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Spin Bose-Metal and Valence Bond Solid phases in a spin-1/2 model with ring exchanges on a
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We study a spin-1/2 system with Heisenberg plus ring exchanges on a four-leg triangular ladder using Density
Matrix Renormalization Group and Gutzwiller variational wavefunctions. Near an isotropic lattice regime, for
moderate to large ring exchanges we find a Spin Bose-Metal phase with spinon Fermi sea consisting of three
partially filled bands. Going away from the triangular towards square lattice regime, we find a staggered dimer
phase with dimers in the transverse direction, while for small ring exchanges the system is in a featureless rung
phase. We also discuss parent states and a possible phase diagram in two dimensions.

In a wide class of crystalline organic Mott insulators it is
possible to tune from the strongly correlated insulating state
into a metallic state. At ambient pressure such “weak Mott in-
sulators” are perched in close proximity to the metal-insulator
transition. The residual electronic spin degrees of freedom,
which constitute a novel quantum system, can exhibit a myr-
iad of behaviors such as antiferromagnetic (AF) ordering or a
valence bond solid (VBS). Particularly exciting is the possi-
bility that the significant charge fluctuations in a weak Mott
insulator frustrate the magnetic or other ordering tendencies,
resulting in a quantum spin liquid. This appears to be re-
alized in two organic materials [1-7] x-(ET)2Cu2(CN)3 and
EtMe3Sb[Pd(dmit)s ]2, both quasi-two-dimensional (2D) and
consisting of stacked triangular lattices. Thermodynamic,
transport, and spectroscopic experiments all point towards the
presence of many gapless excitations in the spin-liquid phase
of these materials. Gapless spin liquids are poorly understood,
compared to gapped quantum spin liquids that exhibit topo-
logical order.

The triangular lattice Hubbard model [1, 8-10] is com-
monly used to describe these materials. At half filling the Mott
metal-insulator transition can be tuned by varying the single
dimensionless parameter, the ratio of the on-site Hubbard U
to the hopping strength . On the insulator side at interme-
diate U/t, the Heisenberg spin model should be augmented
by multi-spin interactions [11-16], such as four-site ring ex-
changes (see Fig. 1), which mimic the virtual charge fluctu-
ations in such a weak Mott insulator. Accessing a putative
gapless spin liquid in 2D in such models poses a tremendous
theoretical challenge.

Slave particle approaches provide one construction of such
gapless spin liquids and predict spin correlations that decay as
power laws in space, oscillating at particular wavevectors. In
the so-called “algebraic spin liquids™ [17-20] these wavevec-
tors are limited to a finite discrete set, often at high symmetry
points in the Brillouin zone. However, the singularities can
also occur along surfaces in momentum space, as they do in a
“spinon Fermi sea” spin liquid speculated for the organic ma-
terials [12—14]. We will call such a state “Spin Bose-Metal”
(SBM) [21, 22] to emphasize that it has metal-like properties
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FIG. 1: (color online). Picture of the Heisenberg plus ring Hamil-
tonian on the four-leg ladder showing different two-spin and four-
spin couplings. The “isotropic” (or “triangular”’) model is defined by
Ji = Jg = Jj+@ = J, K@,g = K@@+@ = K@@Jr@ = K. We
also study a broader phase diagram interpolating between the trian-
gular and square limits by decreasing J;4 [with appropriate scaling
of the ring couplings Kz s4+9 = Kys+9 = (Jo+g/Jz) Kz,9]. The
ladder has periodic boundary conditions in both & and ¢ directions.

for spin and energy transport while the spin model is bosonic
in character.

It should be possible to access an SBM phase by system-
atically approaching 2D from a sequence of quasi-1D ladder
models [21-23]. On a ladder the quantized transverse mo-
menta cut through the 2D surface, leading to a quasi-1D de-
scendant state with a set of low-energy modes whose number
grows with the number of legs and whose momenta are inher-
ited from the 2D Bose surface. These quasi-1D descendant
states can be accessed in a controlled fashion by analyzing the
ladder models using numerical and analytical approaches and
importantly they carry a distinctive quasi-1D “fingerprint” of
the parent 2D state.

Heisenberg plus ring on a four-leg triangular ladder.—
Pursuing this idea, we consider a spin-1/2 system with Heisen-
berg and four-site ring exchanges on the triangular lattice,

H= Z2Jij§i . §j + Z Kp (P1234 + H.C.) . (1)

(i3) rhombi

An earlier Exact Diagonalization (ED) work [24] on the
isotropic 2D triangular lattice found that K > 0.1J destroys
the 120° AF order. A subsequent variational study [12] sug-



_IIIIIIIIIIIIIIIIIIIIIII_

S F-e--eec3 Hom = Fm— o —— = —]
- E O * * * *
il S ) O O * * * -
,%i%@: O O * * 1
\gd_—o ° O O g O 3
ﬁ:g;"-:—o ° O O O m—
S F e Rung o ° O O o 3
Sk e © @ @ o ) O O 3
_|||||||||||||||||||||||_

0.0 0.2 0.4 0.6 0.8 1.0
Ksg/Js

FIG. 2: (color online). Phase diagram of the Heisenberg plus ring
model on the four-leg ladder interpolating between the triangular
Jz = Jy = Ja+g = land square Jz = Jy = 1, Jz4y = O limits.
The horizontal axis is the ring coupling K3 3 while the vertical axis
is the diagonal coupling J3 4, cf. Fig. 1; the other ring couplings are
obtained according to Eq. (2).

gested the Spin Bose-Metal phase for moderate to large K.
A recent work vigorously pursued this model on a two-leg
zigzag ladder [22, 25] combining numerical Density Matrix
Renormalization Group (DMRG), Variational Monte Carlo
(VMCO), and analytical Bosonization approaches, and argued
that it realizes a quasi-1D descendant of the SBM phase. The
descendant SBM is a remarkable 1D quantum phase with
three gapless modes and power law spin correlations at incom-
mensurate wavevectors that are the fingerprints of the parent
2D Bose surface.

The two-leg ladder is still far from 2D. Here we take a sig-
nificant step and study the model on a four-leg ladder shown
in Fig. 1. We first consider the “isotropic” or “triangular” case
where all nearest neighbor bonds have the same Heisenberg
coupling J and all rhombi have the same ring coupling K;
thus there is a single control parameter K /.J.

We study the model numerically using DMRG/ED com-
bined with VMC. All calculations use periodic boundary con-
ditions. The DMRG calculations keep m = 3600-5000 states
per block [26-28] to ensure accurate results, and the density
matrix truncation error for our systems is of the order of 10~°
(typical relative error for the ground-state energy is 10~3 or
smaller). Information about the state is obtained by measur-
ing spin, dimer, and chirality structure factors.

The phase diagram determined from such a study using
12 x 4 and 18 x 4 ladders can be seen in Fig. 2; the isotropic
case is the horizontal cut at J;+;/J; = 1. For small K/J <
0.15 the system is in a rung phase, whose caricature can be ob-
tained by allowing J; > J3, Jz4 where the rungs effectively
decouple. This phase is expected to be gapped and to have
only short-range correlations. In the model with isotropic cou-
plings the rungs have rather strong connections: in fact, we
find that the & and Z + § bonds have more negative Heisen-
berg energies than the ¢ bonds. Nevertheless, the DMRG mea-
surements suggest that the system is in a featureless gapped
phase, even if it has significant inter-rung correlations. A fur-
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FIG. 3: (a) Symmetry breaking pattern found in DMRG on the
isotropic system at K /J = 0.2-0.25. (b) State degenerate with (a)
in the presence of & <+ & + ¢ symmetry. Both (a) and (b) can be
viewed as triangular VBS states with dimers on the ¢ bonds but dif-
ferent column orientations. The observed staggered patterns on the
Z 4 ¢ and & bonds correspondingly are expected on the triangular
lattice and apparently follow a rule that each triangle contains only
one strong bond. Upon going to the square limit by decreasing Jzg,
for a range of values for the ring coupling we find the VBS state (b),
which connects to a staggered g-dimer state.

ther test is provided by increasing .J; from the isotropic case,
and we indeed observe a smooth evolution in all measure-
ments, thus connecting with the strong rung phase.

Near K/J = 0.2-0.25, the DMRG ground state breaks
translational symmetry. The pattern obtained on both the
12 x 4 and 18 x 4 systems is illustrated in Fig. 3(a). This state
has strong ¢ bonds forming columns along the ladder direction
and strong Z + y bonds in the connecting arrangement. Note
that we also expect a degenerate state depicted in Fig. 3(b),
since the  and & + g directions are equivalent on the isotropic
ladder (this is strictly true for lengths L = 4 X integer). The
states shown in Fig. 3 are a subset of possible VBS states on
the isotropic 2D triangular lattice, and the selection must be
due to the finite transverse size. The selection of (a) in the
DMRG must be due to symmetry breaking terms that exist
in the way it is building up the multi-leg system. Such sym-
metry breaking terms in the DMRG are tiny and translation-
ally invariant ground states are obtained for all other phases
without intrinsic degeneracy (we also verified that the DMRG
obtained identical results to the ED for 8 x 4 systems).

SBM phase.—For K/J > 0.3, we do not find any pattern of
bond ordering in real space and no indication of Bragg peaks
in the dimer or chiral structure factors. The correlation func-
tions are also markedly different from the rung phase at small
K. The 12 x 4 and 18 x 4 systems remain in essentially the
same state for a range of control parameters 0.3 < K/J <1
that were studied. Thus, a putative spin liquid phase is estab-
lished based on finite-size analysis of the DMRG results. Spin
and dimer correlations are rather extended in real space and
show complex oscillations. The momentum space structure
factors allow a more organized view and show many features.
Remarkably, we can rationalize these features by simple vari-
ational wavefunctions for the SBM phase.

To this end, we perform a VMC study using spin-singlet
trial wavefunctions that can be viewed as Gutzwiller projec-
tions of spinon hopping mean field states. More systemati-
cally, we vary directly the shape of the “spinon Fermi sea” in
the momentum k-space. On the four-leg ladder, there are four
transverse values k, = 0, /2, 7, and for each we can allow
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FIG. 4: “Spinon Fermi sea” of the optimal VMC state for K/J >
0.3 on the 18 x 4 ladder. Circles denote single-particle orbitals in k-
space. In the mean field, 1 and | spinons occupy orbitals shown with
filled circles. A valid spin wavefunction is obtained by the Gutzwiller
projection in real space. There are three partially filled bands at k, =
0, +7/2 and we refer to the resulting state as SBM-3.

an arbitrary “Fermi segment”, i.e., a contiguous region of oc-
cupied k-orbitals. For the 8 x 4 system, we optimized over all
distinct locations of these segments, the only restriction be-
ing the specified total filling, and found that only three bands
are populated in a manner that respects the lattice symmetries.
For the 18 x 4 system, from the outset we restricted the op-
timization to such three-band states with inversion symmetry
and found a state shown in Fig. 4.

Figure 5(a) shows the spin structure factor measured in
DMRG and calculated using the optimal VMC state on the
18 x 4 ladder, while Fig. 5(b) shows the dimer structure fac-
tor for bonds oriented in the ¢ direction. In both figures,
we see sharp peaks at wavevectors (3 x 27/18,7/2) and
(10 x 27/18,7/2) (note that wavevectors with ¢, = 37/2 =
—m/2 are related to ¢, = m/2 by the inversion symmetry).
These peaks are reproduced by the VMC wavefunction and
the wavevectors can be associated with spinon transfers be-
tween right-mover and left-mover Fermi points differing by
Ak, = £m/2 in Fig. 4.

Figure 5(c) shows the dimer structure factor for bonds ori-
ented in the & + ¢ direction. Here we see sharp peaks at
wavevectors £ (2 x 2 /18, ) and £(6 x 27/18, 7), which are

reproduced in VMC and can be associated with iZk;g;ﬂ/ ?)

and j:2k§,+7r/ 2) spinon transfers in Fig. 4. While there are
quantitative discrepancies between the VMC and DMRG, the
overall agreement in the location of sharp features is notable.

A summary of the gauge field theory for the SBM-3 phase
is as follows. In the mean field, there are three partially filled
bands for each spinon species as pictured in Fig. 4. Lineariz-
ing near the Fermi points and bosonizing, there are total of
six modes: three in the “charge” sector and three in the “spin”
sector. In the quasi-1D system, the gauge fluctuations beyond
the mean field eliminate the overall charge mode, thus leav-
ing five gapless modes. The three modes in the spin sector
cannot have nontrivial Luttinger parameters because of the
SU(2) spin invariance, while there are two Luttinger param-
eters describing the charge sector. Inspection of all allowed
interactions shows that the SBM-3 can in principle be a sta-
ble phase, although there are many channels where this multi-
mode system can become unstable. Dominant spin and dimer
correlations are expected at wavevectors +2kp,, where kp,
runs over the three right-mover Fermi points in Fig. 4. Poten-
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FIG. 5: (color online). DMRG and VMC structure factors for the
18 X 4 triangular ladder at K/J = 0.6. The horizontal axis is a
linear representation of the L x 4 mesh of (g, ¢y) points, and the
disjoint curves from left to right correspond to ¢, = 0,7/2, 7, and
3w /2. (a) Spin structure factor. (b) Dimer structure factor for bonds
oriented in the ¢ direction. (c¢) Dimer structure factor for the & + g
bonds.

tially enhanced correlations are also expected at wavevectors
+(kra+krp); at each such wavevector, the “multiplet” of ob-
servables with the same power law now contains spin, dimer,
scalar chirality, and vector chirality.

While the DMRG does not show some of the expected
wavevectors, the overall match with the VMC suggests that
this may be due to matrix element effects. It can also be that
the SBM-3 is eventually unstable here, but it clearly is a good
starting point for understanding the remarkable phase found
in the Heisenberg plus ring model.

Interpolation between the triangular and square limits.—
Motivated by relatives of the k-(ET)2Cuz(CN); and
EtMe3Sb[Pd(dmit)s]s spin liquid materials, we extend the
study by allowing a different diagonal coupling J; 4 < Jz =



Jg. We also vary Kj; 5, while the remaining ring couplings
are fixed by

Jovg
Kiprg = Kparg= 2Ky @

In an anisotropic electronic system with hoppings ¢; in the a
direction, the Heisenberg couplings scale as J; ~ t2 /U and
the ring couplings as K, ; ~ t%t% /U3, so their “anisotropies”
are indeed related: K&J; ~ JaJ; /U, which justifies Eq. (2).

Figure 2 gives the phase diagram in the Kj;;/J;—
Ji+y/Jz plane determined from the DMRG and VMC. We
see three prominent phases. Along the K; 4 = 0 axis, the sys-
tem is in the rung phase. Going to the square limit, J; 44 = 0,
and then increasing the ring coupling, the system undergoes
a transition to a staggered dimer phase for Kz 5 > 0.8. This
agrees with an earlier study [29] of the 2D square lattice model
with ring exchanges that found staggered dimer phase in the
same regime. In the present four-leg system, the dimers ori-
ent transverse to the ladder (3 direction in Fig. 1). As Jz44
increases towards the triangular regime, the dimer phase ex-
pands to smaller values of K3 4 /Jz. Note that besides the
staggered dimer order on the ¢ bonds, we also find an induced
staggered pattern on the 2 bonds as shown in Fig. 3(b) and
allowed by symmetry in the presence of the diagonal bonds.

Significantly, the dimer phase disappears for anisotropy
0.8 < Jz4y < 1 and moderate to large ring exchange. Here
the DMRG finds a spin-liquid state that fits with the SBM-
3 (e.g., on the 12 x 4 system the characteristic features in the
structure factors remain similar to the isotropic state described
earlier). The dimer phase touches the triangular axis near
K = 0.2-0.25 where it becomes degenerate with the VBS
state found earlier, cf. Fig. 3(a),(b).

Discussion.—The four-leg ladder captures a good deal of
local physics of the 2D model and allows guesses about the 2D
phase diagram. First, in the rung phase near the square limit
we observe strong spin correlations at (7, 7) and can view this
region as a ladder descendant of the square lattice Neel state.
Second, the staggered ¢ dimer state is a descendant of the 2D
staggered dimer state. In 2D there is a degeneracy between
cases where the strongest bonds are oriented in the ¢ or  di-
rection. Note that in the presence of the diagonal & + ¢ bonds,
the staggered g dimer state will induce a staggered pattern on
the z bonds, cf. Fig. 3(b). By continuity with the square limit,
we still expect a spontaneous selection of one direction over
the other. Third, the four-leg SBM-3 state is a direct descen-
dant of the 2D SBM. To summarize, we expect the 2D Neel,
staggered VBS, and spin liquid phases to occupy roughly sim-
ilar regions as the rung, staggered ¢ dimer, and SBM-3 phases
in Fig. 2. We do not venture to speculate how the three phases
meet, particularly since additional phases enter into competi-
tion. Specifically, the 2D triangular lattice with K < 0.1 has
the 120° AF phase [24]. Also, series expansions [30] suggest
that the Heisenberg model (K = 0 axis) has a columnar VBS
phase for 0.7 < Jz445/Jz < 0.9, which is different from the
staggered VBS stabilized by the ring exchanges.

Naive Hubbard model estimates for the organic spin liquid
materials xk-(ET)2Cus(CN)3 and EtMe3Sb[Pd(dmit)s]s sug-
gest that they lie in the challenging regime of strong frustra-
tion (Jz4g ~ Jz ~ Jy) and small to intermediate ring cou-
pling K ~ 0.2J. Our study shows that the SBM phase is a vi-
able contender, even if poised on the border of stability. More
realistic treatments such as inclusion of further ring exchanges
(pursued systematically for the Hubbard model in [16]) and
long-range Coulomb interactions may tilt the balance towards
the spin liquid phase and deserve further study.
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