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We discuss the implications of approximate particle-hole symmetry in a half-filled Landau level in
which a paired quantum Hall state forms. We note that the Pfaffian state is not particle-hole symmetric.
Therefore, in the limit of vanishing Landau-level mixing, in which particle-hole transformation is an exact
symmetry, the Pfaffian spontaneously breaks this symmetry. There is a particle-hole conjugate state,
which we call the anti-Pfaffian, which is degenerate with the Pfaffian in this limit. We observe that strong
Landau-level mixing should favor the Pfaffian, but it is an open problem which state is favored for the
moderate Landau-level mixing which is present in experiments. We discuss the bulk and edge physics of
the anti-Pfaffian. We analyze a simplified model in which transitions between analogs of the two states can
be studied in detail. Finally, we discuss experimental implications.
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Introduction.—The nature of the observed quantum Hall
plateau at �xy �

5
2
e2

h [1,2] is an important unresolved
problem. If the Moore-Read Pfaffian state (Pf state) [3–
6] were realized at this plateau, then it would be the first
non-Abelian topological phase observed in nature. Such a
discovery could pave the way towards the realization of a
topological quantum computer [7]. However, although
several experiments have been proposed which could di-
rectly confirm it [7–10], the only evidence which currently
suggests that the � � 5=2 plateau is in the universality
class of the Pf state is the numerical diagonalization of
the Hamiltonian for systems with a small number of elec-
trons [11,12]. In this Letter, we add a new wrinkle to this
discussion. We note that the particle-hole (PH) conjugate
of the Pf is a new state which will be exactly degenerate in
energy with the Pf in the limit of vanishing Landau-level
mixing. Landau-level mixing is a symmetry-breaking per-
turbation which lifts the degeneracy between the two
states. It is an open problem which state is favored at the
moderate Landau-level mixing which is present in experi-
ments. Since the effects of Landau-level mixing have not
been fully accounted for in numerics, we suggest that the
anti-Pfaffian (Pf) is, at the very least, a new candidate for
the observed � � 5=2 state.

When Landau-level mixing is neglected, the
Hamiltonian for electrons at filling fraction � � N � p

q

can be related to one for electrons at � � N � 1� p
q by

an antiunitary PH transformation, cym ! cm, cm ! cym,
with m labeling orbitals within the Landau level. The
Hamiltonian transforms according to H2 ! ~H2 � const,
where H2�

P
klmnVklmnc

y
k cmc

y
l cn��

P
mc
y
mcm and ~H2�P

klmnVklmnc
y
k cmc

y
l cn����2�1=2�

P
mc
y
mcm. Here, Vklmn

are the matrix elements of the Coulomb interaction, and
�1=2 �

P
nVmnmn. For the special case of pq �

1
2 , for which

� � �1=2, this is a symmetry of the system.

It is widely believed, on the basis of numerical evidence
[11,12], that the experimentally-observed plateau at � � 5

2
is in the universality class of the Moore-Read Pf state, by
which it is meant that the lowest Landau level (of both
spins) is filled, and the electrons in the first excited Landau
level are fully spin-polarized and have a wave function
which is in the same universality class as the one given by
acting with Landau level raising operators on

 �Pf�zi� � Pf
�

1

zi � zj

�Y
i<j

�zi � zj�2e
��jzij2=4‘2

0 : (1)

However, this state is not invariant under a PH transforma-
tion. Let �xy and �xy denote the contributions to the
electrical and thermal Hall conductivities (in units of
e2=h and �2k2

BT=3h, respectively) of the fractional state
in the lowest unfilled Landau level, in which the Pf is
assumed to form (which, in the case of � � 5=2, is the
first excited Landau level). Under a PH transformation of
this Landau level, �xy ! 1� �xy and �xy ! 1� �xy. The
Pf state has �xy �

3
2 , as may be seen most easily from its

edge theory [13], which has two modes, a chiral boson �
and a chiral Majorana fermion  , propagating in the same
direction:

 L Pf� ;��� ��@t� ivn@x� �
2

4�
@x��i@t�vc@x��:

Here, ei� creates a charge e=2 semion with scaling dimen-
sion 1=4, and vc, vn denote the two edge velocities. A
chiral boson contributes �xy � 1, while a chiral Majorana
fermion carries �xy �

1
2 . The PH conjugate of the Pf,

which we will call the anti-Pfaffian (Pf), with wave func-
tion of the form (as dictated by the transformation in [14]):
 

�Pf �
Z Y

�

d2��
Y
i<j

�zi � zj�e
��jzij2=4‘2

0

�
Y
i;�

�zi � ���
Y
	<


��	 � �
�e
��j��j2=4‘2

0 �Pf� ����
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must have �xy��
1
2 , �xy �

1
2 . Therefore, the anti-Pfaffian

has counter-propagating edge modes, which will have
direct experimental significance, as we discuss later.

Landau-level mixing breaks PH symmetry. If we treat it
perturbatively (although it is not particularly small in ex-
periments), then, in addition to renormalizing the Coulomb
repulsion, which does not break PH symmetry, it also
generates three-body interactions, which do break the
symmetry. In fact, the Pf is the exact ground state of the
simplest repulsive nonvanishing three-body interaction.
The Pf is, therefore, the exact ground state of the PH
conjugate of this interaction, which is an attractive three-
body interaction together with a repulsive two-body inter-
action with the same coefficient. When two-body Coulomb
interactions and weaker three-body interactions are
present, it is unclear which phase occurs. (Although we
expect that the specific wave function �Pf is lower in
energy than �Pf if the three-body interaction is repulsive,
this does not tell us which phase the actual ground state of
the Hamiltonian is in.) Fermion Chern-Simons theory, at
the mean-field level, which includes nonperturbative mix-
ing between all Landau levels, implies that the Pf is the
ground state [4]. However, it is an open question which
state is favored by the moderate Landau-level mixing
which actually occurs in experiments, where the strength
of Landau-level mixing, �e2=�‘0�=@!c � 1. On the sphere,
which does not have translational symmetry, a PH trans-
formation is not a symmetry of the Hamiltonian; the Pf and
Pf states of N particles occur at magnetic fluxes of N� �
2N � 3 and N� � 2N � 1, respectively. This may explain
why the Pf has not been identified in numerical studies of
finite systems on the sphere [11]. A PH transformation is a
symmetry on the torus. However, in a finite system, we
expect mixing between the Pf and the Pf so that the
symmetric combination is the ground state, consistent
with numerics [12].

Edge Excitations of the Pf.—Under a PH transforma-
tion, the edge between the Pf and the vacuum (� � 0) is
mapped onto the edge between the Pf and a � � 1 Hall
liquid. (At � � 5=2, there are also the edges of the lowest
Landau level of both spins, but they play no role in our
discussion, so we drop them for simplicity.) Therefore, we
can deduce the former from the properties of the latter, in
which LPf is coupled to a counter-propagating free chiral
Dirac fermion (or its bosonized equivalent):

 L �
1

4�
@x�1��i@t�v1@x��1�LPf� 1;�2�

�
1

4�
2v12@x�1@x�2���x� 1ei��1�2�2��H:c: (2)

We have included a density-density interaction between
the � � 1 and � � 1=2 edge modes, and also an intermode
electron tunneling term. With an assumed intermode mo-
mentum mismatch and in the presence of impurities, the
electron tunneling amplitude ��x� can be taken as a random
(complex) function with zero mean and short-ranged cor-

relations, ���x���x0� � W�x� x0�. For large v12, the tun-
neling term is relevant and can then be conveniently
analyzed [15] by introducing a charge/neutral decomposi-
tion, �� � �1 ��2 and �� � �1 � 2�2, and then fer-
mionizing the neutral chiral boson: ei�� 	  2 � i 3. The
Lagrangian then takes the form L � Lsym �Lpert, where

 L sym�
2

4�
@x����i@t�v�@x���� a��@t� iv�@x� a

 L pert�2i 1��1 3��2 2��v1 1i@x 1� iv 2 3@x��

with �1, �2 the real and imaginary parts of ��x�. The
three Majorana fermions  a, a � 1, 2, 3 form an
SU�2�2 triplet in the absence of the symmetry-breaking
terms Lpert. The first term in Lpert can be eliminated
from the action by an SU(2) rotation,  � O ~ , with
O�x��Pexp
�i

R
x
�1dx

0��1�x0�T2��2�x0�T3�=v��, where
P denotes a path ordering of the integral, and Ta, a � 1, 2,
3 are the SU(2) generators in the spin-1 representation. In
the transformed variables, the second and third terms in
Lpert will have spatially dependent random coefficients.
Integrating out �1, �2 (using the replica method, for in-
stance), results in terms which have scaling dimension
(�1) and are, therefore, perturbatively irrelevant. Hence,
we obtain Lsym as the action for the edge between the Pf
state and a � � 1 Hall droplet. The edge theory between
the Pf state and the vacuum is obtained by flipping the
directions of all the modes in Lsym. There are three
counter-propagating neutral Majorana fermion edge
modes, which yield the expected value for the thermal
Hall conductivity, �xy��1=2.

In the Pf edge theory, the minimal dimension electron
operator is ei�1 � � 2 � i 3�e

2i�� . There are 6 primary
fields which are local with respect to this electron operator:
1, ei�� ,  a,  aei�� , ��

1=2e
i��=2, ��

1=2e
3i��=2. The spin-1=2

primary fields of SU�2�2, denoted ��
1=2, can be written in

terms of the Ising spin and disorder fields �a and �a of the
three Majorana fermions: ��1=2 � �1�2�3 � i�1�2�3 �

�1�2�3 � i�1�2�3 and ��1=2 � �1�2�3 � i�1�2�3 �

i�1�2�3 ��1�2�3. The fields ��
1=2 thus act to switch

between periodic and antiperiodic boundary conditions on
all three Majorana fermions. Note that �1=2 is a dimension
3=16 operator, unlike �, which has dimension 1=16. The
difference in scaling dimension has consequences for qua-
siparticle tunneling as we discuss below.

Topological properties of the Pf.—The 6 primary fields
of the conformal field theory for the Pf correspond to its
sixfold degeneracy on the torus. A 2d (bulk) effective field
theory for the Pf state which encodes this degeneracy as
well as the other bulk topological properties, can be de-
duced from consistency with the edge theory or, alterna-
tively, in the following way. We begin by bosonizing the
action for electrons at � � 1=2 employing a Chern-Simons
gauge field c�:
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L����i@0�c0�A0���
1

2m
j�i@i�ci�Ai��j2

�V����
1

4�
c�����@�c�; (3)

where A� is the electromagnetic field. At the mean-field
level, this is now a system of bosons at � � 1. We next use
boson-vortex duality [16] to transform to a system of
vortices, also at �eff � 1, minimally coupled to a dual
gauge field b�. Integrating out c� induces a Chern-
Simons term for the b�:
 

L���v�i@0�b0��v�
1

2mv
j�i@i�bi��vj

2

�U��v��
1

4�
b�����@�b��

1

2�
b�����@�A�: (4)

We now shift b� ! b� � A� and refermionize �v since
b� attaches one flux quantum to it:

 L � ���i@0 � A0 �����
1

2mf
j�i@i � Ai��j2

�
1

4�
A�����@�A� � . . . (5)

The fermion field �y creates holes which carry electrical
charge opposite to that of the electron. Therefore, when we
attach flux to these fermions, pair them, and condense the
pairs [4,17], we will obtain a negative contribution to the
Hall conductivity. Furthermore, if the pairing is due to
gauge field fluctuations, as in [4], the pairs will have a p�
ip pairing symmetry. The resulting effective action can be
written

 L � ��i@6 ��m ����
2

4�
a������@�a

�
�

�
1

4�
a������@�a�� �

1

2�
A�����@�a

�
�: (6)

The negative sign for the mass of the 2d Majorana fermion
� is a consequence of the reversed pairing symmetry. The
last term in (5) has been rewritten by introducing an
auxiliary gauge field ~a�, and then a� and ~a� have been
replaced by a�� � a� � ~a� and a�� � 2a� � ~a�. The ac-
tion (6) corresponds closely to the edge effective action (3).
The most salient topological feature is the reversed chi-
rality of the neutral fermion sector. As a result, the braid
matrices are conjugated as compared to the Pf state [5,18]:
Tij � e��i=4�e��=4�
i
j .

Toy model.—We next describe a simple lattice model of
spinless fermions which has similar physics to the neutral
sectors of the Pf and Pf phases. The fermions hop only
between near neighbor sites of a square lattice. At half
filling, the model is invariant under the antiunitary sym-
metry ci!��1�icyi , cyi ! ��1�ici. With interactions pres-
ent, we suppose that the fermions can develop the follow-
ing order parameters: �ij, which is a ��p�� sinpx�
isinpy superconducting order parameter which spontane-
ously breaks U(1);’, which spontaneously breaks PH sym-

metry by enabling next-nearest-neighbor hopping; and �,
which spontaneously breaks �=2 rotational symmetry. The
mean-field Hamiltonian with these order parameters is

 H�
X
hi;ji

��tcyi cj��ijc
y
i c
y
j �H:c:���

X
i

cyi ci

�
X
hhi;jii

’cyi cj�H:c:�
X
i

��cyi ci�ax̂�c
y
i ci�aŷ��H:c:

When � � ’ � 0, this Hamiltonian is PH symmetric.
When ’ � � � � � 0, there are gapless excitations at
two ‘‘nodes,’’ with momenta k � ��; 0�; �0; ��. Such gap-
less excitations would not be present for an off-lattice p�
ip superconductor. The low-energy excitations in the vi-
cinity of each nodes is a (two-component) Majorana fer-
mion, which can be combined into a single Dirac fermion
 . Nonzero ’ and � are, respectively, Dirac and Majorana
mass terms for  . The former breaks PH symmetry, but not
the O(2) which rotates one Majorana fermion into the other
[a �=2 lattice rotation is � rotation within this O(2)]; the
latter does not break PH symmetry but breaks O(2).

Let us suppose that’ orders. Then�must be adjusted to
maintain half-filling. If ’> 0, we need �> 0, and the
electron Fermi surface (when � � 0) is closed and the hole
Fermi surface is open. The system is adiabatically connect
to electrons in the continuum, which essentially form a
continuum p� ip superconductor. In particular, it sup-
ports a gapless chiral Majorana fermion edge mode [17]
with �xy �

1
2 . The long-distance form of the pair wave

function is g�r� � 1=z. Hence, we identify this phase with
the neutral sector of the Pf. For ’< 0, the masses of the
two nodal Majorana fermions change sign, giving �xy �
� 1

2 . In this case, �< 0, and the holes form a closed Fermi
surface rather than the electrons. The sinpx � i sinpy pairs
of electrons are, in this phase, better interpreted as sinpx �
i sinpy pairs of holes. This is consistent with our effective
field theory of the Pf (5), which has p� ip pairs of
composite fermions obtained by attaching flux to holes.
Moreover, g�r� � 1=z� ��1�x=�z� ��1�y=�z. We identify
this phase with the neutral sector of the Pf.

At the transition between these two phases, ’ � 0, and
there are gapless excitations described by a single massless
Dirac fermion: L � � i@6  � g� �  �2, a 2d analogue of the
Gross-Neveu model. For g < gc, the Z2 symmetry
 �t; x; y� ! 
1 �t;�x; y�, � �t; x; y� ! � �t;�x; y�
1 is
unbroken (
1 is a purely imaginary 
 matrix), and the
nodal fermions are gapless. However, for g > gc, PH sym-
metry can spontaneously break ’ / h �  i � 0, and by
varying explicit symmetry-breaking terms, such as � or a
second-neighbor hopping t0, the system can be driven
through a first-order transition between the two phases.
At g � gc, the system is critical. Exponents are known in
the large-N limit, where N is the number of flavors of
fermions, e.g., � � 1� 8=�3�2N� [19]. As the critical
point is approached from within the symmetry-broken
phase, the velocity of the gapless chiral Majorana fermion
edge mode vanishes. The small value of the velocity of the
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neutral Majorana fermion edge mode in numerical studies
of the Pf state may indicate proximity to such a critical
point [20]. Note that with � � 0, there is also an inter-
mediate phase with �xy � 0 which breaks rotational sym-
metry (perhaps slightly reminiscent of the nematic phase at
� � 5=2 in a tilted field [21]).

Transitions and intermediate phases.—Informed by the
preceding discussion, we can write down an effective field
theory for the Pf and Pf states and the transition between
them:
 

L�
�2

4�
a������@�a

�
��

1

2�
A�����@�a

�
��

1

4�
a������@�a

�
�

����i@0�a
�
0 ���

1

2m�
j�i@i�a

�
i ��j

2�U���

� ��i@6 ��g� ����2: (7)

The phase in which h ���i< 0 and h�i � 0 corresponds to
the Pf state: a�� is gapped by the Anderson-Higgs mecha-
nism and the sign of the fermion �’s mass gives a right-
handed Majorana fermion at the edge. The phase in which
h ���i> 0 and h�i � 0 corresponds to the Pf state: there is
a left-handed Dirac fermion at the edge associated with a��
and a left-handed Majorana fermion due to the sign of the
mass of �. At the critical point, both � and � are critical.
If � is fermionized using a��, then the critical theory has
two massless interacting Dirac fermions, in contrast to the
toy model which possessed only one, having no bosonic
edge modes.

However, one can imagine a scenario in which only one
of these fields becomes critical. Then, the system will go
into a phase with �xy �

1
2 , such as the phase in which

h ���i> 0 and h�i � 0, in which there is only a single
neutral Majorana fermion, but it is left-moving. In the
phase with h ���i< 0 and h�i � 0, which also has �xy �
1
2 , there are three neutral Majorana fermions; two are right-
moving and one is left-moving. Although these intermedi-
ate phases are logical possibilities, they are not related to
the Pf or Pf phases by PH symmetry, and may be much
higher in energy.

Discussion.—Our investigations open the door to a num-
ber of interesting questions. In the toy model, the differ-
ence between the two phases can be understood in terms of
Fermi surface topology. Can the difference between the Pf
and Pf states be understood in terms of similar momentum
space structure in the lowest Landau level? If the Pf and Pf
states are analogous to the two ordered states of the Ising
model at low temperatures (spin-up and spin-down), then
what is the analogue of the high-temperature phase? In the
toy model, it is a critical superconducting phase with two
gapless �2� 1� � d Majorana fermions. In the quantum
Hall context, is it an analogous phase with bulk gapless
neutral excitations yet with a quantized Hall conductance?
Finally, there is the question of which state (if any of these)
is seen in experiments. Since the main arguments for the Pf
state derive from numerical studies which do not account

for the effects of Landau-level mixing, we suggest that they
be reconsidered in light of the Pf state. One signature of the
Pf and Pf phases are their differing thermal conductivities,
�xy � 3=2 and �xy � �1=2, respectively. Electrical trans-
port measurements through a point contact will also differ
in the two phases. As described in Ref. [22], weak tunnel-
ing of the charge e=4 non-Abelian quasiparticles between
the edges of a Pf Hall bar leads to Rxx � T�3=2. For the Pf,
one obtains Rxx � T�1, different due to the extra edge
modes present. (See Ref. [23] for experiments in this
direction.) Interestingly, weak interedge tunneling of the
charge e=2 Laughlin quasiparticle also gives Rxx � T�1, in
both the Pf and Pf states. The existence of counter-
propagating neutral modes in the Pf state might also be
detectable, and would have implications for interferometry
experiments [7–10] if it proves to be realized at � � 5=2.

This research has been supported by the NSF under
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Note added.—Upon completion of this work, we be-
came aware of similar predictions made by Levin et al.,
arXiv:0707.0483.
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