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Fermions in two-dimensions (2D) when subject to anisotropic spin-dependent hopping can potentially give
rise to unusual paired states inunpolarizedmixtures that can behave as non-Fermi liquids. One possibility is
a fully paired state with a gap for fermion excitations in which the Cooper pairs remain uncondensed. Such a
“Cooper-pair Bose-metal” phase would be expected to have a singular Bose-surface in momentum space. As
demonstrated in the context of 2D bosons hopping with a frustrating ring-exchange interaction, an analogous
Bose-metal phase has a set of quasi-1D descendent states when put on a ladder geometry. Here we present a
density matrix renormalization group (DMRG) study of the attractive Hubbard model with spin-dependent hop-
ping on a two-leg ladder geometry. In our setup, one spin species moves preferentially along the leg direction,
while the other does so along the rung direction. We find compelling evidence for the existence of a novel
Cooper-pair Bose-metal phase in a region of the phase diagram at intermediate coupling. We further explore
the phase diagram of this model as a function of hopping anisotropy, density, and interaction strength, finding a
conventional superfluid phase, as well as a phase of paired Cooper pairs with d-wave symmetry, similar to the
one found in models of hard-core bosons with ring-exchange.We argue that simulating this model with cold
Fermi gases on spin dependent optical lattices is a promising direction for realizing exotic quantum states.

PACS numbers: 74.20.-z, 74.25.Dw, 03.75.Lm

I. INTRODUCTION

The quest for exotic phases of matter of quantum origin is
one of the most exciting topics in modern condensed matter
physics. Very recently, the extraordinary progress in experi-
ments with cold atomic gases has motivated efforts toward re-
alizing artificial Hamiltonians in a lab, under controlled exper-
imental conditions1. These Hamiltonians –close realizations
of paradigmatic models such as the Bose-Hubbard model2–4–
could, in turn, display very rich physics that may, or may not
be present in actual condensed matter systems. The ability to
tune the interactions and hopping parameters, even complex
ring-exchange terms5, or artificial vector potentials6, allows
for an unprecedented freedom to explore new uncharted terri-
tory.

A very interesting avenue to explore is the realization of
non-Fermi liquids. One possibility is a state formed by
bosonic Cooper pairs that cannot condense due to the presence
of frustration. The bosons would then behave as a “normal”
fluid, instead of a superfluid. Realizing and understanding
such a state could help to shed light on fundamental aspects
of the physics of pairing. Recently, in a series of papers7–9,
one of the authors and collaborators proposed a “d-wave cor-
related Bose metal” (DBM) state in terms of bosons. This
itinerant uncondensed state is constructed by writing a boson
in terms of fermionic partons with anisotropic Fermi surfaces.
In this paper we propose realizing such a DBM state in an op-
tical lattice, but using real fermions as the constituents of the
fluid.

In a previous paper17, we suggested a setup to access
unconventional paired states in ultracold fermionic systems.
Consider an experiment with two fermionic hyperfine states
(↑,↓), that move on a square lattice. We use spin-dependent

optical lattices to tune the hoppings such that one species
moves preferentially along thex direction, while the other
moves preferentially along they direction. We consider for
simplicity a situation in which the respective Fermi surfaces
are rotated by 90 degrees, but the main ingredient is to have
mismatched Fermi surfaces. When one turns on a short range
s-wave attractive interaction between the fermions, Cooper
pairs can form. In contrast to the spin imbalanced mixtures
that can lead to Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
superconductivity10–13, in our case we focus on anunpolar-
izedgas. But due to the mismatch in Fermi momenta, different
pairing solutions are possible. With a strong attractive inter-
action all of the fermions can pair and condense into a con-
ventional superfluid with zero center of mass momentum. Al-
ternatively we can realize a gapless state, similar to the Sarma
or breached-paired (BP) state for polarized mixtures, withco-
existence of pairs and unpaired fermions14–16.

In Ref.17 we explored the BCS mean field phase diagram
for such a problem, and found that the gapless superfluid is
a stable solution in a wide region of parameter space. But
an even more exotic possibility would be a state in which all
of the fermions are paired into Cooper pairs, but the Cooper
pairs remain in an uncondensed non-superfluid phase. This
“Cooper-pair Bose metal” (CPBM) is not accessible in a BCS
mean-field treatment, or any other weak coupling approach.
Even though there are no a priori arguments to prevent a
CPBM state from occurring, accessing such a phase would
necessarily require a strong coupling treatment. To this end,
in this work we use the density matrix renormalization group
method18 to explore the phase diagram of the same model on a
two-leg ladder geometry, as a function of density, anisotropy,
and interaction strength.

http://arxiv.org/abs/1007.5251v1
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FIG. 1: Phase diagram for non-interacting (U = 0) fermions
with anisotropic hoppings on a ladder geometry, as a function of
anisotropyα and densityn. The upper panel shows the polariza-
tion of the ground state, while the lower panel shows the different
“phases” in the unpolarized situation, in terms of the band fillings.

A. Background

In our previous work17, we studied the effects of an attrac-
tive interaction in a Fermi mixture with anisotropic Fermi sur-
faces. In particular, we focused on the situation where the
Fermi surfaces of the two spin states are rotated by90 de-
grees with respect to one another. The resulting model can be
described by a generalized Hubbard Hamiltonian withspin-
dependentnear neighbor hoppingtx,σ, ty,σ. By simply taking
ty↓ = tx↑ = t, tx↓ = ty↑ = αt we obtain single particle
dispersions;

ǫ↑(kx, ky) = −2t cos (kx)− 2αt cos (ky), (1)

ǫ↓(kx, ky) = −2αt cos (kx)− 2t cos (ky). (2)

The parameterα, which we take between zero and one, deter-
mines the eccentricity of the two Fermi surfaces.

We assumed that the particles interact through a short-range
s-wave potential, that we represent using the attractive Hub-
bard model:

H =
∑

k,σ

ǫσ(k)c
†
k,σck,σ + U

∑

i

ni,↑ni,↓ , (3)

wherec†k,σ creates a fermion with spinσ = ↑, ↓ at momentum

k, niσ = c†iσciσ is the local on-site density, andU is the inter-
action strength that we will take to be negative (attractive).

For a very strong attractive interaction,|U | >> t, a state
with zero momentum pairing and a fully gapped Fermi sur-
face is expected. For smallerU a zero-momentum paired
state with gapless single fermion excitations, analogous to the
Sarma or BP phase in mass imbalanced mixtures, could occur.
Alternatively, pairing could occur across the two mismatched
Fermi surfaces, leading to a superfluid state with finite center-
of-mass momentum. The resulting order parameter would be
the same as in the FFLO state with a spatially modulated con-
densate at some non-zero wave vectorQ.

A more exotic possibly that we suggested is a Cooper-pair
Bose-metal, a state in which the fermions are fully paired with
a fermion gap, but the Cooper pairs have nevertheless not
condensed. Rather, the Cooper pairs form a non-superfluid
“Bose-metal”. As explained in Ref. 7, our motivation for
considering the CPBM phase was based upon a mapping to an
effective boson model in the|U | >> t limit. In addition to the
usual boson hopping term with strengthJ ∼ αt2/|U |, one ob-
tains a 4-site ring exchange term with strengthK ∼ t4/|U |3;

Hring = K
∑

plaquettes

b†1b2b
†
3b4 +H.c., (4)

with i = 1, 2, 3, 4 labeling sites taken clockwise around a
square plaquette. Here,bi = ci↑ci↓. Importantly, whileJ ∼ α
vanishes with the anisotropy parameter, the ring term is in-
dependent ofα for α → 0. Thus, with large Fermi surface
anisotropy one expects the ring term to become more impor-
tant. In Ref. 7 and 8 it was established that the presence of
such a ring term can lead to the existence of an exotic unpaired
Bose-metal phase, referred to as a d-wave Bose metal. Exten-
sive numerics were done on the two-leg ladder to establish
this, which were bolstered by a parton construction wherein
the boson was expressed as a product of two fermionic par-
tons.

Here we are interested in using real fermions as the con-
stituents of the fluid, and will be interested whether they can
pair and form an analogous Bose metal, but made of Cooper
pairs. To be specific, in this work we study numerically a
version of this model on a two-leg ladder geometry using the
DMRG method, which is an unbiased technique that allows
one to study large quasi one-dimensional systems with ex-
traordinary accuracy18. Our main findings is that in a range
of intermediate coupling with|U |/t ∼ 4 we find strong evi-
dence for the existence of the 2-leg ladder descendent of the
Cooper-pair Bose-metal.
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FIG. 2: Charge gaps forα = 0.3 andn = 0.75 as defined in the
text, as a function of the attractionU and for different system sizes.
We also show the binding energy in the lower panel.

II. ANISOTROPIC HOPPINGS ON A LADDER
GEOMETRY

Throughout we will study the Hubbard Hamiltonian

H = −
∑

i,λ,σ

tx,σ

(

c†i,λ,σci+1,λ,σ +H.c.
)

−
∑

i,σ

ty,σ

(

c†i,1,σci,2,σ +H.c.
)

+ U
∑

i,λ

ni,λ,↑ni,λ,↓. (5)

In this expression,c†i,λσ (ci+1,λσ) create (anihilate) a fermion
with spin σ on legλ, andU quantifies the on-site Coulomb
interaction, which we take negative (attractive). In the rest of
this work we considertx↑ = ty↓ = 1, tx↓ = ty↑ = α, defining
all energies in units of the hoppingtx↑. In the case of two-leg
ladders, the leg index assumes the valuesλ = 1, 2. We also
define the total fermion density asn =

∑

σ〈ni,λσ〉, which
lies in the range zero to two. Due to a particle-hole symmetry
which takesn → 2 − n, without loss of generality we can,
and will, taken between zero and one.

As a reference we consider the non-interacting limit (U =
0) of this model. We shall pick a convention to denote
what bands are partially filled, or depleted, as a function of
the anisotropy and filling fraction, The different possibilities
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FIG. 3: Spin gaps as defined in the text, forα = 0.3 andn = 0.75,
as a function of the attractionU and for different system sizes.

for an unpolarized mixture are depicted in Fig.1. The three
“phases” are labeled by the number of bands that are partially
filled, for each orientation of the spin,(m↑,m↓), wheremσ

can assume the values1, or 2. For instance,(1, 1) means that
the bonding bands for both the↑ and↓ species are partially
filled, while the anti-bonding bands are empty. It is important
to notice that the Hamiltonian without interactions and finite
anisotopy0 < α < 1 has a ground state with finite polariza-
tion, as shown in Fig.1. This is easy to understand, and it is
essentially due to peculiar band structure arising from thege-
ometry we have considered: A majority of↑-fermions would
gain kinetic energy, since they have larger hopping along the
leg direction. Therefore, it is natural to expect a ground state
with Sz

Tot > 0. In some regimes the polarization is nega-
tive: for large anisotropy (smallα), the band for spin-↓ is very
flat, and it fills up very quickly as we increase the number of
particles. However, we will primarily be interested in strong
enough attractive interaction to pair all of the fermions into a
state with zero polarization.

As customary in most DMRG calculations, we take open
boundary conditions along the leg direction, which improves
convergence, and reduces calculation time.

III. RESULTS

We are interested in establishing and characterizing the var-
ious phases which appear in the model. The parameters in the
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model are the hopping anisotropy,α, the filling factorn and
the Hubbard attractiveU measured in units of the hopping
strength,t. Since our main goal is to access the Cooper-pair
Bose-metal phase, we will focus primarily on the regions of
theU = 0 “phase diagram” in Figure 1 labelled(2, 1)wherein
the up fermion has two partially filled bands and the down
fermion only one. This corresponds to a regime of “extreme”
Fermi surface anisotropy. More specifically, we will often re-
port results forα = 0.3 andn = 0.75. We will then be
interested in the accessible phases as the HubbardU is sys-
tematically increased.

In order to characterize the different phases, we shall define
several quantities of interest. We define the charge gap as the
sum of the energies required to extract and inject a fermion
into the system. Since our model breaksSU(2) symmetry,
we can define

∆+
c = E(N+1,S+ 1

2
) + E(N−1,S− 1

2
) − 2E(N,S),

∆−
c = E(N+1,S− 1

2
) + E(N−1,S+ 1

2
) − 2E(N,S).

(6)

The spin gap is defined as the energy required to flip a spin.
Similarly we can have

∆+
s = E(N,S+1) − E(N,S),

∆−
s = E(N,S−1) − E(N,S), (7)

∆s = ∆+
s +∆−

s .

(8)

We can also define the binding energy as the energy re-
quired to break a pair

∆E = [E(N−2,S) − E(N,S)]− [E(N−1,S+ 1

2
) − E(N,S)]

− [E(N−1,S− 1

2
) − E(N,S)] (9)

= E(N−2,S) + E(N,S) − E(N−1,S+ 1

2
) − E(N−1,S− 1

2
).

Here, the first difference corresponds to the energy required to
remove a pair, and the second (third) differences, the energy
required to remove a single spin up (down) fermion. If the
particles minimize their energy by creating a bound state,∆E
is negative, whereas for two independent particles∆E = 0 in
the thermodynamic limit. In the case where the particles repel
each other, this quantity is positive.

In Figure 2 we show results for the charge gap as a function
of the attractionU . We show results for the binding energy
in the lower panel of Fig.2. Figure 3 show results for the spin
gaps, as a function of the attractionU .

A. “Metallic” state

We first focus on the values of|U | < 3. Here the charge
gap vanishes in the thermodynamic limit indicative of gap-
less fermion excitations. Moreover, the binding energy,∆E
is very close to zero suggesting an unpaired phase. Finally,
the spin gap also appears to vanish for these values ofU in
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FIG. 4: Pair momentum distribution function and pair density struc-
ture factors forL = 48 and parameters corresponding to the CPBM
phase

the large system size limit. The gap∆+ seems to show a ten-
dency towards negative values, indicating that this phase may
in fact have a small polarization. These results strongly sug-
gest that for|U | < 3 the system is in a “metallic” phase that is
smoothly connected to theU = 0 state, except with Luttinger
liquid exponents characterizing the three gapless modes.

B. Paired states

For larger strengths of the attractive interaction,|U | > 3,
there is a tendency for charge and spin gaps to open. More-
over, the binding energy becomes negative indicating that all
of the fermions are bound into Cooper pairs. It is natural to
guess that once the fermions pair that they will “condense”
into a quasi-1D superfluid phase. But as we now demonstrate,
for intermediate values ofU this appears not to be the case.

To characterize the nature of the paired state it is convenient
to consider various correlation functions. These are conve-
niently constructed from the onsite Cooper pair creation and
annihilation operatorsb†i = c†i↑c

†
i↓ and bi = ci↓ci↑. In the

low-density limit the pairs behave in good approximation like
canonical bosons since[bi, b

†
i ] = 1−ni ≈ 1. In other regimes,

these will not be canonical bosons, but will give an indication
of the nature of the Cooper pair excitations in the system.

Following this observation we define the pair momentum
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distribution function (PMDF)

nPair(k) = (1/L)
∑

ij

exp[ik(ri − rj)] 〈b†i bj〉, (10)

and the density structure factor

DPair(k) = (1/L)
∑

ij

exp[ik(ri − rj)] 〈nbinbj〉. (11)

Here, the Cooper pair number operator is defined asnbi =

b†ibi = ni↑ni↓.

1. Cooper pair Bose-Metal

We now focus on|U | = 4 where the fermions are presum-
ably only “weakly” bound into Cooper pairs. In Fig.4 we
show the pair momentum distribution function and the pair
density structure factors. Most striking are the finite momen-
tum singular features in both correlators. We can proceed to
analyze all the singularities in both the PMDF and pair struc-
ture factor following8. In both cases, we can trace the position
of the peaks by just looking at the prediction from the non-
interacting band structure.

Consider first the pair momentum distribution function.
Due to the mismatched Fermi surfaces, up fermions and down
fermions cannot pair at zero momentum. Rather, there will
be pairing tendencies at finite center of mass momentum,
Q = k

↑
F − k

↓
F , where the Fermi momenta are defined with

respect to the non-interacting dispersion. Specifically, apair
with zero y−component center of mass,Qy = 0, can be
formed by combining a right moving up spin fermion from
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FIG. 6: Pair momentum distribution forα = 0.3; n = 0.75, and
different values ofU , showing the transition from metal to CPBM-
like to superfluid at large values ofU . The upper panel corresponds
to momentumky = 0, and the lower panel toky = π. Results are
for a ladder of lengthL = 48.

the bonding band, withx−momentum,k↑0F , with a left mov-
ing spin down fermion from the bonding band with momen-
tum−k↓0F . As shown on the top panel of Figure 4, the resul-
tant center of mass momentumQx = k↑0F − k↓0F corresponds
nicely to the location of the peak. Similarly, the peak at center
of mass momentumQy = π results from a right moving up
spin fermion from the anti-bonding band,k↑πF , “pairing” with
a left moving down spin from the bonding band.

It must be emphasized that these singular features that
“know” about the non-interacting Fermi surface are appearing
in the pair correlator despite the fact that all of the fermions
are bound into Cooper pairs and the system has a fermionic
(charge) gap! This most surprising feature is a hallmark of the
Cooper-pair Bose metal. Propagating Cooper pairs moving
thru a fluid with a fermion gap are somehow still sensitive to
the underlying Fermi surfaces of the constituent particles.

In Figure 5 we show the comparison with this theoretical
prediction for a fixed value ofU = −4 andα = 0.3, as a
function of the densityn. As the band fillings change, the
Cooper pair momenta change accordingly. Again, deep in the
CPBM phase, the pairs keep memory of the non-interacting
Fermi surfaces.

In the lower panel of Fig.4 we show the pair density struc-
ture factors. Again, there are a number of singular features
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in momentum space. Since the fermions are all paired in this
regime, one might anticipate that the density fluctuations of
the up and down spin fermions are identical to one another,
and equal to the pair density fluctuations. But this is not the
case. Rather, density fluctuations of the fermions differ, and
both appear to contribute to the pair density structure factor. In
the figure we have demarcated various“2kF” momenta con-
structed from the non-interacting dispersion of the fermions.
Some of the features line up with the singularities remarkably
well.

2. Superfluid

To show the evolution to the conventional superfluid out of
the Cooper-pair Bose metal phase, we can continue to increase
|U |. Figure 6 shows the PMDF for densityn = 0.75, α = 0.3
for a system of lengthL = 48 at various different values of
U . AsU increases from zero, the non-interacting curves start
developing a two-peaked structure both atky = 0 andky = π,
with singularities at finite momentum. The two-peaked struc-
ture is maximum nearU = −4, where the system is in the
Cooper-pair Bose metal phase. But for still largerU some-
where in the region5 < |U | < 6, the two-peaked structure
gradually evolves into a single peak at zero momentum.

At the largest valueU = −8 we are presumably in the
conventional quasi-1d superfluid. Indeed, the most promi-
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FIG. 8: Finite size study of the binding energy forU = −4 and
n = 0.25. We show results forL = 16, 24, 32 and a extrapolation
to L = ∞. From top to bottom we show the binding energy for
fermions, and the binding energy for pairs.

nent feature is a large peak at momentumQ = (0, 0), which
continues to grow with increasingU . This is indicative of a
quasi-condensate. The pair momentum distribution function
at ky = π, on the other hand, appears to have saturated with
increasingU and shows a rather smooth structure throughout
the momentum space. For bosons moving on a 2-leg ladder
these are the expected signatures of a quasi-1d superfluid (see
Fig. 5 in Ref.8).

A similar change of behavior is observed in the singularities
of the pair density structure factor, Fig.7. For small|U |, the
ky = 0 component shows a linear behavior nearkx = 0 and
kinks or singularities at finite momentum, which are largest
nearU = −4 in the Cooper pair Bose-metal phase (and also
observed in the DBM phase - compare to Fig. 8 in Ref.8). For
the largest values ofU the density structure factor atky = 0
has a v-shape, being quite smooth away from zero momentum,
as expected in a superfluid.

At ky = π the singular features atU = −4 in the Cooper-
pair Bose-metal evolve into rather large peaks with increasing
U . The peak height appears to saturate at the largest value of
U , and is perhaps becoming smoother. The behavior here is
somewhat puzzling, since a quasi-1d superfluid should have a
pair distribution function atky = π which is analytic inkx
(see, for example, Fig. 5 in Ref.8). Ideally, one would try to
obtain data for increasing system size to see if the behavior
in the superfluid regime saturates and smoothens. One would
expect the data atU = −4 in the CPBM to become more
singular in this limit.

3. Pairing of Cooper pairs?

We further explored a wider region of parameter space, both
varying density and hopping anisotropy. Building on predic-
tions from7,8, we have anticipated the possibility of a phase of
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bosonic pairs.

paired Cooper pairs, or paired bosons. The bosonic ring mod-
els indeed display such phases, and bosons can pair with both
s-wave symmetry, or d-wave symmetry. A state with paired
Cooper pairs would in turn have a finite binding energyfor
breaking a pair of Cooper pairs. We can define the binding
energy for bosonic pairs (Cooper pairs) as

∆EPair = E(N−4,S) + E(N,S) − 2E(N−2,S). (12)

Fig. 8 shows our results for the pair binding energy as
a function of anisotropyα for a fixed value of interaction
U = −4 and densityn = 0.25. We find a negative binding
energy for the fermions in all the range ofα, clear indication
of pairing. The bosonic binding energy is indeed positive or
very small for largeα > 0.1, but for large anisotropy (small
α), it dramatically turns negative. This seem to indicate the
presence of a new exotic phase with paired Cooper pairs.

In order to characterize this phase we have looked at the
PMDF as well as the pair density structure factor. Fig.9 shows
our results forα = 0.05 andL = 48. By comparing with
the prediction from Ref.8, we conclude that this profile cor-
responds to the d-wave paired state of Cooper pairs. (Com-
pare to their Fig.14.) Specifically, since the Cooper pairs are
paired, one expects a gap for the single Cooper pairs. This cor-
responds to a smooth pair momentum distribution function,
as indeed seen in Figure 9. Moreover, at densityn = 0.25,
the distance between pairs of Cooper pairs down the ladder
is 2/n = 8 sites. One would then expect that the density
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FIG. 10: Finite size study of the binding energy forU = −4 and
n = 0.75. We show results forL = 16, 24, 32 and a extrapolation
to L = ∞. From top to bottom we show the binding energy for
fermions, and the binding energy for pairs. Again, notice the size-
dependent oscillatory behavior in the CPBM region.

structure factor atqy = 0 would show a singular feature at
wavevector2π/8 = π/4. This singular feature is indeed
prominent in Figure 9.

We have done a similar analysis of binding energies forn =
0.75, shown in Fig.10. For values of anisotropyα > 0.5,
the results correspond to a superfluid phase. At intermediate
values0.1 < α < 0.5 we found a wildly oscillatory behavior
in the bosonic binding energy, accompanied by strong finite
size effects. We attribute this behavior to the CPBM phase.
The Cooper pair structure in this phase is strongly dependent
on the availability of momenta to pair, which varies in finite
systems for different system sizes. At small values ofα we
found again the d-wave bosonic paired state.

IV. BOSONIZATION

This collection of results can be summarized in the phase
diagram of Fig. 11, as a function of density and anisotropy,
for a fixed values ofU = −4. The region of stability for
the CPBM phase, roughly between3 < |U | < 5, shrinks
with increasing|U |, leading to a conventional superfluid with
pairing momentumQ = (0, 0). At U = −4 it is striking that
the region of the Cooper-pair Bose-metal phase roughly corre-
sponds to the region where the non-interacting band structure
is in the(2, 1) regime. Loosely, this can be understood via a
bosonization analysis that we now briefly sketch.

We follow very closely Ref. 8, where a detailed analysis
was performed by bosonizing the fermionic partons which
were introduced by decomposing the hard core boson as,
b = d1d2. In that work the partons were coupled to aU(1)
gauge field that glued them back together. Here we instead
can bosonize directly the “fundamental” fermions,cσ that en-
ter into the Hamiltonian. As we shall see, this will lead to the
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same description of the DBM phase.
To proceed, whenU = 0 we can conveniently linearize

the fermion bands about their respective Fermi momentum,
focussing on the slowly varying fields,c(ky)

σP , whereP =
R/L = ± corresponds to a right and left moving field,
σ =↑, ↓ the spin andky = 0, π labels the bonding/antibonding
bands, respectively. We employ bosonization,

c
(ky)
σP = η(ky)

σ exp [i(φ(ky)
σ + Pθ(ky)

σ )], (13)

whereφ, ∂xθ are conjugate fields and theη′s are Klein factors.
The non-interacting Lagrangian density can be expressed as,

L0 =
1

2π

∑

σ,ky

[v(ky)
σ (∂xθ

(ky)
σ )2 +

1

v
(ky)
σ

(∂τθ
(ky)
σ )2]. (14)

We now focus initially on the(1, 1) case where only the two
bonding bands are partially filled. In the case of zero polariza-
tion the Fermi wave vectors satisfy,k(0)F↑ = k

(0)
F↓ . In the pres-

ence of an attractiveU there is then an allowed momentum
conserving four-fermion interaction in the Cooper channel,

Hu = −uc
(0)†
R↑ c

(0)†
L↓ c

(0)
R↓c

(0)
L↑ +H.c.. (15)

This term can lead to a paired superfluid phase with a spin
gap, as can be seen by bosonization,Hu ∼ −u cos[2(θ

(0)
↑ −

θ
(0)
↓ )]. Provided this term is marginally relevant it grows under

renormalization, and the cosine term can be expanded. This
gaps out the spin mode,θ↑ − θ↓ and leads to a single gapless
mode which describes the quasi-1d superfluid state. It is worth
commenting that in the presence of a non-zero polarization in
the(1, 1) regime, the Cooper channel is no longer momentum
conserving. Nevertheless, non-perturbatively one expects the
attractive HubbardU to drive the system into a superfluid,
beyond some threshold.

Next consider the(2, 1) regime, focussing on the case
with zero polarization, so that the Fermi wavevectors satisfy,
k
(0)
F↑ + k

(π)
F↑ = k

(0)
F↓ . In the presence of an attractiveU , there

are various allowed four-fermion interactions, but the Cooper
channel is not present due to a lack of nesting between the up
and down spin Fermi wavevectors. There is, however, an im-
portant momentum conserving6−fermion term of the form,

Hv = −v6c
(0)†
↑R c

(0)
↑Lc

(π)†
↑R c

(π)
↑L c

(0)†
↓L c

(0)
↓R +H.c. (16)

Being 6th order this term will be irrelevant at weak coupling,
and the system will be in a “metallic” state with three gap-
less modes. But at stronger coupling above a threshold value
of U when the forward scattering interactions shift the scal-
ing dimension ofv6, this term can become relevant. Under
bosonization this term becomes,

Hv = −v6 cos[2(θ
(0)
↑ + θ

(π)
↑ − θ

(0)
↓ )], (17)

and above the threshold we can expand the cosine term to ob-
tain a mass term for the combination,θM = (θ

(0)
↑ + θ

(π)
↑ −

θ
(0)
↓ )/

√
3. In the gauge theory analysis in Ref. 8, just such a

0.0 0.2 0.4 0.6 0.8 1.0
n

0.0

0.2

0.4

0.6

0.8

1.0

α

CPBM

Superfluid

d-wave boson pairs

FIG. 11: Phase diagram of the Hubbard ladder with anisotropic hop-
ping α, and lengthL = 32, U = −4, as a function of the density
and anisotropy. We find a Cooper-pair Bose-metal phase (CPBM),
and a superfluid phase. States of d-wave boson pairs are foundat
high density and smallα.

mass term is present due to the long-ranged interactions me-
diated by the gauge field. The main difference here is that the
mass term is generated via an instability driven, at intermedi-
ate coupling, by the attractive HubbardU

Following Ref. 8 , upon integrating outθM one obtains a
theory of two-coupled Harmonic modes,θ1 = (θ

(0)
↑ + θ

(π)
↑ +

2θ
(0)
↓ )/

√
6 andθ2 = (θ

(0)
↑ − θ

(π)
↑ )/

√
2. This is the fixed point

description of the DBL(2, 1) phase, what we are referring to
as the Cooper-pair Bose metal.

To evaluate correlators it is convenient to define new conju-
gate fields,φM , φ1, φ2 in the same way. Inverting the canoni-
cal transformation gives,

θ
(0/π)
↑ =

1√
6
θ1 ±

1√
2
θ2 +

1√
3
θM , (18)

θ
(0)
↓ =

√

2

3
θ1 −

1√
3
θM , (19)

with identical expressions for theφ′s. Using these one can
readily show that the bosonized expressions for the fermion
operators always involve an exponential ofφM . SinceθM
is massive,φM fluctuates wildly, and the fermion is gapped.
Moreover, the Cooper pair creation operators,c

(ky)
↑P c

(0)
↓P ′ are

independent ofφM , and will thus exhibit power law correla-
tors. These are properties of the Cooper-pair Bose metal.

V. SUMMARY AND DISCUSSION

In this paper we have explored the possible phases present
in a model of fermions hopping on a 2-leg ladder with spin de-
pendent hopping strengths. Our main conclusion is the pres-
ence of an unusual Cooper-pair Bose-metal phase for interme-
diate values of the attractive HubbardU . In this novel phase
the fermions are fully gapped, but the Cooper-pair operatoris
in a gapless state which is qualitatively distinct from the quasi-
1d superfluid19. In particular, there are two gapless modes in
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the Cooper-pair Bose-metal phase, in contrast to the conven-
tional superfluid which has only one gapless mode. Moreover,
in the CPBM the Cooper pair momentum distribution function
shows singularities both atky equal to zero andπ and at non-
zero values of the longitudinal momentum,kx. By contrast,
the quasi-1d superfluid has a Cooper pair momentum distribu-
tion function which is smooth atky = π, and atky = 0 has a
singular peak at the origin,kx = 0.

In addition to the CPBM at intermediateU and the super-
fluid phase at larger values ofU , the model studied here has a
stable “metallic” phase which is continuously connected tothe
non-interacting (2,1) phase. In this “metallic” phase there are
three gapless modes, same as in the non-interacting limit. The
same occurrs in a quasi-1d LO state, which also has as many
gapless modes as the reference non-interacting limit. Analogs
of both the CPBM and the superfluid are present in the hard
core boson hopping with ring exchange studied in Ref. 8.
Here, the onsite Cooper pair operator is playing the role of the
boson. But the “metallic” phase only can exist in the fermion
model studied in this work.

To distinguish these three phases experimentally would
require measuring both the fermion momentum distribution
function (singular in the metallic phase and smooth in the
CPBM and the superfluid) and the Cooper-pair momentum
distribution function (singular in all three phases, but with a
distinct signature in the superfluid). The former could be mea-
sured by releasing the atoms from the trap in the usual way.
But to extract the Cooper-pair momentum distribution func-
tion would require a sudden quench to|U | → ∞ just before
releasing the atoms from the trap.

The low dimensionality of the ladder geometry studied here
implies that the singularities in the pair momentum distribu-
tion function can only appear at discrete points in momen-
tum space. However, in two dimensions we expect7 that the
Cooper-pair Bose-metal phase will exhibit a pair momentum
distribution function that is singular along lines or “Bosesur-
faces” in momentum space. In contrast, the only way to obtain
a true Bose condensate in 2D is by a macroscopic condensate
into a state with a single, or a finite discrete set of momentaQ,
such as the structures predicted for FFLO-like condensates20.
Due to the strong frustration in our model –responsible for the
ring exchange term– we are inclined to believe that the more
likely scenario is the first one, with uncondensed Cooper pairs.
However, an answer to this question would require an actual
strong-coupling study of the two-dimensional system.

One of the most striking features of our study is the conclu-
sion that fermions with spin-dependent anisotropic Fermi sur-
faces and attractive interactions behave very much like hard-
core bosons with a ring exchange, giving rise to much of the
same physics already observed in these models7,8. In the case
of hard-core bosons, the wave function is accurately described
by fractionalizing the bosons into two partons, or fermions
with anisotropic fermi surfaces. However, these partons are a
fictitious construction while our fermions are real. This im-
plies that “constructing” frustrated boson systems with , for

example, ring exchange interactions might be much easier by
pairing underlying spinful fermions than by working directly
with bosonic atoms. Indeed, as proposed in Ref. 17, a cold
Fermi gas of Yb atoms21 loaded in a spin-dependent opti-
cal lattice subject to an attractive s-wave potential22–24 might
work just as well as the proposed setup for generating ring
exchange interactions in a system of hard-core bosons5.

An alternative setup to realize exotic paired states could
be achieved by using a Fermi mixture with different atomic
species, such as Li and K for instance, with inter-species Fes-
hbach tunable interactions. This would give one the ability
to make spin dependent optical lattices since the two atoms
are distinct and so are much easier to independently optically
control than merely distinct hyperfine states of the same atom
(which tend to have similar polarizability and so see a much
more similar optical potential). Moreover, one may only use
an optical lattice for only one of the species, leaving the other
basically free.

If –contrary to our argument– a 2D system of fermions
with spin-dependent hopping indeed undergoes a true Bose
condensation, the condensate could be described by a nodal
structure that would have similar characteristics as the one
for “striped superconductivity” or pair-density wave order.
This type of order, proposed in Refs.25,26 to account for ex-
perimental observations in La2−xBaxCuO4

27, would actually
break rotational symmetry. In Ref.28 the authors argue thata
thermal melting of the stripe superconducting state could give
rise to4e superconductivity originating from the coupling be-
tween condensates with perpendicular stripe order, similar to
the4e superconductivity we see in the very anisotropic regime
of our ladder model. We point out that a similar behavior has
been predicted to occur in polarized mixtures29. At finite tem-
peratures the LO state is always unstable to a nematic super-
fluid. Fluctuations can destroy the superfluid leading to a state
of paired Cooper pairs.

Finally, we want to point out that we have not considered
the possibility of phase separation in the present study12,13.
Even though it may in fact occur, as it happens in the BCS
mean field treatment of the model in 2D17, we suspect that it
will only take place in narrow regions of the phase diagram
separating the different phases, and will not be a dominating
feature.
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