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Universal Periods in Quantum Hall Droplets
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Using the hierarchy picture of the fractional quantum Hall effect, we study the the ground state
periodicity of a finite size quantum Hall droplet in a quantum Hall fluid of a different filling factor.
The droplet edge charge is periodically modulated with flux through the droplet and will lead to
a periodic variation in the conductance of a nearby point contact, such as occurs in some quan-
tum Hall interferometers. Our model is consistent with experiment and predicts that superperiods
can be observed in geometries where no interfering trajectories occur. The model may also pro-
vide an experimentally feasible method of detecting elusive neutral modes and otherwise obtaining
information about the microscopic edge structure in fractional quantum Hall states.

PACS numbers: 73.43.-f,71.10.Pm

With the recent surge of interest in quantum
computing[1], quantum Hall systems[2] have received re-
newed attention due to their potential use in topologi-
cally protected qubits. In particular, the ν = 5/2 and
ν = 12/5 quantum-Hall states are believed to support
non-Abelian excitations[3, 4] which are crucial ingredi-
ents for topological quantum computation[5]. Here we
will only focus on the Abelian quantum Hall states, but
we will make use of their topological properties to re-
veal universal periodicities (as a function of magnetic flux
through the droplet) in the ground state energy and edge
properties of a quantum Hall droplet inside a surround-
ing Hall fluid of a different filling factor. The universal
periodicities in the ground state properties can generi-
cally be used to probe the quantum Hall edge states in
equilibrium settings.

Our work is motivated in part by a series of beautiful
experiments done on quantum Hall interferometers where
superperiods and fractional statistics have purportedly
been observed[6, 7, 8]. Several theoretical studies have
already addressed these experiments[9, 10, 11] but a com-
plete picture, particularly in the fractional quantum Hall
regime, is still lacking. In this Letter we study the univer-
sal properties of a finite size quantum Hall droplet inside
a quantum Hall fluid of a different filling factor (Fig. 1)
using an edge state description. For most geometries and
droplet filling factors we find that the ground state en-
ergy of the system has a periodicity with magnetic flux
through the inner droplet that is determined only by the
two filling fractions in the limit that the charging en-
ergy of the surrounding fluid edge tends to zero, i.e. in
the thermodynamic limit. However, edges such as that
of the ν = 2/3 state (which have counter propagating
modes and disorder influenced excitations[12]) require a
special degree of consideration, as we discuss below.

Consider a droplet of filling factor νd surrounded by a
fluid of filling factor νs which itself may be inside an outer
fluid of filling νo (Fig. 1). As magnetic flux is adiabati-
cally threaded through the inner droplet, its ground-state

energy and its radius oscillate with a universal periodic-
ity. This periodicity reveals important information about
the microscopic structure of the droplet edge itself, thus
providing a mechanism by which theoretical edge mod-
els can be directly tested experimentally. We concen-
trate on two important special cases: (i) νd = 2/5, νs =
1/3, νo = 0 and (ii) νd = 2/3, νs = 0, νo = 1. General
filling fractions with Abelian statistics follow one of the
two cases above. While disorder does not play a cen-
tral role in the physics of the edge in case (i), in case
(ii) disorder determines the nature of the edge excita-
tions [12, 13], by causing counter-propogating modes of
the droplet edge to “recombine” into charged and neu-
tral modes. The precise way in which the radius changes
with flux can directly probe whether this recombination
occurs, or whether the edge structure is that of the clean
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FIG. 1: (color online) Schematic of our setup. A quantum
Hall droplet of filling factor νd is surrounded by a Hall fluid
with νs != νd, itself surrounded by an outer fluid with νo.
Tunneling between the νs fluid edges occurs at two point con-
tacts with amplitudes t1, t2. Tunneling (with amplitude tR)
also occurs between the droplet edge and the surrounding
fluid edge, which acts as a reservoir. Periodic charging of
the droplet edge with flux will cause periodic modulations of
the tunneling amplitudes t1, t2 implying conductance oscilla-
tions of the same period at the point contacts. The period
will depend on νs, νd and νo with periods greater than a flux
quantum possible. The system could be contacted in the way
desribed in Ref.[6].
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system, as described in Ref.[14, 15]. Therefore, the flux
dependence of the conductance can reveal the presence or
absence of elusive neutral modes, which to the best of our
knowledge have not yet been experimentally detected.

The expansion and contraction of the inner droplet re-
sults from a charging and discharging of its edge. In the
proposed setup, this affects the conductance of a quan-
tum point contact near the droplet due to Coloumb inter-
action: the changing electric potential near the point con-
tact affects the distance between the two edges that the
point contact connects. Such an interaction-modulated
conductance was used to detect charge states in a dou-
ble quantum dot system[16] and to coherently manipu-
late spin[17]. Interaction modulated conductance effects
might also be relevant for certain geometries of quan-
tum Hall interferometers, such as those of Refs.[6, 7, 8]
and may be the cause of the superperiods observed there,
rather than interference. In fact, the superperiods would
also result from the interaction modulated conductance
at a single point contact via the physics outlined above.
Whether the origin of observed superperiods in inter-
ferometers with two point contacts are the result of
interaction-modulated tunneling, or of true interference,
could be tested in experiment by suppressing tunneling at
one of the point contacts (t1 in Fig. 1, for example). In-
terference effects would disappear, but interaction mod-
ulated tunneling effects would still produce oscillations.
A similar suggestion was also made in Ref.[10].

The ground state periodicity for a quantum Hall
droplet has been discussed before[18, 19] using bulk fluid
descriptions. Here we will instead use an edge state de-
scription [20] to emphasize the physics that depends on
the nature of the edge modes themselves. As we are in-
terested in the universal properties of such a droplet in
a surrounding Hall fluid, we will use the theory describ-
ing the universal aspects of the fractional quantum Hall
state[20, 21, 22, 23]. The edge modes constitute a mini-
mal model[24] described by the K−matrix formulation of
Wen[20, 25]. In this formulation, the action of the edge
modes is

Sedge =

∫

dtdx

4π
[Kij∂tφi∂xφj −Vij∂xφi∂xφj − 2tiA∂xφi],

(1)
where K is a matrix determined by a choice of basis de-
noted by t, which is the physical charge vector, and hence
determines the coupling to the vector potential A; the
filling factor is ν = t†K−1t. The dimension of K re-
flects the hierarchy of the filling ν quantum Hall state,
and is also the number of independent edge modes. V
is a non-universal positive definite matrix determined by
edge mode interactions and the confining potential, and
φi(x, t) are bosonic fields parameterizing the edge modes.

The topological content of the quantum Hall state is
entirely encoded in K. For a droplet inside a surrounding

fluid, the interface K−matrix is [26]

K =

(

Kd 0
0 −Ks

)

, (2)

where Kd and Ks describe the droplet and sorrounding
liquid respectively. If there exists an integer valued vec-
tor m such that m†K−1m = 0 and t†K−1m = 0, then
K is topologically unstable[27] and may reconstruct by
some edge modes “gapping” each other out, thus reduc-
ing the number of edge modes. If the droplet Hall state
is a descendant of the surrounding state, this is always
possible, and akin to low level composite fermion Landau
levels connecting adiabatically across the interface. If the
droplet state is a daughter of the surrounding state, the
recombined interface is a single mode Laughlin edge. The
topological stability of the interface edge depends on the
non-universal V ; here we will assume instability, since it
occurs for a wide and realistic range of V .

A crucial component for our setup is the finite size
of the droplet. This implies a level quantization, which
can be inferred using gauge invariance and quantized
Hall conductance. Consider an edge described by the
field φ, which is a linear combination of φi’s of Eq.
(1) that diagonalizes the matrices K and V , and obeys
[φ(x), ∂xφ(x′)] = qδ(x − x′). The operator exp(iφ) thus
creates an edge excitation of charge q. Upon flux h/e
insertion at a point within the inner droplet, the cre-
ation operator must become: exp(iφ) → exp(iφ+2πiq x

L ),
where L is the length of the edge. But from gauge invari-
ance, the spectrum of the edge must remain unchanged.
This implies that the field φ(x) admits quasi-particle or-
bitals, roughly speaking, with wave functions (in a La-
grangian path-integral formalism) φ(x) = n 2πqx

L , with
n being the number of quasi-particles. Conversely, the
charge in each of the orbitals, that are invariant under
flux insertion, must be q to obtain quantized Hall con-
ductance, σxy = qe2/h. Thus, a finite edge loop can be
described as a chiral Luttinger liquid which consists of
discrete orbitals, each containing charge q.

Let us now treat the case of a νd = 2/5 droplet in
a νs = 1/3 and νo = 0 surrounding. For filling factor
ν = n/(np + 1), the K−matrix in the symmetric basis is
an n−dimensional matrix[13], Kij = δij + p. Since the
2/5 state is the daughter of the 1/3 state, the K matrix
given by Eq.(2) is indeed unstable, and the resulting re-
combined edge is identical to that of a ν = 1/15 Laughlin
state. The 1/15 effective edge within a 1/3 edge, leads to
a 5Φ0 periodicity of ground state properties of the droplet
with magnetic flux through it, a result in agreement with
a bulk description[18] and experiment[6].

To see this, consider the gapped droplet state. Upon
an adiabatic Φ0 = h/e flux insertion at a point in the
νd = 2/5 droplet, a net charge of 2e/5 is localized at
the flux. This charge is sucked from the two edges: an
e/15 orbital is vacated in the 2/5−1/3 edge, and an addi-
tional e/3 orbital is vacated in the 1/3−0 edge. Confirm-
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FIG. 2: (color online) Periodicity of ground state structure vs.
flux through a νd = 2/5 droplet in a νs = 1/3 surrounding

Hall fluid. η =
Es

c
5Ed

c
is described in the text. Note the period

is non-universal unless one edge is very long compared to the
other. When η → 0 the periodicity is independent of the flux
through the surrounding Hall fluid and is equal to a universal
value, 5Φ0. Inset: Droplet edge charge in the universal limit
vs. flux for weak and strong tunneling tR.

ing our assertion above as to the edge structure, indeed
1/3 + 1/15 = 2/5. Repeating the adiabatic flux inser-
tion will progressively charge the droplet edge in units of
−e/15 and the surrounding fluid edge in units of −e/3.
Additional flux outside the droplet may create additional
excitations of charge −e/3 on the outer edge, but it will
not influence the edge charge of the droplet. Through the
ubiquitous presence of disorder is quantum Hall systems,
it is possible for quasi-particles to tunnel[28] between the
1/3 − 0 edge and the 2/5 − 1/3 edge, and relax the en-
ergy of the system. The allowed charges are determined
by Ks[20], and the most relevant operator in the present
case is indeed e(−iφs+5iφd), which tunnels charge e/3.

Assuming both edges are initially neutral, denote the
number of additional filled edge states by nd and ns, for
the droplet and surrounding fluid respectively. The en-

ergy of the charged edges is Ed/s = Ed/s
c
2 n2

d/s for the

droplet/surrounding fluid. The energies Ed
c , Es

c depend
on the the edge velocities and capacitances, and are in-
versely proportional to the length of the edges. The to-
tal charge on the edges is Q = − e

15nd − e
3ns. The two

distinct edge excitations have chemical potentials deter-

mined by µ ≡ ∂E
∂n which gives µd/s = Ed/s

c nd/s. When
the two edges are in equilibrium, µdδnd +µsδns = 0, and
from charge conservation, δnd = −5δns. Thus 5µd = µs

(i.e. the two edges have the same voltage). This also
gives Es

cns = 5Ed
c nd at edge equilibrium. Now, the edge

occupations nd and ns depend on the flux threaded. As-
suming all of the flux is through the droplet, we have
6 Φ

Φ0
= nd + 5ns = (η + 5)ns where η ≡

Es
c

5Ed
c
. Solving this

for ns gives: ns = round
[

Φ
Φ0

+
(

1−η
5+η

)

Φ
Φ0

]

.

The first term indicates that every flux insertion raises
ns by one. The second describes e/3 charge transfer be-
tween the two edges. In the limit η → 0 (occuring when
the length of the surrounding fluid edge is long compared
to the droplet edge), every 5Φ0 added increases ns by

one extra state due to the tunneling of an e/3 charge.
This happens when the rounding function changes from
rounding down to up. The one e/3 charge annihilates 5
−e/15 charges and returns the droplet edge to its initial
state. In the opposite limit, η → ∞, every ν = 1/3 or-
bital vacated due to Φ0 insertion immediately gets filled
via charge transfer from the droplet edge. For general
values of η (i.e., the ratio of edge “charging energies”)
the period is non-universal as shown in Fig. 2. Allowing
flux insertion in both the droplet and the surrounding
fluid, changes the response of the 1/3 edge, but in the
limit η → 0, this will not affect the period with respect
to droplet flux, as the “rate limiting” step is due to the
finite compressiblity of the droplet edge. Therefore, the
droplet 5Φ0 flux period emerges as the universal droplet
edge charging result when η → 0, independent of the area
of the surrounding Hall fluid. The 1/3 edge, in this limit,
is effectively a reservoir of e/3 particles for the droplet
edge.
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FIG. 3: (color online) Potential created by a disk and ring of
opposite charge equal to that of one electron. The dielectric
constant is assumed to be that for GaAs, ε = 12. Inset:
Different form of the periodic voltage modulations depending
on tunneling tR between the droplet edge and the surrounding
fluid edge with d/R = 1.1 for a νd = 2/5 droplet in a νs = 1/3
surrounding fluid. Subtracting a smooth background will lead
to oscillations like those in the inset of Fig.2.

A finite tunneling amplitude between the two edges,
foils the exact quantization of the expectation value of
the droplet edge charge (see e.g. Ref.29), as shown
in the inset of Fig. 2 in the limit η → 0. With the
smooth oscillation of edge charge, there is a flux de-
pendent oscillation of the electrical potential that will
affect the conductance of a nearby point contact, as in
Fig.1. Modeling the droplet as an outer ring of charge
Qring and a uniformly charged inner disk of net charge
Qdisk, the potential from a droplet of radius R at a dis-
tance d > R from the center is V = Vring + Vdisk where

Vring = Qring

επ

(

K(−4Rd/(d−R)2)
d−R + K(4Rd/(d+R)2)

d+R

)

and

Vdisk = 2Qdisk

επR2

∫ R
0 rdr

(

K(−4rd/(d−r)2)
d−r + K(4rd/(d+r)2)

d+r

)

.

Here ε is the dielectric constant and K(x) is the complete
elliptic integral of the first kind. The potential fluctua-
tions are plotted in Fig. 3 and should be observable.

Let us now focus on the more interesting case where
the droplet edge is not between two descendant states
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with co-propagating modes. Particularly, consider νd =
2/3, νs = 0, and νo = 1. The νd = 2/3 to zero edge itself
has counter-propagating modes which leads to a disorder-
dependent edge structure. The clean 2/3 edge has an
outer ν = 1 mode and an inner (counter-propagating)
ν = −1/3 mode[14, 15, 30]. But as Refs.[12, 13]
predict, in the disorder-dominated limit, the effective
low-energy degrees of freedom are a charge mode with
q = 2e/3, that gives a quantized Hall conductance, and a
counter-propagating neutral mode localized when T %= 0.
Whether this scenario indeed holds is yet to be confirmed
experimentally.
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FIG. 4: (color online) Comparison of two different models
of the νd = 2/3 edge in the νs = 0, νo = 1. Top: Electron
transfer vs. flux through the droplet. Bottom: Droplet edge
charge vs. flux through the droplet. The microscopic edge
structure determines the flux dependence of the charge trans-
fer and electrical potential created at a nearby point contact,
as in Fig. 1.

The “surrounded droplet” setup allows an equilibrium
verification of the charge/neutral recombination scenario.
When flux is threaded through the νd = 2/3 droplet,
the edge charge relaxes through electron tunneling across
the vacuum. For the disorder-dominated edge, the edge
charge orbitals consist of a single ν = 2/3 mode. (This
requires the droplet edge be long compared to the re-
combination length of the neutral/charge modes, which
is sample dependent and finite even at T = 0.) Here,
after every 3Φ0/2 flux threading, the edge loses one elec-
tron, and can then discharge by an electron tunneling
from the ν0 = 1 fluid. But for the clean edge, the flux
dependence of the edge charge is different. Neglecting
cross capacitance[32], when Φ0 is threaded through the
droplet the clean 2/3 edge accumulates a −e charge on
the outer ν = 1 mode and a e/3 charge on the inner
mode. In the limit of large νo = 1 edge length, an elec-
tron from the outer edge tunnels in to lower the energy.
This continues when a second Φ0 is threaded, but when
the third Φ0 is threaded, the edge instead relaxes to its
original state by three e/3 inner mode excitations can-
celing one −e outer mode excitation. This sequence is
shown in Fig. 4. Fourier transforming the signal should
allow for a clear indentification of each case; one charge
mode on the droplet edge leads to one periodicity appear-
ing, whereas the two independent charge modes of the
clean edge should exhibit two periodicities. Other edges
with counter-propagating modes (such as νd = 3/5) are

amenable to similar considerations.

In this work, we propose the “surrounded droplet”
model near a point contact to investigate universal prop-
erties of composite edges. The periodic change of the
droplet size with flux is measured by its effect on the
conductance on a nearby point contact. In particular,
we propose to use this effect to explore the nature of the
ν = 2/3 edge, i.e., whether indeed the edge recombines
into a neutral and charged modes. This is the first pro-
posal that may be able to do so in equilibrium. In our
model, we assumed that the interior of all Hall droplets
are gapped, and that the only compressible areas are
at the bounderies, neglecting the possibility that Hall
droplets may break down into incompressible and com-
pressible regions[31]. With sufficient disorder, all quasi-
particle states in the interior compressible regions are
localized, essentially keeping our analysis intact. A back-
gate close to the sample, however, will avoid this compli-
cation alltogether, with the relevant length scale being
of order 200nm[31]. This will impose a rather uniform
chemical potential on the electronic fluid, and hamper
the creation of compressible domains.
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