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The phase diagrams and phase transitions of bosons with short-ranged repulsive interactions
moving in periodic and/or random external potentials at zero temperature are investigated with em-
phasis on the superfluid-insulator transition induced by varying a parameter such as the density.
Bosons in periodic potentials (e.g., on a lattice) at T =0 exhibit two types of phases: a superfluid
phase and Mott insulating phases characterized by integer (or commensurate) boson densities, by
the existence of a gap for particle-hole excitations, and by zero compressibility. Generically, the
superfluid onset transition in d dimensions from a Mott insulator to superfluidity is “ideal,” or mean
field in character, but at special multicritical points with particle-hole symmetry it is in the univer-
sality class of the (d + 1)-dimensional XY model. In the presence of disorder, a third, “Bose glass”
phase exists. This phase is insulating because of the localization effects of the randomness and
analogous to the Fermi glass phase of interacting fermions in a strongly disordered potential. The
Bose glass phase is characterized by a finite compressibility, no gap, but an infinite superfluid sus-
ceptibility. In the presence of disorder the transition to superfluidity is argued to occur only from
the Bose glass phase, and never directly from the Mott insulator. This zero-temperature superfluid-
insulator transition is studied via generalizations of the Josephson scaling relation for the superfluid
density at the ordinary A transition, highlighting the crucial role of quantum fluctuations. The tran-
sition is found to have a dynamic critical exponent z exactly equal to d and correlation length and
order-parameter correlation exponents v and 7 which satisfy the bounds v=2/d and n<2—d, re-
spectively. It is argued that the superfluid-insulator transition in the presence of disorder may have
an upper critical dimension d, which is infinite, but a perturbative renormalization-group calcula-
tion wherein the critical exponents have mean-field values for weak disorder above d=4 is also dis-
cussed. Many of these conclusions are verified by explicit calculations on a model of one-
dimensional bosons in the presence of both random and periodic potentials. The general results are
applied to experiments on “He absorbed in porous media such as Vycor. Some measurable proper-
ties of the superfluid onset are predicted exactly [e.g., the exponent x relating the A transition tem-
perature to the zero-temperature superfluid density is found to be d/2(d —1)], while stringent
bounds are placed on others. Analysis of preliminary data is consistent with these predictions.
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I. INTRODUCTION

During the past dozen years, a great deal of attention
has been lavished on the problem of metal-insulator tran-
sitions in Fermi systems.1 Yet, in spite of this, the under-
standing of these phenomena is still rather fragmentary.
Perhaps surprisingly, far less attention has been paid to
the analogous problem for bosons: the transition at zero
temperature from an insulating to a conducting phase.
This is true in spite of the natural experimental realiza-
tions of “He absorbed in porous media or on various sub-
strates, and granular superconductors in which the Coop-
er pairs may act, at least approximately, like bosons.

For pure Bose systems, the conducting phase at zero
temperature is presumably always superfluid? so that the
conducting-insulator transition corresponds to the onset
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of superfluidity. In contrast to Fermi systems, there is
thus a natural order parameter for the Bose problem, as-
sociated with the off-diagonal long-range order of the
superfluid phase. In principle, this should allow the onset
of superfluidity at zero temperature to be treated by simi-
lar techniques to those for conventional phase transitions,
rather than the less well-understood —and more directly
perturbative—techniques used for metal-insulator transi-
tions.

For bosons in a random potential, repulsive interac-
tions are essential in order to stop all the particles con-
densing into the lowest localized eigenstate. Thus, in
contrast to Fermi systems, there is no sensible nonin-
teracting starting point about which to perturb. Indeed,
the onset of superfluidity at zero temperature is a conse-
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quence of the competition between the kinetic energy,
which tries to delocalize the particles and reduce the
phase fluctuations of the Bose field, and the combination
of the interactions and the random potential which try to
localize the particles and make the number density fluc-
tuations small. This competition plays an essential role
in the scaling analysis of the superfluid onset transition
which was briefly introduced in Ref. 3 and is discussed in
more detail here.

In this paper we discuss the behavior of bosons with
short-range repulsive interactions moving in both ran-
dom and periodic external potentials. We argue that, in
general, there can be three types of phases at zero tem-
perature: a superfluid phase, commensurate Mott insu-
lating phases in which there is a gap for particle-hole ex-
citations and zero compressibility, and a “Bose glass”
phase in which there is no gap, the compressibility is
finite, but the system is an insulator because of the locali-
zation effects of the random potential. This Bose glass
phase, which is rather analogous to the Fermi glass phase
of interacting fermions in a strongly disordered potential,
with the repulsive interactions playing the role of Pauli
exclusion, has some rather surprising properties, particu-
larly an infinite superfluid susceptibility. The principal
focus of this paper is the onset of superfluidity at zero
temperature as the parameters of the system are varied.

Two groups have recently studied the onset of
superfluidity in a random potential. Ma, Halperin, and
Lee (MHL)* have attempted a Landau theory and dimen-
sionality expansion about a mean-field theory; we believe
(and will argue) that this work contains an error which
invalidates the conclusions. Giamarchi and Schulz,’ on
the other hand, have analyzed the interacting Bose prob-
lem in one dimension by a renormalization-group calcula-
tion perturbation in the strength of the disorder. We will
rely heavily on this calculation as a cornerstone on which
to test more general scaling arguments.

We will argue that, in contrast to natural expectations,
the onset of superfluidity at zero temperature is generally
not in the universality class of the d+ 1-dimensional XY
model (with, in the presence of randomness, a random
time-independent potential). Instead, we will show that
in the absence of randomness, such d+ 1-dimensional XY
models describe only special multicritical transitions
while generically the behavior is that of a zero-density
transition such as that which occurs as the density of bo-
sons is increased from zero in the absence of an external
potential.®~® (This is also the case for the generic quan-
tum XY magnet without time reversal invariance.) In the
presence of randomness, we expect the transition to
superfluidity always to occur from the Bose glass phase.
This transition, as argued in Ref. 3, is characterized by a
dynamic critical exponent z which because of number-
phase competition turns out to be equal to the spatial di-
mension d, a correlation length exponent v=2/d, and an
order-parameter exponent 7. This latter exponent is ar-
gued here to satisfy the bound 7 <2—d. These exponent
relations, when placed in the framework of a scaling
theory, enable explicit and verifiable predictions for vari-
ous static and dynamic properties near the zero-
temperature superfluid onset transition. Some measur-

able exponents, depending only on z, are predicted exact-
ly.

We present arguments that there may, in fact, be no
simple high-dimensional limit of this transition—at least
not of a conventional Gaussian or mean-field kind—and
that the equality z =d holds in all dimensions. We also
outline an alternate possibility, discussed by Weichman
and Kim in Ref. 8, that for d > 4 there are two universali-
ty classes, one for strong disorder with presumably z =d
and the other for weak disorder with mean-field ex-
ponents.

The outline of this paper is as follows: In Sec. II the
basic model of bosons hopping on a lattice is introduced.
Its relation to the usual charging models of granular
superconductivity”!? is briefly explained. By treating the
kinetic energy (i.e., hopping) as a perturbation, the phase
diagram in the hopping strength, J, and chemical poten-
tial, u, plane is worked out. For the pure, nonrandom,
system we find two types of phases: a set of incompressi-
ble Mott insulating phases in which the density is fixed
commensurately at a positive integer, n, per site; and a
superfluid phase with the usual off-diagonal long-range
order (Fig. 1). In the random case we argue that a gap-
less, insulating Bose glass phase with nonzero compressi-
bility, must intervene between the Mott and superfluid
phases (Fig. 2), and that, in fact, the Mott phase can be
destroyed completely if the randomness is sufficiently
strong (this is almost certainly the relevant case for the
phase diagram of “He adsorbed in porous media). In Ap-
pendix A we derive the exact phase diagrams within a
mean-field theory (i.e., an infinite-range hopping model),
verifying many of the general details, but finding no Bose
glass phase. This, however, is hardly surprising since lo-
calization effects are absent when hopping can occur be-
tween any two sites, particularly those with degenerate
onsite energy.
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FIG. 1. Zero-temperature phase diagram for the lattice mod-
el of interacting bosons, (2.1), in the absence of disorder. For an
integer number of bosons per site the superfluid phase (SF) is
unstable to a Mott insulating (MI) phase at small J /V.
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In Sec. III we expand upon a scaling theory, outlined
in Ref. 3, for the superfluid transition in the presence of
disorder. Following Ma, Halperin, and Lee,* we general-
ize the Josephson relation, relating the superfluid density
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FIG. 2. Possible zero-temperature phase diagrams for the
lattice boson model (2.1) with weak bounded disorder, A/V < %
Figure 2(a), where the transition to superfluidity occurs only
from the insulating, gapless Bose glass phase (BG), is argued in
the text to be the correct phase diagram.

critical exponent to the correlation length exponent at
the A transition,!! to the zero-temperature superfluid on-
set transition. In contrast to the A transition, the zero-
temperature onset transition is driven entirely by quan-
tum fluctuations, so that the static and dynamics are
inextricably linked. As a consequence, the dynamical ex-
ponent z enters into the generalized Josephson relation
for the zero-temperature transition. Using the existence
of a well-defined superfluid hydrodynamical action,
describing long-wavelength and low-energy phase fluctua-
tions of the superfluid order parameter, as well as a
bound on the correlation length exponent,'> we argue
that one must have the equality z =d. Moreover, by con-
sidering the single-particle density of states near criticali-
ty, the order-parameter exponent 7 is argued to be
bounded above by 2—d.

In Sec. IV we outline and extend what is known about
microscopic calculations of the critical phenomena of
superfluid onset at zero temperature. For the continuum
Bose gas with no disorder, this regime is described com-
pletely by the Bogoliubov model.® The continuum Bose
gas results also hold for the pure lattice Bose gas, except
for a special set of multicritical points on the Mott-
superfluid phase boundary. The special multicritical
points correspond to the maxima of the lobes in Fig. 1,
where the transition takes place at fixed commensurate
(integer) density. There the behavior is that of the classi-
cal XY model in (d+ 1) dimensions.® 1©

The more substantial results in Sec. IV involve the
treatment of bosons in one dimension, in the presence of
both random and periodic external potentials. Many of
the results can be transcribed directly from the work of
Giamarchi and Schultz.’> The calculations are based on a
representation of the Bose Hamiltonian first introduced
by Haldane,!?® which can also be generalized to higher di-
mensions.'* We briefly review this approach in Appendix
B. The superfluid transition in a purely periodic poten-
tial can basically be interpreted as a 2d Kosterlitz-
Thouless roughening transition, the smooth phase corre-
sponding to the insulating Mott phase. In the presence of
randomness, sufficiently weak periodic potentials are in
fact irrelevant, and a unique superfluid onset is found
with exponents which confirm those deduced from scal-
ing arguments in Sec. III. The universality class is not
Kosterlitz-Thouless, as would have been expected if the
model were simply (d +1)— XY, as assumed by MHL.*

In the last part of Sec. IV, attempts to find an € expan-
sion, or generalization thereof, about d=4 are outlined,
and the difficulties encountered are summarized.

In Sec. V we present some experimental ramifications
appropriate to systems of *“He absorbed in porous
media,'>1® at low temperatures and at densities close to
the critical density p. of the T=0 superfluid onset transi-
tion. By applying the relationship z =d, obtained in Sec.
III for the Bose glass to superfluid transition, and the
general bound on the correlation length exponent,
v=2/d, stringent bounds can be placed on various exper-
imentally accessible exponents. More surprisingly, some
exponents, depending only on z (and d) can be predicted
exactly. Specifically, we predict that the exponent x,
which relates [via T,~p;(0)] the zero-temperature
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superfluid density, p,(0), to the A-transition temperature
T, as the overall density is decreased toward p,, satisfies
x =d /2(d —1) for all d 22. Analysis of some very pre-
liminary data!’ yield exponent values consistent with
these theoretical predictions.

Finally, in the last part of Sec. V we briefly summarize
our main conclusions.

II. PHASE DIAGRAMS FOR THE BOSE LATTICE GAS

A. Models

In this section we construct zero-temperature (7=0)
phase diagrams for models consisting of soft-core bosons
hopping on a lattice, both with and without disorder.
The Hamiltonian of interest takes the form H=H,+H,
with

(a) 6p; uniformly distributed between —A and A ;

ﬁoz— 2(—J0+y+5y., )ﬁ,‘*‘%Vzﬁx(ﬁl—l) ’
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(2.1a)

ﬁ,:—;zJ,.j@;@ﬁH.c.), (2.1b)
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where I"\I,-=<’I\>,»+ </I\>,- and @,- is a boson field operator (on
site i) which satisfies the standard commutation relations,
[<I>,-,<I>;-"]=8,-j. Here J;; is the strength of the hopping
between sites i and j and J,= 3 ; J;;. The average chemi-
cal potential p fixes the boson density, whereas 8u; is a
random on-site potential with zero mean. The on-site
soft-core repulsion has strength V. For concreteness we
consider two different distributions for the random poten-
tial, Sp;:

(2.2)

(b) an unbounded Gaussian distribution, P(8u;)=exp(—8u?/2A)/(27A)1"? .

In either case, the random variables on different sites are
taken to be independent.

The Hamiltonian (2.1) should be contrasted with
several closely related but more extensively studied lattice
boson models. In the hard-core limit (¥ — o ), boson oc-
cupancy is restricted to zero or one, and the Hamiltonian
can be expressed in terms of a spin-1 quantum XXZ mod-
el.l¥ At T=0, and in the absence of disorder (A=0),
such a model always describes a superfluid state, except
in the (somewhat artificial) limit where there is exactly
one boson per site. - As we shall see, the soft-core boson
model (2.1) exhibits a richer phase diagram, with, for ex-
ample, a nontrivial normal-to-superfluid transition at
T =A=0 for fixed-integer Bose density. '

Josephson junction array Hamiltonians of the form® !°

ﬁz%V ;- EJijcos($,-~—$j) (2.3)

i i

constitute another frequently studied lattice boson model.
Here the phase operator ¢; is canonically conjugate to fi;,
which measures the deviation of the boson density from
the mean. As noted in Ref. 10, the model (2.3) can be ob-
tained as a special case of (2.1) by setting A=0, choosing
p to fix the boson density at an integer per site, and then
expressing the complex field ®; which appears in the
path-integral representation of (2.1) in terms of an ampli-
tude and phase [®;=]|®;lexp(i¢;)]. Upon integrating
out the (small) amplitude fluctuations to quadratic order,
one arrives at a phase-only model which is identical to
the path-integral representation of (2.3). However, since
the eigenvalues of fi; run from — o to o, (2.3) can be
compared quantitatively to (2.1) only when the mean den-
sity, N, about which the fi; fluctuate, is large. Note that
the J;; in (2.3) are really N times the J;; in (2.1).

[
B. Zero-temperature phase diagram for the pure system

In this section we construct the zero-temperature
phase diagram for the pure system (2.1), with A=0 and
Ji; taken to represent uniform short-range hopping. For
specificity we consider nearest-neighbor hopping of
strength J, and study the phase diagram in the u—J
plane (Fig. 1). We begin with the trivial limit J=0, where
each site i is clearly occupied by the non-negative integer
number n of bosons which minimizes the on-site energy

e(n)=—pun+1¥Vn(n—1). 2.4)
Thus (Fig. 1) for all values of p in the interval
n—1<u/V <n (where n = 1), exactly n bosons occupy
each site. For u <0, n=0.

Now imagine fixing p at a value corresponding to n bo-
sons per site, i.e., u/¥V=n —1+a, for some a in the
range —+<a<4, and turn on some weak hopping:
J>0. Suppose J is small compared to the lesser of the
two on-site energies, 8E, ~(3—a)V and 8E, ~(;+a)V,
respectively, required to add or remove one particle from

- the system. Then the kinetic energy ( ~J) gained by add-

ing (removing) a particle from the system and allowing
the extra particle (hole) to hop around the lattice is
insufficient to overcome the potential energy cost. We
conclude that for every positive n there exists a finite re-
gion in the u-J plane (Fig. 1) in which the number of par-
ticles is fixed at precisely n per site. In each such region,
moreover, allowing a boson to hop from one site to the
next gains roughly J in kinetic energy at the expense of
8E,, =8E,+38E, in potential energy. Since J <38E,,

such hops are energetically costly. It follows readily (e.g.,
from trying to compute the ground-state wave function
perturbatively in J),!® that the probability of a boson
having hopped r sites from its initial position is roughly
proportional to (J/8E,,), or exp(—r/§), where
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£~[In(8E,;, /J)]"". Thus, the regions of fixed » in Fig. 1
represent normal, insulating states wherein the density
fluctuations are localized in a volume of linear size £.
Since the constancy of n implies that the compressibility,
dp /0u, vanishes everywhere within these states, they are
also incompressible; they are, in other words, Mott insu-
lating phases.

The Mott insulating phases are characterized by the
existence of an energy gap, E,, for the creation of particle
or hole excitations, i.e., for the addition of particles to, or
removal of particles from, the system. For any point
within a Mott insulating phase in Fig. 1, E, for particle
(hole) excitations is simply the distance in the p direction,
with J fixed, from the upper (lower) phase boundary, i.e.,
the minimum distance which allows extra particles
(holes) to be added. For small nonzero temperature at
constant u, the mobility (or conductivity) of the Mott
states has an activated form, exp( —E'g /kgT), where Eg
is the smaller of the particle and hole gaps.

It should be emphasized that in each Mott insulator
phase, the lowest-lying excitation which conserves total
particle number is a particle-plus-hole excitation. The
energy of this excitation is simply the sum of the particle
and hole energies (i.e., equal to the difference in u be-
tween the top and bottom phase boundary at given J in
Fig. 1) and is thus independent of u, depending only on J
within a given Mott phase. When the temperature is
raised at fixed-integer density, it is one-half of this
particle-plus-hole energy which occurs in the exponential
characterizing the thermally activated mobility.

The fact that the Mott insulating phases have lobelike
shapes corresponding roughly to those shown in Fig. 1
can be understood as follows: If one starts at a point of
the u-J plane in one of the Mott insulating states and in-
creases u at fixed J, one will eventually reach a point
where the kinetic energy gained by adding an extra parti-
cle and letting it hop around the system will balance the
associated potential-energy cost. Since any nonzero den-
sity of particles free to hop without energy cost through
the system will, at zero temperature, immediately Bose
condense producing a superfluid state, it follows that this
point of energy balance defines the phase boundary for a
transition between the Mott insulating and superfluid
phases. Similarly, decreasing u from a point within one
of the Mott insulating phases eventually makes it energet-
ically favorable to remove bosons (create holes) in the sys-
tem. The holes, being free to hop throughout the lattice,
likewise condense into a superfluid state. Since the kinet-
ic energy of mobile bosons or holes increases with J, the
width in p of the Mott state decreases with increasing J,
producing the schematic phase diagram of Fig. 1. Note
that the superfluid phase extends all the way down to
J=0 at integer values of u/V, since u/V =n implies that
occupying a site with n-1 particles at J=0 is energetically
identical to occupying it with n. Thus there is no energy
barrier to the addition of extra particles, and
superfluidity occurs at arbitrarily small J.

It is instructive to consider the contours of constant
density in the phase diagram; the lines of integer density,
(N ) =n, drawn schematically in Fig. 1, are of particular
interest. Each such contour (which represents the canon-

ical ensemble of the system at integer particle density n),
meets the phase boundary of the corresponding Mott in-
sulating state at the point of maximum J on that phase
boundary, as in Fig. 1. It is easy to see that were this not
the case, i.e., if the line (N )=n in the superfluid state
joined the corresponding Mott insulating lobe at a point
other than its tip, then the compressibility would be nega-
tive in the vicinity of the tip, a physical impossibility.
For (noninteger) densities between n and n+1 say, the
constant density contours lie entirely within the
superfluid phase, skirting the Mott insulating phases (as
in Fig. 1) and terminating on the u axis at the special
point u/V =n. This reflects our earlier argument that if
some sites are occupied with n bosons and some with
(n+1), the extra particles can hop around the lattice
without energy cost, and so can Bose condense for arbi-
trarily small J.

For densities just slightly greater (less) than n, the
constant-density contours lie just slightly above (below)
the Mott insulating phase with (N,)=n. This is con-
sistent with our previous assertion that the Mott
insulating-superfluid transition at a generic point on the
phase boundary is driven by the addition or subtraction
of small numbers of particles to the incompressible Mott
insulating phase. That is, the density changes continu-
ously from its fixed-integer value, n, in the Mott insulat-
ing state as one crosses into the superfluid. The transi-
tion at fixed integer density, n, at the tip of a Mott insu-
lating lobe, on the other hand, is driven by quite different
physics: Here the density never changes, but sufficiently
large J enables the bosons to overcome the on-site repul-
sion and hop throughout the lattice anyhow, thereby
Bose condensing into the superfluid state. One might
suspect, therefore, that the fixed-density Mott insulating-
superfluid transition at the tip of a lobe is in a different
universality class from the generic, density-driven transi-
tion, i.e., is a special, multicritical transition. This suspi-
cion [which will be verified in Sec. IV A, where we show
that the transitions are (d- 1)-dimensional XY-like and
mean-fieldlike, respectively] is supported by simple in-
spection of Fig. 1: It is clear that as one moves toward
the tip of one of the Mott insulating lobes by increasing J
at fixed u, the particle (or hole) gap [defined above as the
distance in p to the upper (lower) phase boundary], van-
ishes as Eg~(Jc——J)”, with an exponent zv which we
later show is less than unity, as represented in Fig. 1.
(Here J, is the value of J right at the tip, and the ra-
tionale for denoting the exponent zv will be explained in
Sec. IV.) Approaching any other point on the phase
boundary from the Mott insulating side by increasing J,
at fixed u, however, clearly yields an exponent zv of ex-
actly 1. This confirms the special character of the transi-
tion at fixed-integer density.

Most of the features of the phase diagram discussed
above can be verified by explicit calculation on a mean-
field model with infinite-range hopping: J;;=J /N for any
two sites i and j in (2.1), where N is the total number of
sites. The exact solution of this model, whose phase dia-
gram has precisely the topology of Fig. 1, is outlined in
the Appendix. This solution reveals, moreover, that
J.(n), the value of J at the tip of the nth Mott lobe, varies



as J.(n)~1/n for large n, and that in this mean-field lim-
it zv=1 at the multicritical points, so that the phase

boundary is parabolic.

C. Zero-temperature phase diagram for the disordered system

We now study the effect of disorder on the zero-
temperature phase diagram deduced above. For con-
creteness we restrict attention to on-site randomness with
uniform nearest-neighbor hopping of strength J. We be-
gin with bounded randomness, case (2.2a), treating first
the trivial limit where J=0. Then, each site i contains
the non-negative integer number, n; of bosons which min-
imizes the on-site energy,

e(n;)=—(u+8du)n;+LVn;(n,—1) . (2.5)
It is simply verified that for sufficiently weak disorder,
viz., A < V /2, the u axis breaks up into intervals of width
¥V —2A, centered about the values (n—1)V, for
n=1,2,3, . For any p in the nth such 1nterva1 there
are precnsely n bosons on each site, so that (N,)=n.
Thus these intervals are precise analogs of the intervals
on the p axis in Fig. 1 for the pure system. The effect of
the randomness is to produce gaps of width 2A between
these intervals (Fig. 2). For values of u in the gap be-
tween the nth and (n+1)st intervals, i.e., for
nV —A<u<nV +A, the occupation, n;, of the ith site is
either n or n+1, according as 8y; is less or greater than
Vn —u; the average occupation, (N ), thus increases
linearly from n to n+1 as p increases from nV —A to
nV +A. Note that for u < —A/V, (N, } is strictly zero.

To study the effect of taking J > 0, first consider values
of p in the interval between (n —1)V +A and nV —A,
where at J=0 there are exactly n bosons per site. Sup-
pose J is positive but small. As in the pure case, values of
J <<V are insufficient to overcome the repulsive on-site
potential and allow extra particles to be added to occu-
pied sites. Thus for every mteger n 20, there is a region
in the pu—J phase wherein (N, ) is fixed at n; the integer
intervals on the p axis form the left boundaries [Fig. 2(a)]
of these integer-density regions, which clearly represent
incompressible Mott insulating states. All this is qualita-
tively as in the pure system. The main qualitative effect
of the disorder is to produce a new, msulatmg, “Bose
glass” state in the phase diagram.

To see this, consider a value of u in the gap between
the Mott states with (N;)=n and (N;)=n+1 in Fig.
2(a). In the decoupled (J=0) limit, sites i with 8u; less
than or greater than nV —pu contain n or n+ 1 bosons, re-
spectively. When J is made slightly positive, bosons can
hop out of this J=0 configuration to nearest-neighbor
sites, thereby gaining kinetic energy. In this region, per-
turbative arguments can be made which are similar to
those for the strongly localized regime of noninteracting
fermions. The interacting Bose system is, of course, more
complicated but qualitatively the repulsive interactions
play a role analogous to the Pauli exclusion between the
fermions. One may attempt a perturbative expansion of
the single-particle Green’s function!® in powers of J,
about the fully localized limit J=0. Most of the energy

40 BOSON LOCALIZATION AND THE SUPERFLUID-INSULATOR . .. 551

denominators associated with hops of a boson will be of
order V because of the interactions. Thus naively, the
Green’s function between sites a distance r;; apart will de-

cay as (J/V) i ie., exponentially. Important subtleties
will occur, however, because of resonances between pairs
of sites on which the local potentials are close to each
other: 8u;—du;=(J/ ¥)J. It is natural to expect that
such resonances could be handled by similar techniques
to those for conventional noninteracting localization.?®
In particular, we expect that on large length scales, L, al-
most all regions of the -system of linear size L will be free
of resonances implying that the Green’s function decays
exponentially except, perhaps, in the rare badly behaved
regions. On scale L, one then has a renormalized Bose
glass problem in which the effective disorder is stronger
than in the original problem and the chance of reso-
nances occurring at scale 2L is smaller. Thus we expect
that in the infinite system the Green’s function will decay
exponentially with probability one with a localization
length £~ (InV /J)~!. This will also be the decay length
for the superﬁuid correlations at zero temperature, since
these are just given by the decay of the equal time single-
particle Green’s function {( ®(r)®*(r')).

In the well-localized regime of the Bose glass phase,
the low-energy excitations are essentially quasiparticle or
quasihole excitations?! localized in regions of size £. In
the absence of hopping, the density of states of these exci-
tations is constant down to zero excitation energy, €, be-
cause of the continuous distribution of the du;. We ex-
pect, from the above perturbative arguments, that this
behavior persists in the presence of a small amount of
hopping. Indeed, the density of states of the quasiparticle
excitations will presumably be constant at zero energy
throughout the entire Bose glass phase.?! Moreover, be-
cause the quasiparticles are locahzed in this phase, the
single-particle density of states,!®

p,(m)s—;;fdr ImG (r,7;0) , (2.6)
will also be constant at zero energy (w=0). [By contrast,
in the Mott phase, p,(0)=0 for —E, <w <E, where E,
and E, are the particle and hole gaps, respectively.]

A constant density of states in the Bose glass phase has
bizarre consequences for the superfluid susceptibility. To
see this, note that the ensemble averaged imaginary time
Green’s function,

G(r,7)=(T,®(r,7)®%(0,0)) ,

2.7

at equal positions (r=0) can be related directly to the
density of states,

G(r=0,1= [ “dee l"p (& :
(r T) fo ge pi(xe), (2.8)
where the +(—) sign is for 7 positive or negative, respec-
tively. With a constant density of states at =0, we then
have

G(r=0,7)~p,(0) /7 (2.9)
for large imaginary times.
superfluid susceptibility,

As a result, the uniform
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x= [drdrGirr), (2.10)
is actually infinite in the Bose glass phase. This is true
despite the fact that average spatial superfluid correla-
tions, G(r,7=0), decay exponentially. The susceptibility
is dominated by rare localized regions which have anom-
alously low quasiparticle excitation energies. We note in
passing that a similar divergent susceptibility occurs also
in the Griffiths phase?? of the two-dimensional Ising mod-
el with bond disorder which is perfectly correlated in one
direction, studied by McCoy and Wu.?> This model is
equivalent to a one-dimensional bond-disordered quan-
tum Ising model in a transverse field at 7=0. An infinite
susceptibility which occurs without long-range order may
well exist in Griffiths-like phases of other disordered
quantum systems at zero temperature.

By reasoning similar to that for the single-particle den-
sity of states, we expect the compressibility k=0dp/du to
be nonzero throughout the Bose glass phase. This phase
therefore differs from the Mott state both by the nonzero
compressibility and by an infinite superfluid susceptibili-
ty. Nevertheless, both the Mott and Bose glass phases
will be insulating, since the spatial superfluid correlations
still decay exponentially. For sufficiently large J, of
course, the system undergoes a transition into the
superfluid state, so that the phase diagram consists of
three distinct phases.

For the bounded distribution (2.2a) with weak disorder
(A <V /2), there are three possible phase-diagram topolo-
gies [Figs. 2(a)-2(c)] conmsistent with the arguments
above; these are distinguished from one another by the
occurrence, or lack thereof, of direct Mott insulator-
superfluid transitions. While it is difficult to infer
categorically which of them is correct, one can argue that
Fig. 2(c) is extremely unlikely whenever the transitions
out of the Mott states are continuous, and that Fig. 2(a) is
the most likely. To see the unlikelihood of Fig. 2(c), sup-
pose that the transition out of the Mott insulating state
with (ﬁ,- ) =n, say, is continuous, i.e., that {N;) changes
continuously from the integer n as one moves out of the
Mott state by passing through any point on its phase
boundary other than the tip. We showed in Sec. II B (the
argument remaining valid here) that at any such generic
point on the phase boundary there exists a finite energy
gap for particle-hole excitations. Hence, the superfluid
correlations decay exponentially in the Mott phase, even
at the phase boundary. Just slightly outside the phase
boundary, one has a small density of extra bosons, 6n,
superimposed on the background density state, n; 8n is
positive (negative) for points in the phase diagram just
above (below) the Mott state. In the pure case, these ex-
tra particles or holes can move freely through the lattice,
thereby producing superfluidity. This is not true in the
presence of disorder: Close to the phase boundary, the
extra bosons (or holes) are few in number, &n <<1. If, in
addition, their typical spacing (8n) !¢ is large compared
to the superfluid correlation length of the background
state with precisely n bosons per site (i.e., 5n=0), it is leg-
itimate to neglect interactions between them mediated by
exchange through the background. (One cannot, of
course, neglect the direct on-site interaction between the

excess bosons.) One may then think of the extra bosons
(or holes) as occupying the lowest-lying single quasiparti-
cle (or hole) states of the random effective potential due
to the S8u; and the bosons constituting the background
Mott state. Since the lowest-lying such states are neces-
sarily localized from the above arguments, the extra par-
ticles cannot immediately produce superfluidity. We thus
conclude that at any generic point on the phase boundary
of the Mott state, the system can only make a continuous
transition into an insulating ‘“Bose glass” state rather
than a superfluid one, i.e., Fig. 2(c) should not obtain.

The transition from the Mott to Bose glass phase is en-
tirely local—i.e., it is 'driven by the rare regions of the
random potential where a (local) quasiparticle or
quasihole gap in vanishing. In this way it is somewhat
analogous to the onset of the Griffiths phase in classical
random magnets,?? in which rare regions are below their
effective local transition temperature. However, in con-
trast to the usual classical case, the properties of the
Griffiths phase in the zero-temperature quantum problem
are, as we have seen, very different from those of the
Mott phase (e.g., the uniform superfluid susceptibility is
infinite in the Bose glass phase).

It is more difficult to rule out Fig. 2(b), since at the tip
of the Mott phase boundary the gap for producing
particle-hole excitations vanishes. It seems possible,
therefore, that as one passes out of the Mott state
through the tip, the presence of particle-hole excitations
allows bosons to hop through the entire system, produc-
ing superfluidity immediately, i.e., the phase diagram of
Fig. 2(b). This relies implicitly, though, on the (some-
what unlikely) assumption that the initially dilute
particle-hole pairs are not themselves localized and hence
effectively immobile. One expects rather that the lowest
lying particle-hole excitations will be either bound exci-
tons which are localized by the randomness or else ap-
pear as unbound (and separate) quasiparticle and
quasihole excitations (in equal number), both of which
are localized. Therefore, Fig. 2(b) also appears unlikely.
At any rate, phase diagram [Fig. 2(b)], if it occurs at all,
can only occur for sufficiently weak disorder.

To see this, note that as A approaches V /2 from
below, the Mott state shrinks, disappearing when
A=V /2. (It is easy to show that, precisely at A=V /2,
the compressibility ceases to vanish even in the decoupled
limit, J=0, where it assumes a positive, constant value
for all positive u). At A=V /2, therefore, all trace of the
Mott state has vanished, but our earlier arguments
demonstrating the insulating nature of the disordered sys-
tem for all sufficiently small J continue to hold. Thus the
phase diagram for A=V /2 is as shown in Fig. 3, viz.,
Bose glass and superfluid phases occurring for small and
large J /V, respectively. To be consistent with this limit,
the phase diagram for A just slightly less than ¥V /2 must
look like Fig. 2(a), rather than Fig. 2(b). If, then, Fig.
2(b) obtains for sufficiently small A, there must be a criti-
cal value of A above which it reverts to Fig. 2(a). The
most likely scenario is that Fig. 2(a) simply holds every-
where.

One more feature of Figs. 2 merits comment, viz., the
fact that for densities (N,-) which approach O (i.e., the
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FIG. 3. Zero-temperature phase diagram for the Hamiltoni-
an (2.1) with strong or unbounded disorder. Note that the Mott
insulating phase is absent and the superfluid transition is from
the Bose glass phase.

negative u region of Figs. 2), the Bose glass-superfluid
phase boundary moves out to arbitrarily large values of J.
This is, again, a consequence of the lowest-lying single-
particle levels of a random potential being localized: As

- (N;) becomes small, only a very few of these low-lying
levels are occupied; it takes a large J to assure that at
least one of them is extended, i.e., that the system is
superfluid.

From the foregoing discussion of the phase diagrams it
is clear that for the strongly disordered case (A> ¥V /2) of
distribution (2.2a) the phase dlagram is simple: Even in
the decoupled limit, J=0, (N, ) varies continuously with
u for all u; the average occupation never sticks at integer
values. The strong disorder has therefore eliminated the
Mott states, leaving only the Bose glass and superfluid
phases (Fig. 3). The same qualitative phase diagram is
readily seen to describe case (2.2b)—the Gaussian
distribution—as well. This is true even for arbitrarily
weak disorder (i.e., small A), the unboundedness of the
distribution implying the existence, for any A, of sites i
with arbitrarily large values of |8y;|, and hence arbitrari-
ly large numbers of bosons.

The mean-field (infinite-range-hopping) limit of (2.1)
remains exactly solvable even in the presence of disorder.
The solution, summarized in Appendix A for weak disor-
der of the form (2.2a) proceeds very much as in the pure
case, and results in a similar phase diagram, Fig. 4. It
consists of an infinite set of Mott insulating states (corre-
sponding to different integer occupations of the sites),
and the superfluid state. As in the pure case, the Mott
states are characterized by a gap for particle-hole excita-
tions and zero compressibility. The only real effect of the
disorder is to introduce, on the p axis, finite gaps between
adjacent Mott insulating states. When u lies in one of
these gaps, any nonzero J produces superfluidity. All
other qualitative features (e.g., the fact that for any in-
teger n the (N, ) =n line in the superfluid phase joins the
Mott insulating state with N =n at the tip of the lobe)
are qualitatively as in the pure system.

The absence of the Bose glass state in the infinite-range

-ANP — — — — — — —
s o

FIG. 4. Portion of phase diagram at zero temperature for
weak bounded disorder, obtained from a mean-field treatment
of (2.1), exact in the infinite-range hopping limit. In this mean
field limit the localized Bose glass phase is unstable to
superfluidity for arbitrarily weak hopping J.

hopping limit, which was noted previously by MHL,*
readily understood physically: Choose a point in Fig. 4
on the u axis between the Mott insulating states with n
and n+1 particles per site, and consider (as we just did
for near-neighbor hopping), the prospect of moving a bo-
son from its position at J=0 by turning on a small posi-
tive J. For simplicity we consider here only the case
n=0, so that all sites have either one or no bosons (at
J=0), although the argument is easily generalized to ar-
bitrary n. Then the easiest bosons to move are obviously
the ones with the highest on-site energies, i.e., on the sites
with the smallest 8u,’s. The distribution of 8u;’s is con-
tinuous, so that there are unoccupied sites arbitrarily
close in on-site energy to (and arbitrarily far in space
from), the most energetic occupied ones. For any J+0,
the infinite-ranged hopping thus allows the system to gain
kinetic energy with zero cost in (on-site) potential energy
by moving particles between these virtually degenerate
sites. The bosons free to move in this way are therefore
delocalized and hence, since T=0, superfluid. Thus the
physics of infinite-range hopping in the presence of disor-
der differs significantly from that of the short-range prob-
lem, as pointed out by MHL.* The mean-field limit is
therefore a misleading guide to the true phase diagram.
It is worth noting that the solvable, infinite-range hop-
ping model corresponding either to distribution (2.2a)
with A> V /2, or to the unbounded distribution (2.2b), is
superfluid at zero temperature for all positive values of J,
again reflecting the absence of the Bose glass phase in the
infinite-range limit.

III. ONSET OF SUPERFLUIDITY: SCALING THEORY

A. General considerations

In Sec. II we established the (probable) zero-
temperature phase diagrams for a model of lattice bosons
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(2.1), both in the absence and presence of disorder, Figs.
1, 2(a), and 3, respectively. In this and the remaining sec-
tions, we focus primarily on the behavior of the system in
the vicinity of the zero-temperature onset transition to
superfluidity. Specifically, in this section we describe a
simple scaling theory for the various possible superfluid
transitions between the insulating and superfluid phases.
Implicit in this development is the assumption that these
transitions are in fact continuous, a contention supported
by renormalization group results presented in Sec. IV.

Inspection of the phase diagram, depicted in Fig. 1 for
the pure case, and Fig. 2(a) or 3 for the disordered case,
suggests that there are likely to be three distinct phase
transitions to superfluidity: As discussed in Sec. II, in the
pure case, superfluid onset from the Mott insulator
occurs either as the density moves away from a com-
mensurate value (the pure ‘“generic” transition), or as the
hopping strength is increased at fixed commensurate den-
sity (the pure fixed-density transition). This latter transi-
tion occurs only when the parameters are tuned to sweep
through the special multicritical points at the tips of the
Mott lobes in Fig. 1. In the disordered case, as argued in
Sec. I, we expect that a transition to superfluidity is only
possible from the Bose glass phase. This suggests a
unique type of superfluid onset transition in the presence
of disorder.

To discuss these transitions, it is convenient to intro-
duce a parameter, 8, which is analogous to the reduced
temperature T — T, for finite-temperature transitions and
thus measures the distance from the transition (which
occurs at §=0). For the pure generic (Mott to superfluid)
transition and the Bose glass to superfluid transition one
can take

S~u—p, , (3.1)

with pu. the chemical potential on the phase boundary.
For the special, fixed density, Mott-to-superfluid transi-
tion, one must take § ~J —J,, since the path of constant
(integer) density in the superfluid phase near the tip of the
Mott lobe is parallel to the J axis in Fig. 1. One can,
however, approach the multicritical point at the tip along
a path tangent to the phase boundary, in which case
8 ~u—pu, remains the appropriate quantity.

The central assumption of our scaling theory is that
near the transition there is a single important characteris-
tic length, denoted by &, which diverges as § " at critical-
ity (this defines v). At (classical) finite-temperature tran-
sitions, static critical phenomena can be discussed with
no regard to the system’s dynamics, so that £ is the only
important scale. In contrast, the fluctuations at the
zero-temperature transitions studied here are purely
quantum mechanical, so that static and dynamic quanti-
ties are inextricably linked. This necessitates incorporat-
ing a characteristic frequency () (and energy #}) into the
scaling description, where Q! is the characteristic time.
Generally, one expects () to vanish algebraically at the
transition,

Qe ET287Y (3.2)

which defines the dynamical exponent,? z.

The need to incorporate a (diverging) characteristic
time into the scaling theory becomes evident when the
partition function, Z =Tre PH  associated with the
Hamiltonian H in (2.1), is expressed as a coherent-state

path integral,?
Z = [TID®,(1)D®}(1)e 5%, 3.3)
e * B 3 *
= * .+ . .
S fo dr?CI), #3,®, fo drH(®*, @) (3.4)

Here the boson operators in (2.1) have been replaced by
c-number fields ®,;(7), which depend on both space and
imaginary time 7, with periodic boundary conditions:

(Dl(TzO):q),(T:ﬁﬁ) .

Since the temporal integration (3.4) runs from O to 34, at
T=0 the action can be viewed as an effective classical
Hamiltonian in (d+ 1) space-time dimensions. [It should
be noted, however, that due to the first term in (3.4) the
action will, in general, be complex and anisotropic in the
extra dimension.] The (diverging) time scale Q™! can
then be thought of as a ‘“‘correlation length” in the
(d+ 1)st dimension, whereas the T=0 energy density,

. . 1
flu,J)= Bll.n:o A}l_r)nw BNan s (3.5)
is equivalent to the (d+ 1)-dimensional classical free ener-
gy density.

With this analogy to a (d-+1)-dimensional classical
theory, a T=0 scaling theory of superfluid onset can
readily be formulated. As usual, if hyperscaling obtains
the singular part of the energy density, f,, satisfies a
homogeneity condition near the transition,®

fs(B)Nb—(d+z)fs(bl/v8)~8v(d+z) , (3.6)

for arbitrary length rescaling parameter b. The second
equality above follows from the standard choice b =6"".
Moreover, one expects correlation functions near the
transition to exhibit scaling forms. Specifically, consider
the order-parameter susceptibility defined as

X(rT)=(T.®,(1)P(0)) —(D@,(r)){D;(0)), (3.7)

where the angular brackets refer to a ground-state expec-
tation value and the overbar denotes an ensemble average
over realizations of disorder. In the vicinity of the transi-
tion one expects the long-distance and long-time behavior
of ¥(r,7) to be scaled by the correlation length £ and &7,
respectively, at least up to a background power law,

X(rr)~r @22 g (p sE T /E7) | (3.8)

As usual, the power law at criticality (§= oo ) defines the
exponent? 7.

For the following discussion it is convenient to consid-
er the effect of adding to the action S in (3.4) a fictitious
(fieldlike) term which is linear in the order parameter ®:

S—S— [dr3[hd ) +c.c.]. (3.9)

Since superfluidity is associated with a symmetry break-
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ing, M = (®), this field term, which explicitly breaks the
symmetry, will destroy the transition (i.e., it must be
relevant). One thus expects the energy density to scale

a826

£.(8,h)~8"4+2y (h /%) (3.10)

with an appropriate scaling function Y and a positive ex-
ponent ¢,. This form, when used in conjunction with
(3.8), and the fact that

X(k =0,0=0)~3f /3h?*,

enables one to generalize the usual hyperscaling relation
between B(M ~ &) and n:

2B=wvd+z—2+7) . (3.11)

Note that, by using (3.12) and Ref. 27, Eq. (3.11) can be
rewritten as a+2B+y=2. [We remark in passing that
since the special Mott-to-superfluid transition at fixed
density is a multicritical point (see Fig. 1), one expects
that, in addition to & and A, there is another relevant field
at the transition. This is indeed the case; in Sec. IV A
this extra relevant field is identified, and the associated
crossover exponent computed.]

Scaling forms for some physical observables follow
directly from the energy (3.6) or (3.10). For example,
from (3.4) it is apparent that the compressibility,
k=03p/du is given by x=—23%f/du’. Thus, provided
S~p—u,, as in (3.1), the singular part of the compressi-
bility, «,, follows from (3.6) by differentiation, scaling
near the transition as

Ko ~BMITAT2=57a (3.12)
This generalizes the usual hyperscaling expression
a=2—dv. Here the compressibility is the T=0 analog
of the specific heat. It should be emphasized that the
scaling form (3.12) does not apply at the special (mul-
ticritical) fixed-density Mott-to-superfluid transition, for
which, as noted after (3.1), one must take 8~J —J;
differentiation with respect to 8 thus becomes ine-
quivalent to differentiation with respect to chemical po-
tential.

B. Generalized Josephson relations:
superfluid density and compressibility

For boson systems where the order parameter itself is
difficult to observe directly, an important, experimentally
observable, physical quantity is the superfluid density, p;.
Since p, is a measure of the spatial stiffness of the phase,
¢, of the (complex) order parameter and not the order pa-
rameter (@) itself, its scaling behavior does not follow
immediately from (3.6) to (3.8) and thus requires separate
consideration. In this subsection we derive hyperscaling
relations for the singular behavior of both the superfluid
density and the total compressibility. ‘

Strictly speaking, the superfluid density is defined via
the change in energy (or free energy at 750) of a system
under a change in boundary condition which imposes a
twist (by say ) of the phase of the order parameter

across the system.!! More loosely, ps is proportional to

the coefficient of (V¢)? in a long-wavelength effective ac-
tion (or Hamiltonian) which describes (only) the slow
variations in the phase of the order parameter, in the
superfluid state. Since at 7=0 the order parameter de-
pends on both space and (imaginary) time in (3.4), one ex-
pects this effective Hamiltonian to depend on
¢(7)=0¢ /07 as well. Indeed, the long-wavelength, low-
energy effective action describing the superfluid phase
can be expressed quite generally as an expansion in
powers of V¢ and ¢, namely,??

Ser= % Ja f:ﬁdT[Zp(iﬁtﬁH"(ﬁ‘ﬁ’z

+(#%p, /m)(V¢)?], (3.13)

where p is the average density. Terms involving higher-
order derivatives (V@) and ¢, have been ignored. No-
tice that the (boundary) term linear in ¢ has been chosen
complex (see the following). The quadratic terms de-
scribe second sound (or third or fourth sound for thin
films or porous media, respectively) in the superfluid with
velocity C, satisfying

Ci=p,/mk, (3.14)

with m the real physical mass of the bosons.

We now argue that the (constant) coefficients p and « in
(3.13) are in fact the full exact density and compressibili-
ty, respectively. This follows most easily from the invari-
ance of the action (3.4) under the transformation consist-
ing of a shift in the chemical potential and a correspond-
ing (spatially-uniform) change of phase of the order pa-
rameter P:

(3.15a)
(3.15b)

p—p'=ptidy,
PO(x,7)—>D'(x,7)=D(x,T)exp(i8urt/#) .

[Note that this invariance is equivalent, when expressed
in terms of the real time variable ¢t =i, to the familiar
Josephson relation, Su=#9¢4(t)/dt, between the time
derivative of the order-parameter phase, ¢&(t), and
changes in the chemical potential.] Now imagine impos-
ing boundary conditions at 7=0 and 7=pf3#% to enforce a
total twist of A¢, say, in the phase ¢(7) over the range
0=7=p#%. Equations (3.15) imply that the resulting
problem can be transformed into one wherein there is no
twist of ¢(7), but where the chemical potential u has been
shifted by u—p’'=p—iA¢/B. The change, §f, in energy
density resulting from the twist can thus be computed
straightforwardly as a Taylor series in A¢:

Of =(of /ou)—iAd/B)

+L(d2f /3PN —iAp/BY+ - -+ (3.16)
Since the density, p, and compressibility, «, are defined as
—3f /3u and —3*f /du?, respectively, and since imposi-
tion of the twist A¢ induces a time derivative, ¢, of ¢,
with average value ¢ =A@ /B#, (3.16) can be rewritten in
precisely the form (3.13); this demonstrates that p and «
are indeed the correct coefficients in (3.13), and, more-
over, that the linear term in ¢ is imaginary.
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The effective action (3.13) can now be employed to ob-
tain scaling forms for both the superfluid density and to-
tal compressibility. The most straightforward approach
employs a finite-size scaling form for the energy density,

fi(8,L,B)~8"4 Y (£/L,E2/B) , (3.17)

for a system of spatial size L? and temporal extent S.
Again, imagine imposing through boundary conditions at
7=0 and B# a total twist, A¢, in the order parameter
phase. It is apparent from (3.13) that the excess energy
density needed to enforce the twist A¢g =1, relative to
A¢p=0, varies as §f ~«k/B* for L,f— . Alternatively,
one has from (3.17),

Af ~8tVY(E/L,E/B) ,

where Y is the difference between finite-size scaling func-
tions at A¢p=m and O (i.e., Y=Y, —Y,).?° In order that
these two expressions for §f be equal, ¥ must behave like
(£/B)* as L and B— o, where upon k~£28¢ 2V An
analogous argument, imposing a twist in space instead of
time, yields a scaling form for the superfluid density
p, ~E28'912V 3 result obtained recently by MHL.* Fi-
nally, the fact that £ ~8™ ¥ near the transition enables one
to rewrite these scaling equations as

ps~8§, with {=v(d +z—2),

K~8V(d_2)

(3.18a)
(3.18b)

These generalized Josephson relations are the central re-
sults of this section.

It is instructive to rederive the hyperscaling relations
more formally by employing the scaling form for the
order-parameter susceptibility Y (3.8), in conjunction
with the effective action (3.13). Specifically, in the
superfluid phase one may evaluate Y(r,7) for r >>§ and
T>>£% by replacing ®(r,7) in (3.7) with Pexp[id(r,7)]
(i.e., ignoring amplitude fluctuations) and evaluating the
expectation values using the action (3.13). This yields

X(r,7)=~M?{exp[{$(r,7)$(0,0)) o] — 1} , (3.19)

where ( ).s denotes an average with respect to (3.13) and
M=(®). For d>1 the argument of the exponential in
(3.19) decays to zero for r,7— o . Thus one obtains
X k,0)=~M*|$p(k,@)|?)
=M?[#iko*+(fip, /mk?] ™Y kE<<1, w&<<1.
(3.20)

Alternatively, a scaling form for Y(k,w) can be ob-
tained directly by Fourier transforming (3.8), namely,

Xk, 0)~E " "g(kE, 0E) , (3.21)

with an appropriate scaling function g. Then, requiring
that (3.20) and (3.21) give the same o dependence for
w&®<<1 and k=0, implies that g(0,y)~1/y? for y —0.
Moreover, equating coefficients of the 1/w? terms gives

K~M2§2z +n—2~823+v(2~1]—22) .

Finally, upon using the hyperscaling expression (3.11) for

B, one arrives at the compressibility hyperscaling expres-
sion (3.18b). The superfluid density scaling relation
(3.18a) is obtained similarly, through the equality of the
two expressions for Y(k,») at o=0and k& << 1.

C. Critical exponents

In the remainder of this section we demonstrate that
nontrivial information concerning the exponents v and z
can be extracted by comparison of the scaling relations
for the singular part of the compressibility, «; (3.12), and
the total compressibility, « (3.18). Moreover, considera-
tion of the single-particle density of states near and at cri-
ticality indicates a probable (upper) bound on 7 for the
Bose glass to superfluid transition. These results are
confirmed and extended by the renormalization-group
(RG) calculations of the following section.

1. Pure system

Since the hyperscaling equation for «; in (3.12) does not
hold for the special fixed-density Mott to superfluid tran-
sition, we exclude this case from the present discussion
and focus on the generic Mott to superfluid transition
and, in the disordered case, on the Bose glass to
superfluid transition.

Consider first, then, the generic transition between the
Mott insulator and superfluid in the pure case. Since the
Mott phase is incompressible (k=0), the total compressi-
bility cannot have an analytic piece at the transition.
Thus the exponent for the singular part of the compressi-
bility on the superfluid side, (3.12), can be equated with
that for the total compressibility, (3.18b), giving

zv=1. (3.22)

This exponent equality should hold for all dimensions d
such that the hyperscaling relations for « and «; are not
violated, i.e., for d less than the upper critical dimension,
d.. By analogy with the superfluid onset transition at
TF#0, one expects that even at T=0, £ and v are fixed at
their mean field values of 1 and %, respectively, for all
d >d,. Using (3.22) and the hyperscaling for p, (3.18a),
one thereby deduces that

d.=2 (3.23)
for the generic Mott insulator to superfluid transition.
This result can be verified by direct RG calculation (Sec.
IV A), which also demonstrates that although the hyper-
scaling expressions (3.18) for « and p, are violated for
d>2, the exponent equality (3.22) continues to hold in ar-
bitrary dimension.

Note that one can approach the multicritical point at
the tip of any Mott lobe in Fig. 1 along a path of constant
J. On such a path, which is tangent to the phase bound-
ary at the multicritical point, § ~p—pu,, so that (3.12)
continues to hold. (Recall that (3.12) does not apply for
the path of fixed integer density.) Let us assume that «
approaches zero in a singular fashion as 80 along this
path (the other alternative, given that « is positive in the
superfluid phase, being k ~8 as 8—0). As in the generic
case, one can then equate (3.12) and (3.18b), thereby ob-
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taining ¥z=1, i.e., Eq. (3.22). Here we use a tilde to
denote exponents along this special path. Again, this re-
lation should hold for all d less than the upper critical di-
mension, d., for the multicritical point. Noting (see Sec.
IV A) that the mean-field values of { and v for the
constant-J approach to the multicritical point are 2 and
1, respectively, and combining these results with (3.18a)
and (3.22) one deduces d, =3 for the multicritical point.
Confirmation of this result, together with a demonstra-
tion that (3.22) holds on the constant-J path for all d, is
given in Sec. IV A; our assumption that « vanishes in a
singular manner along this path is therefore justified. It
is worth emphasizing that (3.12), and hence (3.22), are
only valid along asymptotically tangent paths (e.g., not
along the fixed-density trajectory) to the multicritical
point.

2. Bose glass—superfluid transition

Consider next the Bose glass to superfluid transition in
the disordered case. Since the total compressibility « is
finite and nonzero in both the insulating Bose glass and
the superfluid phases (cf. Sec. II), it seems plausible that «
is also finite (and nonzero) right at the transition. It
seems, in particular, rather unreasonable that x should
vanish at the transition and so open up a pseudo gap,
given that it is positive in the two states. The finiteness
and nonvanishing of « at criticality would necessarily im-
ply,*® from (3.18b), that z =d. We argue below that this
is indeed the case.

Suppose for the moment that z > d so that « diverges at
the transition. Then, as in the pure case, one can equate
the exponents of k and k,, giving zv=1, which (when
combined with z >d) implies the inequality v<1/d.

However, a theorem proved recently by Chayes
et al.,'»3 states that
v=2/d (3.24)

for all d for any transition which can be controlled by
varying the strength of (spatially uncorrelated) disorder.
Since the Bose glass to superfluid transition falls into this
class, one arrives at a contradiction. Hence the initial as-
sumption, z > d, must be false. Thus, provided the hyper-
scaling expressions for « and k; are valid, the total
compressibility cannot diverge at the transition.

Similar reasoning under the assumption of vanishing
compressibility (z <d), implies that v=1/z>2/d, or
z=d/2. However, the physical requirement that the
second sound speed, C, , in (3.14), must not diverge at
6=0 implies z=1 for all d, since [from (3.18)]
C,~8"271, Thus, at least for d <2, the only remaining
possibility is

z=d , (3.25)

implying that the total compressibility is finite at the
transition. In this case k, represents only a singular
correction to the total compressibility (with exponent
Z2) so that (3.22) need not be satisfied. It will be shown
in Sec. IV C that, in the one-dimensional case, z =d=1
and the compressibility is finite at the transition, con-
sistent with (3.25). As mentioned above, on physical

grounds we expect that « will not vanish at criticality
(even for d =2) implying the equality z =d in arbitrary
dimension d.

One might worry, however, that above some upper

critical dimension, d,, hyperscaling would be violated
and the equality (3.25) break down. Typically, for d >d,
hyperscaling breaks down due to the presence of a
dangerous irrelevant operator associated with a stable
Gaussian fixed point (with associated mean-field ex-
ponents v=1 and {=1). Were this to happen for the
Bose glass to superfluid transition, one could deduce d,
by combining the equality z =d (for d <d_) with the re-
quirement that {=1. This gives d.=2, as in the pure
case (3.25). However, in the presence of disorder, v=1in
d=2 is forbidden by the general theorem (3.24); the pos-
sibility of a conventional onset of mean-field theory, in
which the critical exponents smoothly approach their
mean-field values as some upper critical dimension is ap-
proached from below, is therefore eliminated. In light of
this, the simplest conclusion is that for the Bose glass to
superfluid transition the compressibility is finite, and the
equality z =d holds for all d 2 1. An alternative possibil-
ity, that for weak disorder the exponents jump discon-
tinuously to their mean-field values at d, =4, is outlined
in Sec. IVC and discussed in detail by Weichman and
Kim in Ref. 8. This scenario is consistent with the in-
equality (3.24) which, since v=1 in mean-field theory, re-
quires d, > 4.
' Having obtained nontrivial information concerning the
exponents v and z for the Bose glass to superfluid transi-
tion, we now focus on the remaining independent ex-
ponent 7, and derive an upper bound. To this end, con-
sider the single-particle density of states, p,(€), defined in
(2.6), and related by Laplace transform to the imaginary
time Green’s function G(r =0,7) in (2.7). The behavior
of p,(€) near the transition can be obtained from the scal-
ing of G(r =0,7) deduced from (3.8):

G(r=0,7)~7 d+z=280/25(1 s¢z) (3.26)

in the Bose glass phase, and G(r =0,7— o )=M?2 in the
superfluid phase. In (3.26) g(x —0) tends to a nonzero
constant.

As emphasized in Sec. II, p,(¢) is expected to approach
a nonzero constant as €—0, throughout the entire Bose
glass phase, so that G(r =0,7)~1/7 for 7— . This
determines the large x behavior of the scaling function
g(x) and implies, upon using (2.8), that in the Bose glass
phase p,(e=0)~£2"97" near criticality. Right at the
transition, on the other hand, we have

p1(8)~8(d—2+n)/z

In the superfluid phase, since G(r =0,7— o )=M2, the
single-particle density of states has a 8-function contribu-
tion at e=0: p,(e)~M28(¢). This is due to enhanced ab-
sorption (and emission) from the condensate.

On physical grounds we expect that as the transition is
approached from the Bose glass phase, p,(¢=0) will grow
due to precursor superfluid fluctuations, and diverge at
criticality (to match onto p,(¢)~8(¢) in the superfluid
phase). This implies that 7 must satisfy the bound
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n<2—d . (3.27)

A trivial lower bound can also be obtained by the require-
ment that the exponent d +z —2+7 in (3.26) be positive.
With z =d this implies n > 2 —2d.

Although the argument used to obtain (3.27) seems en-
tirely plausible, we cannot completely rule out the possi-
bility that p,(¢=0) is discontinuous at criticality. It will
be shown in Sec. IV, however, that in the one-
dimensional case =2, satisfying the bound (3.27), and
implying that p,(e=0) diverges smoothly from the insu-
lating side.

Before closing this section, it is instructive to compare
our conclusions for the Bose glass to superfluid transition
with corresponding results for the (7=0) metal-insulator
transition in disordered Fermi systems.! Both with and
without (short-range) electron-electron interactions, the
total compressibility is believed to be finite at the metal-
insulator transition.! This similarity between the Bose
and Fermi transitions is perhaps hardly surprising:
indeed, provided hyperscaling holds at the metal-
insulator transition, the argument presented after (3.24)
to rule out a divergent compressibility in the Bose case,
applies directly to the Fermi case as well, at least when
interactions are present. In the noninteracting fermion
case (Anderson localization) the dynamic exponent z is
equal to d, precisely as we deduced for the Bose case, and
the transition has a well-developed field theoretic descrip-
tion near d=2. Yet, as in the Bose case, there is little evi-
dence for mean-fieldlike behavior in high dimensions.
Indeed, it seems likely that no upper critical dimension
exists (i.e., d.= o). In addition, for Anderson localiza-
tion the exponent 7=2—d due to a constant density of
states at the mobility edge.! This value saturates the
upper bound (3.27) for the Bose case, where we expect the
density of states to diverge at criticality. The striking
similarity between the Bose and Fermi results suggests
that the arguments described in this section might lead to
insight into the Fermi problem. For both fermions and
bosons, though, the long-range Coulomb interaction re-
quires a generalization of the above picture. Preliminary
analysis suggests that, for bosons with a 1/r interaction,
|

m¢r=2jdﬂJﬂm¢ﬂﬂ%wr—2h{Tﬁw
Ij i

[dry(n®} (1) +H.c.

the dynamic exponent z is equal to one for all d. This
should be relevant to disordered superconductors under-
going a transition from an insulator to a superconductor.

IV. CRITICAL PHENOMENA
AT THE ONSET OF SUPERFLUIDITY

This section is devoted to a more quantitative study of
the critical phenomena associated with the zero-
temperature superfluid onset. The renormalization-group
calculations described here confirm and supplement the
scaling theory of Sec. III. In Sec. IV A we consider the
pure case, deriving the field theory which describes both
the generic Mott insulator to superfluid transition and
the special multicritical point (Fig. 1), and so identifying
the associated universality classes. Section IV B is devot-
ed to a discussion of the one-dimensional problem, both
with and without disorder. In particular, the Bose glass
to superfluid transition, studied recently by Giarmarchi
and Schulz, is reviewed in light of the general scaling
theory of Sec. III. Finally, in Sec. IV C we describe the
difficulties one encounters when trying to analyze the
critical properties at the onset of superfluidity in high di-
mensions, in the presence of disorder. A brief critique is
given of a recent attempt by MHL* along these lines.

A. Lattice bosons with no disorder

To study the critical phenomena associated with the
transitions in Fig. 1, it is useful to generate, from the
original Hamiltonian (2.1), a field theoretic representation
of the partition function. A convenient procedure is de-
tailed in Appendix A: Expressing the partition function,
Z =Trexp(—BH), in the interaction reRresentation, one
can decouple the off-site hopping term H, by means of a
Hubbard-Stratanovich transformation,”!® introducing a
complex c-number field ¥;(7). In this way the partition
function is expressed as

Z=Z, [ TI D¢:(1)DY} (r)expl —S (¥)] 4.1)

with an effective action,

), 4.2)
0

where (J 1), is the inverse of the matrix of hopping coefficients. In (4.2) the average is taken in the ensemble
corresponding to ﬁo. Since ﬁo does not couple field operators 3,- at different sites, i, this average can be easily evalu-
ated as a cumulant expansion in powers of ¥;. Since for small (6,» ), {1, ) is linearly related to ¢ @i ), the field ¥; serves
as an order parameter for superfluidity.

To extract the critical behavior one must retain both the spatial and temporal dependence of the auxiliary field ¢;(7)
in (4.2). To this end, it is sufficient to perform a spatial gradient expansion in the first term, and in the second term a
temporal gradient expansion, as well as the cumulant expansion in powers of 1. Retaining only the most relevant
terms, and replacing the spatial lattice by a continuum with a high momentum cutoff, one finds

S=%LWMZ+wHﬂHthH”1J;JwW%mﬂP+uL”WV. 4.3)

Here x and 7 have been rescaled to fix the coefficients of
the k*y* and »’y* at 1. In the pure case considered in
this subsection the parameters r,g, and u are constants,
independent of x.

Note that the action (4.3) is real except for the giwy?
operator. If ¢ is viewed as a two-vector, ¥=(9,1,), this
term takes the form of a cross product:
g (¢,0,¥,—¥,0,4,). The other terms shown can be writ-
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ten as dot products. The coupling constant g, when ex-
pressed in terms of the parameters in the original model
(2.1), takes the form

with 7(u,J) given explicitly in (A6). Since in mean-field
the phase boundary is given by the condition »(u,J)=0,
g vanishes precisely at the multicritical point. Points on
the phase boundary above (below) this point correspond
to positive (negative) g, reflecting the absence of particle-
hole symmetry. Presumably this same feature continues
to hold when fluctuations are included (see the arguments
in II B).

As discussed in Sec. III, one expects the T=0
superfluid onset transition to be characterized by both a
diverging length scale §~& " and a diverging time scale
Q71 ~87%", where § =r —r, measures the distance to the
transition and z is the dynamic exponent. Moreover, ex-
citation energies which vanish at criticality should scale
with #Q. Thus, for example, in the insulating regime the
Mott gap should vanish as E, ~§7".

1. Multicritical point

We first analyze the multicritical point at the tip of
each Mott lobe. For g=0, (4.3) becomes isotropic in
space and time; it is simply the soft-spin representation of
the (d+ 1)-dimensional XY model. Hence the multicriti-
cal point (g =8=0) is described by the XY fixed point in
d+1 dimensions. The lower and upper critical dimen-
sions are therefore d; =1 and (as inferred from scaling in
the previous section) d, =3, respectively. The space-time
isotropy implies that z=1, so that E, vanishes with the
(d-+1)-dimensional XY correlation length exponent, vyy.
Thus for d = 3, where vyy =1, the phase boundary is par-
abolic at the multicritical point, as depicted in Fig. 1.

The XY multicritical point is best understood through
the RG scaling relation for the singular part of the ener-
gy density, f,, for small 8(=r —r,) and g, and d <d,:

£.(8,8)~b @+ f (8K gpley (4.42)
or, equivalently,
fo~8 9 (g 78%) (4.4b)

Here z=1, b( > 1) is the rescaling parameter, and the RG
eigenvalue, A,, of the operator iwy? at the multicritical
point, is related via ¢, =A, vy to the crossover exponent
¢, which controls the crossover from the multicritical
point to the generic Mott-superfluid transition; the scal-
ing function f,(x) behaves like a constant or like

W% as x approaches O or o respectively, in order
that f; be finite and nonzero in both these limits; for
8<0, f,(x) is singular for some x, with a singularity
characteristic of the generic Mott-superfluid critical
point discussed below. The eigenvalue A, can be comput-
ed perturbatively in powers of e=3—d, directly from the
action (4.3); one finds A, =1 + 0 (£2). One can, however,
deduce quite generally, even in the presence of disorder,
that A, is identically z(=1 in the pure system) to all or-

ders in €, by noting that the action (4.3) describes a classi-
cal (d+1)-dimensional superfluid in an external gauge
field A=(A,, 4,)=(0,ig). Then, since ig can be shifted
away by a generalization of the Josephson relation (3.15),
at the expense of a temporal twist, the second derivative
azf/aAi~8ny(d +z w2)»g)

represents a temporal superfluid density, p;. A finite size
scaling argument, identical to that leading to (3.18b),
yields p7~8" ? from which follows Ay =z. Hence,
¢=zv,, is large even for d <3.

Equations (4.4) make clear that the properties of the
multicritical point depend on the direction from which it
is approached. Since r and g are presumably analytic
functions of the underlying microscopic variables u and
J, g ~& as one approaches the multicritical point along a
typical path in the superfluid phase in Fig. 1. Since
vyy <1 for all d +12> 3, the argument of £, in (4.4b) must
therefore vanish as the multicritical point is approached
along such paths, for 2<d <3. But f,(x)—constant as
x —0, so in this typical approach, g drops out of the scal-
ing relation (4.4b), and the multicritical point looks like
an ordinary (d+ 1)-dimensional XY critical point. This is
certainly true, for example, for the approach to the mul-
ticritical point along the path of fixed integer density, and
implies that critical exponents such as 3 and 7 assume
(d+ 1)-dimensional XY values.

In the special case where the path of approach is
asymptotically tangent to the phase boundary (i.e., to the
p axis) of Fig. 1, however, the situation is different. On
such paths, which pass through the multicritical point
but do not penetrate into the Mott phase, § ~r —r, is al-
ways non-negative; presumably, then, 6 ~(u—pu, )2, while
g is simply proportional to u—u,, i.e., 8~g2 Since
vxy >+ for d <d =3, the argument of f in (4.4b) blows
up as g —0, whereupon f, ~g? ?=g9*!  Similar argu-
ments allow the computation of the other exponents
along this special path, which we denote by a tilde, with
the results 7=7yy, v=2=1, £=d —1, etc. As usual,
these exponents stick at their mean-field values, Z=1,
v=1, §=0, =2, a=—2, etc., for d >d,=3. The
mean-field values follow directly from the observation
that

§=r—r.~g’~(p—p.)

on the special tangent path. For example, the energy,
which always behaves like 62 in mean-field theory, varies
like g* on this path, yielding @=—2. Note that the re-
sults Z=%=1 are consistent with the scaling prediction
(3.22) for the behavior of ¥Z on the tangent trajectory.

2. Generic transition

Away from the multicritical point (i.e., for g70), the
critical behavior of the Mott insulator to superfluid tran-
sition changes since, as we have just seen, A, >0, so g is a
relevant perturbation at the (d+ 1)-dimensional XY fixed
point. This generic critical behavior can be inferred from
a perturbative RG wherein g is held fixed. The w?y?
operator is then irrelevant and can be ignored, and the
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action (4.3) reduces to the path-integral representation of
a fluid of interacting bosons in the continuum. In terms
of the original lattice model, this fluid corresponds
(roughly) to the gas of excess quasiparticles (or holes)
which are present when the density deviates slightly from
commensurate (integer) values. The critical behavior of
this model has been studied extensively.®™® Naive power
counting with the coefficients of k2y? and iwy? held fixed
implies that z=2, whereupon u is irrelevant for
d >d, =2, in agreement with the value for d, deduced by
scaling arguments in Sec. III. At the resulting (Gaussian)
fixed point, v=8=1 and %=0, implying a Mott gap
which vanishes linearly at the transition, E, ~6*"~8. It
is worth noting that the exponent equality in (3.22),
zv=1, continues to hold for d >d,, despite the fact that
the hyperscaling expressions for « and «, used in its
derivation in Sec. III are violated. As usual, the ¥*
operator is dangerously irrelevant, causing this break-
down of hyperscaling for d >d,. For example, since
f,(8)~ —8%/u, the compressibility is nonsingular at the
transition, in contrast to the hyperscaling prediction
(3.18b).

For d <2, u is relevant at the Gaussian fixed point and
a perturbative RG in powers of €=2—d can be
developed.” Working from the insulating phase, » >0,
one finds that due to the special form of the propagator

Gyl ko)=io+ki+r,

the self-energy, S=G, ! —G !, vanishes at every order

in u (this is true for d =2 as well). In each diagram, all of
the poles in w lie in the complex upper-half plane, so that
the frequency integral can be deformed into the lower-
half plane to give zero. The vanishing of 2 is a reflection
of the fact that the Mott phase has only virtual particle
and hole excitations and thus a vanishing (real) excess
density of bosons. By contrast, u itself is renormalized.
In fact, as shown by Uzunov,’ the only contributing dia-
grams form a geometric series, known as ladder dia-
grams, giving for the renormalized u:

1 pr 1

a=—_—

r—p2—d . .
u'=b“"%u/(1+au); R

(4.5)
where the k integration is over a momentum shell with
1/b <k <1, with rescaling parameter b. Equation (4.4)
gives a new fixed point at u*=0(2—d) and r=0. Since
2 =0, this fixed point has Gaussian exponents v= %, z=2,
and =0. These exponent values presumably hold all the
way down to the lower critical dimension (d;=1), since
the RG is carried out to all orders in u. This implies that
the Mott gap vanishes linearly in all dimensions d. In
light of the phase diagram (Fig. 1) this result is not too
surprising: As one approaches the phase boundary from
the Mott phase, the gap (which is proportional to the
change in p, at fixed J, required to reach the phase
boundary) will clearly vanish linearly in 8, except at the
multicritical point.

B. Bosons with disorder in one dimension

We now consider the zero-temperature disordered bo-
son problem in one space dimension. Since for d=1 and

T=0 the superfluid state has only algebraic or quasi-
long-range order, rather than true long-range order, tran-
sitions from the superfluid to insulating states can be ac-
cessed perturbatively in the strength of the external po-
tential. Previous work on one-dimensional Bose systems
has been restricted to bosons subjected either to periodic
or to random potentials. To mimic the Bose glass to
superfluid transition in the disordered lattice models of
Secs. I-III, however, we must study a potential with both
a periodic piece (the lattice), and a random piece (the dis-
order). Specifically, we investigate the transitions be-
tween the superfluid state, the Mott insulator, and the
Bose glass in the context of the phase diagrams of Sec. 11
and the scaling arguments of Sec. III.

We consider explicitly a one-dimensional system of
repulsively interacting bosons moving in a periodic po-
tential, u cos(2mx), plus a random potential V(x),
specified below. We employ a representation of one-
dimensional bosons due to Haldane,!> which expresses
the relevant low-energy features of the Hamiltonian in
terms of an operator II(x) which represents (small) devia-
tions of the Bose density from its mean value (in the ab-
sence of the external potential). Following Giamarchi
and Schulz,’ a convenient functional integral representa-
tion for the partition function can then be obtained by
working in a basis of states diagonal in an operator 8(x),
defined as 3, 0(x)=7Il(x). This procedure is outlined in
Appendix B. One thereby obtains the following form for
the T=0 partition function:

Z = [ D8(x,)exp(—S) , (4.6)
with § =S, +Sp+Sg, and
SO=—2—1%fdx dr[C5 (3,87 +C,(3,9)?] @.7)
Sp=—u fx Tcos[27r(p0—1)x +20(x,7)], (4.8)
sp=—J T}su(x)axé(x,r)
+ fxyrlg(x>e"29<*'”+c.c.] . (4.9)

Here, S, describes the second sound mode of the
superfluid phase in the absence of an external potential,
with second sound velocity C,=(p, /m«)!/?, and Sp and
Sy represent the contributions from the periodic and ran-
dom potentials, respectively. When S, =Sy =0, super-
fluid correlations decay as a power law,

(D(x)DT(0)) ~|x| K72,

with an exponent K. This parameter is related directly to
ps and the compressibility

(mK)*=m /psk . (4.10)

In arriving at (4.8) it was assumed that the Bose densi-
ty po was nearly commensurate with the periodic poten-
tial, pg~1. In (4.9), —8u(x) and &(x) are the contribu-
tions of the random potential ¥V (x) with fourier com-
ponents near k=0 and k =2mp,, respectively. For con-
venience, these can be taken as satisfying a Gaussian
white noise distribution,



1&

Su(x)=0, Su(x)dul(x')=A8(x —x'),

E(x)=0, &*(x)&(x')=D8(x —x").

(4.11)
(4.12)

The constraint that the mean density be p, fixes the
boundary conditions on 8(x,7) in (4.6). Specifically, we
require that for a system of length L,

L [8(L,7)—6(0,7)]—0

as L—>ow. If B(x,7) is viewed as representing the
“height” of a two-dimensional interface, this is equivalent
to requiring that the interface be “flat.”

Although there is no lattice in the above model, a
rough correspondence with the lattice models studied in
Secs. IT and IIT can be made through the association of
the bandwidth for a particle with mass m in the potential
u cos(2mx) with the lattice hopping strength J. Thus,
e.g., in the large u limit one has, J ~exp[ —(um)'?], so
that increasing K or u corresponds to decreasing J.

1. Pure periodic potential

In the absence of any disorder (S =0), and for a densi-
ty commensurate with the periodic potential (p,=1), S
reduces to the Sine-Gordon model. Standard RG
analysis32 shows that the Gaussian fixed line, ¥=0, is
stable with respect to small u for K smaller than a critical
value, Ky =1. For K >K,, the potential u is relevant,
and the superfluid state (at #=0) is unstable with respect
to a locked insulating state. The insulating state is in fact
an incompressible Mott state, with the concomitant Mott
gap, as described in Sec. II (Fig. 1). This becomes ap-
parent if one thinks of 8(x,7) as an interfacial “height.”
The insulating phase corresponds to a smooth (as op-
posed to rough) interface which has a nonzero free ener-
gy, [, for the creation of steps. An applied chemical po-
tential field, —pu f xOx ), tends to tilt the interface by
putting in steps, which corresponds to adding particles.
Clearly one needs || > f, before steps are introduced or,
equivalently, before the boson density deviates from
po=1. Thus, for u=0, one has an incompressible Mott
insulator with dp/3u =0, and a nonvanishing Mott gap,
E,=2f,. Atthe (Kosterlitz-Thouless )>* roughening tran-
sition®* the step free energy vanishes as f, ~£ !, where &
is the correlation length exponent for the two-
dimensional XY model. Thus, as the superfluid transition
is approached from the insulating side (by decreasing K
or u at fixed density p,=1) the Mott gap vanishes as*?

E, ~exp(—1/v'K —K_), where K, is the critical value
of K, for fixed positive u. This is entirely consistent with
the results deduced in Sec. IV A, where, when J was in-
creased at fixed commensurate density, E, vanished with
the (d+ 1)-dimensional XY correlation length exponent.
For densities away from commensurability (p,71) the
superfluid (rough) phase is always stable. Indeed, even
for large u, the boundary conditions on 8 require
configurations which have steps [with step density
(pp—1)] which are then free to meander and lead to a
rough phase. These steps correspond to excess bosons
(“on top of” the commensurate insulator) which are able
to condense into a superfluid state. Thus the physics is
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completely consistent with our phase diagram (Fig. 1) for
lattice bosons without disorder: It is clear from that
figure that at any density for which the number of parti-
cles per site is not an integer, the system is superfluid all
the way down to J=0. In the presence of longer range
interactions, higher-order commensurate Mott phases are
possible which break the spatial symmetry; we will not
consider these here.

2. Quenched random potential

In the presence of the (quenched) random potential,
(4.9), the ensemble-averaged free energy, F = —(1/B)InZ,
can be (formally) evaluated through use of the replica
trick: InZ-—(Z"—1)/n, as n—0. For Gaussian distri-
butions of du(x) and &(x) [(4.11)-(4.12)], the random
average can be performed exactly, yielding a “replicated”
action S:

Z'= [ [[ DO, (x,m)e "5, (4.13)

where a=1,...,n labels the replicas. For a potential
with no periodic component (u#=0) as considered here,
one can absorb the du(x) term of (4.9) into S, by the
transformation

§—>§+—£Efjmt‘),u(x')dx'zg+w(x)/2 . 414
This variable change simply produces a shift in the phase
of the complex random potential £(x), which can be ab-
sorbed by a redefinition of §. One thereby obtains a “re-
plicated” action S =S+ Sy with

§°=2%fkw(Czk2+C{‘w2)!§a(k,w>lz, (4.15)
. ,

Se=—0[, . %cos[Zga(x,'rl )=204(x,7)] . (4.16)

The Bose glass to superfluid transition can now be in-
vestigated by studying the stability of the fixed line
through perturbative RG analysis for small D, as demon-
strated by Giamarchi and Schulz.> We briefly summarize
their calculations. First rescale time so that C,=1 in
(4.15). Then integrate out 8(k,w) with A/b <k <A and
rescale as k'=bk and o’ =b’w» to complete the RG trans-
formation. The parameter z will be chosen so that the
coefficients of k%(8,)? and »*(8,)* remain invariant under
the RG transformation, (i.e., that the sound speed is un-
renormalized). Working to lowest order in D and
3—2/K, one thereby obtains the RG recursion relations

(I =Inb):

%?=(3—2/K)D , (4.172)

K

K =psn2, (4.17b)
with

z=14D/2K . @.18)

These equations have a stable fixed line at D=0 for all

K less than a critical value K;=2. Thus, at least for
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small D where the recursion relations are valid, the RG
flows for K <K terminate in the fixed line; i.e., as in the
pure case, the system is a superfluid, with algebraically-
decaying correlations for K sufficiently small. For
K > K, on the other hand, the flows run off to large
values of D beyond the range of validity of our perturba-
tive equations. This runaway to the strong-disorder limit
was interpreted by Giamarchi and Schulz as the signa-
ture of a localized insulator, consistent with our‘expecta-
tions of a Bose glass phase occurring for sufficiently weak
hopping (i.e., large K). The positive compressibility of
this state (which differentiates it from the Mott insulating
phase) can be established from the action (4.15) and (4.16)
as follows: For each configuration 8,(x,7) transform to a
tilted configuration, 8,— 8,+ ¢x, with constant tilt angle
¢. Since S, is invariant under this transformation, only
S, is modified. However, S, changes only quadratically
with ¢, so that the free energy for producing a small
“tilt,” vanishes more rapidly than linearly; in roughening
language the step free energy is zero. This implies (in
contrast to the situation for the pure periodic potential),
a nonzero compressibility, characteristic of a disorder-
dominated Bose glass phase.

The Bose glass to superfluid transition described by

*(4.17) has, as demonstrated by Giarmarchi and Schulz,’
critical properties different from the Kosterlitz-Thouless
transition which describes the Mott to superfluid transi-
tion in the pure case. For example, the universal jump in
the stiffness (or exponent) K at the two transitions is
different since K;7K,;. Moreover, since K is renormal-
ized at first order in D, the superfluid correlation length
in the Bose glass diverges as £ ~exp[ —(K —K,)”!] near
the superfluid critical point, in contrast to the
Kosterlitz-Thouless form exp[ —(K —K,.)"!/?] in the
Mott state (see the end of this section for the implications
of this).

The Bose glass-superfluid critical behavior provides a
nontrivial confirmation of the scaling arguments ad-
vanced in Sec. III. Firstly, since the critical fixed point
occurs at D=0, we obtain immediately from (4.18) that
z=1, in agreement with our scaling prediction z =d.
Moreover, from (3.8), since z =d =1, superfluid correla-
tions at criticality decays as |x| " implying n=Kg;=2.
This value of 7 satisfies the exponent inequality, obtained

J

~ 2 — —~
Sp=—"rJ. . [ 3 cos[28,0x,,m)=2850x,, 1)If (%, —x5) 5
1°1 272 af

f(x)=exp[ —AQw/KC,)?x]|] .

The disorder manifests itself only on sufficiently large
length scales:

|x; —x,| >(KC,)?/A .

For
|x; —x,| <<(KC,)?/A ,

A might just as well be zero, and the system experiences
only the periodic part of (4.20). Anticipating that only

in Sec. III from scaling; n <2—d=1.

To confirm that the compressibility is finite at the tran-
sition requires more work, since the scaling expression
(3.18b) k~8"9"? s ambiguous when z=d=1 and
v=co. Since K and C, together determine uniquely p,
and « [see (4.10)], it is easier to establish that x(8§=0) is
finite by deriving new RG recursion relations with z=1,
allowing both K and C, to renormalize. One finds that
(4.17a) is unchanged, whereas

C,D
%=—;~ , (4.19a)
Rl (4.19b)

These recursion relations, together with (4.17a), have a
fixed point at K =K, D=0. To establish that x(6=0) is
finite, one must verify that flows near K =K, D=0 are
consistent with a nonzero fixed-point value of C,, denot-
ed Cj. Putting C,=C3 in (4.19a) implies a critical
separtrix flowing into K =K;, D=0, along which D (/)
vanishes algebraically, D (I)~1/1% for ] — «. This decay
is fast enough that integration in (4.19b) with K =K
gives a nonzero fixed point value for C,(/ = )=C3,
consistent with the assumption. Thus we have estab-
lished that at criticality both K and C, are finite and
nonzero, implying the same, in turn, for p; and «.

3. Periodic plus random potential

We now consider the effect of turning on a small
periodic potential, ¥ >0, in (4.8), choosing the commens-
urate density po=1. Performing the same shift of 8 de-
scribed in (4.14), one arrives at the replicated action,
S§=8,+S5p+S with §, and S; given in (4.15) and (4.16)
and

SP=-—uf S cos[20,+w(x)] . (4.20)

The average over w (x), defined in (4.14), must be carried
out perturbatively in powers of u. Since w (x) describes a
random walk in x, the term linear in u vanishes. The
quadratic term in u has the form

(4.21a)

(4.21b)

the dominant long-wavelength part of Eq. (4.21) will be
relevant near the onset of superfluidity or in the
superfluid state, we Taylor expand 0(x,,7,) about
(x,,7), keeping only the leading term in powers of
X, —Xxy, which is identical in structure to (4.16), and has
coefficient (uKC, /2m)*/2A. The resulting action is iden-
tical to that of the Giamarchi-Schulz’ problem reviewed
above, the effect of the periodicity having been subsumed
in a simple renormalization of D in (4.16):
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D—>D=D +(uKC,/2m)*/2A . 4.22)

Since the perturbative methods of Giamarchi and Schulz’
apply only for weak coupling, D <<1, we can only treat
the situation where both D and (uKC,)?/A are small. In
this portion of parameter space, however, we can im-
mediately infer the existence of a superfluid phase for
K <Kg, controlled by the Gaussian fixed line at D=0.
For K > K;, and RG flows run off, as we have seen, to
large D, signalling the occurrence of an insulating phase.
The transition between these two states is in the univer-
sality class of the Giamarchi-Schulz problem, which
strongly suggests that the insulating phase is a Bose glass.
We cannot, however, directly verify this conjecture by
analyzing the RG trajectories, since they rapidly flow out
of the range of validity of perturbation theory. Assuming
that the flow is to the Bose glass phase, one concludes
that commensurate periodic potentials weak compared to
the disorder (#2<<A) do not affect in any serious way
the phases and phase transitions of one-dimensional bo-
sons at 7=0. This is consistent with the arguments of
Sec. I, where we concluded that sufficiently strong disor-
der eliminated the Mott insulating phase, leaving only the
Bose glass and superfluid states. It is clear that weak in-
commensurate potentials (p,71) will be even less
effective in altering the phase diagram, so we hypothesize
that any weak periodic potential plays a negligible role.
For large u and weak disorder, we expect a more compli-
cated phase diagram where the Mott phase can occur, as
in Sec. II and Fig. 2.

C. Bosons with disorder in dimension d> 1

We have just seen how, in one-dimension, explicit RG
calculation of the Bose glass-superfluid critical behavior
confirms the prediction for z and bound on 7 from Sec.
III and allows the computation of v and the rest of the
critical exponents. Analogous results for d >1—even
limited to an € expansion about some upper critical
dimension—would be highly desirable. The & expansion
can indeed be formally generalized to yield consistent re-
cursion relations for the dirty boson problem, but various
conceptual and technical difficulties leave one uneasy
about the validity of the calculation. Here we only out-
line the approach. Details will appear elsewhere.?

The calculations leading to Egs. (4.2) and (4.3) for the
pure problem can be straightforwardly repeated for the
random boson problem (2.1) with nearest-neighbor hop-
ping and a random potential. One obtains the classical
action

S”Z%fk’w(k2+a)2)[¢'(k,w)l2+{- 27i|'/)1(7')|2

’ - 2 4
+g fk,wtwhb] +u fmllp! , (4.23)
where 27, =J ~!— A; with 4, defined in Appendix A Eq.
(A7b), a random function of i related to the local random
variations of the chemical potential, 8u;. The coefficients
of all the other terms in (4.23) are also, strictly speaking,
random functions of position. As usual, however, only
the randomness in the k- and w-independent part of the
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coefficient of |#|? (i.e., in 7;), is relevant for computing
critical properties; all other coefficients can be replaced
by their mean values. Following the standard prescrip-
tion for computing critical properties in random systems,
we write 7, =(r +8r;), with r the mean of 7, and &r; a
random variable with zero mean. Of course this prescrip-
tion works only when 7 is finite; this requires both
denominators in (A7b) to be bounded below, i.e., that at
J=0 the number of bosons, #;, is the same for each site, i,
and n; satisfies

(u+8u;)/V <n; <1+ (u+éu;)/V .

These conditions hold only for bounded distributions,
such as (2.2a) with A <V /2, and for values of u for which
there is a Mott insulating (MI) state (Fig. 2).

If, as argued in Sec. II, the phase diagram in the pres-
ence of bounded disorder is like that in Fig. 2(a), then the
onset transition to superfluidity can only occur from the
Bose glass state. One might then hope that the action
(4.23) can be successfully used to study the critical behav-
ior of this onset transition. The most natural procedure
would be to first evaluate S’ in a saddle point approxima-
tion [with ¥(x,7) a constant] plus Gaussian fluctuations
(0-loop), and then develop a systematic loop expansion in
powers of u and the strength of the disorder, w = 8r2).
While this approach can indeed be carried forth, techni-
cal problems arise as to how to treat the frequency sums
(see below).

To proceed, it is convenient to use the replica trick to
average over the randomness. Keeping only the lowest-
order (i.e., the second) moment, w, of the &r; distribution,
one obtains the replicated action

N
s'=1 3 |[, Kotk

+2g’fkwiwl¢a|2+2u fx TIM“}

N

—wf 3 WD PlYgx, )

'
X, T, T a,B=1

(4.24)

As usual, higher moments of the distribution give rise to
irrelevant operators, and the number, N, of replicas must
be set to zero at the end of the calculation. Since the ran-
dom variables, 87;, are purely static, the replica-mixing
term [with coefficient w in (4.24)] is nonlocal in time.
Such nonlocality is a familiar consequence of quenched
disorder in quantum problems at 7 =0.*

One can now try to compute the critical properties of
the action (4.24) via e-expansion methods. As in the pure
case, the generic situation is that g, the coefficient of
iw|$|?, is nonzero. The w?|¥|*> term is therefore ir-
relevant and can be dropped. Treating the nonlocal w
term in (4.24) by the standard technique®® of imagining
that it is nonlocal in €, dimensions and local in the other
d, one readily generates formal RG recursion relations in
a double power series expansion in ¢, and e=4—d —¢,.
(The physically-interesting cases are of course e=0 or 1,
with €,=1.) Unfortunately, the iw form of the frequency
dependence of the propagator, which rendered the gener-
ic Mott insulator-superfluid transition trivial in the pure
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case (Sec. IV A), makes the random problem intractable
as posed: One finds that the recursion relation for w is
simply

i“i=( +e )w+Bw+, ...,

al
where B is a positive coefficient. Since, as the second mo-
ment of a random distribution, w starts out positive, it
flows under RG iteration to large values where perturba-
tion theory is not valid. Thus the recursion relations as
they stand have no stable, accessible fixed point, and pro-
vide no information about the Bose glass to superfluid
transition. This is consistent with the possibility dis-
cussed earlier that the upper critical dimension is infinite
and z =d for all d. However, if a (physically unnatural)
high-frequency cutoff, w,, is imposed on the frequency
integrals, a nontrivial O (g, ¢,) fixed point can be found.*®
Above d=4, in contrast to more standard cases, both the
random and Gaussian fixed points are stable with distinct
domains of attraction,’’ so that for weak disorder the
transition is mean field with Gaussian exponents and for
strong disorder is likely to be the random fixed point with
z =d. As d decreases towards four, the domain of attrac-
tion of the Gaussian fixed point shrinks to zero, with only
the random fixed point stable for d <4. Such an unusual
scenario avoids the pitfalls of a standard mean-field onset,
mentioned in Sec. III.

It should be emphasized that the above perturbative
renormalization-group scheme is, as usual, an expansion
about mean-field theory. In the mean-field limit, howev-
er, the Bose glass phase does not occur at all, so that the
transition to superfluidity occurs directly from the Mott
insulator. (One can see the absence of the Bose glass
phase in mean-field theory from the exact solution of the
infinite-range hopping model in II B.) This suggests that
because of nonperturbative effects the renormalization-
group expansion may not be valid for studying the onset
of superfluidity from the Bose glass phase, which would
be consistent with the conclusion that d. =« and z =d
for all d. While we have no definitive argument in sup-
port of this conclusion, if further study does not resolve
the conceptual and technical difficulties associated with
the perturbative renormalization-group treatment, then
we would conclude that the z =d scenario is indeed the
correct one.

In the (unlikely) event that the phase diagram is as in
Fig. 2(c), with a direct Mott insulator to superfluid transi-
tion possible, then right at the tips of the Mott states (i.e.,
when the boson density is commensurate even in the
superfluid state), arguments essentially identical to those
of Sec. IV A show that the coefficient g’ must vanish.
The action (4.24) then reduces to a d+ 1-dimensional XY
model with random impurities correlated in the time
direction, a model studied in detail by Dorogovtsev.®
Having inadvertently dropped the iwt? term in their
derivation, MHL (Ref. 4) argued that model (4.24) with
g'=0 should describe the Bose glass to superfluid transi-
tion. We believe (further arguments being given below)
that this is incorrect. If, however, the phase diagram de-
picted in Fig. 2(c) is possible, then the special commensu-

(4.25)

rate transitions would presumably be described by the
MHL theory.

In the case of Fig. 2(b), the only direct Mott insulator-
superfluid transitions occur at the tips, so it is tempting
to hypothesize that the MHL theory would likewise ap-
ply to these transitions. Since the Bose glass states in Fig.
2(b) extend right up to the tips, however, it could well be
that a more complicated multicritical fixed point de-
scribes the transition in this case. Since expressions like
(4.24) do not easily allow for a description of both the
Mott and Bose glass insulators, it is difficult to say any-
thing definitive about this possibility. Furthermore, as
we have argued in Sec. II, we believe that both phase dia-
grams shown in Figs. 2(b) and 2(c) are unlikely to obtain.

Finally, we note that the one-dimensional case provides
strong evidence that a (d+ 1)-dimensional XY model with
random impurities correlated in time, as considered by
MHL, does not correctly describe the Bose glass to
superfluid transition. Recall that even correlated impuri-
ties are strongly irrelevant about the Kosterlitz-Thouless
fixed point in (14 1) dimensions. Thus, the fact that the
Bose glass-superfluid transition for d=1 is not of the
Kosterlitz-Thouless type (Sec. IV B) strongly suggests
that MHL’s model is not relevant to this transition.

V. EXPERIMENTAL RAMIFICATIONS
AND CONCLUSIONS

The models investigated in this paper have a natural
experimental realization in systems wherein *He is
confined in restricted geometries (such as Vycor, or other
porous media),'>!® or to the surface of 2D substrates.>®
In either case, the temperature, T., of the normal-
superfluid transition is observed to decrease with the den-
sity, p, of “He present, apparently extrapolating to zero at
a positive value, p.(T=0), of p (Fig. 5). Such systems
therefore undergo superfluid onset transitions as p in-
creases at T =0—precisely the kind of transition con-
sidered here. While the experimental feasibility of prob-
ing low-temperature behavior stops short of T=0, the
transition to superfluidity at sufficiently low temperatures

NORMAL
FLUID

SUPERFLUID

o}
\ A, P
BOSE GLASS

FIG. 5. Schematic phase diagram for “He confined in disor-
dered restricted geometries, such as porous media. The zero-
temperature superfluid-insulator transition crosses over to a line
of conventional A transitions at 7> 0. Viewing this crossover as
a standard multicritical-to-critical crossover enables explicit
verifiable predictions to be made for 7 small and p near p,.
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will be dominated by the T=0 fixed point until one gets
very near to the critical density, p.(T). The crossover
from the multicritical point at T=0 to the conventional
critical line of A transitions at 7> 0 (Fig. 5), can be treat-
ed, as we see below, as a standard multicritical-to-critical
crossover.

Before turning to specific experimental predictions, a
word of caution is necessary. Throughout the paper we
have ignored the possibility of attractive van der Waals
interactions between the bosons which clearly are present
in real *He systems. In the absence of disorder and at
zero temperature, these attractive interactions can stabi-
lize a self-bound superfluid liquid phase in coexistence
with a zero density vapor. If such phase separation is
present experimentally and the superfluid onset transition
is first order, the theory developed in the preceding sec-
tions would be inapplicable. Such a situation might be
the case for superfluid onset on extremely clean sub-
strates. In the presence of disorder which is large com-
pared with the magnitude of the attractive van der Waals
interaction, however, phase separation will be destroyed
and the transition to superfluidity at both zero and finite
temperatures is likely to be continuous. In this case, the
zero-temperature onset transition should be in the univer-
sality class of the Bose glass—superfluid transition dis-
cussed in Secs. II, IVB, and IV C. For *He absorbed in
porous media, the transitions to superfluidity seem clear-
ly continuous;!>!® the van der Waals interaction is thus
probably unimportant for the critical behavior of the
superfluid transition.

The scaling analysis of Sec. III yields specific predic-
tions for experimental observables in the vicinity of the
superfluid onset at 7=0. We now derive expressions for
several of the most accessible of these in terms of the dis-
tance, 8, from the critical point at 7=0 (as defined in Sec.
III). As discussed in Sec. III, the effect of nonzero tem-
perature in the path integral formulation of quantum
mechanisms is to restrict the imaginary time to lie be-
tween O and B=1/kzT. This makes the system, viewed
as a (d+1)-dimensional system, finite in the time direc-
tion, allowing the crossover to the positive temperature
critical behavior to be deduced from finite-size scaling.
The singular part, f,, of the free energy density can thus
be written [see (3.6)]

f(8,T)~|8|"4 2 F(T/Q)

~’8|‘V(d+2)]"(Tl8"‘ZV) , (5.1)

in units where kz =#=1. This expresses the scaling of 3,
the system “size” in the time direction, in units of Q!
the unique characteristic time in the problem. The scal-
ing function f(u), which approaches a constant [see (3.6)]
as u —0, must have a singularity at some finite value, u,,
of its argument, corresponding to the critical line of A
transitions at 7> 0 in Fig. 5. Thus the critical tempera-

ture, T,, vanishes like
T.=u,8 (5.2)

for small 8. Since the argument of the scaling function
above is just 4. T /T,, the form (5.1) implies an asymptot-

ically scale invariant shape for appropriately scaled tem-
perature profiles of all the physical quantities discussed
below. In the pure case, because of the presence of the
dangerous irrelevant operator u¢* for d > 2, this is mani-
festly false.® However, in the random case, provided
hyperscaling holds, sufficiently close to onset we do ex-
pect (5.1) to be valid.

The superfluid density, the primary quantity in experi-
ments on “He in confined geometries, obeys [from (3.18a)]
a scaling relation similar to (5.1):

ps ~84 2D (TE™7Y) | (5.3)

Likewise the total density p, being simply the derivative
with respect to 8 (i.e., u) of f, has a singular part which
behaves like

(p—pc)s~ 81" 15(T8] ~2Y) . (5.4a)

Note, however, that if v(d +z)—121 (i.e., if k~3p/38
remains finite at the onset transition [see (3.12)]), the be-
havior of p near p, will be dominated by the piece analyt-
ic in 8, so that for §—0,

p—p.~8. (5.4b)

This is important, since it permits the variable § to be re-
placed by the experimentally measurable quantity p—p.
in the relations derived in this section, thereby rendering
feasible direct comparison with experiment. Since, as dis-
cussed in Sec. III, (3.24), valid for any random system,
implies v(d +z)=2 for any z =0, we assume henceforth
that (5.4b), rather than (5.4a), describes the asymptotic
behavior of p—p,.

The velocity with which fluctuations in the phase of
the superfluid order parameter propagate (i.e., the second
sound velocity, C,) is given, according to (3.13) and
(3.18), by

C,=(p, /K)V?~8"2"VC(T87Y) . (5.5)

Another important quantity is the particle conductivity,
o, which follows from the current response under the ac-
tion of an infinitesimal externally-imposed chemical po-
tential gradient. In the superfluid phase, the frequency
dependent conductivity o(w) varies as o(w)~p,/o.
Combining the scaling of p, in (3.18) with the fact that
frequencies scale with 8" gives an w=0 conductivity of
the form

o~|8|""PF(T|8| ™) . (5.6)
In the Bose glass phase we expect the conductivity, as for
Fermi glasses, to be controlled by variable-range hopping
at low temperatures: o(T)~exp[—(Ty/T)], where
y<1 and, from (5.6), Ty ~ |8|2¥. The scaling expression
(5.6), which can  alternatively be cast as
o ~T'4~2/23(T|8| ~%"), differs slightly from that given
in Eq. (8) of Ref. 3. Although the two forms agree when
z =d, we believe (5.6) is generally the correct one. The
argument in Ref. 3, which uses scaling of the particle
diffusivity D (=0 /k), is, we now believe, incorrect, since
at T=0 bosons do not diffuse.
Finally, the superfluid coherence length & behaves like
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E~[8|TVE(TIS] ™) .

The scaling functions g (u), p(u), C,(u), &(u), and &(u)
all approach constants as u — 0, thereby reducing to their
correct zero-temperature limits, and are singular at
u =u, with singularities appropriate to the finite-
temperature A transition. Since the specific-heat ex-
ponent, a,, at the A transition is negative, Harris’ cri-
terion® implies that the disorder is irrelevant so that the
positive temperature critical behavior is that of the pure
system. There will, however, be very slow transients as-
sociated with a4 being very close to zero.

The scaling functions g, and C,, which characterize
properties unique to the superfluid, must vanish for § <0
or u >u,. On the other hand, pg(u), &(u), and g(u)
behave like u M4 +2~1/2v 3 (d=21/z anq 4 ~1/7, respec-
tively as u — o (i.e., as 6—0 for fixed T), implying the
vanishing or divergence like T"d+2=11/zv_ p(d=2)/z 554
T2 of (p—p,.)s, 0, and &, respectively, as T—0 for
8=0. Note that the above scaling forms, (5.2) and
(5.5)-(5.7) predict that if each quantity is scaled by their
zero-temperature values and temperature is scaled by T,
then the resulting temperature profiles, at fixed 8, ap-
proach universal functions for § small.

Eliminating & from the scaling forms (5.1)—(5.7), one
can derive relations for quantities which are directly ac-
cessible experimentally. For example, from (5.2)-(5.5)
follow various connections between the critical tempera-
ture and the T=0 limits of p,, C,, and 8p:

(5.7

T,~[p,(0)), x=z/(d+z—2); (5.8)
T,~[C,(0)Y, y=z/(z—1); (5.9)
p,(0)~(p—p. )5, E=v(d+z—2). (5.10)

Equations (5.8) and (5.9) are particularly useful,‘in that
the exponents x and y do not involve v, but depend only
on the dynamic exponent z. Section III’s scaling predic-
tion, z =d, thus yields explicit numerical values for x and
y in any dimension d.

Also of interest is the behavior of the specific heat, Cp,
near the onset of superfluidity and at low T in both the
Bose glass and superfluid states. Using (5.1) and the
definition Cp = — T'3%f /3T?, one obtains

Cp~T4? (5.11)

at p=p.. In the superfluid phase, the lowest-lying excita-
tions are the fourth sound modes discussed in Sec. III.
The energy, w, of the mode with wave vector k is [see
(3.13) and (5.5)] @=C,k for small k, implying an energy
density proportional to T¢"!/C% in d dimensions, or a
specific heat which -behaves [see (5.5)] like

Cp~(T/Cy)~T48" "V _T(T/T, )¢ !  (5.12)

for T <<T,. The existence of a finite, nonzero density of
states for particle and hole excitations of arbitrarily low
energy in the Bose glass phase, by contrast, gives rise at
low T to the linear specific heat, Cp ~ T, typical of disor-
dered systems.?!

To obtain detailed experimental predictions from the

relations derived in this section requires knowledge of the
exponents v and z appropriate to the experiment. Con-
sider, for example, “He in porous media such as Vycor'
or Silica Gel,'® which consist of random three-
dimensional (3D) networks of interconnected pores or
channels of diameter roughly 20-70 A; the pore size can
be varied from sample to sample. The onset of
superfluidity occurs at critical densities, p., roughly cor-
responding to two monolayers of *He deposited on the in-
side walls of the pores. Previous theories® have modelled
the superfluid onset by assuming that for p <p, the “He
atoms simply adhere to the walls, preferentially “filling
up” the lowest potential wells produced by the random
wall surfaces. At p=p_ the pore walls are assumed com-
pletely plated by an inert covering of bound “He atoms,
which smooth out the effective wall potential experienced
by further “He atoms introduced as p increases beyond
p.- These extra atoms were assumed to move in an essen-
tially uniform static potential, and so are treated as a di-
lute Bose gas, free of any external potential. Thus at
T=0 they Bose condense immediately, as p increases
above p., thus producing, at p=p_, the ideal or generic
mean-field superfluid transition appropriate to pure sys-
tems, as discussed in Sec. IV A. In this scenario, v=41
and z=2, producing the results

Tc~[ps(0)]x) Tc~[C2(O)]y,
and p,(0)~(p—p, )*, with [see (5.8)-(5.10)]

x=2/d; y=2; £=1. (5.13)

Since d,=2 for the ideal transition, the values in (5.13)
derived from scaling are not correct for d>2. (Ford<2,
x and y are actually ill defined since T, =0). It turns out
that for d > 2, x and § are as given in (5.13) but y =4 /d.

We view this approximation of the perfect screening of
the random wall potential by an inert deposited “*He layer
as somewhat unrealistic. It is clear that there will be a
finite rate of exchange among *He atoms bound to the
wall at different positions, and between atoms bound to
the wall and those relatively free to wander over it.
Moreover, even the relatively free atoms feel some
nonzero random potential. Thus it seems more likely
that the superfluid onset transition belongs in the univer-
sality class of the Bose glass—superfluid transition dis-
cussed in Secs. II, IVB, and IV C. Under this assump-
tion we can invoke the results of Sec. III, z=d=3 and
vZ2/d =%, whereupon [(5.8)—(5.10)]

x=3; (5.14a)
y=3; (5.14b)
(=4v=E (5.14¢)

Other predictions for measurable quantities follow simi-
larly.

While existing data do not allow the unambiguous
elimination of either (5.13) or (5.14), there is room for op-
timism that further experiments will distinguish between
the two sets of predictions, which differ significantly. For
*He in Vycor there is evidence for an exponent x slightly
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larger than the ideal 2, and more consistent with 2, as
well as a tail in p,(0) as p is decreased,'® suggestive of a
crossover from a linear region (with the ideal exponent
£=1) to a nontrivial onset critical region with an ex-
ponent® ¢ of order 2. Such a narrow critical region for
zero-temperature onset would be expected if the rate of
exchange with the atoms in the layers closest to the walls
is small. A wider and more accessible quantum critical
region is expected in systems with strong disorder, un-
correlated down to the atomic scale, in which the ex-
change is large. Preliminary fits to the data on “He in
carbon black,!” which exhibits a wider apparent critical
region for p (0) as a function of p, yield a value of {~=2.5
and x =0.8.

Further possible difficulties of interpretation might re-
sult from the very weak irrelevance of disorder at the
finite-temperature transition to superfluidity; the cross-
over exponent, a; (simply the specific-heat exponent of
the 3D XY model), is negative but extremely small. Thus
the crossover from T=0 to finite-temperature behavior
may be complicated by the simultaneous slow disappear-
ance of the effects of disorder. The measured exponent,
vr, as inferred from the superfluid density and associated
with the superfluid transition at low but nonzero temper-
ature in Silica Gel*! is roughly 1, considerably larger than
the expected 3D XY-model value of ~2Z, but perhaps
consistent with transients associated with the weakly ir-
relevant disorder.

Similar remarks apply to the “He films on 2D substrate
systems. Again, there is a significant difference between
the predictions of the inert layer picture (v=1,z=d=2)
and our Bose glass-superfluid predictions (z=d =2,
v=1) for some measurable quantities, notably the ex-
ponent §{ of the zero-temperature superfluid density
(5.10). [In d=2 the scaling results (5.8)—(5.10) apply even
to the inert layer model, aside from possible logarithmic
corrections.] It is clear that further experiments designed
to distinguish between the two sets of predictions would
be extremely valuable.

We now briefly summarize our main conclusions. For
bosons hopping on a lattice with short-range repulsive in-
teractions and disorder, we find three possible ground-
state phases: (1) an incompressible Mott insulator with a
density of bosons commensurate with the lattice and a
gap for particle and hole excitations; (2) a gapless Bose
glass insulator with finite compressibility, exponentially
decaying superfluid correlations in space, yet an infinite
superfluid susceptibility; (3) a superfluid phase with the
usual off-diagonal long-ranged order.

In the absence of disorder only the Mott and superfluid
phases are present. Contrary to naive expectations, the
zero-temperature transition to superfluidity from the
Mott phase is generically not in the universality class of
the d+ 1-dimensional XY model. Such XY transitions
occur only at special multicritical points (see Fig. 1).
Generically the transition is an ideal transition, like the
zero-density transition which occurs as the density of bo-
sons is increased from zero in the absence of an external
potential. Similar conclusions apply to quantum XY
magnets in an imposed field in the z direction, which
breaks the time-reversal invariance.

When disorder is present, the gapless Bose glass phase
intervenes between the Mott and superfluid phases, so
that the zero-temperature superfluid onset transition al-
ways occurs from the Bose glass [as in Fig. 2(a)]. The
critical properties of this transition are characterized by
three exponents: A dynamic exponent z which we argue
is equal to d, a correlation length exponent which satisfies
the bound v=2/d, and an order-parameter exponent
which should satisfy the bound, 7=<2—d. These ex-
ponent relations, which are verified by direct calculation
in d=1 (z=1, v=c and n=2), allow stringent bounds
to be placed on experimentally measurable exponents for
“He absorbed in porous media or on disordered sub-
strates. More surprisingly, several measurable exponents,
depending only on z, can be predicted exactly.

We argue that if a simple high-dimensional limit exists
at all for the Bose glass to superfluid transition, it cannot
be of the conventional Gaussian or mean-field kind. This
leads us to speculate that the upper critical dimension
may in fact be infinite, with, for example, the equality
z =d holding in all dimensions. If this is indeed the case,
other microscopic approaches to calculate exponents ex-
plicitly away from d=1 are clearly highly desirable. It is
plausible that a 1+¢€ expansion could be developed, al-
though at first sight at least this appears more difficult
than studying the classical XY model in 2+ ¢ dimensions,
which at present we do not know how to do. Other ap-
proaches, perhaps exploiting the generalization* of
Haldane’s representation!3 to d > 1, might conceivably be
more fruitful.
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APPENDIX A: PHASE DIAGRAM
IN MEAN-FIELD THEORY

In this Appendix we study the Hamiltonian (2.1) in the
limit of infinite-range hopping. In particular, we obtain
the exact zero-temperature phase diagram both in the
pure case and with on-site disorder.

In the absence of hopping, J;; =0, the Hamiltonian in
(2.1) reduces to a sum of on-site terms and can then be
easily diagonalized. This fact suggests that progress can
be made by factorizing the hopping term (see below). To
this end, it is convenient to express the partition function,
Z =Trexp(—BH), in the interaction representation as

|

> , (A1)
0

Z=Trexp(—BH,) T exp “—;{foﬁﬁdTHl(T)

= ZO<TTexp

1 b
—Zfo drH (1)
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with Z,=Trexp(—BH,),

TH

H(r)=e"oH e ™0 (A2)

and the average taken in the ensemble given by H,. Here
T, is the imaginary time ordering operator. Note that
this is the opposite of the standard many-body perturba-
tion theoretic approach;!® i.e., the roles of H, and H, are
essentially reversed. The partition function Z; is simply
a product of on-site partition functions and can be easily
computed. A complex c-number field ¥,;(7) can now be
introduced®!° to factorize (or decouple) the off-site hop-
ping term H,, enabling the partition function to be ex-
pressed as

Z=2, [ TI D¢(1)DY}(Texp[—S(¥,)], (A3)

with an effective action

SW)=3 [drIhgHnP ()
i’j

_ 21n<T_rexp [fd¢¢i(r)&>f(f)+H.c. ]> ,
i 4]

(A4)

where (J “),-j is the inverse of the matrix of hopping
rates. The average in (A4), which is now on-site in the
original boson field ®;, can be readily computed as a cu-
mulant expansion in powers of ;. Since (1, ) is linearly
related to (@, ), the field ¥; serves as an order parameter
for superfluidity.

Equations (A3) and (A4) represent an exact rewriting
of the original partition function and thereby serves as a
convenient starting point to generate a field theoretic
description of the onset of superfluidity (see Sec. IV A).
Here, we pursue a different path, specializing to the
infinite-range hopping limit of (2.1), namely J;=J/N,
where N is the total number of lattice sites in the system.
In this limit H, can be expressed as a perfect square,

H,=—(J/N) [;6?] ;@i] (A5)

and only a single auxiliary field ¢(7) is needed to decou-
ple the nonlocal hopping term. The action in (A4) then
takes the form S (¥)=Nf(¢), so that in the thermo-
dynamic limit a saddle point evaluation of the functional
integral in (A3) becomes exact. With the assumption that
the lowest-energy saddle point solution involves a time
independent field, ¥(7)=1, one finds upon performing
the cumulant expansion in (A4) an action of the typical
Landau form

S . (W)=BN[r (u,J, DIYI*+u (u, Ty[*+ 0 (1$1)] .
(A6)
At T=0, r(u,J) is given explicitly by
rp,N=2N "IN 4;(u, D), (A7a)

with

18

o VD) Vo,
UV —(J tptdu)  (Jptdu)—Vin—1)

(A7b)

Here, n;, the smallest non-negative integer larger than
(J +p+8u;)/V, is the number of bosons which mini-
mizes the energy on the ith site in the absence of hopping
(H;=0). Moreover, the denominators in (A7b) corre-
spond to the energy required (at H;=0) to change the
number of bosons on the ith site from »; to n; =1.

Minimization of the action S (v¥) indicates that the
phase boundary between the superfluid ({)=0) and
normal ({)70) states corresponds to the condition
r(u,J)=0. This enables an explicit construction of the
T=0 phase diagram. The phase diagram for the pure
case (8u; =0) is shown in Fig. 1. Notice the lobes of nor-
mal phase. In the presence of on-site disorder with a
smooth distribution for 8u;, as in (2.2), the sum in (A7a)
can be converted into an integral (in the thermodynamic
limit). An explicit phase diagram is shown in Fig. 4 for a
uniform distribution between —A and A, with A<V /2.
Note that the normal phase lobes have shrunk in the
presence of disorder. Indeed, for A> ¥V /2 or for an un-
bounded distribution as in (2.2b) the normal phase disap-
pears entirely (except, of course, at J=0). This is due to
the singularities in the sum (or integral) in (A7a), at
values of Su which correspond to vanishing energy
denominators in (A7b). Physically, sites with these spe-
cial values of 8u have a degenerate energy (at H, =0) for
n and nt1 bosons, and can thus form a superposition
with a nonzero on-site (superfluid) order parameter. In
the presence of an (arbitrarily small) infinite-range hop-
ping term, these special sites serve as seeds for global
superfluid onset, as emphasized by MHL.*

From the above exact solution of the infinite-range
hopping model it is also possible to extract the average
boson density per site {N; ), using the identity

S 1 9

(N;) BN 3u InZ .
In the normal phase ({¢)=0) the action at the saddle
point vanishes, so that the only contribution to the densi-
ty comes from the (trivial) on-site partition function, Z,.
For the pure case one finds {N;)=nforn —1<u/V <n.
The normal regions in the phase diagram in Fig. 1, thus
correspond to locked commensurate phases with an in-
teger number of bosons per site. As discussed in Sec. II,
these phases are in fact Mott insulators. In the presence
of weak bounded disorder (A<V/2) one likewise
deduces that {N;) is locked to an integer n, in each of
the insulating lobes (see Fig. 4).

(A8)

APPENDIX B: BOSONS IN ONE DIMENSION

In this Appendix we review Haldane’s!® “density-
representation” for one-dimensional boson systems and
following Giamarchi and Schulz’® obtain a functional in-
tegral representation for the T=0 partition function of
bosons moving in a periodic plus random potential. This
functional integral representation is employed in Sec.
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IVB to study the critical behavior of the zero-
temperature superfluid onset transition in one dimension.

Following Haldane,!> we express the boson field opera-
tor @ in_terms of the density p(x) and phase ¢(x) as
®(x)=Vp(x)exp[id(x)]. The density operator is written
as

p(xX)=[pe+(x)] J e2mox), (B1)

m=—o

where p, is the mean density and II(x) a small deviation
which satisfies the canonical commutation relations

[¢(x), I(x")]=ib(x —x') . (B2)

The term multiplying p,+II in (B1) accounts for the Bose
particles’ discreteness, the correct treatment of which is
crucial for insuring the existence of both the Mott insu-
lating and Bose glass states. Specifically, the field 8(x) is
defined via

3,0(x)=m{p,+1(x)], (B3)

the position of the Bose particles therefore being taken as
the points where 8(x)=n, for integer n.

The Hamiltonian describing the long-wavelength and
low-energy excitations of the superfluid state can be writ-
ten [cf. (3.13)],

Ho=14 [ dx[k™ T +(p, /m)(3,4)] , (B4)

with i=1. For a Galilean invariant system at T=0, p
equals p,, the total density, but will be renormalized in
the presence of external potentials. The algebraically-
decaying correlations of the superfluid state follow from
(B4), since

(BT (x)®(0)) ~ x| X2,
with

(7K)?=m /p;k . (BS)
It will sometimes be convenient to express results in
terms of K and the (second) sound speed C,=(p,/
mi)!/2, rather than p, and «.

Periodic and random potentials are introduced via ex-
tra terms in the Hamiltonian: H =H,+ Hp+ Hy, with
Hp= —u_f dx cos(2mx)p(x) , (B6a)

Hp= [dx V(x)p(x), (B6b)

with V(x) a random potential to be specified below. In
the following analysis we shall consider only densities
near or at the value p,=1, which is commensurate with
the periodic potential.

As in Secs. IT and III, the phase diagram and associat-
ed transitions can be studied most conveniently by ex-
pressing the partition function in a path integral repre-
sentation. Since Hp and Hy involve the density, rather
than the phase, ¢, of the order parameter, the partition
function is most easily represented as a functional in-
tegral in a basis of states that diagonalizes the operator
0(x), which is directly related to the density fluctuations

9,0(x)=7II(x) . (B7)
Since 0 satisfies the commutation relations,
[6(x),7 '3, ¢(x")]=id(x —x') ,

H, can also be expressed in terms of 8, whereupon the
partition function at 7=0 can be written

Z = [ D8(x,T)exp(—S) . (B8)
The action S equals Sy +Sp +Sg, where
_K —17q 72 12
So=7- Jdx dr[C;1(3,8)*+C,(3,0)] . (B9)

The action associated with Hp and Hy, can be obtained
by inserting (B1) into (B6) and retaining only the most
important terms. Since for weak external potentials
8(x,7) is slowly varying, one need only keep the m ==+1
contributions to Hp (since py=~1) and the m =0,%1 con-
tributions to Hy. One thereby obtains

Sp=—u [ cos[2m(p,—1)x +28(x,7)], (B10)

Sg=— fx Byu(x)8, B(x,7) + fx T[§(x)ei2§(x’f)+c.c.] )
(B11)

where —8u(x) and &(x) are the contributions from V(x)
with Fourier components near k=0 and k =+2mp,, re-
spectively. The potential £(x) is thus complex and will be
taken to satisfy a (complex) Gaussian white noise distri-
bution,

&(x)=0, &*(x)&(x')=D8(x —x') . (B12)

The real random chemical potential field du(x) will also
be taken as Gaussian:

Su(x)=0, Bu(x)du(x’')=A8(x —x').

(B13)
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