and -̄0323?3>3- from further considerations. The validity of
this assumption and the closely related issue of neglecting
irrelevant higher-derivative Chern-Simons terms from the fi-
nal AVL action are the main unresolved questions about the
AVL approach !see Ref. 34 for some discussion".

As another example of the application of the derived PSG,
we write explicitly combinations of enhanced bilinears that
contribute to Sj

z%!!%a" j / !2""+Gj +Fj +¯,

Gj = gj!eiQ·rje−i"/12BQ
+ + H.c." , !C6"

Fj = f j
1!eiP1·rjei5"/12BP1

+ + H.c." + f j
2!eiP2·rjei5"/12BP2

+ + H.c."

+ f j
3!eiP3·rjei5"/12BP3

+ + H.c." . !C7"

Here j refers to the “basis” labels in the unit cell consisting
of four sites in the extended model shown in Fig. 1; the wave
vectors are the ones shown in Fig. 4, while the corresponding
bilinears are BQ

+ = -̄22?+>0-, BP1

+ = -̄23?+>2-, BP2

+

= -̄22?+>3-, BP3

+ = -̄20?+>2-. The above is to be interpreted
as an expansion of the microscopic operators Sj

z defined on
the original spin lattice sites in terms of the continuum fields
in the theory. It is straightforward but tedious to verify that
one can choose real parameters gj and f j

1,2,3 so that G and F
have identical transformation properties with !%a and
therefore indeed contribute to Sz. We thus conclude that Sz

has enhanced correlations at the wave vectors ±Q, ±P1,2,3 as
claimed in this paper.
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