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We show that semiconductor nanowires coupled to an s-wave superconductor provide a playground to study
effects of interactions between different topological superconducting phases supporting Majorana zero-energy
modes. We consider quasi-one dimensional system where the topological phases emerge from different trans-
verse subbands in the nanowire. In a certain parameter space, we show that there is a multicritical point in the
phase diagram where the low-energy theory is equivalent to the one describing two coupled Majorana chains.
We study effect of interactions as well as symmetry-breaking perturbations on the topological phase diagram in
the vicinity of this multicritical point. Our results shed light on the stability of the topological phase around the
multicritical point and have important implications for the experiments on Majorana nanowires.

Introduction. The possibility of realizing Majorana
fermions, elusive particles that are their own anti-particles,
in semiconductor nanowires coupled with an s-wave super-
conductor has attracted a lot of attention recently [1]. In addi-
tion to the intrinsic motivation of finding Majorana particles in
nature[2], the solid-state Majoranas have additional property
of fundamental physics interest: Majorana zero-energy modes
emerging in topological superconductors obey non-Abelian
braiding statistics[3–5] which can be exploited for quantum
computation purposes [6]. The prediction of the emergence
of Majorana fermions in semiconductor/superconductor het-
erostructures [7–10] has led to much activity aimed at detect-
ing these exotic particles [11–15] as well as exploiting them
for topological quantum computation [16–18].

There is no doubt that Majorana fermions can be reali-
azed in suitable mean-field models describing realistic phys-
ical systems. The existence of Majorana zero-energy modes
in these system can be shown theoretically by explicitly solv-
ing the corresponding quadratic Hamiltonians [7, 9, 10, 19] or
invoking topological invariants developed for noninteracting
systems [20]. The situation is much more complicated, how-
ever, once interactions are included, and there are examples
where interactions lead to the breakdown of the classification
developed for noninteracting systems [21]. In this Letter we
study effect of interactions on the topological phase diagram
using a realistic model which describes multiband nanowires
proximity-coupled to an s-wave superconductor. The effective
theory naturally emerging in multiband nanowires is equiva-
lent to the model of two coupled Majorana chains. Rather
than being spatially dependent, the coupling between Majo-
rana “chains” is controlled by external parameters such as
magnetic field and chemical potential. Within this model, we
characterize the effect of interparticle interactions as well as
various other perturbations on the topological phase diagram.
We find that interactions do not change the phase diagram at
the qualitative level but lead to a non-trivial renormalization
of the phase boundary.

Theoretical model. The system we consider here consists
of a semiconductor quantum well with dimensions Lz �
Ly � Lx in contact with an s-wave superconductor, see
Fig.1a. We assume that the confinement along the z-axis is

very strong so that only the lowest subband with respect to
the z-axis eigenstates is occupied, whereas the confinement
along the y-axis is much weaker and few a subbands in the y-
direction can be populated. In the rest of the paper we consider
an effective two-band model for the semiconductor nanowire
which captures the physics we are interested in. Within this
approximation, the Hamiltonian of the system reads (~ = 1):

HSM =
∑
λλ′

∫ L

−L
dx

[
c†λ

(
− ∂2

x

2m∗
− µ+Vxσx+iασy∂x

)
λλ′
cλ′

+d†λ

(
− ∂2

x

2m∗
−µ+Esb+Vxσx+iασy∂x

)
λλ′

dλ′

]
. (1)

HP =

∫ L

−L
dx
[
∆0c

†
↑c
†
↓ + ∆0d

†
↑d
†
↓ + h.c.

]
. (2)

Here cλ and dλ represent fermion annihilation operators of
the first and second subbands having spin λ; Esb is the sub-
band energy difference due to the transverse confinement. The
parameters m∗, µ, and α are the effective mass, chemical
potential, and strength of spin-orbit Rashba interaction, re-
spectively, and 2L is the length of the wire, which is taken
to be much longer than the effective superconducting coher-
ence length ξ in the semiconductor. An in-plane magnetic
field Bx leads to spin splitting of the bands at zero momenta
Vx=gµBBx/2, where gSM is the g-factor in the semiconduc-
tor and µB is the Bohr magneton. The Hamiltonian HP de-
scribes the proximity effect due to electron tunneling across
the semiconductor/superconductor interface. For simplicity,
we assume that the induced superconducting pair potential is
the same for the first and second transverse bands.

As shown in Ref. [22], the system described by the Hamil-
tonian H0 = HSM +HP realizes a non-trivial topological SC
state in a suitable parameter regime. In the weak coupling
limit ∆0 → 0, the topological phase emerges when there is an
odd number of Fermi surfaces. In this case, the Hamiltonian
of the system is adiabatically connected with the one of a spin-
less p-wave superconductor which is known to host Majorana
zero-energy modes at the ends of the nanowire. As shown
in Fig. 1b, such a situation is realized when |Vx| > |µ| and
|Vx| > |µ−Esb| which corresponds to the topological phases
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FIG. 1. (Color online) a) Semiconductor quantum well with dimen-
sions Lz � Ly � Lx in contact with an s-wave superconductor. b)
Single-particle energy spectrum showing lowest two transverse sub-
bands. The combination of the Rashba spin-orbit coupling and mag-
netic field results in splitting of the spin degeneracy in each subband.
c) Phase diagram for two-band topological superconductor assum-
ing fermion parity in each subband is conserved. At the multicritical
point the system has enhanced Z2 ⊗ Z2 symmetry and is equivalent
to the model of two Majorana chains. Changing of the mass terms
Ma corresponds to a topological phase transition and allows one to
map out the topological phase diagram. Here tilde denotes rescaled
energy Ẽ ≡ E/m∗α2. d) Single-particle energy spectrum at the
multicritical point where two bands belonging to different subbands
touch, and the band topology changes in a non-trivial way.

originating from the first (ny = 1) and second (ny = 2) sub-
bands, respectively. Looking at the single-particle band struc-
ture as a function of Vx, one can notice that there is a special
point Vx ≈ Esb/2 where two bands belonging to ny = 1 and
ny = 2 subbands touch, see Fig. 1c and d. If the chemical po-
tential is tuned to µ = Esb/2, the single particle band topol-
ogy changes in a non-trivial way at this point (i.e. the first
Chern number defined for two-band Bogoliubov-De Gennes
Hamiltonian changes by 2) yielding an interesting phase di-
agram which is similar to two coupled Majorana chains. In
this case, however, instead of originating from physically dif-
ferent chains, Majorana fermions emerge here from different
transverse subbands. We first analyze the phase diagram as-
suming the fermion parity in each subband is preserved, and
then discuss how various perturbations including interactions
affect the topological phase diagram.

In the case of a fixed fermion parity in each subband,
one can introduce a Z2 topological invariant M (Majorana
number) [20, 22] for each band M1 and M2. The change
of the topological invariant signals the phase transition with
the phase boundary given by |Vx| =

√
µ2+∆2

0 and |Vx| =√
(µ−Esb)2+∆2

0 for ny = 1 and ny = 2 subbands, respec-

tively. At a special point in the phase diagram µ = Esb/2 and
Vx =

√
E2

sb/4 + ∆2
0, two topological phases can coexist and

the symmetry group is Z2⊗Z2, see Fig. 1c. Around this point
there are four distinct phases: non-topological (no Majorana
modes), topological with Majorana fermions originating ei-
ther from ny = 1 or ny = 2 subbands, and the last one with
two Majorana modes localized on each end, see Fig. 1c. Thus,
multiband semiconductor nanowires are interesting from both
a fundamental and a practical point of view as they offer a pos-
sibility to investigate interaction between various topological
phases in a realistic experimental system.

From now on we focus on the multicritical point, and
present a simple explanation of the topological phase transi-
tion by deriving an effective long wavelength model around
it. The topological phase transition requires vanishing of the
excitation gap in the system for the reconstruction of the en-
ergy spectrum to occur [3]. The quasiparticle excitation gap
at the phase boundary vanishes as E(p) ∼ |p| [5], and, thus,
one can understand the phase diagram by deriving an effec-
tive model in the spirit of k ·p perturbation theory. The phase
transition between various topological phases can be captured
by studying the Dirac-like Hamiltonian with the mass term(s)
M changing sign across the phase boundary, see Fig. 1c. We
first calculate exact eigenstates around the multicritical point,
and then evaluate small corrections due to the deviation of
the physical parameters away from this point. Assuming that
these terms are small compared to µ,∆0, Vx ∼ Esb, we per-
form the following canonical transformation and project the
system to a low energy subspace ε� Esb:

c↑/↓≈±u−(ei
π
4 γ

(1)
R +e−i

π
4 γ

(1)
L )+u+(e−i

π
4 γ

(1)
R +ei

π
4 γ

(1)
L ),

(3)

d↑/↓≈∓u+(ei
π
4 γ

(2)
R +e−i

π
4 γ

(2)
L )−u−(e−i

π
4 γ

(2)
R +ei

π
4 γ

(2)
L ).

Here γ(a)
R/L are right/left-moving Majorana operators originat-

ing from the first (a=1) and second (a=2) subbands, respec-
tively. In the transformation above we kept only low energy
degrees of freedom and neglected high-energy modes. (Note,
however, that these high-energy modes are necessary to satisfy
canonical anticommutation relations.) The amplitudes u± are
given by

u± =
1

2
√

2

√
E2

sb + 4∆2
0 ± Esb

√
E2

sb + 4∆2
0√

(E2
sb + 4∆2

0)
.

After some algebra, one arrives at the following effective
Hamiltonian valid in the vicinity of the multicritical point:

H0≈
∑
a=1,2

∫ L

−L
dx
[
iα̃(γ

(a)
L ∂xγ

(a)
L −γ

(a)
R ∂xγ

(a)
R )+iMaγ

(a)
L γ

(a)
R

]
,

(4)

where α̃ = α∆0/
√
E2

sb + 4∆2
0 and the mass terms Ma can

be written in terms of the deviations from the multicriti-
cal point δVx = Vx −

√
E2

sb/4 + ∆2
0 and δµ̃ = Esb(µ −
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Esb/2)/
√
E2

sb + 4∆2
0:

M1/2 = −2δVx ± 2δµ̃. (5)

The topological phase transitions can be classified in terms
of the sign change of the mass terms Ma, see Fig. 1c. It is
clear that the phase with M1,2 > 0 is trivial since it is adia-
batically connected to Vx = 0 limit. A sign change of one
of the two mass terms corresponds to a topological transition
to a phase with a single Majorana mode. Finally, when both
mass terms change sign we have two Majorana modes per end.
However, the latter state is unstable against perturbations that
break fermion parity in the individual chain and ultimately lift
the degeneracy by hybridizing the Majorana modes.

We consider below effect of the symmetry-breaking terms
which couple Majorana modes γ(1) and γ(2) on the topolog-
ical phase diagram. The presence of such terms reduces the
Z2 ⊗ Z2 symmetry of the model introduced in Eq. (4) to Z2

where the two phases corresponds to a different total fermion
parity of the system [20]. Let us consider, for example, the
interband superconducting pairing term

H
(12)
P =

∫ L

−L
[∆12(d†↑c

†
↓ + c†↑d

†
↓) + h.c.]

≈ −2i∆12

∫ L

−L
dx[γ

(1)
R γ

(2)
L − γ

(1)
L γ

(2)
R ], (6)

where in the last line we performed the canonical transfor-
mation (3) and projected the Hamiltonian into the low energy
subspace. This term indeed couples Majorana fermions orig-
inating from different subbands, and, modifies the phase di-
agram at the qualitative level, see Fig. 2a. One can show
that for δµ̃ = 0 the energy spectrum of H0 + H

(12)
P be-

comes E±(p) =
√

(α̃p)2 + (δVx ±∆12)2, and both Majo-
rana modes become massive at the multicritical point. How-
ever, the excitation gap now vanishes at δVx = ±∆12 indi-
cating that there is a window −|∆12| < δVx < |∆12| where
topological phases from different subbands coexist corrobo-
rating the results of Ref. [22]. For δµ̃ 6= 0, the phase bound-
ary reads δVx = ±

√
δµ̃2 + ∆2

12. As emphasized in Ref. [22],
this effect is particularly important for experimental realiza-
tion of the topological superconducting phase in semiconduc-
tor nanowires where chemical potential fluctuations pose seri-
ous constraint. Indeed, in this region the topological phase is
to a large extent robust against chemical potential fluctuations
which now have to be δµ ∼ Esb to cause the transition into
the nontopological state.

Interaction effects. We now study the effect of interac-
tions on the topological superconducting phase. For simplic-
ity, we consider short-range interactions given by the Hamil-
tonian

Hint =U
∑

λ,λ′=↑,↓

∫ L

−L
dx : (c†λcλ+d†λdλ) :: (c†λ′cλ′+d

†
λ′dλ′) :

(7)

≈−Ũ
∫ L

−L
dx : (γ

(1)
L γ

(1)
R −γ

(2)
L γ

(2)
R ) :: (γ

(1)
L γ

(1)
R −γ

(2)
L γ

(2)
R ),

FIG. 2. (Color online) a) Topological phase diagram for two band
semiconductor model in the presence interband superconducting
pairing ∆12 which breaks fermion parity in the individual subband
and leads to the hybridization between the Majorana modes originat-
ing from ny = 1 and ny = 2 subbands. As a result, the enhanced
Z2 ⊗ Z2 symmetry at the multicritical point is broken down to Z2,
compare with Fig 1c. b) Shift of the topological phase boundary
caused by interactions. Repulsive/attractive interaction lead to the
suppression/enhansement of the topological phase at the multicriti-
cal point.

where Ũ = U
E2

sb

E2
sb+4∆2

0
. In the last line of Eq. (7) we have

projected the Hamiltonian to the low energy subspace. Com-
bining all the terms, the full Hamiltonian for the interacting
system becomes H = H0 +H

(12)
P +Hint. One can see that at

the multicritical point (assuming ∆12 = 0), the Hamiltonian
H maps onto Thirring model which can be solved exactly us-
ing bosonization. Note that the interaction term (7) does not
break fermion parity in the individual chain, and preserves
Z2 ⊗ Z2 symmetry present at the multicritical point. The ef-
fect of deviations from the multicritical point as well as effect
of symmetry-breaking terms can be included in the model per-
turbatively assuming that these terms are small. We proceed
using standard bosonization [23] by first introducing left and
right-moving Dirac fermions ψR/L = (γ

(1)
R/L − iγ

(2)
R/L)/

√
2,

and then rewriting them in terms of the bosonic fields ϕ and
θ: ψR/L ∼ ei(ϕ±θ) . The bosonized Hamiltonian H becomes

H=
v

2π

∫ L

−L
dx

[
K(∂xϕ)2+

1

K
(∂xθ)

2− 2y1

a2
sin 2θ− 2y2

a2
cos 2ϕ

]
,

(8)

where the v, K, y1,2 are related to the microscopic

parameters of the model: v = 2α̃

√
1−
(
Ũ/πα̃

)2

,

K =

√
(1− Ũ

πα̃ )/(1+ Ũ
πα̃ ), y1 = 2δVxa/v, and y2 =

2
√

∆2
12+δµ̃2a/v. Here a is a cutoff in the problem, which

is related to the momentum bandwidth Λ ∼ 1/a [23]. Note
that at K = 1 and y1 = y2 the model is self-dual ϕ↔ θ. We
note in passing that the Hamiltonian (8) appears in other sys-
tems such as classical two-dimensional XY model in a mag-
netic field and weakly coupled Heisenberg chains, see, e.g.
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Refs. [24–26], and one can develop some intuition based on
these analogies.

We now investigate how interactions modify the topological
phase diagram of the system and study effects of the compet-
ing relevant operators on the non-trivial criticality. Assuming
that y1,2 → 0, one can obtain flow equations using a pertur-
bative real-space RG approach [25]:

dy1(l)

dl
= (2−K)y1(l), (9)

dy2(l)

dl
= (2−K−1)y2(l), (10)

d lnK

dl
= K−1y2

2 −Ky2
1 , (11)

where l = ln[a/a0] is the flow parameter with a0 being the
initial value of the cutoff. As one can see in the vicinity
of K = 1, where we have a non-trivial critical point, both
mass terms are relevant and flow to strong coupling under RG,
i.e. each perturbation acting separately would yield a massive
field theory. However, given that y1 and y2 couple to dual
field operators corresponding to charge-density-wave pairing
and Cooper-pairing, respectively, and drive the system to dif-
ferent ground states, the interplay between them gives rise to
a second-order phase transition at intermediate coupling. In-
deed, this is what happens at the self-dual point K=1. Away
from this exactly solvable point, some intuition can be ob-
tained by invoking scaling arguments. Using the analogy with
2D classical theory, the scaling theory of our zero-temperature
1D problem can be easily formulated. Since the critical the-
ory should be invariant under the rescaling, the singular part
of the energy density satisfies the following scaling relations:

fs[y1, y2] =e−2lfs[e
(2−K)ly1, e

(2−K−1)ly2]. (12)

The scale l can be fixed by requiring e(2−K−1)l∗y2 = 1. Sub-
stituting l∗ into the energy density, one finds

fs[y1, y2] =y
2

2−K−1

2 fs

[
y
− 2−K

2−K−1

2 y1, 1

]
. (13)

The phase transition in this system occurs when

y
− 2−K

2−K−1

2 y1 ∼ 1, and, thus, the new phase boundary is
given by

δVx = ±
(
∆2

12 + δµ2
) 1

2
2−K

2−K−1 . (14)

This is one of the main results of the paper. The presence of
interactions does not modify the multicritical point but leads
to a non-trivial renormalization of the phase boundary which
now depends on the Luttinger liquid parameter K. One can
easily see that Eq. (14) is consistent with the noninteracting
(K = 1) result discussed earlier. In the case of a repulsive
interaction (K<1), the topological region at the multicritical
point shrinks, see Fig. 2b. This result can be understood as a
competition between the repulsive interaction and proximity-
induced superconductivity, and in this regard, our conclusions

are consistent with those of Refs. [27, 28]. On the contrary,
attractive interaction (K > 1) stabilizes the topological phase
by expanding the area occupied by the topological phase, see
Fig. 2b.

To conclude, we have studied interacting topological su-
perconducting phases using a realistic model corresponding
to the semiconductor nanowire in the limit of multiband oc-
cupancy in contact with an s-wave superconductor. In the
vicinity of the multicritical point in the phase diagram, the
model considered here is equivalent to the one describing two
coupled Majorana chains, and we have characterized the ef-
fect of interactions as well as other perturbations on the topo-
logical phase diagram. We find that moderate interactions do
not affect the phase diagram qualitatively but lead to nontriv-
ial quantitative changes in the phase boundary. Our results
characterize the stability of the topological phase around the
multicritical point against interactions and have important im-
plications for the experiments on Majorana nanowires.
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