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We propose a model for realizing exotic paired states in cold Fermi gases by using a spin-dependent

optical lattice to engineer mismatched Fermi surfaces for each hyperfine species. The BCS phase diagram

shows a stable paired superfluid state with coexisting pockets of momentum space with gapless unpaired

carriers, similar to the Sarma state in polarized mixtures, but in our case the system is unpolarized. We

propose the possible existence of an exotic ‘‘Cooper-pair Bose-metal’’ phase, which has a gap for single

fermion excitations but gapless and uncondensed ‘‘Cooper-pair’’ excitations residing on a ‘‘Bose surface’’

in momentum space.
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In recent years we have experienced a renewed interest
in some of the basic questions behind the phenomenon of
fermionic superfluidity, motivated by technical advances in
the control and manipulation of cold atomic gases [1]. In
particular, a great deal of attention is being devoted to the
quest for unconventional paired states of matter.

Conventional superconductivity (BCS theory [2]) con-
sists of pairing between fermions with opposite spin and
equal but opposite momentum. In the presence of (partial)
spin polarization more unusual superfluid states are pos-
sible. In the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state [3,4] pairing occurs across the mismatched Fermi
surfaces so that the Cooper pairs have a finite center-of-
mass momentum [5]. The excess unpaired fermions oc-
cupy a Fermi sea, so that there are gapless fermionic
excitations coexisting with superfluidity. The FFLO state
has been observed in solids only recently [6]. An interest-
ing alternative to the FFLO state in partially polarized
systems is a state with zero-momentum pairing as sug-
gested by Sarma [7–11]. With disconnected regions of
momentum space with pairing, separated by an unpaired
polarized sea of fermions, the Sarma state is sometimes
referred to as a ‘‘breached pair’’ phase [8,9]. Unusual
paired phases can also be realized in rotating trapped
fermionic superfluids [12]. Recently, a ‘‘pair density
wave’’ or striped superconducting state with a spatially
modulated order parameter similar to the FFLO state but
without time-reversal symmetry breaking has been pro-
posed to account for experimental observations in
La2�xBaxCuO4 [13,14].

These unconventional paired states might be accessible
in cold atom experiments, with ‘‘polarized’’ Fermi gases in
two hyperfine states having different populations [1,15,16].
Additionally, one can explore the effects of differing
masses in Fermi mixtures with two atomic species [17].
A mass ‘‘imbalance’’ between the two hyperfine states of a
single atomic species can also be achieved in an optical
lattice by tuning a spin-dependent hopping with light.
Indeed, spin-dependent optical lattices have already been

demonstrated [18]. A protocol to realize a Hubbard model
with spin-dependent hopping has been proposed by Liu
et al. in Ref. [19], by tuning the lattice lasers between fine
structure levels of 40K atoms, and using Feshbach reso-
nances to manipulate the interactions. In reality, heavier
atoms, such as Yb may be more suitable for this setup, due
to the large fine structure splitting [20].
In this Letter we suggest a different means to access

unconventional paired states in ultracold atomic systems.
Our idea is to create mismatched Fermi surfaces in an
unpolarized mixture. Consider an experiment with two
hyperfine states (that we label " and # hereafter) with equal
population that are moving, for simplicity, on a two-
dimensional square lattice. Imagine tuning the hopping
so that one spin state hops preferentially along the x axis
and the other preferentially along the y axis. We are
interested in the situation where the Fermi surfaces of the
two spin states are rotated by 90� with respect to one
another, and focus on a near-neighbor hopping
Hamiltonian with single particle dispersions,

�"ðkx; kyÞ ¼ �2ta cosðkxÞ � 2tb cosðkyÞ ��; (1)

�#ðkx; kyÞ ¼ �2tb cosðkxÞ � 2ta cosðkyÞ ��; (2)

with chemical potential �. The ratio tb=ta � 1 determines
the eccentricity of the two Fermi surfaces (see Fig. 1). A
similar Fermi surface geometry has been proposed for the
ruthenate materials, [21,22] arising in a multiband model
which possesses spin nematic order [23,24]. The nematic
behavior originates from hybridization of the bands and is
a spontaneous symmetry breaking, while our Hamiltonian
explicitly breaks time-reversal and rotational symmetry.
To be concrete we assume the particles interact through

a short-range s-wave potential, that we represent using the
attractive Hubbard model:

H ¼ X
k;�

��ðkÞcyk;�ck;� þU
X
i

ni;"ni;#; (3)

where cyk;� creates a fermion with spin � ¼" , # at momen-
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tum k, ni� ¼ cyi�ci� is the local on-site density, and U is
the interaction strength that we will take to be negative
(attractive).

By simple inspection of the spin-dependent Fermi sur-
faces in Fig. 1, we can anticipate several different pairing
possibilities within a BCS treatment. For a very strong
attractive interaction, jUj � ta, tb, a state with zero-
momentum pairing and a fully gapped Fermi surface is
expected. For smaller U a zero-momentum paired state
with gapless single fermion excitations analogous to the
Sarma state in polarized mixtures could occur. Alter-
natively, pairing could occur across the two mismatched
Fermi surfaces with a finite momentum condensate, an
unpolarized analog of the FFLO state.

We now implement a self-consistent BCS approxima-
tion to obtain the mean-field phase diagram and explore the
properties of the resulting paired superfluid states. We
consider an on-site pairing of the form �U=Vhcj#cj"i ¼
�expðiQjÞ with gap parameter �. Here V ¼ L2 is the
number of sites in the system and j denotes the center-
of-mass position of a pair in real space. The resulting
quadratic Hamiltonian can be readily diagonalized, yield-
ing quasiparticle excitations with dispersion:

E�ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þðkÞ2 þ �2

q
� ��ðkÞ; (4)

where we have defined

��ðkÞ ¼
�
�"
�
�kþQ

2

�
� �#

�
kþQ

2

���
2: (5)

Consider first the case of zero pairing momentum Q ¼
0. Besides the normal phase with � ¼ 0, we expect a fully
gapped BCS-like solution when E�ðkÞ> 0 for all mo-
menta in the Brillouin zone (BCS state). This occurs
when the attractive interaction is sufficiently strong. For
smaller � a gapless superfluid phase (G-SF) is also pos-
sible [8,11]. Gapless fermion excitations occur at momenta
that satisfy EþðkÞ ¼ 0 or E�ðkÞ ¼ 0, or equivalently,

�"ðkÞ�#ðkÞ ¼ ��2: (6)

The resulting closed curves in momentum space are
sketched schematically as dashed lines in Fig. 1. In the
case of closed Fermi surfaces as shown in Fig. 1(a) there

are four small pockets near the Fermi points (�k#Fx, 0) and
(0, �k"Fy). The solution with open Fermi surfaces [see

Fig. 1(b)] has two large pockets that wrap around the
Brillouin zone.
It is instructive to compute the momentum distribution

function for the two spin species, n�ðkÞ � hcyk;�ck;�i. There
are three distinct regions in momentum space determined
by the conditions: (i) E�ðkÞ> 0 and EþðkÞ< 0 which
occurs inside the " pockets; (ii) EþðkÞ> 0 and E�ðkÞ< 0
which occurs inside the # pockets; or (iii) both E�ðkÞ> 0
which occurs over the rest of the Brillouin zone. For
momentum where (i) is satisfied we obtain n"ðkÞ ¼ 1,
n#ðkÞ ¼ 0, whereas in region (ii) one has n"ðkÞ ¼ 0,
n#ðkÞ ¼ 1. Thus, inside these pockets the fermions are

completely unpaired, and there is no mixing between the
two spin species. Finally, in region (iii) the fermions are
completely paired and one obtains

n"ðkÞ ¼ n#ðkÞ ¼ 1

2

�
1� �þðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�þðkÞ2 þ�2
p

�
: (7)

While possessing regions in momentum space with
complete pairing and other regions with no pairing what-
soever is reminiscent of the Sarma phase, this novel un-
polarized G-SF phase has unpaired fermion pockets of
both spin species.
We now analyze the (mean-field) stability of the normal,

BCS and G-SF phases, by solving the BCS saddle point
(gap) equations numerically on the square lattice. We work
in the canonical ensemble, with fixed density, which is the
relevant situation for cold fermionic gases, also allowing
for finite momentum pairing with momenta Q either along
the x and y axes or along the diagonals in the Brillouin
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FIG. 2 (color online). Mean-field phase diagram of the attrac-
tive Hubbard model as a function of the anisotropy tb=ta and
fermion density n, for values of the interaction (a) U ¼ �3:5ta
and (b) U ¼ �4ta. We find regions occupied by a fully paired
solution with Q ¼ 0 (BCS), normal (N), gapless superfluid
(G-SF), and phase separation (PS).
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FIG. 1 (color online). Schematic Fermi surfaces for the dis-
persions ��ðkx; kyÞ described by Eq. (2): (a) closed Fermi sur-

faces for small density; (b) open Fermi surfaces for higher
density/large anisotropy. Arrows label two hyperfine states of
the same atomic species. Dashed lines delimit the pockets of the
momentum distribution in the gapless G-SF solution.
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zone. The Helmholtz free energy in the canonical ensemble
is computed and minimized in systems sizes up to 300�
300 sites following the prescription detailed in Ref. [25].

For small values of the attraction jUj=ta we find that the
system is in the normal state, independently of the total
fermion density, n, provided that the anisotropy is not too
close to tb=ta ¼ 1, while for large values of the interaction
strength, the system is in a fully gapped superfluid state
with Q ¼ 0 (BCS). The interesting regime is for values of
2t & jUj & 4ta, where we find a competition of phases. In
Fig. 2 we show the phase diagram for two different values
of jUj=ta, as a function of the fermion density and the
anisotropy tb=ta. At jUj=ta ¼ 3:5, the normal phase occu-
pies a region at high densities and high anisotropy, while
the superconducting phase (BCS) dominates at intermedi-
ate and small anisotropy. Separating these two phases is a
window where the G-SF state is realized. There is also a
tiny sliver where phase separation takes place, that coin-
cides with the onset of the instability toward the G-SF
state. We determined the boundaries of this region by iden-
tifying densities with negative compressibility dn=d�, and
using the Maxwell construction. Contrary to the Sarma
phase in polarized mixtures, the G-SF state is stable in a
wide region of parameters [10,11]. At larger values of the
interaction the normal phase becomes energetically unfav-
orable, leaving a region of the G-SF phase that shrinks with
increasing interaction. In all cases the G-SF phase only
occurred in the with open Fermi surfaces/large pockets [see
Fig. 1(b)]. We also looked for energy minima at finite
momentum, but we have not found solutions for the system
sizes and in the parameter space that we studied.

We now turn to the possibility of paired states which are
not superfluids. This is motivated by recent work [26]
which introduced and studied a hard-core boson model
with ring exchange, and made strong arguments for the
existence of a novel Bose-metal phase, a D-wave Bose
liquid. Here we will refer to this phase as a D-wave Bose-
metal (DBM). The proposed Bose-metal phase is not a
superfluid, having zero condensate and superfluid den-
sities, but possesses gapless excitations which reside on
surfaces in momentum space. In contrast to a conventional
Fermi liquid, in the DBM phase the gapless excitations
cannot be described in terms of weakly interacting quasi-
particles. The low energy excitations are intrinsically
strongly interacting fluctuations, and a single particle de-
scription is incorrect. In the DBM phase pairs of bosons
possess D-wave correlations, but the phase is not a paired-
boson condensate.

A connection between our model of spin-full fermions
with spin-dependent spatially anisotropic Fermi surfaces
and the Bose-metal phase explored in Ref. [26] can be
made as follows. First we define an on-site ‘‘Cooper-pair’’

operator, byi ¼ cyi"c
y
i#. This operator is a ‘‘hard-core’’ bo-

son, commuting at different sites, ½bi; byj � ¼ 0 for i � j,

yet satisfying byi b
y
i ¼ 0. Now consider the regime with

jUj � ta, tb where all of the fermions are tightly bound

into on-site Cooper pairs. The goal is to derive an effective
Hamiltonian by considering a perturbation expansion in
powers of ta=jUj, tb=jUj. At second order one obtains a
boson hopping term HJ with strength J 	 tatb=jUj,

HJ ¼ �J
X
hi;ji

byi bj þ H:c: (8)

The hopping J is proportional to a product of ta and tb
since it is necessary to hop both the " -spin and # -spin
fermion in order to move the hard-core boson. Notice that
in the extreme anisotropic limit with tb ¼ 0 and ta � 0 it is
actually impossible for a single boson to move, J ¼ 0.
But consider the boson ring-exchange term as depicted

in Fig. 3, which involves two bosons on opposite corners of
an elementary square plaquette rotating by �90 degrees,

Hring ¼ Kring

X
plaquettes

by1b2b
y
3b4 þ H:c:; (9)

with i ¼ 1, 2, 3, 4 labeling sites taken clockwise around the
square plaquette. The ring-exchange coupling strength
Kring > 0 can be computed at fourth order in ta;b=jUj. In
the highly anisotropic limit with ta � tb, the process
depicted in Fig. 3 dominates, giving Kring 	 t4a=jUj3.
Remarkably, while the single boson hopping term vanishes
in the extreme anisotropic limit, tb=ta ! 0, the ring term
which hops pairs of bosons is nonzero. Thus, with increas-
ing anisotropy, ta=tb, the ratioKring=J 	 ðta=tbÞ4 increases,
and the ring term becomes increasingly important in the
Hamiltonian, Hb ¼ HJ þHring.

Consider the phase diagram for the boson Hamiltonian

Hb, when the bosons are at some generic density, nb �
hbyi bii. For Kring 
 J one expects a Bose-condensed su-

perfluid phase. In Ref. [26] variational wave function
studies found that the D-wave Bose-metal (DBM) was
stabilized for Kring=J * 2 and for boson densities larger

than nb * 0:4 (or, under particle-hole symmetry, smaller
than 0.6). At other densities in this large Kring regime,

phase separation into a (probable CDW) phase at half-
filling and a zero density state was found.

(a) (b)

FIG. 3. Processes that would give origin to an effective ring-
exchange of pairs. Fermions of different hyperfine species (with
opposite spin) prefer to move along perpendicular directions
(left).
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The boson superfluid state corresponds to a fully gapped
(conventional) BCS state of the fermions. However, the
DBM phase of the bosons would correspond to a truly
exotic nonsuperfluid paired state of fermions, with a full
gap for the single fermion excitations, but with uncon-
densed Cooper pairs. The Cooper pairs would form a
collective state with gapless excitations along surfaces in
momentum space—a ‘‘Cooper-pair Bose-metal’’ (CPBM).

Since the fermion density, n ¼ n" þ n# ¼ 2nb, this

would suggest that the CPBM phase might be present in
the phase diagram in the regime of intermediate U=ta,
strong anisotropy with tb=ta small and for densities near
half-filling, n * 0:8. As one can see from Fig. 3(b), this is
precisely the regime where the BCS mean-field treatment
finds the stable G-SF state. The G-SF and CPBM phases
are dramatically different. The G-SF state is a superfluid
with gapless fermion excitations, while in the CPBM phase
the fermions are fully gapped but the state is not a super-
fluid. Wether these states are realized by the original
attractive Hubbard model is unknown, and certainly wor-
thy of future investigation. Recent studies of the boson ring
model on the two-leg ladder have found compelling evi-
dence for a quasi-1D Bose metal, a ladder descendant of
the 2D DBM state [27].

To summarize, we have proposed a model that allows for
realizing exotic paired phases of unpolarized fermion mix-
tures using spin-dependent optical lattices. The main in-
gredient is the existence of mismatched Fermi surfaces
between both hyperfine states. We explored the BCS
mean-field phase diagram for two anisotropic Fermi sur-
faces rotated by 90� respect to one another, checking for
the relative stability of the BCS, FFLO, gapless superfluid
and normal metal phases. Other mean-field states such as a
nematic superfluid [28], or multimodal FFLO states
[29,30] could also be considered. Even though the weak-
coupling BCS treatment used in this work has limited
applicability in 2D, our results demonstrate the rich phys-
ics that emerges once one allows for spin-dependent Fermi
surfaces. Other possibilities can also be explored, such as a
combination of circular and elliptical Fermi surfaces, with
the only requirement that both Fermi surfaces enclose the
same area. We also argued that anisotropic Fermi surfaces
plus attractive interactions leads to an effective model of
Cooper pairs with a ring-exchange term, that may allow to
realize a paired but nonsuperfluid Bose-metal phase.
Because of the strong coupling nature of this Cooper-pair
Bose-metal phase, determining its existence in the attrac-
tive Hubbard model would require a numerical approach
and will be explored in future work.
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