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We study the behavior of a hysteretic current-biased Josephson junction in the vicinity of its
return tc the zero-voltage states, with primary though not exclusive emphasis on the limit of
weak damping (8, €1), and under the assumption that the zero-point and thermal energies
are both small compared to £ ¢, so that fluctuation effects are important only very close to the
return point. We consider in detail the resistively shunted junction {RS8J} and guasiparticle-
tunneling medels, and also make predictions for more general models. Denoting the value of
imposed current £ at which return to the zero-voltage state would take place in the absence of
fluctuations by 7, we study in particular (a) the dc current-voltage characteristic in the
running state for f — 7, <€/, and (b} the first-passage-time statistics of the return to the zero-
voltage state induced by both classical and quantum fluctuations. With regard to (b), we
express our results in the form of a prediction of the width o of the distribution of retrapping
evenis as a function of imposed current; this prediction extends down to zero temperature and
can be compared directly with the experimentally measured widths. Gur two principal results
are as follows: (a} In the running state, for /<7, the current-voltage characteristic should be
given quite generally by the formula (7 — 7,)/7, = [{AV,/V) + Blexp — ¥/ ¥V, where 4 and
B are constants specific to the model, and ¥, 1s a characteristic voliage which for the simplest
models is given in the weak-damping limit by ¥, = w,¢, + 0(83) , with e, the junction
plasma resonance frequency at zero current bias. (b} The square o~ of the width of the
retrapping distribution plotted as a function of F /7, is given to within logarithmic factors by
o (T} = const wf( T}, where p=4#w,/I, ., the constant is of order 1, and f{ T) is a function
which tends to 1 as 70 and is proportional t¢ 7in the limit of high 77 it is computed
explicitly for the RSJ model. We also suggest an explanation (other than lead effects) of the
“forbidden voltage regions” whick appear to be a characteristic of many high-guality
junctions. We discuss the application of our results {o the determination of the parameters of
Josephsen junctions necessary for the investigation of quantum effects on the macroscopic
tevel.

I INTRODUCTION dc current-voltage characteristic has been used for this pur-
pose, since it is the most routinely measured property of g
junction. Unfortunately, there seems to be considerabie dis-
agreement in the literature about how to interpret this char-
acteristic, and in particular what significance, if any, should
be attached to its slope in various regions.

With the above considerations in mind, we present in
this paper a detailed study of the behavior of a current-biased
junction at and close to the return to the zero-voltage state,
with primary though not exclusive attention to the weak-
damping case. Specifically, we study (1) the dc current-vol-
tage characteristic in the running state for bias currents f
such that f — f, is small compared to the return current 7,,
and (2} the distribution of values of 7 at which the system
jumps back to the zero-voltage state. To concentrate on this
rather small piece of the complete £- V' characteristic might at
) Present address: Department of Mathematics, Rutgers University, New first sight seem rather parochial, but we shall see that it (a)

Brunswick, NY 08903. permits unambiguous determination of some of the junction

A Josephson junction biased by a fixed external current
is the prototype of a macroscopic multistable system. fn such
a system not merely the averaged effect of fluctuations but
the statistics of individual events can be observed, and as a
result it is of great interest from the point of view of classical
and guantum statistical physics. Moreover, in recent vears
the current-biased Josephson junction and closely related
systems have acquired additional significance in the context
of fundamental tests of quantum mechanics (see, e.g., Ref.
13. For such applications it is often essential to be abie to
extract the parameters of the system from experiments con-
ducted in the regime where quantum effects are unimpor-
tant. Most often (though not always—see, e.g., Ref. 2) the
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parameters, and (b) is usually the only region of the charac-
teristic, other than the well-studied region near { = I, on the
outward branch of the characteristic, where ciassical and
quantum fluctuation effects are significant. (We exclude in
this paper the case where fiuctuation effects are so strong as
to effect the whole curve appreciably: see Sec. IL)

Needless to say, both questions (1) and (2) above have
been studied in numercus papers in the literature. As regards
(1), however, the vast majority of these papers have studied
a much larger portion of the characteristic, and have there-
fore inevitably been mainly computational in nature; more-
over, most of them have studied very specific models of the
junction. As a result, it does not seem to be generally appreci-
ated, either by theorists or by experimentalists trying to ex-
tract parameters from their data, that in the immediate
neighborhood of the return to the zerc-voltage state the
characieristic should have a rather simple and largely mod-
el-independent behavior. In this paper we shall try to extract
and present this behavior with a minimum of mathematical
obfuscation.

As regards question (2), there is a considerable litera-
ture on the phenomenon of thermal-fluctuation induced re-
turn to the zero-voltage state (“‘retrapping’): we note in
particular Refs. 3 and 4, and the various series of papers by
Ben-Jacob, Cristiano, Mel'nikov, and their respective coila-
borators (see, respectively, Kefs. 5-7}. Again, however,
these papers tend to be rather general in nature and it is
sometimes rather difficult to see the wood for the trees: the
results are often left in complicated integral forms from
which it is nontrivial to extract quantities directly relevant to
experiment, such as the width of the retrapping distribution.
More importantly, the question of retrapping due to guan-
tum fluctuations has been barely touched in the existing
literature, and then® only in the high-temperature limit
where it is a small correction; contrast the situation with
regard to the escape from the zero-voltage state, where the
corresponding phenomenon (macroscopic quantum tunnel-
ing or MQT) is by now the subject of a considerable experi-
mental and theoretical literature. In this paper we shall fill
this lacuna.

The plan of the paper is as follows: In Sec. II we intro-
duce the general problem of a curreni-biased Josephson
junction, discuss some commonly used modeis for the sys-
tem, and define the dimensionless parameters which deter-
mine the qualitative features of the characteristic. In Sec. I
we calculate the running-state characteristic for f — I, </,
under the assumption that both classical and guantum fiuc-
tuation effects can be neglected; we present results for the
standard resistively shunted junction (RSJ) model, for the
guasiparticle-tunneling model, for 2 mixture of the two, and
finaliy for 2 quite general mode! of the junction. In Sec. IV
we consider the effects of noise in both the classical and
guantum regimes: we show that the effect on the running-
state characteristics calculated in Sec. III is negligible, and
calculate the widths of the retrapping distributions as ob-
served in 2 conventional ramping experiment. We present
results for the weakly damped RSY mode! which we believe
are essentially asymptotically exact in the weak-fluctuation
limit, and show that for more general weakly damped mod-
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els the corrections to the RSJ results enter only through
logarithmic factors and a change in the details of the tem-
perature dependence, while for the more strongly damped
case we make it plausible that the difference reduces to an
averall factor which has little effect on the temperature de-
pendence of the distribution widths. Section V is a conclu-
sion in which we discuss the significance and applicability of
our results. Appendixes A and B discuss repectively the de-
terministic motion across the barrier top for arbitrary shunt-
ing admittance and the status of the gquantum Langevin ap-
proach used in Sec. IV; those who find the conclusions of
either of these discussions cbvious should omit it.

. GENERAL CONSIDERATIONS, MODELS, AND
DIMENSIONLESS PARAMETERS

A good general introduction to the subject of Josephson
junctions may be found in Ref. 9. For present purposes we
may define a Josephson junction as an electrical circuit ele-
ment which can carry without dissipation a current of the
form

F=If(¢), maxj[f($)|=1, (4

where the quantity ¢, which normally represents the differ-
ence in phase of the wave function of the Cooper pairs in the
bulk superconductors on the two sides of the junction, satis-
fies the Josephson relation

dp _2e¥(0)
dt %

F(#) being the voltage developed across the junction. The
function f{¢) is assumed periodic in ¢ with period 2. The
nonlinear element described by Eq. (1) may be shunted by
an arbitrary complex admittance Y which may depend on ¢,
V, and frequency. We will consider such an element to be
part of a circuit in series with a very large impedance Z,, so
that to the extent that a classical description of the leads is
valid, the current fed into the region of interest is a constant
coniroiled by the experimenter. The results obtained for the
dc characteristic in this “current-biased” situation may of
course be adapted to the more realistic case of finite lead
impedance by a standard load-line construction'®; they will
be valid in their simple form to the extent that Z, is much
larger then the differential resistance of the junction region
for all relevant frequencies (including zero), a condition we
shall assume in this paper unless otherwise stated. Thus, the
model considered here is represented by the generic circuit
diagram shown in Fig. 1, with the constitutive egnations (1)
and (2}).

For pedagogical clarity we shall first consider in this
section the so-called RSJ model, and subsequently discuss
the more general situation. The RSJ model is the special case
of the above one obtained by setting (a) f{#H) = sin ¢ and
(b) Y=R !+ iw C. Thus, in this case the “black box”
shunting the junction in Fig. 1 consists of a capacitance C
and ohmic resistance R in paraliel. In the original, and sim-
plest, version of the RSJ model the “resistance” in question
was taken to be the “normal-state” resistance Ry, that is, the
resistance of the junction when the two bulk metals on the
two sides are above their transition temperature(s) 7, ; how-

; (2)
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FIG. 1. Generic circuit diagram of a current-biased Josephson junction.
The cross represents the junction.

ever, it should be strongly emphasized that many real-life
junctions may be described, in the region of the I-V character-
istic which we will study in this paper, by an effective RS
model with 2 resistance which at low temperatures may be
several orders of magnitude higher than R,,. We will reserve
the symibol R below exclusively for this so-called “subgap”
resistance; if we need to refer to the normal-state resistance,
we will always denote it explicitly by R,,.

The equation of motion of the RS model when biased
with a constant current 7 is well known: see, e.g., Ref. 9,
Chap. 6. For notational simplicity we choose for the moment
asystem of units in which #i/2e=¢,/2m=1, where g, =k /2¢
is the superconducting flux guantum: ordinary units are
then restored by the replacement C— ($o/27)°C, R— (d,/
20) R, Ly = (@21, , V= ($p/2m) V. In this system
of units the equation of motion of the phase difference ¢ and
of the voltage ¥{#) read

Cé+R "+ 1 sing=I+1,(5), (3)
Vie) = (1), (4

where the quantity f, (¢} is the (negative of the) fuctuating
part of the current through the resistor: the mean value of
I, (¢) is zero, and its fuctuations are specified in accordance
with the fluctuation-dissipation theorem (see Sec. IV). The
equation of motion {3) represents, as is weil known, a “par-
ticle” of mass C and with coordinate ¢, subject to a friction
coefficient R ~ ! and moving in the so-calied “washboard po-
tential” (¢} given by

U(g) = — I, cos¢ —Id. (5}

This potential is represented in Fig. 2. The problem is exactly
isomorphic to that of the forced damped pendulum. Under
the conditions which will be of interest in the present paper it
is largely unnecessary (though see Sec. IV F} to address the
vexed question’' of whether or not states differing in ¢ value
by 2nw should be identified; if an explicit decision on this
point is reguired for notational purposes, we shall assume
they are not.

The RSF model contains, either explicitly or implicitly,
a number of characteristic energies. For the moment let us
ignore the noise term [, (¢). Then there are two obvious en-
ergy scales: the barrier height 27, (or I ¢,/ in conventional
units) and the energy dissipated per cycle when the system
“rolls” in the washboard potential at bias currents small
compared to I, ; for not teo sirong damping this is of order
(I, /C)yV2R —'.Itis also convenient at this point tointroduce
A{ T}, the (order of magnitude of the) single-particle energy
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FIG. 2. “Washboard potential” of Eq. {5).

gap in the bulk superconductors on the two sides of this
junction; although in the original RSJ model, which assumes
that Eq. (3) isapplicable for the whole I- ¥ characteristic, the
quantity A plays no role, it is important for the “effective
RSJI model” discussed above, since we expect that for fre-
guencies @ and voltages ¥ comparable to or larger than 2A/7
and A/e, respectively, the effective resistance swiiches over
from the (often very high) “subgap” resistance R to some-
thing of the order of the normal-state resistance R, .

There is also a characteristic energy associated with the
noise current [, (1}, In the classical limit this is obviously the
thermal energy &k ¥, while in the quantum case it is of the
order of the zero-point energy fiw,, where the Josephson
plasma resonance frequency w; is defined by

w, =, /C)V? . (6)

We will be primarily interested below in the low-tempera-
ture regime where kp 75 fiw;, and will therefore specify the
regimes of interest in terms of the quantity i, . For higher
temperatures our conclusions for any particular regime will
in general remain valid provided the inequalities defining the
regime remain valid with #w; replaced by &, 7. This point
should be borne in mind when we refer, in subsequent sec-
tions, to “the limit £, T /#iw, — o0.” Unless otherwise noted,
we shall assume throughout this paper that both #iw; and
kg T are small compared to A, and will work to lowest non-
vanishing order in the ratios fiw, /A and &, T /A. Moreover,
we will assume except where otherwise stated that we are
interested in the portion of the characteristic where the dc
voltage ¥ is appreciably less than A/e.

The general features of the current-voltage characteris-
tic in this regime are determined, for &, 7' S#w,, by three
dimensionless ratios {of which only two are independent ) of
the energy scales cther than A. It is convenient to choose
them in conventional units as follows':

B,={w;RC) '=(¢/ 20, CRH?, (72)
p=tw,/I,¢o= Qutt/Cldg )", (Tb}
p=B;'u=R /Ry, RQEIZ/‘S-BZ%&S kb . {(7¢)

Roughly speaking, /3, is a measure of the relative energy loss
per cycle, g of the overall importance of guantum fluctu-
ation effects relative to the classical dynamics of the junc-
tion, and p of the relative fluctuations in the dissipation per
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cycle: at zero temperature p is also prima facie a measure of
the degree to which quantum phase coberence is preserved
from one cycle to the next {see Sec. IV). In the high-tem-
perature regime, as noted above, the appropriate changes in
the definitions (7) are that B, (which does not contain #
explicitly) is unchanged, while u and p are each multiplied
by a factor kT /#w;; however, p is then no longer simply
related to the quantum phase coherence {cf. Sec. IV F.
Mote that in general R may itself be a function of T.

We will assume throughout this paper that the param-
eter u is much less than unity. This means that in general the
dynamics of the junction is well described by classical deter-
ministic dynamics, and the noise term f, {¢) on the right-
hand side of Eq. (3) has an appreciable effect only near the
points, if any, corresponding to bifurcation of the character-
istic. Since the constant multiplying (CZ,) ' in the defini-
tion of i, Eq. (2b), is of order 16~ S units, it is very likely
that most junctions examined to date have well satisfied the
condition g € 1 in the low-temperature regime 7% %w,; for
higher temperatures we must postulate this condition expli-
citly. For junctions for which the condition z €1 is not ful-
filled even at low temperatures a completely new approach is
probably necessary: cf. Ref. 13. Regarding the parameter
B;, 1t is well known (see, e.g., Ref. 9, Chap. 6) that in the
approximation of neglect of fluctuations this Guantity deter-
mines the presence or absence of hysteresis in the character-
istic; if 7, > 1 there is no hysteresis, while for 8, -0 the
“return” current {sec below) tends to zero. In this paper we
shall always assume that 5, is less than 1, so that hysteresis
occurs, and will mostly though not exclusively be interested
in the case f7; € 1; we will in any case assume that 3, is not
too close to 1, so that the critical and return currents are well
separated. Note that these conditions still allow the third
dimensionless parameter p to be either large or small com-
pared to umity.

The general features of the “deterministic” current-vol-
tage characteristic for B, < 1, i.e, that which is obiained
from Eq. (3) by neglecting the noise term I, (¢}, are well
known and are discussed, e.g., in Chap. 6 of Ref. 9. In Fig. 3
we show a typical characteristic for the case 8, €1, with the
solid line representing the deterministic formula, As is well
known, the point 4 represents the point at which the minima
of the potential (5} become infiection points: at this point
the system is tipped out of the well and starts rolling down
the washboard potential with a considerable velocity. Gen-
erally speaking, the voitage at point 4 ', which corresponds to
the steady-state motion for £ = {_, is of order [ R, where
R, is the normal-state resistance; this is because for a stan-
dard tunnel-oxide junction, the critical current is of order
A/R e and hence this voltage is of order A/e, e, large
enough that the effective resistance for the rolling motion is
of the order of the normal-state value {cf. below). Quite
generally, the behavior in the region of point 4 ' {and ¢ for-
tipri at higher voltages) will be determined by an effective
resistance which may be quite different from (and in general
considerabiy smaller than) the “subgap” value. Thus, the
“cutward” (4 -4 ' — ) portion of the deterministic charac-
teristic gives information only on the critical current 7, and
not on the other parameters of interest {the capacitance C
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FIG. 3. Typical I- ¥ characteristic of a strongly hysteretic junction (5, €1}
in the RSJ model.

and subgap resistance R ). On the other hand, the point B, at
which the applied current is by definition equal to the “re-
turn” current [, corresponds to the point at which the ener-
gy gained from the applied current over a cycle is just equal
to that dissipated in the resistance; provided that the condi-
tion ©; €A holds as we are assuming, the behavior in the
neighborhood of this point {on the “return” (lower) curvel
is determined entirely by the low-frequency parameters, and
in particular, as we shall see, gives information not only on
the subgap resistance R but also directly on the capacitance
€. Thus we shall confine ourselves in this paper to the neigh-
borhood of the return to the zero-voltage state, i.e., to the
portion of the characteristic between points # and D in Fig.
3.

We have aiso indicated in Fig. 3, by dashed lines, the
effect of fiuctuations, assuming that the fluctuation param-
eter p is small compared to unity. Strictly speaking, even in
the presence of fluctuations we should expect that the system
eventually attains a steady state for any fixed value of the
external current and therefore that the current-voltage char-
acteristic is deterministic. However, in practice the relevant
experiments are always conducted by ramping the external
current gver a finite time scale (typically anything between a
microsecond and a few minutes) and for g — 0 the time taken
to reach the steady state may be much longer than this. For
example, suppose that we are ramping the current upwards
from zero. At some point somewhat below 4 in Fig. 3 fiuctu-
ations may lead to the escape from the (still metastable)
minimum of the washboard potential, and the system will
jump across into the “ronning” (finite-voliage) state. Al-
though thereafter there is strictly speaking some probability
that a Buctuation will restore the system to the well, i.e., to
the zero-voltage state, in practice for g2 — 0 this probability is
so small {cf. Sec. IV) that the ramping would have brought
the current J far above [ before it would occur. (Evenif the
experiment were perfofined by holding the current station-
ary at some value just below 7, the “‘return” events are so
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rare that the time-averaged dc voltage would differ only neg-
ligibly from that associated with point 4'). By a parallel
argument, once the system is “retrapped” into the zero-vol-
tage state at B, it will for all practical purposes stay there.
Thus, as emphasized by Cristiano and Silvestrini,® in this
limit the quantity of interest is the statistics of the “first pas-
sage time,” that is, the time at which the system, started
{e.g.) in the running state at r = {, is observed to return to
the zero-voltage state. We wili caiculate these statistics for
the case of constant current: the distribution of values of the
current at which the system is observed to return in an exper-
iment conducted at finite ramping rate is then obtained by a
standard convolution procedure (see Sec. IV C).

So far, we have assumed that all of the features of the 7.V
characteristic which we wish to study are well described by
an effective RSJ model. Let us now consider possible more
general models. The most obvious generalization of the RSJ
model consists in choosing a potential more general than
I, cos ¢ (but still pericdic in ¢) for the first term in U{4)
{Eq. (5}1, and also allowing the capacitance C and/or the
resistance R tobe a function of ¢. As we shall see below, such
a generalization is probably sufficient to describe most junc-
tions of the standard tunnel-oxide type except at very low
temperatures { kT S fiw, ). It is clear that those resulis of the
simpte RSJ model which involve the motion over a whole
cycle will now be changed; for example, the standard rela-
tion 1, /1, = (4/7)B, for B, -0 (see Sec. ITT) will in general
no longer hold. However, many of the features of the results
to be derived in the next two sections depend only on the
motion near the top of the barrier, and will therefore be un-
changed provided we replace I, by an effective value 7, de-
fined by

lll

8
L (505 6= bome 8

where ¢,.., corresponds to the position of the barrier top,
and define C and R as the values appropriate to this value of
¢. This point is explored further in Sec. HHI E.

A much less trivial generalization, at least at first sight,
is to the case of a tunnel oxide junction described by the
standard Bardeen—Josephson tunneling Hamiltonian, We
shall refer to this model for brevity as the “guasiparticle-
tunneling” (QPT) model.' Its deterministic dynamics has
been studied by Werthamer'S and many others (see, e.g.,
Ref. 9, Chap. 2), and recently a series of papers'® by Ambe-
gaokar and co-workers has extended the formalism so as to
permit the discussion of both classical and guantum fluctu-
ation effects. They derive for the junction phase ¢ a quantum
Langevin equation which in our reduced units takes the form

Choy—4 [ ar'fa s - ein ($2 =200

—B,(t ~t")sin (M%ﬁii-?—)} =T+ L5, (%)

Here I, (1) is the noise term, which wiil be discussed in Sec.
IV, and the quantities «; (¢) and £, (1) are the imaginary
parts, respectively, of the functions (¢} and B{¢) defined by

a(t) :_j d -‘l(’i}!
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Ip(e), (10a)

3128

~ it

e[ (@} ,

10b
1__6 ~—iie (10b}

B(H) =— j
where the quantlties o (@) and [ (@) are the in-phase
parts, respectively, of the quasiparticle and pair contribu-
tions to the total current obtained at a de¢ voltage #w/e. The
general form of these functions is given for the simple QPT
model (in which quasiparticle damping effects, etc., are ig-
nored} in, e.g., Ref. 16, Eq. (41). At zerc temperature {and
in fact to a good approximation for kT <€ #iw) they are given
respectively by the expressions (x=%iw/24)

y 2o x| { Uxl +1)? (!xl'—l)
I P K
w (@)= Ry (x| + 1) x* x|+ 1
F(EEYE(E=D] e, a
x lxf + 1
dsgn(w) A ({x} - 1)
L(w)= ——80&) & pfixi—1} 11b
(@ AQx+ D Ry A\l 1 (119)
I (@)y=1{(w)=0, x<l. {12)

Here we have denoted by x the ratio #iw/24, and by K(x)
and E(x) the elliptic integrals of the first and second kind,
respectively (a notation we shall follow throughout this pa-
per). In the imit iw €47 <A we have instead {for equal
gaps)

Iplw) =1 (@)= 2o {ln (ZkT) 7‘] =
Ry

oxp b
o]

kT © kT
(13)

where y is the Euler constant (=20.577...). In the case of
unequal gaps we get a similar formula which does not con-
tain a logarithmic dependence on .

Itiswell known (see, e.g., Ref. 9, Sec. VIC) that for any
phenomenon in which only the low-frequency (0 € kT /4,A)
behavior iz important we can make the so-called adiabatic
approximation and thereby reduce the determiunistic equa-
tion of motion of the QPT model, Eq. (9}, to that of a gener-
alized RSJ modet of the type discussed above, with g-depen-
dent resistance and capacitance. The relevant values of the
parameters are'’

I___f da)f(w)

“‘(qﬁ) =Ry “1 4 € cos 4),
Ci(gp) =

The general form of the guantities R, and € is complicated
{see Ref. 9, Chap. 2), and in the case of equal gaps {only)
R ;' actually depends logarithmically on w [cf. Eg. (13)],
but we can make the general statement that for kT <€A the
quantity R ; ', which is 2 measure of the number of excited
quasiparticles, falls off as ¢ ~**

(14)

"’T, while e tends to + 1 (at
least in theory!) in this limit. Note therefore that in the lmit
70 the quantity R ~' () tends to zero for all ¢. Thus, for
any phesomenon for which dissipation is a zerc-order effect
it is inconsistent to use the “effective RSJ model” defined by
(14), even though all characteristic frequencies involved
may prima facie be small compared to A; as we shail see in
8ec. HI B, it is necessary to take into account higher har-
monics of the motion, even though their amplitudes may be
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exponentially small. Despite this, it turns out, perhaps sur-
prisingly at first sight, that even in the limit T— 0 thereare a
number of features of the I-¥ characteristic which, since the
effects of dissipation are a higher-order correction, can be
adequately accounted for by the effective RSJ model.

Finaily, it is possible in principle to discuss the case
where the admittance shunting the junction is completely
arbitrary, and in particular may have a substantial frequency
dependence in the region of (the effective) w, (such a de-
pendence could, for example, be caused by interaction with
geometrical resonances of the junction). Some of the results
derived below can in fact be generalized rather simply to this
situation, and we shall indicate the generalizations at the
appropriate points below.

It is sometimes convenient, for the purposes of order-of-
magnitude estimates, etc., 1o define the dimensionless pa-
rameters 2, g0 [ Egs. (7)1 also for general models. When-
ever this is necessary, we shall use the definitions

ﬂ __73' Ir _...ﬁw"n— 277’%2 )1/2 “ﬁvl
vy ““fcqﬁo”(cmé  PER R

where C and I, are the values of these parameters at some
convenient value of ¢, e.g., ¢ = 0. Thus, to an order of mag-
nitude at least, 5, is still the relative energy loss per cycle
and g the ratio of the zero-point energy to the barrier height.
At high temperature (KT> #iw; but kT <€ ¢, A .etc.) we
again replace #iw; by AT in the definitions of i and p.

(15)

. THE DETERMIMISTIC RETURN CHARACTERISTIC
A. introduction

In this section we shall study the return characteristic
close to the return to the zero-voltage state (more precisely,
for V<A/eand f — F, €7,) in the approximation in which
all effects of thermal and guantum fluctuations, and also any
other quantum effects such as overbarrier reflection, are ne-
glected. Thus we treat the guantity ¢ as a c number defined in
the range { — o, cc ), and moreover neglect the term 7, ()
on the right-hand side of the equation of motion. The result-
ing problem is purely classical and deterministic. We shall
first discuss two important special cases, that of the RSJ
model with smali 8, and that of the QPT model, then give
numerically computed results for the latter and for the
“mixed” model, and finally give the asymptotic form of the
characteristic for the general case.

The general approach used throughout this section is
the following: We consider the kinetic energy £ with which
the system reaches the top of the barrier of the washboard
potential, and the energy W dissipated per cycle in Joule
heating. In the approximation of this section, and in the
steady state, both these guantities are independent of the
cycle considered and are unique functions of the external
current . In fact the relation between B and 7 in the steady
state is trivial: in our units we have simply

W==2ml. (16)

The dc voitage is, according to Eq. (2) rewritien in the re-
duced units, simply equal to the average rate of change of the
phase, and hence is given in terms of the period T} of motion
in the potential by
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V=2gTs" (17

(or in conventional units as V= ¢,/7,). Our procedure,
therefore consists in1 finding W and T a functions of E, then
inverting the latter relation and using (16) and {17) tofind 7
as a function of ¥. This is similar to the method of Schiup.'®
An incidental advantage of doing the problem in this way is
that the formula obtained for B{E) can be used directly in
the discussion of fuctuations in Sec. IV.

B. The RSJ model in the weak-damping Hmit

We consider Eq. (3), neglecting the noise term on the
right-hand side,

Cé+@d/R+1,sing=1, (18)

and specialize to the limit 8, <€ 1. It is easy to see {cf. Sec. I1)

that under this condition the energy dissipated per cycleis a
small fraction of the characteristic energy 27, and conse-
quently, from Eq. (16}, that the return current Z, is small
compared to f,. We therefore write down the solution of
(18} corresponding to the limit R = o, { = 0 (zero dissipa-
tion, zero bias) as a function of E: call this ¢, (£:F). Then we
simply calculate the period 7, corresponding to ¢, (#.E),
and also substitute it in the expression for the energy dissipa-
tion W,

Ts .
f [$2(£)/R 1dt.
4]

This gives us T,(£) and W(E) in the limit of zero dissipa-
tion and zero bias, and the F{¥) relation calculated from
them should be valid to lowest order in 5;.

The procedure is straightforward to implement. It is
convenient to introduce the dimensionless parameter v de-
fined by

v'=E /48, E,=1Cw] (=1 ¢o/4m) . (19)
Then in the limit R — oo, /-0 the first integral of Eq. (18} is

¢ () = 4wt {cos*[ ¢, ()/2] + o7} (20)
We note for future reference that the solution of this equa-
tion in the imit v -0 (E-0) is

$, (£0) = Zsin~ (tanh 1) . (21

For finite v the quantities W(v} and T,(v) can actually be
obtained without an explicit solution for ¢, (#:v) . In fact,
using K(x) and £(x)} as above to indicate the elliptic inte-
grals of the first and second kind, respectively, we find

8w, / 1
Wivy = T+ v)V2E -——————-—————)
(v} R (I+v9) (\1/14—212
8CL)J/ 4 2

U2
= 14+ —In—4+ -+ 001 ), 22
R§\+2ny+4.(vnv) (22)

i
T v) = Za — 1 1+UZ)_1/2K(—-———-————)
oV} @y Vi

s
=2m;'§\1ni+0(u2 n v)). (23)
u

Using (16) and (17) and restoring conventional units, we
find for the return current I, {i.e., the value of I for which

v* —0) the well-known result
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77.2
Furthermore, expanding {22) and (23) as indicated, we ob-
tain for the behavior of the return current in the neighbor-
hood of £, the formula

I, == ¢uw,R le%ﬁJIC . (24)

f—1 Ve v
=41 ——"é-)ex — L L Qe 2T,
- ( 7 A
V,=a,d, . (25)

Rather to our surprise, we have so far failed to locate a clear
and explicit statement of the simple result {25} in the litera-
ture; and while it is certainly implicit in existing work, *® it is
not in our experience common knowledge among experi-
mentalists wishing to analyze their data in this region. We
shall see in Sec. V that the exp — ¥,/ ¥V behavior is actually
much more general than the R8J model. Formula (25) is
valid to zero order in the dissipation, or equivalently in 5;;
we will see later that corrections to it are of order £3.

A

1CH2 () — Ip(8) — 1, cos¢»(f)+sfdﬂf dz"(A+(t'~—t

? ” d . ’ ‘__f_{”_ » —_
+A_(t'—t )dr,{cos[gﬁ»(t )/2]}&” cos{ (1 )/z})..o,

where we defined

Ay 0= dr'fa ) £6,(0)]

E-—E—- dow
2l

cos wit (fqp (0) + 1 (@)} \}
/ b

-— 3%

i—e @

(27)
and where I is defined in terms of the parameters of the
model by Eq. (14a}. Equation (26) is quite generally valid
{not just in the limit B, —0): it is clear that the last term
represents the energy dissipated in Joule heating (cf. Ref
13).

© We now specialize to the case of steady-siate motion.
Let us define 7 as the average period of #(z), i.e, by the
formula

T4 '=lm (28)

T o0

F)

so that the dc voltage is given as usual by ¢4/ 7. Because of
the characteristic occurrence of half-angles in Eq. (26), the
motion of ${r} is actually periodic with period 27, rather
than 7, However, the departure from strict periodicity in T
is a consequence entirely of the dissipative term in Eq. (26),
and hence is of relative order 7 ;; it is therefore consistent to
neglect it in what foliows.?! In this approximation the Four-
ier transforms of the quantities sin[4(#}/2], cos[#(#)/2]
{and hence of their derivatives) vanish for even-n values of
@, =2an/2T,, and for odd n are just twice the integral over a
single period 7, We therefore define

Tu/2 . d
o= s
T2 dt

{sin[g()/2]}, (29a)
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C. The GPT model

We now turn to the model defined by Eq. (9) (again
neglecting the noise term on the right-hand side). We will
assume that the dissipation per cycle is a small fraction of the
potential scale I_g./7, i.e., B, €1; this is almost always true
for junctions well described by, this model at low tempera-
tures, In the limit A7> #iw, {(actuaily, as it turns out, for
kT > #iw;/27), the dissipation is predominantly due to the
finite dc conductance; in this case it is clear from the consid-
erations of Sec. I that apart from possible logarithmic cor-
rections (which disappear in the unequal-gap case) the situ-
ation is very similar to that in the R8I model discussed in the
last subsection [cf. BEq. (33)].%2° We shall therefore concen-
trate here on the case kA7 €#iw, /2.

We proceed much as in the last subsection, with some
special cautions. Multiplying Eq. (9) by $(¢) and integrat-
ing over £, we obtain after some integration by parts the equa-
tion of energy balance:

oo d o d ;. .
)Z;{sm[ﬂf )/25}-;,?;—{&11%(&‘ 3/21}

(26)
-
T2 R a
Sz(wn)sf dt ¢ {cos[$(2)/21},
-T2 dt
o, =27n+ 1/2) /T, . (29b)

The dissipation W per cycle is therefore given by the expres-
sion

W:{ZTO*)ZK

i2__ 2
+ (tsl(wn)! iSZ(wn)[ )IL(Q}")} .

@y

;2 \ 2
isl(a)n}u + isz{(»’)n)t )qu (wn)

@

(39

This formula is valid quite generally for weak dissipation.
We note at once one general feature: If we substitute the
zero-temperature forms of I, (@) and 7. (@) {Eqgs. (11} in
{30) ], then because of the finite threshold 24 for dissipation
the quantity ¥ has a finite jump whenever w, = 24/4%, i.e.,
whenever e}V = 24/{(2n -+ 1}. This leads to the occurrence
of the “odd-subharmonic” features of the {-¥ characteristic
which have been extensively discussed in the literature {see,
€.g., Ref. 9, Sec. VI, and which will be taken up again in the
next subsection. For present purposes, however, it is suffi-
cient to note that although the amplitude of these jumps falls
off only as n ™ ¢, their frequency on the voltage axis increases
as 77, and bence in the limit ¥ — 0 we may plausibly treat w as
a continuous variable and replace the sum in (30) by an
integral.

Bearing this in mind, we now proceed exactly as in the
last subsection: that is, we compute the trajectory for zero
dissipation and zero bias current, as a function of E, and
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substitute this trajectory to find the dependent of T, and #
on E. To find the return current we need the trajectory for
E =0, which is given by Eq. (21): substituting this into
(29), we find that for £ = 0 we have

e

Sl(w): . s

wy sinh{rw/2w;}
Sy(w) = 7w . 31
2 () w; cosh{ww/2m;) Gb

We substituie these forms into (30), convert the sum into an
integral (see above), substitute the appropriate forms of
I, (@) [Egs. (11) or (13)], and use Eq. (16). After some
algebra we obtain in this way in the low-temperature limit
the following expression for the return current 7,:

2 by <2A )2 (zm
= XD —

==
7 Ry \fiw,

) (kT<fiv, €4)

(32)

with corrections of relative order #iw,/A. In the high-tem-
perature limit we obtain instead of (32) the result

=__§_ Bt [ln(ﬁk
" 37 Ry i ;
{(fiw; kT <€A, (33)

with corrections of relative order fim, /KT, kT /A, where the
constant g is defined by

6 (= Pinx
= — d ( ):0.237
¢ 7/+72.,§; X sinh?® x

J

j A A
— @ eXp — ——
kT ET

(34)
Apart from the difference between the numerical factors 4
and [y + In(n/2) ], this is just what we should have got
from the effective RSJ model of Eqgs. (14) if we had set
e= +1 and taken R, from (13) by the prescription
I, (@)=2wR ', with @ = @, in the logarithmic term.

To find the limiting behavior for f— 1, we need to ex-
pand the trajectory ¢, (z:v) to lowest order in *. Although
the generai expression is an elliptic integral, it is well ap-
proximated, except in the regions |¢ + 7| Sv, by the expres-
sion

sin[(#)/2] =tanh &;1, @,=w;{1 +v/2). (35)

Now, in general we get a singular contribution to the dissipa-
tion from the region of ¢ very close to 7 (see Sec. II E).
However, in the case of the QPT model at zero temperature
this contribution vanishes, sinice in this region the system is
moving very slowly and, according to Sec. II, will be de-
scribed by an effective RSJ model with infinite resistance
(and hence no dissipation ). Conseguently, tc lowest order in
v* the dissipation at finite »” is obtained from that at ¥ =0
by the simple replacement @, —@,. Using (16) we therefore
find that in this limit (k7 <¢#w; €A) the I-V curve is given
by

(y = Euler’s constant) .

(36)

-7
, =8<2m)exp__%, Vo=aw,6,

£, fiew
with corrections of relative order #iw,/24. We note that the

leading (exponential) dependence is identical to that in the
RS&J model but the prefactor is different.
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We will not discuss here the asymptotic behavior of the
curve in the limit Bw ; € AT €A, it is clearly a special case of
the general situation discussed in Sec. III E.

D. Numerical results

In this subsection we shall briefly present the numerical
results we have obtained for the I-¥ characteristic at zero
temperature, starting from Eq. (30). These results were ob-
tained by substituting the undamped solution of (26) in
(29) to obtain the quantities S, , (@, ), and should therefore
be a good approximation provided the relative energy loss
per cycle is small, The resulis for the pure quasiparticle-
tunneling model are shown in Fig. 4 for two values of the
parameter g=2A/#w,; they are qualitatively similar to
those obtained in the existing literature, see, e.g., Ref. 22. In
Fig. 5 we show the dependence of the height of the main peak
{at V= 24/3e) on g. We emphasize two points: (1) despite
the spectacular appearance of the subharmonic peaks at
eV = 2A/(2n + 1), the height of these peaks is, for g= 2,
several orders of magnitude less than the above-gap current;
(2) the slope of the characteristic is negative int the regions
between the peaks. The latter circumstance wili be of vital
importance when we consider the effect of fluctuations in
Sec. IV.

It is interesting to consider also the characteristics
which would appear in a “mixed” model, i.e., one in which
the energy dissipation is described by the last term in (26)
plus an additional R8J-type term of the form

f $%(t")/Rysy dt'.

If the ratio 6=Ryg /Ry is large (where R is the normal-
state resistance appropriate to the quasiparticle-tunneling
model), we see that the extra term will have little effect on
the above-gap characteristics but may modify the low-vol-
tage behavior appreciably. In Fig. 6 we plot the characteris-
tics for several (large) values of §. We see that the main
effect of the added term is to decrease considerably the size of
the negative-siope regions; presumably, for given values of
the parameters fiw, /A, etc., and small enough & they will be

0.08

Q.06

0.02f-

FIG. 4. Computed below-gap I-¥ characteristic for the QPT mode] at
T'=0. fand ¥ are in units of 24/eK,, and 2A/e, respectively; the squares
correspond to g=2A/%w, = 2 and the triangjes to g = 3. The curves are
guides to the eye. Note the 1/a decrease in the height of successive peaks.
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FIG. 5. Plot of In H vs g for the pure QPT model at 7= O, where & is the
height of the first peak (at = 24/3e) in units of 28/eR,,.

removed completely, but we have not investigated this point
in detail.

E. Generalization to an arbitrary junction admittance

In this subsection we shall give a quite general discus-
sion of the asymptotic form of the return -V characteristic,

0.3

/!

e

Oty ano;—-""o/ a,:'
S e e e

Bieg ™ ,
——— ot
OO 04 c.8 t2 1.6

v

FIG. 6. Below-gap 1.7 characteristics for the “mixed” model, with g=12
and =R ., /R ~ equalto2, 5, 10 for the squares, diamonds, and triangles,
respectively. Units as in Fig. 4.
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which will recover the results of Secs. I B and I C as
special cases. In particular we shall show that the asymptotic
dependence (F — 13/1, cexp — Yo/ V is quite universal, ai-
though in the general case ¥, need not be equal to w, ¢, We
do not restrict ourselves in this subsection to the case 7, <1,
or more generally tc weak damping; the only assumption is
that the damping is weak encugh to make the characteristic
appreciably hysteretic.

The discussion is based on the following simple observa-
tion: At the critical “returp” current the system, when start-
ed from rest at the top of one barrier, reaches the top of the
next with exactly zero kinetic energy, and takes an infinite
time to do so. For vaiues of f just slightly greater than £, it
will take a time very long compared to any characteristic
frequency of the problem {(w; |, #i/A, RC . } to pass over
the top of the barrier, and the period of motion (hence the
voltage) will be overwhelmingly determined by this time.
Moreover, near the top of the barrier the dynamics of the
system, however complicated, can be described by an “effec-
tive” RSY model with » {possibly #-dependent) capacitance
and resistance (cof, Sec. IT and below). Thus, all the singular
behavior of the asymptotic returp characteristic will be a
function only of the effective parameters in the region of the
barrier top; the rest of the motion will enter only through
nonsingular factors, which we shall not attempt to calculate
in the general cage,

Let us first consider the case of an explicit generalized
RSJ model. We assume that when the current J is equal to
the return valye 7, the barrier top occurs at the point

neighborhood of thig point, putting a tilde on them to em-
phasize that they may in general be different from the pa-
rameters appropriate to ( say} small oscillations. Explicitly,
we define

= % 5 a2y
C=C(4,..), R=Ri4,,.). ICE(-——“) - (37

g ¢ OB /6~ bran

Note that even for the simple RSY mode! of Eq. (3),1, may
differ from 7, because in a finite bias current the curvature of
the maximum is decreased; clearly as f,—I,(B,-1), i,
tends to zero. In 2 similar vein we define

@,=U/0\ 2 p=yRE) -,

Bi=2y/5, E,=iCa.

(38)

Note thatas g stendsto 1, B, tende to infinity. For 7 s ot too
close to 1, however, the order of magnitude of the tilde’d
quantities in (38) is of the order of the original ones (@ s By
efc. ).

Consider the steady state under externaj current biag §
close to 7., and let £, as above, be the kinetic energy with
which the system reaches the top of the barrier. It is clear
that the limit £—0 corresponds to /-7, ; the value of £, is
determined, as in the specific examples considered earlier, by
the condition that the energy W dissipated over a cycle for
E =0 s equal to the energy 2nf, gained from the external
current. The resulting equation clearly depends in detail on
the form of C(P) and R($), as well as on 7,5, and it is there-
fore not possibie to give an analytic formula for I, in the
general case. However, we can remark that provided the
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functions C{¢) and R(¢) are not pathological, 7, will be of
order 5 ,1,. Now let { bejust stightly greater than 7,. Denote
bY ¢ .. 28 above, the position of the barrier top, and consid-
er a small region ¢, — Ad <P <P, + A, where Ag is
small enough that the potential may be approximated by an
inverted parabola and moreover C(¢) and R(¢) may be ap-
proximated by € and R, respectively. Note that unless &, is
very close to 1 and/or C{¢), etc., is pathological, the quanti-
ty A¢ can still be of order unity. The motion in this region is
of the form

H(E) — oo = (LE/CHB) 2 sinh (B,00e ™7, (39)
where we have defined
By=(a5 + ), (40)

and £ as above is the kinetic energy at the barrier top. Note
that for any finite value of & the system is not arrested at the
barrier top. The time T taken to traverse the region in gues-
tion is given in the limit £— 0 by the formula

T= {3,/ — V) }{n(Ey/E) + const], (41)

where Eo was defined in (38) and the constant is of order 1.
Since the time taken over the rest of the cycle is small com-
pared to 7 and is, except for B, very close to zero, of order

7!, the total period T, is given by a formula identical to
{41} (with a different constant), and hence by (17) the dc
voltage is given by the expression

V=2 (@ — V@, M IE/E) + Cy1 ™", Co~1.
{42)
Now consider the dependence of £ on the external cur-
rent 7. As usual, this is determined by the requirement that
the energy dissipation per cycle W is equal to 271, or equiv-
alently that the exfra dissipation, over and above that corre-
sponding to the return current {,, isegual to 2o {f — 1,}. We
therefore have

i—1, =——-—=J ( dE .
oF

Now, the contribution to 3% /E from the region far from
the barrier top is 2 nonsingular function of E in the limit
E -9 and may therefore be approximated in (43) by a con-
stant, generally of order B ;- On the other hand, the contribu-
tion W from the small region near the barrier top (say with-
in + A¢ of it) is logarithmically divergent; for the case
R o we have explicitly

I, g y
3¢ d
JF HF J{ Ad ¢

(43}

fit

-8 e -
R lEEJ éw,{¢2+E/E0)”~d¢
~ &

R

= [ln(E'O/E) + const], (44)

(¢
where the constant is of order 1 and the second approximate
equality holds for £ /E,-»0. For the general case we obtain a
similar formula but with a more complicated prefactor,
which, however, is stili of order @ J/E’J%, i.e., of order B ;.
Substituting (44) in (43) and allowing alsc for the nonsin-
gular contribution, we find
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I—1 =(1/2m[A’'En(E/E) +B'EYl, A',B'~B,.

(45)
Finally, inverting (42), substituging the resultin {(45), using
the fact that Z, is itself of order 5, E,, and restoring convern-
tional units, we find the asymptotic current-voltage relation
to be

V

- (46)
4

- .

»

A2 )

where the quantities 4 and B are generally of order unity and
cannot be calculated in analytical form in general. We see,
therefore, that provided the dynamics near the barrier top
can be obtained from a generalized RS} model the exp
— Vo/ ¥ dependence of the current-voltage characteristic
near return is quite universal: we emphasize that this result is
not restricted to the weak-damping limit. In the weak-damp-
ing RSJ case the result is particularly simple since in this case
I.=1.[1+0(B5)], B,~B,, and hence we have simply
V, = by, + corrections of order 8 2, as already obtained
in Sec. 111 B,

The case of the quasiparticle-tunneling model at zero
temperature may be regarded as a special case of formula
{46) with A = 0; as noted in Sec. I C, in this case the singu-
lar contribution to W /JE vanishes, since it is associated
with the very low-frequency behavior which in this case is
entirely dissipation free. [ At high temperatures (k7> #iw; )
and in the limit of weak damping this is stili true to the order
considered, because the dissipation coefficient is proportion-
alto (1 + cos ¢) and henceis of order (¢ — 7)? in the region
of the barrier top.] The question of what “effective resis-
tance” should be used in defining the y which appearsin ¥, is
quite delicate, and can be regarded as a special case of the
more general problem considered in the next paragraph.

We finally turn to the case of a general model where the
effective admittance Y(w) shunting the junction is a guite
arbitrary function of @ (and ¢) subject cnly to the usual
constraints imposed by causality, etc. We consider the form
Y(») appropriate to small deviations of ¢ near ¢_,,, and
define (cf. Ref. 23) the guantity K(w) = iw¥(w). The Four-
ier transform ¢(w) of ¢t} — ¢,,., then satisfies the equa-
tion

[K(w) — i ]¢(w) =0 (48)

which must be supplemented by appropriate boundary con-
ditions. The gquantity K (o) is analytic in the lower half plane
{cf. Ref. 23). It is intuitively plausible that the behavior is
dominated, in the region of the barrier top, by the poles of the
functions {K( 4 @) — I’c ] —! closest to the real axis ic the
iower half plane, and this is demonstrated—adsmitiedly not
with total rigor, but we believe adeguately for our pur-
poses—in Appendix A. Assuming this to be so, let us call the
positions of these poles — iw,, — iw_ {where v, ,w_ are
assumned real and positive, cf. Appendix B) and define the
quantities %,,y by the relations

(=)

— + - +)
By= 2 (ajfﬂin + Dmin” }» /“ iRe (wmm wr(m'n (49 )

It is then clear that the whole analysis leading to Egs. (46)
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and (47} goes through exactly as above. Consequently, the
exp — ¥/ ¥ behavior of the asymptotic return current-vol-
tage characteristic is quite universal, although for compli-
cated forms of K(w) a direct interpretation of the guantity
V, in terms of simple circuit parameters may not always be
possible.

Y. EFFECT OF FLUCTUATIONS
A. General considerations

In this section we shall consider the effect of fluctuations
on the return of the system to the zero-voitage state. If we
regard the energy dissipation in the system as a stochastic
process in which the energy asscciated with the principal
degree of freedom {4(?) in this case] is transferred by ran-
dom collisions to the “environment,” then it is clear that as
we make the dissipation weaker and weaker, both the aver-
aged effect of the collisions and that of the fluctuations
around the average tend to zero, but the second effect tends
to zero more slowly than the first, since it is proportional to
N2 rather than N itself, where &V is some effective number
of collisions per cycle. A somewhat more quantitative esti-
mate (cf. below} shows that at zero temperature the relative
fluctuation of the energy dissipated per cycle near the return
to the zero-voliage state is of order™ py’?, where g, =R /R,
is the 7 = O value of the dimensionless parameter defined in
Eg. (7c); thus, for resistances much higher than the gquan-
tum unit of resistance R, =k /4e* (~6.5 kf}) the results
calculated in Sec. III are prima facie meaningiess, even at
zero temperature. [ At finite temperature we reguire for their
validity the stronger condition (R/R,) S (fiw,;/kT), cf.
Sec. I1.}

In the next few subsections we shall restrict ourselves
explicitly to the case where the effective resistance R is much
smaller than R,, or for high temperatures much smaller
than R, (Aiw,;/kT), where R is defined, for the general case,
by the statement that the classically calculated value of the
ratio B, = (w/4)(1./1,) is V/w,RC; we shall, however, re-
turn in Sec. IV F to the possible generalization of our results
to the case R Z R,,. We recall that throughout this paper we
are also assuming that the fluctuation parameter ¢ [defined
by Eq. 7(b) ] is small compared to unity, and that 5, [Eq.
7(c} 1, though not necessarily small, is not too close to unity.
It then follows, as remarked in Sec. I, that the relevant cal-
culation is not of the strictly dc characteristic but of the first-
passage-time statistics for the return to the zero-voliage
state.

The effect of classical thermal 8uctuations on the return
of a Josephson junction to the zero-voltage state has been
considered by a number of authors.>” Unfortunately (from
the point of view of the present paper) most of these papers
have discussed regimes different from the one of most inter-
est to us, namely the case 8, €1. In fact, the only papers of
which we are aware which explicitly discuss the first-pas-
sage-time problem for this case are those of Ben-Tacob e af.,’
the validity of whose treatment appears to be restricted o
the case />, which we do not discuss here, and the recent
paper of Cristiano and Silvestrini® the final result of this
latter paper is a complicated integral expression [Eq. (11}]
which is not evaluated explicitly to give the retrapping prob-
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ability as a function of the bias current or voltage, so that it is
not easy to compare their results with those we shall obtain
below.

At very low temperatures (k7S 7w, ) we should expect
quantum effects to be important. At first sight we can distin-
guish two different kinds of effect: First, even if the system
has enough energy to surmount the barrier top in a classical
calculation, it nevertheless has a finite probability of being
reflected because of quantum-mechanical effects {and con-
versely, has a finite probability of transmission, by tunnel-
ing, even for energies below the barrier top). Second, one
might think that if there are fluctuations in the energy dissi-
pated per cycle at finite temperature owing to the effects of
classical noise, then there should also even at zero tempera-
ture be fluctuations due to quantum effects (the so-called
“guantum noise” ). Actually, these two apparently disparate
effects are nothing but different aspects of the basic phenom-
enon of de Broglie wave propagation in a rultidimensional
space (see below); however, since the first exists even for a
totally undamped system, while the second vanishes (in ab-
solute maguitude) as the dissipation tends to zero, it makes
sense to distinguish them for a first consideration. In a recent
paper® Mel’nikov and Siit§ have discussed both these effects.
However, while the method used in their work is similar to
(though more complicated than) the one we shall apply be-
fow, there are a number of important differences in the em-
phasis. In the first place, they implicitly consider the more
general case in which our parameter ¢ [ Eq. 7(b) ] is not very
small compared to unity, and fluctuations into and out of the
zero-voltage state can be simultaneously important; for this
reason they focus their interest on the truly steady-state sole-
tions of the problem, and do not explicitly calculate the firsi-
passage-time statistics.”® Second, they concentrate on the
first quantum corrections, in the limit k7> fiw,, to the clas-
sical formulas; we, by contrast, are interested in a quantita-
tive analysis of the complete classical-quantum crossover be-
havior, which has probably been seen in recent
experiments.®® Third, they assume without discussion that
once quantum effects in the barrier-transmission process it-
self are taken into account the phase can be treated as a
purely classical variable—an assumption which is very prob-
ably correct in the regime which they consider, but which
needs explicit attention in the one we shall discuss. Finaily,
they restrict themselves to the RSJ model, whereas we shall
consider also the general case.

In the classical limit it is possible to give a compiete
account of fluctuations by using 2 Fokker—Planck equation
(which in the underdamped case is most naturally formulat-
ed in energy space). As already noted by Mel’nikov and
Siitd,® to discuss the general case a different approach is nec-
essary. A useful general approach to the problem of the dy-
namics of a dissipative macroscopic system in which gquan-
tum effects may be timportant is to regard the environment of
the system as composed of harmonic oscillators with a dense
frequency spectrum and to couple it to the system by an
interaction linear in the coscillator coordinates (but possibie
nonlinear in the system variables). Such an *oscillator-
bath” model of dissipation is of course familiar in the context
of laser physics (see, e.g., Ref. 27); arguments to justify it as
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a generic model of dissipation have been given in Ref. 28,
Appendix C, and in Ref. 23, and in the case of a Josephson
junction artificially shunted by an external ohmic resistance
calculations based on it seem to give rather good quantitative
agreement with recent MQT experiments.” In the specific
case of an ideal tunnel-oxide junction described by the QPT
model, an explicit discussion and justification has been given
recently by Ambegaokar and Eckern.®® Once the “oscillator-
bath” model is accepted, the problem essentially reduces to
the solution of the corresponding Schridinger’s equation,
with the relevant boundary conditions, in the many-dimen-
sional Hilbert space which is the direct product of the system
and both spaces. One would hope that a consistent solution
would not only give the low-temperature behavior correctly
but also, where appropriate thermal boundary conditions
are imposed, reproduce the refevant results of the classical
Fokker—Planck equation in the limit T oo (cf. Ref. 31).
An exact solution of Schridinger’s equation is of course
usually out of the question, and one is forced to make some
approzimations. Here we shali assume that the effects of the
environment on the quantum motion are adequately repre-
sented by the “quasiclassical Langevin equation” {QCLE}
as defined and discussed by Schmid,?” that is, an equation
which represents the system by a classical variabie driven by
a Gaussian random force whose correlations are given by the
quanium Callen~-Welton {Nyquist) formula. This assump-
tion seems to be implicit also in the work of Mel’nikov and
Sits.? The general question of the criterion of applicability
of the QCLE is a delicate one; it is discussed in Appendix B
for the special case of ohmic dissipation (corresponding in
our case to the RSJ model). The upshot is that for motion in
the classically accessible regime a sufficient, though not in
general necessary, condition for its applicability is that
nl to#i> 1, where 7 is the viscosity and L, a characteristic
distance over which anharmonicity in the potential is notice-
able. In our case this reduces to the criterion R <Ry, which
we have assumed fulfifled. Although strictly speaking this
result is proved only for the RSI model, it seems reasonable
to hope that the predictions of the QCLE will not be goalita-
tively misleading in the general case, provided R € R, where
R is, as above, the “effective” resistance defined by the siate-
" ment that the classically calculated ratic 7./, is equal to
1/w,; RC. One aspect of this hypothesis needs to be particu-
tarly noted: For R<€R, it is easy to see that the average
energy dissipated per cycle is large compared to the typical
“environment quantum” fiw,, and hence the probability
that the system undergoes a complete cycle without emitting
even one quantum is negligibly small. Since emission of a
guantum on one trajectory without a corresponding emis-
sion on another destroys the coherence between them, we
conclude that for R<R,, it is unnecessary to keep track of
the phase coberence between the parts of the wave packet
respeciively reflected and transmitted at the barrier top, or
to worry about the vezed question'? of the effective identity
or otherwise of values of ¢ separated by 2nw; in fact, we may
safely apply the standard quantum measurement axioms as
scon as the system is reflected from a barrier. (This conciu-
sion may well continue to hold even in some circumstances
where the QCLE breaks down for other reasons. ) There is of
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course a separate question as to whether the QCLE ade-
guately describes the process of quantum barrier reflection
itself; fortunately, we do not need to decide this guestion
since in the regime R € R, we shall see that this is anyway a
small effect relative to those of quantum noise.

In the next subsection we shall discuss our general pro-
cedure for handling the effects of fluctuations. In Sec. IV C
we specialize to the RSJ model with &, <1 (but R<Ry),
concentrating on the statistics of the first passage time. In
Sec. IV D we discuss the analogous problem for the QFT
model, and moreover comment on the effects, at first sight
rather surprising, of the fluctuations on the current-voliage
characteristic at finite voltages before retrapping takes place.
Both these discussions take into account only the “quantum
noise” effect, not that of quantum refiection; we return to the
fatter in Sec. IV E and show that for u €1 it is always small.
Finally in Sec. V we generalize the principal features of our
results to a guite general sitvation (with, however, still
@<l

Our notation in this section is as follows: We denote by
E the actual kinetic energy with which, on 2 given attempt,
the system reaches the barrier top, and by W the actual ener-
gy dissipated over a particular cycle. E and W(E) are the
values of & and W(E), respectively, which would be calcu-
lated neglecting the noise terms; i.e., they are the quantities
denoted as ¥ and W in Sec. 111.%° AW is defined as W — W:
the quantity W, is defined as the root-mean-square value of
AW, i.e., the rms fluctuation in the energy loss per cycle, and
E; is the rms dispersion of E. I and V denocte, as always,
respectively the imposed dc external current and the de vol-
tage (averaged over many cycles while the system is in the
running state), and T, denotes similarly the period as calcu-
lated in the absence of noise: for any given external current [
this is a fixed guantity. Note that with this definition Vis in
general rot equal to ¢y/ T, see below.

B. General procedure

In the general discussion of this section it will be essen-
tial to recail that we are interested in the regime specified by
the inequalities

where the dimensionless parameters S, y, p are defined for
the RS model by Egs. (7) at zero temperature, and at high
temperature by the same formulas with k7 replacing #iw,.
For more general models the parameters can be defined, at
least to the required order of magnitude, as indicated at the
end of Sec. 1. We discuss in Sec. IV F possible generaliza-
tions to cases where one or more of the ineqgualities (50) fail.

Consider a system which starts from the top of a given
barrier with kinetic energy E. The average energy it will lose
on the next cycle is, by definition, P—V(E), and the Buctu-
ations in energy loss are given by a Gaussian distribution
with variance W ( £). As we shall verify in detail below, the
crder of magnitude of W,(E) is given by

W E) ~ (Fiw; K T) X W(E) . (51)

Now we know that the order of magnitude of W(E) is given
(cf. Sec. III) by
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W(E) ~8,E,[1 + const E /E, (In E /E, + const) ]
(32}

(where E,~1I ¢, as above). At this point we will assume
that for realistic ramping rates the retrapping will occur pre-
dominantly in the region E /E, < I; we confirm subsequently
that for u <1 this is indeed so. It then follows that for an
estimate of the fluctuations in energy loss we ay approxi-
mate W H(E) in (51) by W7(0) (Ref. 34); thus we find

W~B ] (o k1) X B} P~ (Bye) *Ey . (53)

Thus, the system effectively undergoes a random walk
in energy space in which on each cycle it gains or loses an
energy of order (53). On the other hand, if it strays too far
from the energy £(J) appropriate to the imposed external
current §, there will be a tendency to restore equilibrium cver
a period corresponding to of order £ ;! cycles. Thus the
random walk in effect consists of ~f ;! steps, and the dis-
tribution of E is therefore itself given to a first approximation
by a Gaussian centered at £(J) with width

N(ﬂ]ﬂ)anﬂ ,; I/ZN#]/ZEO.

[This conclusion is strictly true only if W(E) is a linear
function of E; in the realistic situation there are some cor-
rections—see below. |

Now it is casily verified that for p < the system, once
reflected from the top of a particular barrier, is very unlikely
to be able to pass it on any subseguent attempt. (This is
because on the next cycle it wili lose an energy of order 2 in
friction while gaining nothing from the potential; since for
p <1 the guantity W is much greater than #iw, or k7, its
chances of passing at the next attempt are negligible.) Thus,
it is reasonable to take the rate of retrapping as simply equal
to the average number of cycles per second (i.e., ¥ /¢, ) times
the fraction of the energy distribution which lies below zero.
Clearly the above procedure makes sense only if this fraction
is small, but this will automatically be so for the regicn where
retrapping predominantly occurs, provided that the ramp-
ing rate is not unrealistically high (see below). We can thus
express the retrapping probability as a function of E and
hence of either the externally imposed curent f or the dc
voltage ¥ measured in the running state before the retrap-
ping occurs, as preferred.

It is useful to note the following relations, which follow
in the limit £ <€ £, from Egs. (19), (22}, (23), and the defin-
ition of £ ;:

W(E) — W(0) =B,E[In(E/E) +1n 64 + 11, (54)
E/E,=64exp— V,/V. (56)

Note also that the quantity [ W(E) — W(0)]1%/ W% is of or-
der 8, (up to logarithmic factors) and hence much less than
unity. (£ is assumed to be of order u'/*E;—cf. above. )

C. Fluctuations in the RSJ model

We proceed to implement the above procedure for the
RSJ model. The relevant equation of motion is now the full
Eq. (3), with the noise term kept:

Co+@/R+1I sing=1F+1I,(2). (56)
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The statistics of the noise term £, {#) correspond to colored
Gaussian noise, with

ALy =alt —12"), (57)

al{w) Ejm dw e“'als) =%coth (g—f?)——) (58)

As discussed above, it is sufficient to calculate the quantity
W %(0) = W7, the mean-square fluctuation in the energy dis-
sipated on the separatrix cycle corresponding to E= .
Sincetheenergy A W dissipated due to the noise term is given
by the expression

T,

T,
AW = — | V(I (t)ydt= “”f PO (Ddr,  (59)
(V]

O
we find

T‘(l T(! . .
W}zf dt | di'(g(Dd( i, (DI, (")), (60)
0 (4]

Under the assumption that the noise is 2 small perturbation
on the original noise-free motion, which is true forpu €%, we
can factorize the expectation value in (60} and use (57} to
write

A Lo
W}:JO dzj; dr' () Yot —1'). (61)

Finally, in the limit #; — 0 we can use for ¢(¢) the undamped
solution (21), thereby obtaining (after restoration of con-
ventional units)

W2=< % )F Ay coth(Bn/2) 4, (62)
T \amRI I . cosk? (ww/2w,)

It is clear that in the limit 50 the quantity W }is simply
equal to 2k T I d,, as of course it must be to satisfy the fuctu-
ation-dissipation theorem, while for §— oo it is of order

fiw, Ir¢()~[(iglﬂ"’)”2E0]2’ (63}

as stated above. It is convenient to express W 7 in terms of its
value at zero temperature:

WHT) = WHT=0)f(T). (64)

As we shall see, the quantity /{ 7'} completely determines the
temperature dependence of the experimentally observed re-
trapping distribution; we return below to its evaluation.

In view of the Gaussian nature of the guantum noise
spectrum, it follows that provided E / E, is small compared to
unity the probability, starting with kinetic energy £, to lose
an energy AW over and above the mean dissipated energy
W(E) is given by the expression

1

e €
Qewpi?
Suppose now that the system starts from the top of the nth
barrier with energy £, . Over the next cycle it will on average
dissipate in friction an energy W(E, ); at the same time it
will gain from the external current (potential} an energy
W(E), where E(I) is the value of E calculated in Sec. III for
the given /7. In addition, the system will lose an energy AW
due to the noise term, with probability {65). Thus we have

E,,,=E, +WE) - W(E, — AW. (66)

PAW) = xp — (AWY/2W2, (65)
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Hence, if the distribution function for the energy at the nth
barrier is (£, )}, we have

AE,, )= j dE, f(E,)PIE, ,, — E,
(13

+ [W(E,) — W(E) ]}, (67)
with the function P{x)=P( — x) given by (63}. To obtain
the steady-state distribution, we may extend the lower limit
of integration t6 — oo, since for the physically interesting
regime f{E) is small for £ < 0. Thus the steady-state distri-
bution f, (E) satisfies the integral equation

B =y~ [ as g

1 ’ i3 7, 4 ey 12

X eXPp W [E—E'+ W(E'Y-W(E"
(68)

It is now an essential point in our argument that the
quantity W /dEisoforder B, In E/E [cf Eq. (44)]. Since
we shall see below that in the region of interest £ /&, is of
order a,u.” 2, where o is a constant which, though small com-
pared to 1, is not exponentially small, we shall see that 3/
JE is of order B;|in | and is hence small compared to 1
unless g is exponentially small (a case we exclude). Under
these conditions it is straightforward to show®” that the ap-

proximate solution of (68§) is

o= (&) o]

_
Xexp—(—z—zf [W(E)—W(E')]dE'). (69)
Wf E

This approximation fails for £ X W, but it will enable us to
obtain an approximate expression for the retrapping rate.
Before doing so, we note that since W(E) is not a linear
function of £, the distribution function (69) is not symmet-
ric around E and therefore the quantity we have called E is
not the average energy, but the peak in the distribution.
Moreover, the dc voltage in the running state, which is pro-
portional to the average of Ty '(E), i.e., of [In{E/E}1 ",
is not equal to the value calculated by putting E = Z as in
Sec. I1f. However, it is easily seen that these effects are of the
same relative order as the inverse logarithm of the retrapping
rate per cycle, which we assume shall (¢f. below)} and can
therefore be neglected. In other words, so long as the system
remains in the running state its current-voltage characteris-
tic should be given to an excellent approximation by the de-
terministic formula (25).

The exact expression (neglecting as always multiple
crossing attempts) for the distribution function at negative
energies follows from (65) and (67):

B = (hW})*”Zf FA(E)
(4]

Xexp — ———[E—~E'+ W(E') — WE} dE".
2

(703

3132 J. Appl. Phys., Yol. 84, Ne. 6, 15 September 1988

Expression (69) cannot be used for f{(E') for E'S W,.
However, since the second factor in the integrand of (70) is
much faster varying than £, (E'), it is adequate to set £, (E)
equal to the value for £ = 0 as given by (69). Moreover, we
may safely neglect the factor W(E') — W(E) in the expo-
nent of the second factor in (70), since this gives a correction
of order exp — £ ; . Thus we obtain

FE) poo=QaW2)~V%,(0)
an exp— [(E— E'Y/2W}dE’, (71)
4]

and hence the total fraction of the distribution with £ <O is
(2m) " V2 W, £, (0). Substituting from (69) and multiplying
by the attempt frequency Ty '(E), we finally get for the rate
of retrapping 7, into the zero-voltage state:

@ 5= (Gl
P =T (E (9
r=To BN e ez

E
XeXp———z—;f [W(E)y — W(E'YIE'. (72)
Wf (v}

Mote that to this point we have not used the specific form of
W(E), so that provided the general order-of-magnitude esti-
mates made above are valid formula (72) is valid for an
arbitrary behavior of W(E). Equation (72) should be exact
in the limit 8;, g, p — 0 up to 2 numerical constant of order 1

in the prefactor.

For a linear dependence of W(E) on FE, the integral in
the exponent of (72) wounld of course be exactly
5@{ W(E) — W(0)]. For the actual form (54), the error
involved in identifying the two is of relative order
1/In{64E,/E}, which is in practical terms so small as to be
negligible. Using (54} and (55) also in the prefactor, and

also (41), we obtain
B, )”2 E[W(E) — W(®)]
P T | e —_ .
’ (4#2 (B B, P ( w2 )

(73)

MNow from (25) and (553) we have to a good approximation
[ie., neglecting terms of the form In(In x) and (in x) ']

E/E,=168I/I (|m8I /L)~ (8I=f—-1), (74)

and___hence, finally, to the same approximation [since
W(E) — W(0) =61 ¢,}

B 172
O
47°|in 81 /1|

SN 161, 6.E, i
— = . (75
e KII)( Z )%inwf/l,)i] 7

Note that the factor 7, ¢, E,/ W % is at high temperature sim-
ply Ey/2kT, and generally is of the order of the inverse of the
quantity we have called ¢. Thus, up to logarithmic factors
depending on the ramping rate (see below) the quantity
81 /1,, and hence E /E, is of order g'/? when the retrapping
takes piace, as stated above. Equation (75) is the fundamen-
tal result of this section.

In a real-life experiment one normally sweeps the cur-
rent £ down towards £, at a constant rate, and observes the
distribution P(J) of I values at which return to the zero-
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voltage state takes place. It is convenient to introduce the
notation

x=6I/1, w,=I" l(i{) .
dt

It is also convenient, with a view to future generalizations, to
write the quantity P, in the generic form

P = w,(x)exp — 4Af(x). (76}
In the present case we obviously have
A=161 ¢, E/ W3 flx)y=x/|nxl,

wol(x) =, (B,/47|In x})'/2 (77}

The dependence of the prefactor wy(x) on x is so slow that
we shall neglect it in what follows and simply write wg as a
constant which must eventually be determined self-consis-
tently. With this approximation we have for the predicted
distribution P(x) of values x at which return occurs

@ F o wn ) 3
P(x) = (—n—-ﬁ )cxp — Af(x) exp — f <-==—-0 )e““f"“ dx’.
5 x [
{78)

It is easy to verify that the maximum in the distribution is
attained at the point x, given by the implicit equation

Af(xy) = In[wg/ 0,41 (x) }. (7%)

This information is not particularly useful, since to use it one
would have to know the fluctuation-free return current to
high accuracy, which is experimentally impractical. A more
useful quantity is the full width of the distribution at half
maximum. Apart from a factor which is close to vnity and
depends on the precise form of f{x), this is the same as the
quantity K=2[P(x,)/|P" (x,}{1"% and we shall therefore
give the latter, which after a little algebra is found to be
E=2[(f AV + 412 (80)
Formulas (79) and (80) are exact and general except for the
neglect of the variation of the prefactor in (76). We now
substitute the RSJ forms of f{x) and 4 [Eqs. (77)] and

assume that 4, which is of the order of g2 7!, is large. Neglect-
ing iterated logarithms, we obtain

xg=A4 " In 4" In(wy/ 20,4 V) ]2 (81)

(where we implicitly assume that @, €4 ~'/*w,, which is al-

most certainly true in any real experiment). Further, ne-
glecting terms of relative order {In 4) "', we find

K=4""[In4d"*/In(wy/20.4"?)]"% (82)

Note carefully that X is the width with respect to the reduced
variable 7 /I, (not [ /£_). Itis clear that the temperature de-
pendence of X is entirely determined by that of 4, i.e., of the
quantity W,.(T); at high temperature (fiw, €kT<I ¢;) we
have simply X « T'*/2, in contrast to the case of escape from
the zero-voltage state where K « 7%/%, Note that in the pres-
ent case, in contrast to the latter, the function f{x) is the
same for the classical and quantum regimes, and hence the
shape of the curve is independent of temperature up to loga-
rithmic factors, only the scale changing.

It remains only to find an expression for 4 as a function
of 7. It is convenient to write
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AT =165,4oE/ WHT) = {28~/ (n D 1AD,
(83)

where as in (7b) we define
u=tw,/I o= 2uH/CI 3> (84)

The guantity f/{ T}, which is normalized to unity at zero tem-
perature, is given by the expression [¢f. (62} ]

=3

f(T)%(lnzr'J

&

o=#w,/7kT. (85)

This expression is easily seen to tend to {#/In 2) (kT /fiw; )
in the limit 7— o, and to beequal ton*/8 In 2at kT = fiw,/
7. The numerically computed expression for f{ 77}, which
according to Eq. (82} should be approximately proportional
to the square of the cbserved distribution width, is shown in
Fig. 7.

It is interesting to compare the results for the “retrap-
ping” distribution with those for the escape from the zero-
voltage state for the same junction. Since the results of the
present section have been derived explicitly for the case of
weak damping we use for the escape rate the undamped
WKB predictions, for which see, e.g., Ref. 36, If we define
“crossover temperatures” T, T... for the retrapping and
escape problems, respectively, as the temperature at which
the extrapolated high-temperature curve gives a value equal
to the 7' = O rate, then from Eq. (9) of Ref. 36 and the prop-
erties of /{7 given above we see that we predict

T/ T = (In 2/0.150) (1 o/ Fits ;)02 ~ s %2 (86)

Thus for small ¢ the crossover should occur at a higher tem-
perature for retrapping than for escape. The physical reason
for this is that for the retraping problem the relevant charac-
teristic frequency is the Josephson plasma frequency at zero
bias, whereas for the escape problem it is the small-oscilla-
tion frequency in the much shallower well which corre-
sponds to fclose to 7.

x sech® x coth{ax)dx,

[N
T
X

f(T)

(]
-

«
[
we

FIG. 7. Function /{ T, which is approximately proportional to the square
of the predicted width of the retrapping distribution, plotted as a function of
temperature. T is in units of fiw,/7k,.
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D. Effect of fluctuations in the quasiparticle-tunneling
mode!

In discussing the QPT model, it needs to be borne in
mind that the spectrum of the resistive fluctuations has an
explicit temperature dependence as well as that due to the
coth{BAw/2) factor. However, if as in the last section we
express the experimentally observed results in terms of the
reduced variablex=81 /1, (T), this explicit dependence van-
ishes and the remaining temperature dependence is due en-
tirely to the coth factor.

At first sight the QPT model can be discussed in a way
similar to that of the last subsection, the main difference
being that the quantity dW /JGE is now proportional, at
T = 0, to a constant rather than to In £'in the limit £-0. As
shown by Ambegaokar and co-workers,'® the correct proce-
dure for describing fluctuations in the QPT model is to take
the noise current £, (£) on the right-hand side of BEq. (9) to
be given by the expression

I (1) = £ (tcos[ (1) /2] + &> (D)sinf4(0) /2], (8T}

where the quantities £,(¢}, £,(¢) haveindependent Gaussian
distributions with

(51(”) = <§z(t)) = O,

(£(E,(1) =0,

(6(06(D) =Alagt— ") + Ba(t— 1],

{E:(DE(")) =ffag(t— 1ty —Fr(t—1t")], (8Bc)
where oy (1) and By (1) are the real parts, respectively, of
the quantities (), B(¢) defined in Egs. (10). The choice
(87) and (88) assures that the fluctuation-dissipation
theorem is satisfied in this model.

It is straightforward to calculate the quantity W7 (the
mean-square fluctuation in the energy dissipated on the “‘se-

paratrix” cycle £ = 0). Quite generally we have {from Eq.
(60)]

(88a)
(38b)

Wj;:_g.,ﬁz {E:}SI(Q)H);Z _‘— |52(wn)’2]aﬂ ((0")
o »

+ {;Sl(w”)iz — 153(0)" ) lZ:EBR {w, )}

[w, =27{n+ 1/2}/T1, (89}
where S;(@) and S,(w) are the guantities defined in Egs.
(29) and ai (@), Br (@) are, respectively, the Fourier trans-
forms of ay (1), Bz (#) and are explicitly given by

ag(w) =} coth{Bhw/2}i (o),

Br @) = coth(fhiw/2) I (»), {(S0)
with [ (@) and I, (o)} the spectral densities defined in Egs.
(11). In the limit £ -0, we can prima facie replace the sum
in (89) by an integral, and take (@) and &,(w) to be given
by the forms (valid for 8, € 1) {31). This gives

WHT) =§f'_j°° (m}sgm(ﬁ__ﬁw_/%i
w Jo @y Sinhz(’ﬂ'(u/a)j)

X1 (0:T) + I, {(0:T)cosh{mw/ow,} |do.
(s1)

It is clear that in the limit fiw; €AkT <€A we have [cf. Eq.
(13)]
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W =2kTI

as of course we must to satisfy the fluctuation-dissipation
theorem. The integral (91) can also be evaluated explicitly
at zero temperature using Egs. {11):

W(T=0)
2y .2 3
_ 2 ##o} ( 2A> gxp“(zﬁzﬁ):zﬁjr(]‘:())(ﬁg
Fis RN 'ﬁwJ J

(92)

fef. €32)] with corrections of relative order %, /2A. To
evaluate W}( Ty at intermediate temperatures we would
need to substitute the appropriate forms of the spectral den-
sities I, (:T), I, (0:T}) [for which see, e.g., Ref. 16, Eq.
(41} 1. However, it is easy to draw qualitative conclusions
without a detailed evaluation: see below.

We note that both the average energy dissipation W(E)
and the mean-square fluctvation W}(T) are essentially a
sum of two quite different contributions. One, arising from
frequencies « > 24, has a weight which is proporiional to
exp — (27A/#fw;) and is essentially temperature indepen-
dent in the region of interest (KT € A); as we saw in Sec. 11,
it has no singularity in the iimit £-0. The other contribu-
tion comes from low frequencies, © S @, : this has an intrin-
sic weight proportional to the number of thermally excited
guasiparticles, i.e., toexp — A/kT, and also has nio singular-
ity in the limit E— 0. In the limit of large A/#w,; wemay toa
very good approximation neglect the second term for
kT < #m, /2w and the first for XT> fiw, /27, the transition
region being of order (#iw;)*/(27)?A in width. We can then
divide the temperature axis into three regions: (1)
kT <#iw, /2m, (A1) w27 < KT S Hiw,, and (111) AT> i,
In region I everything is essentially temperature indepen-
dent; in particular, there are no power-law corrections to the
zero-temperature behavior as we expect in the RSJ case. In
region IIf it follows from the fluctuation-dissipation
theorem that the result for W}, expressed in terms of the
return current £, is identical to that of the RSY model. In
region If 2 more detailed calculation is probably necessary to
get the exact behavior right, but it is clear that we must get a
smooth interpolation between the formulas of regions I
and 1L

We can now proceed exactly as in the last subsection to
obtain the retrapping statistics. In region I the main differ-
ernce is that JW /JE is proportional to a constant rather than
to In £in the limit £-0; Eq. (73) is in fact still valid except
that the (In E,/E) /% factor in the prefactor is replaced by
(In E,/E) . The only difference in subsequent formulas is
that f{x) is of the simple form x? rather than x?|In x); this
leads to a small correction to the shape of the retrapping
histogram and to the omission of the factor (in4)"? in
(82). The same is true in region II, where in fact it is easy to
see that (83) remains valid apart from the overall numerical
factor.

The upshot of all this is that the gualitative behavior of
the width o of the retrapping distribution as a function of
temperature for the QPT model will be very similar to that
for the RSJ model; the principal differences are that (a) the
“crossover temperature” as defined in Sec. IV C will be
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#iw; /2 rather thano [ (In 2) /] (#is, 3, and (b) the curve of
o vs T will be much flatter at low temperature (reflecting
the absence of appreciable dissipation at frequencies
#iw ~ kT compare the results for the MQT problem® ).

There is one major complication to the above picture.
We bave implicitly assumed that we could take the guantity
W(E) tobe given by its “smoothed” value, which is mono-
tonic. But in fact at zero temperature the function W{E) is
composed, as seen in Fig. 4, entirely of pieces with negative
slope, separated by vertical drops; at finite temperature this
remains true down to approximately the nth discontinuity,
where n~%w,;/27kT, after which the slope becomes posi-
tive {but we still get discontinuities). We shall see that this
phenomenon, while introducing a qualitative and surprising
modification into the running-state /- ¥ characteristics in the
region where retrapping is negligible, has little effect on the
retrapping statistics themselves.

Let us suppose that we are interested in a region of the
characteristic where the root-mean-square fluctuation ¥ in
W, as calculated above, is small compared to the height of
the discontinuities in W{X). Then, once a fluctuation takes
the system away from its deterministically calculated value
of E for the given J, the effect of the external current will be
to emplify the fluctuation rather than to damp it down, and
this process will continue as long as W /JE remains nega-
tive. It is clear that the only stable states of the system will
correspond to the points marked by arrows in Fig. 4: thus,
we should expect that the voltage is discredized, at the values
V,=1246/Te{(2n + 1)]. Ifthere are regions where W /3Eis
positive and others where it is negative (as happens for the
“mixed” model, see Fig. 6, or for the simple QPT model at
finite temperature) then we expect pieces of continuous
curve in the I- ¥ plot separated by forbidden voltage regions.
Of course, in practice it may not be easy to distinguish the
effects of fluctuations from those of a finite (and sufficiently
small) lead impedance, which may lead to a qualitatively
similar effect. Note that in any case we expect that at any
finite temperature the gaps disappear sufficiently close to the
voltage axis, since the slope always becomes positive in this
limnit {see above).

If, on the other hand, we are in the region where W, is
large compared to the step heights, then we shouid expect
the effect to be washed out and the running-state I-¥ chare-
teristic 16 be essentially that calculated in Sec. Il [e.g., Eq.
{363 ]. Since the height of the nth step decreases strongly
with n, there will be only a finite number n, of forbidden
voltage regions even at zero temperature. We may estimae
this number crudely as follows: From Eq. (30) we find that
the height of the nth step is of order n™* (A/fiw,)B,E,.
Moreover, [cf. Eq. (32)] the fiuctuation W, for the QPT
" model at T = 0is of order (A8, E,) "% Thus the number 7,
of forbidden voltage regions which survive the effects of
guantum fluctuations is of order

e A (ﬁ)_)l/z i/2~( A V)VZ(__R;__}«HM' (93)
“ha, LA T\, ) \R,

{The condition for forbidden regions to be seen at all is
therefore the same, as regards orders of magnitude, as that
for the whole treatment of this section to be valid: cf. Ref. 24.
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Now from (75} the order of magnitude of 8 /7, in the re-
trapping regime is W /1, ¢oFEy~ (A/Fiew, Yu, and the voltage
is therefore of order w;¢,/In{ ( A/#iw, }u¢]. The correspond-
ing order of magnitude of n in the retrapping regime, namely
A/eV, is therefore of order (A/%w,)In{(A/fiw;)u]. The
step structure will be negligible if this quantity is large com-
pared to n,, Eq. (93),ie.,1f

(B, E/8) <ln® [ (Ao, . {94)
Mow for the pure QPT model we have, at least to an order of
magnitude, Eq~7. ~A/R,, and hence the insqguality (94}
can be written

R/Ry>8,In" *(Ry/Ry), (53)

which is still compatible with the condition R /R, €fiw, /A
for the treatment of this section to be adequate. Under condi-
tion (95) we may legitimately neglect the complications due
to the step structure of the 7-¥ characteristic. We conclude
that the resulfs cited above for the widths, etc., of the retrap-
ping distribution in the QPT model may be realistically com-
pared with experiment.

E. Quantum refiection

In this section we shall consider an effect which was not
explicitly accounted for in the QCLE analysis of the preced-
ing sections, and which persisis even in the limit R oo,
namely the phenomenon of quantum reflection of the system
from a barrier which it has, classically, sufficient energy to
cross. We will assume that quantum effects are important
only near the barrier top, and that in this region the effects of
dissipation are unimportant (this should certainly be true
for B; €1}, whiie over the rest of the cycles we describe the
motion by the deterministic {but dissipative) eguation of
motion {18), or its analog {thus neglecting any interaction
of the effects of fluctuations and barrier reflection ). Further-
more, we will assume that it is unnecessary o keep track of
the coherence between the parts of the wave packet which in
the washboard-potential picture are in different wells. Thus,
the effects of quantum mechanics are entirely encapsulated
in the specification of the reflection coefficient from the bar-
rier as 2 function of energy. This approximation should al-
most certainly be valid in the limit £, €1, o< 1; wereturn in
the next section to the question of its validity in the more
general case.

We consider the limit {— f, €/.. Then the shape of the
barrier top is an inverted parabola with curvature o, and we
have for the reflection coefficient the well-known expression
(see, e.g., Ref. 39)

R(E} = [exp(27E /fiw,) + 117, (96

where £ 1s, as usual, the kinetic energy with which the sys-
tem reaches the barrier top in classical motion. It is not im-
mediately clear that R(E) is the retrapping probability per
cycle, because of the possibility of repeat attempts. However,
for p < 1 the system on average loses over the next back-and-
forth cycle an energy large compared to fiw,, and hence, if
the probability for its initial reflection was appreciable, is
very unlikely to pass on the next attempt. Thus in this case
R(E) is indeed to a good approximation the retrapping
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probability; note that it is not unity for £ <0, because of the
possibility of tunneling through the barrier. The case p2 1
needs separate consideration, and-will be discussed in the
next subsection.

The crucial point now is that from the definition of the
parameter g [Eq. 7(b}] the quantity #iw; is of order p&,
while according to the calcniations of the last two subsec-
tions {which we shall see are self-consistent) £, is of order
p'2E, and W, of order (B,;)'?E,, in the region where
retrapping takes place. Thus, under the assumption p <}
that is common to all the work of this paper, %e, is alwaeys
small compared tc E; for p <1 it is also small compared to
W,. Now in the limit #w; €K, it is clear that the principal
effect of quantum reflection may be taken into account by
multiplying the integrand of the right-hand side of BEq. (70)
by R{E") and extending the integration to — co; and more-
over that for fiw; € W the effect of this substitution is negh-
gible. Hence, we reach the conclusion that for p <1 the ef-
fects of quantum reflection (and below-barrier trans-
mission) are completely negligible relative to those of
guantum noise and do not affect the results stated above.

F. Generalizations

The results given in this section so far were obtained
under the assumption of either a RSJ or a QPT mode! with
the inequalities 2, €1, £ <1, p<1 all well satisfied.* It is
clear that they can be rather trivially generalized to the case
where these inequalities, or the analogous ones, are still afi
well satisfied but the classical equation of motion is more
complicated than the simpie RSJ form. In fact, it is casy to
see from the results of Sec. I E that provided only that the
low-frequency dissipation is large enough that the logarith-

mic term in (44} dominates (a very weak condition, for any
model but one of the extreme QPT type) then all the argu-
ments leading to Eq. (75) go through verbatim with the
quantities 8, K, etc., replaced by the tilde’d quantities de-
fined in Sec. II] E. Indeed, in the limit A7> #iw, the only
difference in the final resuit for the distribution f{x) of re-
duced return currents 87 /7, =x [Eq. (78)] lies in the re-
placement of I, by I, the quantity appropriate to the barrier
top [and similar replacements in the prefactor o, in (82} ].
The detailed form of the crossover function f{7) may be
somewhat different from that in the simple RSF model since
the spectrum of the fluctuations is changed, but unless the
behavior of the parameters as a function of ¢ is pathological
the general behavior will not be much different from that
shown in Fig. 7.

A less trivial question concerns the generalization to the
case where one or more of the dimensionless parameters f;,
&, p is not small. We will not consider in this paper the case
1~ 1: as noted in Sec. I, this is not realistic for most practi-
cal junctions in the imit -0 {(though at higher tempera-
tures it may of course be of interest). Since we defined
p=8 'y, the case B, ~ 1, p>1 is thereby exchuded; and we
have already considered the case 8, €1, p<1. Thus it re-
mains to consider two further regimes: (a) 8, ~1,p <1, and
{(b)F,<41,pz 1. Incase (a) weshall assume that 1 — 3, is
positive (otherwise no hysteresis occurs even in the absence
of noise) and moreover is not too smali compared to unity,

We consider first the regime £, €1, p2 1. It is conven-
ient to remind curselves of a few characteristic energies, etc.,
as they appear at zero temperature and at temperatures

% fiw;. The following is an estimate of orders of magnitude
only:

=0 kT2 #iw,
Average energy loss per cycle (%) B E, B,E,
Fluctuations in above (W) (B, B, Eq)'"? (KTB,Ep)'?
Width of “tunneling” region Py fiw,
Avg. number of quanta ( ~fiw; ) B Ey/ fiwy (BEy/ fiw; Y kT /P )

emitted or absorbed/cycle

We recall that we defined the parameter p to be
B (#w,/E,) at zero temperature and §; (kT /E,) at
high temperatures, kTR #w,;. From the above we see that at
zero temperature the regime pR 1{RX Ry ) differs from
that corresponding to p<€ 1 in at least three respects:

(a) The fluctuations in the energy loss per cycle become
comparable to or greater than the mean energy loss.

(b) The width of the region where tunneling (and quan-
tum reflection) plays an important role becomes compara-
ble to or greater than the mean fluctuation in energy loss per
cycle.

(c) There is an appreciable probability of the system
completing a cycle without emitting even one “typical” exci-
tation (w~ay).

At high temperature, by contrast, the crossover to condition
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(a) stil occurs 2t p ~ L {R ~ (fiw,; /kT} R, ], while the cross-
over to conditions (b) and (c) does not occur untilp~ (kT /
#i;)? [R~ (kT /#iw; R, 1. Let us therefore first consider
the case where (a) is relevant but (b) and (¢) are not (high
temperature, (fiw;/kT)Ry SR < (kT /fiw; )R ).

The main difference between this regime and the one
studied in Sec. IV C is simply that the mere fact that the
system is reflected from a particular barrier is no guarantee
that it will not pass it on a subsequent attempt. In principle,
to discuss this regime completely quantitatively we would
have to follow Mel’nikov and Sité® and construct equations
for the “backward-going” distribution as well as the *for-
ward-going” one to which we have restricted ourselves up to
now. However, it is easy to see that the ensuing consider-
ations have an appreciable effect only on that part of the
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distribution which has ES W, for E> W, and in particular
for E~ E;, the integral equation (68) is essentially unmodi-
fied and the solution is still given by (69). The trapping
probability is still proportional to the value of (68) extrapo-
lated to £ = 0; only the coefficient is modified, in general
being smaller than estimated in Sec. IV . Thus the net up-
shot is to modify the prefactor in Eq. (73) but to leave the
exponent unchanged. Thus, to the extent that we neglect
logarithmic factors, the behavior of the observed widths of
the retrapping distributions is identical to that found in Sec.
IV

We finally consider the behavior in the regime where all
of (a), (b),and (¢) apply [pR 12t T=0,p R (kT /#w, ) for
kT fuu, }. The effect of consideration (b) is to complicate
further the process of reflection and transmission: in effect,
W, is now replaced, as regards this process only, by fiw,.
(The character of the distribution for E~E,
~p7 V2, > %, is however still determined entirely by
W;.) Thus the effect is, again, simply a modification of the
prefactor in {73) without change in the exponent. The ques-
tion of the effect of consideration {c) is a delicate one and
may depend critically on the behavior of the dissipation
spectrum in the limit 0. If we were 1o assume that the
only relevant excitations are those with w ~w; (e.g., because
the spectrum has a gap at some point below but of order @, )
then two related but different consequences would follow
from (c): (1} the width of the probability distribution in ¢
space is not confined by dissipation to be small compared to
27 (see Appendix B} and {2} the coherence between the
amplitudes reflected from and transmitted through a partic-
ular barrier is not necessarily destroyed by dissipation before
they reach points differing by 2# (since there is an apprecia-
ble probability of completing a (half) cycle without emitting
even a single excitation ). The presence of a finite dissipation
{more precisely, one at least of order @) in the limit © -0
does not qualitatively alter conclusion (1) but knocks out
(2): on this, see the argument of Ref. 41, which, somewhat
counterintuitively, is apparently valid for any finite amount
of “ohmic” dissipation, however small. Since at any finite
temperature such dissipation exists even in the QPT mode,
we may conclude that conclusion (2) never holds in any case
of physical interest. Similar considerations would indicate
that conclusion { 1), while not necessarily false, is harmless,
since parts of the probability distribution which differ by an
amount of order 27 will be essentially incoherent with cne
another, so that the effect of ““quantum uncertainty” is qual-
itatively no different from that of its classical counterpart.

The net upshot of this rather lengthy cousideration,
then, is simply that the transition from the regime p <1 con-
sidered in Sec. II to the regime p % | merely alters the pre-
factor of the expression for the retrapping probability with-
out affecting the exponent. The main physical reason for this
is that the major bottleneck in the retrapping process is sim-
ply the diffusion in energy space from the mean energy,
which is of order (some fairly large number times) &, down
to the much smaller energy ( ~ W or #iw,) at which retrap-
ping actually starts; this diffusion process is sensitive neither
to quantum reflection nor to the details of the behavior over
a single cycle, but is simply a random walk with a step length
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~ W,. Consequently, to the extent that in comparing experi-
ment with theory we neglect logarithmic factors, then pro-
vided that both £, and u are smail compared with unity the
value of their ratio g is quite irrelevant, and the results of Sec.
IV C apply irrespective of it.

Finally, we consider the case #; ~1, p£1. The deter-
ministic dynamics of the system in this case was examined in
Sec. III E and in particular the behavior of W{(E), and hence
of the {-¥ curve in the absence of fluctuations, was seen to be
of a structure essentially identical to that for £, €1, only the
numerical coefficients 4 and B, and the characteristic vol-
tage V, [cf. Egs. (44)~(47)] being different. We note also
that for o<1 the fluctuations in the energy dissipated per
cycle are small compared to the average value and moreover
that it is still valid to replace W3(E) by W2(0) (cf. Sec.
1V B). Hence the argument leading to Eq. {68) remains val-
id, with ¥ ; the mean-square fluctuation on the “separatrix”
cycle, i.e., that corresponding to E = 0. However, the ap-
proximate solution (69), which relied on the fact that 44/
JE is small, is no longer valid. Were the quantity W /9F a
constant, say «, rather than being logarithmically dependent
on E, then the necessary change would simply consist in
replacing the quantity 2« in the mean-square energy fiuctu-
ation £ ; = W7/2a by a(2 — a). Since for the realistic case
a “typical” value of the “effective” « is [cf. Eq. (44)] of
order { B;|ln u|, it is plausible (though not rigorously dem-
onstrated) that the results of Sec. IV C shouid apply uptoa
value of 8, of the order of !In ]~ '. For larger values of 5,
the main effect should be to multiply the quantity
(8I /1) /(81 /1, ) in {75) by a function of B,, of general
order unity for 8, not too close to 1, which may also be
logarithmically dependent on 87/7,. To the extent, there-
fore, that we are prepared to ignore logarithmically small
effects, we expect that the net result would be to multiply the
overail widths of the observed retrapping distributions by a
factor of order 1, but to leave the temperature dependence
unchanged. ( Here, of course, we are assuming that f; isnot
itseif a function of temperature.) However, it should be em-
phasized that this conclusion is piausible rather than rigor-
ous.

V. CONCLUSION

In this paper we have considered the behavior of a Jo-
sephson junction with weak fluctuation effects (AT,
fiw; €1,¢,) near the return to the zero-voliage state, with
primary though not exclusive emphasis on the weakly
damped case (&, =1/, RC<1). Our major results are the
following:

(1) In the limit F— f, the current-voltage characteristic
in the running state is given Guite generally by the formula

f—1 _ {4V, B

i, '\ Vo
where the constants 4 and B are in general of order 1 (but 4
may be zero in special cases such as the QPT model at
T =0} and the quantity ¥, is defined by the effective junc-
tion parameters near the barrier top: in particular, in the
weak-damping RSJ or QPT case ¥V is given up to correction
terms of order #2 by the simple formula

AY
jexp — VIV, (57)
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Vo= ;¢ (98}

(2) The I-¥ characteristic of a junction described by the
QPT model (with #iw; €A) will in general exhibit a number
of “forbidden voltage regions” before settling down, as
I—1,, to a relatively smnooth curve whose envelope is (97).

{3) For the RSJ model in the weak-dampicg limit the
reduced width of the retrapping distribution observed in a
standard ramping experiment should be given, up to logar-
ithmically varying factors, by the expression

K=constu!?(21n 2)12%g(T), (99)

where u="iw,/I,¢, and g(Ty=[/(T)]'? with the func-
tion f{ Ty plotted in Fig. 7. For other models, or for stronger
damping, the behavior should be qualitatively similar but
the temperature dependence of X may be somewhat different
from g{T; in particular, for the QPT model it is consider-
ably Hatter at low temperatures.

The main significance of resul¢ (1) is that it shows that
provided we know that £, is small compared to unity (a
conciusion we can draw directly from the ratic [ /J_ ) then
an inspection of the running-state current voltage character-
istic near return gives directly the value of the (pseudo) Jo-
sephson plasma resonance frequency &; = (fc / 2?) Y2 with-
out any need for knowledge of the effective resistance. For
the simple RSY or QPT model we can combine this with out
knowledge of 7, to infer unambiguously the effective junc-
tion capacitance, while for more general (nonpathological)
models we can derive at least its order of magnitude. This is
of some importance, since the question of the effective junc-
tion capacitance at frequencies of the order of w; is one of the
most hotly debated guestions in the context of MQT and
related phenomena. Knowing C, we can then obtain the
“subgap” (w -~} resistance guite unambiguously from
By =/81/L 1.

The significance of resuit {2) is that it may help to ex-
plain the gaps in the current-voltage characteristic near re-
turn which seem to be a feature of many high-quality junc-
tions exarmined in the laboratory.*? The appearance of such
gaps is a signature of an appreciable component of “QPT-
like” behavior in the modei. Of course, in most cases the
voltage at which these start corresponds to >/, and hence
is too high to be quantitatively described by the theory of this
paper {and the condition #iw, € A may also not be satisfied)
but the gualitative features should not be much changed.
Needless to say, in practice, the finite (i.e., noninfinite) im-
pedance of the leads may intreduce complications: see be-
low.

Finally the significance of result (3} needs no emphasis:
experiments on the guantum retrapping behavior and in par-
ticular on the quantum-classical crossover should ideally
complement the existing results on MQT and provide valo-
able further evidence for {or against!) the hypothesis of the
applicability of the quantum formalism to the motion of a
macroscopic variable.

It is clear that when combined with the well-developed
theoretical predictions for MQT (for which see, e.g., Ref 1),
assuming the validity of the guantum-mechanical predic-
tions in both cases, the resuits of the present paper can be
psed to put quite stringent consistency tests on any conjec-
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tured model for a given experimental junction. Suppose, for
example, that we believe that a particular junction is well
described, in the region eV €A, by a simple effective RS
model (cf. Sec. 11} with weak damping. For measurements
on the “outward” portion of the characteristic we can obtain
an accurate vaiue of the quantity 7., and, from the MQT
behavior, the “escape temperatare” T, (see Sec. IV C).
Mext, by measurements of the running-state characteristic
near the return to the zero-voltage state, we can obtain di-
rectly the quantity «,. Finally, we put this value into Eq.
(86) to obtain a parameter-free prediction of the “retrap-
ping temperature™ T, . Notice that in this argument we can
check for consistency without ever having to invoke the ab-
solute values of the reduced width (and heance know the ab-
sclute value of 7,), or even the absolute values of the tem-
peratures involved (though predictions are of course made
also for all these quantities). Thus we believe the results
should be usefu! in determining in an unambiguous way the
parameters of junctions considered, for example, for useina
“macroscopic guantum coherence” experiment.

One note of caution, however, needs to be added regard-
ing the comparison of the theory of this paper with experi-
ment. As is conventional, the theory is based on the assump-
tion that the impedance of the junction leads is infinite; it will
presumably break down when the differential dc resistance
3V /3 becomes comparable to the lead impedance. (Of
course, it may be possible to take these into account as re-
gards the running-state characieristics by the standard load-
line construction, but it is not at all clear that the corrections
to the retrapping statistics can be so sirnply handled. ) Now
with the estimates of Sec. IV C for the typical value of 67 at
which retrapping occurs, we find that in this region the dif-
ferential conductance g /GV is given, to a crude order of
magnitude, by p'/*,/Vy~8 1?1,/ V,,. If we take as typical
thevaines I, ~ 1A, ¥~ 1mV, B, ~ 1077, u~10 "% wesee
that to avoid these complications we would need a lead im-
pedance much greater than 100 M{}. Thus the guestion of
lead impedance cannot necessarily be neglected.
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APPENDIX A: BEHAVIOR NEAR THE BARRIER TOP
FOR AN ARBITRARY SHUNT ADMITTANCE

The general equation of motion governing the dynamics
of the phase @{¢) is of the form

Risny= - Y
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where U{$) is given by Eq. (5) and X is in the most general
case a nonlinear integrodifferential operator. We consider,
as in the main text, the motion in the region

¢max - A¢<¢(I) <¢max + A¢9

where A¢ is small enough that any nonlinearity of Kasa
function of (4 — ¢,... ) may be neglected. Then, since we are
interested in “very slow” motion in which the system barely
manages to pass the barrier, we assume that the motion in
this region is well described by linearizing K{4(¢) | around
#max (the implicit assumption here is that any effect of the
nonlinear conmbutxons to K will either be “forgotten” in a
time of order @; | which is short compared to the passage
time 7, or can be incorporated in the boundary conditions at
Daax + H¢). If we could assume that the passage time is
infinite, it would then follow that the Fourier transform
(@) of (£} — P Would satisfy the equation (where we
implicitly also linearize 83U /34)*

[K(0) —1.1¢(0) =0, K(o)=ioY(w), (A2)

where Y{w) is the linear admittance shunting the junction.
Actually, for finite 79 (@) | defined as the Fourier transform
ofthequantity ¢ () between — T /2and T /2] does not satis-
fy Bqg. (A2), but a more complicated equation. However, we
can use the foliowing trick: We formally extend the range of
the linearized equation from — oo 10 oo, but impose appro-
priate boundary conditions at t = + T /2. Then the equa-
tion of motion is obtained by demanding that the quantity

fm [K(o) — 1. 1) deo

shall be extremum as a function of ¢*{w) sublect to the
]

fAexpiw(i —T/2) —vexpio(t+ T/2}}]

boundary conditions, which we assume can be specified in-
terms of linear functionals of ¢ (@) and can be incorporated
via the usual Lagrange multiplier technique. As a result we
obtain the solution

$lw) =floTV/[K(w) ~1.1, (A3)

where f{w:T") contains the Lagrange multipliers, and by tak-
ing the Fourier transform of ¢{w) we obtain the actual mo-
tion ¢(¢). Finally, by using the fact that Eis the value of JC#?
at ¢ = @,_.,, we can express the passage time 7 as 2 function
of E, which is the object of the whole exercise.

For clarity of presentation we first carry out this proce-
dure for the simple case K(w) = — €w® + iwR ~*, where
the answer could of course be obtained much more simply by
direct solution of the equation of motion in the time domain
(see Sec. III). Since the equation of motion is second order
in time, we need only twe boundary conditions: let us specify
those in the form

P —T/2) =pa — &dy $(T/2) = Prope + B¢

(A4}

If we denote the corresponding Lagrange multipliers by v
and 4, respectively, the specific form of Eq. {A3) is

Ao~ @T/2 _ o+ ial/2
(6(0)) = 3

~ aneanacs, (AS)
o — iy + &%

where @, and ¥ are defined in Eq. (38) of the main text. In
writing {AS) we have buried a minus sign and a factor of c
in the definitions of A and v. In the interval — 7/2<e<T/2
the form of (¢} is therefore given by

(AB)

B — e = —— j do
I Jow

We consider the two terms in the numerator of the integrand
separately. The first must be integrated by closing the con-
tour in the lower half plane. As to the latter, rather then
closing the contour in the upper half plane, it is convenient
with a view to the generalization below to make the change
of variable @~ — @ and close again in the lower half plane.
In this way we obtain an expression of the form

(1) — P =Aexp{®;, — V)t + Bexp — (B; + 732,
(AT}

where &, = + (&% + ¥*)/? as in (40). Needless to say, re-
sult (A7) is exactly what is obtained by elementary tech-
niques: note that the first and second terms correspond re-
spectively to the pole of [K{w) —-1}"‘ and [K{( —w)
— 17,17 " in the lower half of the complex plane.

It is gow clear how to generalize this result. Since the
operator K (¢) must be real, we have £( — @)} =K *(w), and
hence, since K (@) is analytic in the lower half plane, the only
singuiarities occurring there of the quantities [K{ + o)

— 17! are simple poles, whose positions we denote by
— i@t and — iw! 7, respectively. Thus we can immedi-
ately write down the result
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@ — 2wV & &%

G(2) — Do = Y (A, exp ] "1+ B, exp — 0] 1) .
! (A8)

The prefactors 4, and B, occurring in (A8) must be
determined from the boundary conditions at = + T/2,
i.e., at (1) = d,., + Ad.* We now make the crucial as-
sumption that these boundary conditions, whatever their de-
tailed nature, do not depend explicitly on 7, or at any rate
not to lowest nontrivial order; this seems eminently reasona-
ble since they arise as a result of fitting the motion near the
barrier top to that in the rest of the well, which, at least as
regards the second and higher derivatives,* should be quite
insensitive to £ and hence to 7. It then follows immediately
that the quantities 4, and B, must be of order
exp — w; T /2, and hence that over most of the range
-7/ 2<z< T /2 the motion is overwhelmingly determined
by the terms corresponding to the smallest ! ¥’ (for 1> 0)
and smallest w! > (for 1 <0). Consequently, the passage
time T itself is alsc determined overwhelmingly by these

terms. It is clear that if we define as in (49),
wlz%{wr(n:n) +mr(mn))? 7_2(Qmm wtfm;)) s
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then we recover all the resuits of the simple model discussed
above, which is in fact a special case.

In the above argument it was implicitly assumed that
the guantities @} "’ (though not necessarily the higher
w!t77) are real. Although at the time of writing we have
not been able to exclude the opposite case rigorously, we
know of no realistic example of it and it seems likely that any
example would have to be rather pathological from a phys-
ical point of view.

APPENDIX B: THE ¢-NUMBER QUANTURM LANGEVIN
EQUATION

It is known clasically that when in contact with a dissi-
pative environment, a particle will be subject both to a ran-
dom fluctuating force and to the associated irreversible ener-
gy dissipation. At high temperature, the correlation
spectrum of the random noise is effectively “white,” and the
well-known Langevin equation has been very efficient for
the study of the behavior of such dissipative systems. As the
temperature decreases, the quantum nature of both the par-
ticle and the environment will manifest itself. One is thus
forced to study the problem in an operator basis, treating the
whole system gquantum mechanically. In certain cases, it is
found that the classical Langevin equation can be naturally
generalized into a guantum one, provided we replace both
the coordinate of the particle and the noise of the environ-
ment by their corresponding quantum operators (see, e.g.,
Ref. 46 and references therein ). It is further found (cf. Refs.
32 and 47) that if the dissipation is strong, the guantum
features of the motion of the particle will be heavily sup-
pressed. This leads us to another slightly different approxi-
mation, the c-number guantum Langevin equation or, as it is
" called by Schmid,’® the “guasiclassical Langevin equation,”
in which only the noise spectrum of the classical Langevin
equation is modified by the guantum mechanical consider-
ations. In this Appendix, we shall give a plausibie path-inte-
gral derivation of the c-number Langevin equation and then
investigate its conditions of validity. Our derivation is simi-
lar to that given by Schmid.*

The derivation

In order to formuiate the problem guantum mechani-

cally, one is generally required to take specific modeis of the
environment. Here we consider a simple yet practically im-
portant case, namely, where the environment is taken as a
bath of harmonic oscillators with the distribution of their
frequencies being ohmic (see below). We start with the fol-
lowing Hamiltonian:
H=H +H, ,+H,, (Bla)
where we denote 5 i b4 ., and Fi4 '~ o» TESPECtively, the Ham-
iltonians for the particle, for the enviornment, and the cou-
pling between them:

B, = @2m) + V%), (Bib)
- i 72
H, == g m-w?)”c?) \ Bic
2 EJ:( 2mj FARF A ( )
A, .=x3C3 +ifc22( </ ) (Bld)
pme 7 o 2 }" W‘Ej(i)f '
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nH »_ . we have deliberately introduced a counterterm to
cancel the implicit adiabatic potential shift due to the cou-
pling (cf. Ref. 28, Sec. III, and Appendix A). It is conven-
ient to introduce another guantity, the “spectrum of the
bath,”

J(w)= Z
4 fhndl
We shall see that J{w) is of particular importance in the
resultant formalism. Since we are only interested in the dy-
namics of the particie itself, we shall confine ourselves to the
reduced density matrix defined by tracing out the bath de-
grees of freedom at the final time #,. Nevertheless, one has to
face an associated problem, namely, how to choose as natu-
ral as possible a form for the initial density matrix of the
whole system. A popular choice is the so-called product
state,
e

pla)y = p(s,)exp( — BH,},
with

{@: +r/21p )G — 7/ =p(Qirist) (B2b)
being an arbitrary normalized function, where we have in-
troduced, respectively, in the particle density matrix (x|p|p)
the “center-of-mass” coordinate, O==x + y/2, and the rela-
tive coordinate, r=x — y. We will take this choice. Note that
it is not entirely obvious, as argued by some other people,
that different choices will modify only the transient behavior
of the dynamics. However, we will not address this question
here (for further interest, see, e.g., Refs. 46 and 48). Write
the evolution of the reduced density matrix in the following
form:

2
i

{(Bif)

[6(w; —w) —§(a;, + @} ] .

(B2a)

P IS PR & )Ef 4@, dr. J(Qp vp 130,701

Xp{@irint;) - {B3a)
kt is now straightforward to find that the kernel can be
expressed in terms of a double path integral (see, e.g., Refs.
31 and 32):
4 Qf oFr ks 3Qisrit)
Qtp) = Gy, #epd = 1y

= D@G(e)Dr(tyexp[S{@r}] ., (B3b)

Q1) = Qprisp =7,
where

SfQ,r)Eé-ffdfime+ (@~ 1/2) — V(@ + r/2)]
i ‘fd (
m;{'{; fritha (1,

+f dt’m(f—:')Q(:'})

1 ¢ ‘
‘"g‘if dtf dt’ r(ta,(r —t)r(t’)y, (B3c)
4 Yy
with
4 o
flx(l’)Ef dw J(@) cos wt, {B3d)
e w @
+
o, (1} E.{ g@—ﬁf(w)coth('gﬁm)cos Wt . {B3f)
e 27 2
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It is of particular interest to consider the case of chmic
damping, i.e., take, in the limit of infinite number of environ-
mental degrees of freedom, J(@) — 5w where % will be iden-
tified as the viscosity.** Under this assumption, Eq. (B3c)
can be reduced to

S(Qr)= ““é“ﬂQt Fy ‘5“‘%‘{[‘{! [”ﬁ'Q““?VQ
+ V(@ —r/2) — V(D +r/2}]

i d
ﬁ—%{-f dtj‘ di" r(ya (e — e Yyr(r'y . (B4)
# [
It is important to notice that the last term in Eq. {B4) sup-
presses fluctuations in #(7). Namely, if the viscosity 7 is
large, only the portion of paths with small () will make
imporiant contributions to the path integral (B3b); weleave
the detailed justification of this statement to the next section.
Expanding

‘Q_:j,)_" (;Q;_j;f’j:__ Qo — LD s
V(\ -5 Vi@
(BS)

we would then be led to the suggestion that only the first-
order term in the right-hand side will be significant. On the
other hand, to complete the resulting path integral, we trans-
form the real part of the exponent info the following form
containing a random stochastic force

exp(—égffdtf dt’ r€t)az(l‘~i')"(f’))

= <exvp(—;;— ffdt r(t)§(z))> {Bba)
with the random Gaussian force satisfving
(E(HERY) = ay(t—1'). {B&b)

After these manipulations, we are ready to perform the
path integral. We first integrate over r{?), since the exponent
is now linear with respect to it. Discretizing the time by
€= (i, —t;)/N, one would find that the integration gives
nothing but a & function over the path space of g{1),

N--1 . — 2 -
H 5(_ka~r-1 Qk+Qk 1 —*ﬂ(Q;C“‘Qk__I)
k=1 €
\
— €V (Q) +€§k} . (B7)

This clearly indicates that the possible paths for g(7) are
restricted to the solution(s) of the Langevin equation

mQ+ @+ V(@ =41, Qy=0, Q@)=0 .

(B8)
Teo integrate over J(7), we are led to determine the Jacobian
of the transformation embedded in Eq. (B7). We do not
intend to give the detailed algebra here, but it turns out, guite
desirably, to be the density of paths around the solutions of
Egq. (B8), i.e., it is proportional to {3Q,/3Q;| " Eventually,
we obtain for a given £(¢} the following expression:
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HQy orp st @rst [E(D D)

() 222

cesn{Limdy 1, i+ n0m).

(B9)

where Qf and @, are obtained by solving Eq. (B8). Itcan be
easily checked that the final density matrix is automatically
normalized.

In order to see how the Langevin equation describes the
motion of the particle, let us study, for example, the case of a
wave packet moving according to (B9). Take

2{0r:1)
T 1/ (Q“Xc)z rl) i ]
= (2zo?) 12 {_._i____ ~Ll =Py,
(e EXP( 7 T TET
(B10)
and assume o is small; we then have
/]{Qj‘srf»zf"{g(l)]}
&(Za'jmz)”l(iﬁgf )“
L # | 60,
i 7 m an)z ,
Xexpt— e} e e P
&’p{ﬁmgfrf 2(ﬁ ax,}
- 2; (P ~mQ, — T;X[-)Z} : (BiD)

The distribution of {, is implicitly through Q,. In fact, to
determine the average final position and final velocity of the
particle, we only need to weigh O (X ,»,Q,»,z‘f — ¢} and
QA X, Q.1 — t;) by the last exponent in Eq. (B11). In the
presence of dissipation, the initial effects will, in general,
quickly vanish after a certain time. Besides, in the semiclassi-
cal limit, the distribution of ; is usually sharp. In this way,
one sees clearly how the c-number quantum Langevin equa-
tion {B38) determines the motion of the particle.

It is interesting to sec that the most probable initial ve-
locity is (P, — X, }/m, rather than P,/m. This is, in fact,
due to cur specific choice of the initial density matrix, which
is equivalent to postulating that initially the environment is
in what would be its equilibrium configuration if the particle
were sitting at X, == 0. Thus, as soon as we switch on the
coupling, the particle gains an extra momentum toward the
origin at time ¢ /7. (This “switch-on* of the coupling would
also give a divergence in the mean square position, if the
chmic spectrum was taken sericusly without high-frequency
cutoff, cf. Ref. 46).

The validity celterion

Having given a plausible derivation of the c-number
guantum Langevin equation, we now turn to 2 similar study
of the validity criterion. Notice that the result in the last
section would be exact if the potential of the particle were
quadratic; it is an approximation only to the extent that the
potential is anharmonic. Therefore, we try to introduce a
typical length scale L, over which the anharmonic part of
the potential would roanifest itself. Clearly, for [r{£}1/L <1,
the higher-order terms in V(O + #/2) — V(@ — #/2) are, in
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general, insignificant. Thus, a reasonable criterion would be
that for any fluctuation of r(#) with |r(#)/L,| ~ 1, we have
1 73
— b dtdt (e, (t— ) r(tY> 1. (B12)
247 J: :
Notice that the function a,{¢#) can actually be evaluated if we

introduce a cutoff exp{ — 8{w|) at high frequency, where &
is much shorter than the typical time scale of the particle:

a,(t) =

ﬁ i[i coth
Hrodt

)+ =7

i g/t 1P+ &L
(B13)

In the low-temperature limit, the left-hand side of (B12} is

then rather independent of the time interval £, — ¢,. More-

over, increasing temperature always helps the ineguality.

Thus, we obtain for the validity of the Langevin description a

crude criterion,
pL2/mrhs 1. (Bi4)

For the RSJ mode! of the current-biased Josephson junction
discussed in this paper, for which L, ~ ! and 5~ ¢%/R, this
criterion simply says

R<R,y=h/4~65kQ, (B15)

which agrees with the result of Schmid.*” Finally, it should
be emphasized that the length scale L, varies for different
problems. For example, in the case of macroscopic quantum
tunneling in a Josephson junction, the relevant length scale
L, of ¢ is usually much smaller than 1. Besides, in this case
even if the criterion (B14) holds, it is still an open question
whether it is legitimate to use the Langevin equation to com-
pute the exponentially small escape probability (cf. Ref. 50}.
On the other hand, if one is interested in the global features
of the dynamics of the particle, the range of validity of this
Langevin approach might well be extended beyond (B14).
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