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A scaling theory for the zero temperature (T=0)
superconductor to insulator transition in disordered
films is described. Right at the transition, the system
is predicted to be "metallic'", with a resistance per
square having a finite, non-zero value at T=0 . This
value, moreover, should be universal, independent of all
microscopic details. In the presence of an applied
magnetic field, an additional T=0 superconductor-
insulator transition 1is accessible at which both
resistivities p,, and p,, should be universal.

INTRODUCTION

In the past decade substantial progress has been
made in understanding Anderson localization in electron
systems and the metal-insulator transition in dirty
interacting Fermion systemsl. A central conclusion
which has emerged, is that in two dimensions (2D) even
weak disorder localizes all states: A true 2D metallic
phase with non-zero conductivity is not possible at
T=10. In this paper, I describe some recent results
on related phenomena in bosonic systems2 In particular,
I consider possible superconducting to insulating tran-
sitions in disordered systems, the direct bosonic analog
to the metal-insulator transition. Attention is fo-
cussed on the 2D case, since a number of recent
experiments3 have probed this transition by systemat-
ically varying the thickness of amorphous films. In
this way the subtle interplay between localization and
superconductivity can be examined.

The first part of the paper describes a scaling
theory of the T=0 superconductor-insulator
transitionZ. Quite remarkedly, as in Anderson local-
ization, two dimensions again emerges as a special di-
mension. In (and only in) 2D, right at the transition
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separating superconducting from insulating behavior,
the system should be "metallic", with a finite, non-zero
resistivity. Thus, perhaps paradoxically, disordered
(unpaired) electrons in 2D cannot diffuse at T=0, but
Cooper pairs, perched on the brink of superconductivity,
can. This 2D metallic state, moreover, is predicted to
have a universal resistance per square&, independent of

all microscopic details, depending only on the
universality «class of the superconductor-insulator
transition. These results are consistent with recent

experiments on amorphous thin-film superconductors3.

In the second section, the effects of an applied
magnetic field on the low temperature properties of
dirty superconducting films are considered. It is ar-
gued that an additional T=0 superconductor-to-
insulator transition can be accessed, by varying the
strength of the applied field. At low fields, vortices
introduced by the field are localized and do not dissi-
pate at T=0 , so that the film can be superconducting,
in a so-called vortex-glass phase’. With increasing
field, the vortices should de-localize and the film un-
dergo a T=0 transition into an insulator. Right at
this transition, in addition to a universal resistivity

rxx» the Hall resistivity, rxy> Should be finite and
universal.

SCALING THEORY OF TRANSITION

It has recently been argued that the T=0
superconductor-insulator phase transition in thin
amorphous?, films such as those of ref. 3, can be cor-
rectly described by a model of charge 2e bosons moving
in a 2D random potential®. In the superconducting phase
the electrons have bound to form Cooper pairs and a de-
scription of the low energy physics in terms of charge
2e composite bosons is presumably valid. 1In the insu-
lating phase, where pairing is destroyed and the indi-
vidual electrons are presumably localized by the
disorder, such a description is inadequate. It seems
nonetheless likely that the asymptotic critical proper-
ties of the transition are insensitive to the obvious
difference between bosonic and fermionic insulatin%
phases, i.e., between the bose glass’ and fermi glass
phases. Indeed, Bose condensation and the supercon-
ducting transition in pure systems at finite T belong,
€.g., in the same universality class, the difference
between the normal bosonic and fermionic phases
notwithstanding. Moreover, in 1D the T=0
superconductor-insulator transition can be studied di-

.
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rectly in terms of a model of electrons with a BCS at-
tracthe interaction moving in a random potential. It
is found® that the critical behavior of this T=0 phase
transition is in the same universality class as the
superfluid-insulator transition in a model of
repulsively interacting bosons, representing the Cooper
pairs, moving in a random potential. One therefore ex-
pects that the experimentally relevant superconductor-
insulator transition in amorphous films can be properly
described in terms of charge 2e bosons.

Consider then the Hamiltonian for a system of
charged bosons: H=Hj+ H; with,

Hy = J‘ddx[(hZ/Zm) vy 12+ Ux) | ¢(x) | 2] (1a)

1 j d9xd9xV(x — x|y 12 = nglt1v(x) 12 - ng], (1b)

and y(x) the wusual boson field operator. Here
V(x) = (2e)%/Ix] is a Coulomb interaction between the
bosons, with n; a compensating positive charge back-
ground (charge neutrality fixing the boson density at
ng), .and U(x) a random potential. Since the 2D screenlng
length is typically macroscopic for thin films (4%/d,

with d=film thickness), coupling to a fluctuating gauge
field in (1) can be ignored.

As the boson density ng is increased through some
critical density n., a T=0 phase transition from a lo-
calized bose glass phase7 to a superconducting phase
with <y >#0 is expected. It is convenient to introduce
a parameter §=ng-n,, which measures the distance to
this T=0 transition. In experiments on real amorphous
films one could take 6=d-d,, with d the film thick-
ness, or &=Ry-Ry ., where Ry is the film's '"normal
state" resistance per square taken at some convenient
reference temperature above the bulk transition temper-
ature. Provided this T=0 transition is continuous,
it is characterized by a superconducting correlation
length which d1verges as ¢~67Y, with an exponent sat-
isfying the bound’ v>2/d . There is also a character-
istic frequency O which wvanishes at criticality as
Q ~ ¢ % where z is the dynamical exponent.’ Near the T=0
critical point all frequencies and the temperature
scale’ with Q. Thus the Kosterlitz-Thouless!3 transi-
tion temperature T, , at which the (2D) system becomes
normal for 6>0, will scale as

Tc -~ éZv ’ (2)

for § -+ 0%,



226 ANNALS NEW YORK ACADEMY OF SCIENCES

In the superconducting phase the second sound
(phonon) mode has a plasmon- like dispersion
relation?'10 , L k(3-d)2 que to the long-range Coulomb
interaction. This mode can be described by an effective
imaginary time action’ which depends only on the phase
¢ of the order parameter y = |y | exp(i¢) ,

S4 = (1/2) f d%%kdo[(p h/2m)k? + heo? | kI Yedl ok, o)12. 3

Here p; is the fully renormalized superfluid density and
ep a "fully renormalized" charge,

ef = - 1im Ikl19-Yic, (k, w = 0), with
Can(k}caTj 95« nk, o) > jéu(k, o) the density-density response
function. Near the T=0 superconductor-insulator
transition!! ps vanishes as psnvf‘w4z‘m. This essen-
tially follows from power counting in the first term in
(3), noting that both S, and ¢(x) are dimensionless’.
Likewise, the second term in (3) implies that the charge
eg should scale near the transition as ep~¢l-z | Tt
can be argued? that at the superconductor to localized
Bose-glass transition, ep will have a finite value.
This implies

Z=1, (4)

which should hold in all dimensions. Eqn. (4) is the
generalization to charged systems of_the relation
z=d, which has been argued to hold’ at the T=0
superfluid-insulator transition in disordered charge
neutral boson systems, such as %He in porous media.

Scaling of the frequency-dependent conductivity near
the superconductor -- insulator transition can be ob-
tained from the relation

o(@) = (2e)%p5( —iw)( —ima) , (5)

where p.(w) is a generalized frequency dependent super-
fluid Jénsity defined in terms of a current-current
correlation function. Since all frequencies should be
scaled by the characteristic frequency Q near the
transition one can write the scaling relation

ps, & = £9212)% %5 (0/0), (6)

where 7. is an appropriate dimensionless scaling func-
tion and Q= (4/ma?)a/&)? , with a a short distance cutoff.
For x=w/— 0 we must recover the result ps ~ &ld+z=2)
SO pg(x) must approach a constant. The form as x—oo is
set %y the requirement that at criticality, where both
¢ and n*lfvgz are infinite, pslwy ¢ =00) 1is finite:
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Fs(x)=cdx(d+z’2”3 with cy a dimensionless constant.
Combining this with (5) implies that at criticality

2-d( _jpoma?)d-2z (7)

ol & = oa) = Cqle’ha
Similarly, at the transitiom, the finite temperature
d.c. conductivity should scale as oT, £=cm)~fﬂd‘2”2.

Eqn. (7) indicates that in 2D the T =0 conductivity
at criticality is a finite constant, cde%h, in the d.c.
limit. (Logarithmic corrections in « are not expected
in 2D, since d=1 is the lower critical dimension for
the transition’.) Thus, at the superconductor-insulator
transition the system exhibits true metallic conduction
at T=0, something not possible in 2D normal fermion
systems. The Cooper pairs, poised on the brink of be-

coming superconducting, are capable of ordinary dif-
fusion.

Likewise, the resistance per square at the transi-

tion R¥*=1llo(w=0, ¢=00) , when expressed in units of
hje?, is a pure number. Since this number is given by
the k=w=0 1limit of a (current-current response

function evaluated at the critical point~©, standard
renormalization group (RG) arguments imply that, like
critical exponents, it is universal: Its value will
depend only on the universality class of the transition,
and not on microscopic details.

EFFECTS OF MAGNETIC FIELD

In this section I consider the effects of an applied
magnetic field on the low temperature properties of thin
amorphous films. Consider a film which in zero field
is superconducting below some Kosterlitz-Thouless tran-
sition temperature, T.. In the superconducting state,
an applied field will induce vortices in the Cooper pair
wave function, all of the same sign. These vortices
will interact with one another 1ogarithmicallgl3 out to
the two-dimensional screening len%th, lop = A4/d, which
in practice is usually macroscopic 4 In the presence
of disorder, which will tend to pin the vortices, the
Abrikosov vortex-lattice phase will be destroyedlS. At
finite temperatures the film will then not be a true

zero-resistance superconductor: Thermally activated
vortex creep will lead to a dissipative (linear)
resistancel®. What happens when the system is cooled

to T=0? A classical description of vortex dynamics
would predict that all vortex motion ceases in this
limit, and the resistance should vanish. This T=0
superconducting phase will exhibit Edwards-Anderson
spin-glass type orderl’ in the boson field ¢y , and as a
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result is referred to as a "vortex-glass"18. But what
about quantum fluctuations of the vortices?

Recently a theoretical framework has been developed
for treating vortex quantum fluctuations in 2D bosonic
systems!? It is found that the vortices are in fact
themselves bosonic objects, with a dynamics not alto-
gether different from that of the Cooper pairs. At zero
temperature these vortices «can be 1localized by
inhomogeneties, just as regular bosons or fermions can.
Thus, the 2D superconducitng vortex-glass phase at
T =0 should survive quantum fluctuations.

As the applied magnetic field is increased, though,
a tantalizing possibility arises. The quantum gas of
point vortices, increasing in density with applied
field, should eventually "bose" condense, at some crit-
ical field H,. (It turns out that this condensation is
only possibfe at T=0 .) What properties does a
"superfluid" of vortices possess? Since vortex motion
causes voltage fluctuations, this phase is, not sur-
prisingly, an insulator with infinite resistance. This
phase can alternatively be described in more conven-
tional terms, as a localized fermionic (or Cooper pair)
insulator. 1In any case, it should be possible, by sim-
Ply varying the strength of the external field, to tune
through this (T=0) superconductor-insulator transition.

Films with low (H=0) Kosterlitz-Thouless transition
Lemperatures, will presumably have correspondingly low
"eritical fields", H. , above which they are insulating
(at T=0). The most natural scenario is that as the
superconductivity is weakened, by making the film
thinner, say, T, and H, will vanish together at the
(multi-eritical) T=H=0 superconductor-insulator
transition. In_this limit, the critical field will
vanish as chuf“z, where ¢ is the superconducting cor-
relation length of the T=H=0 transition, introduced

before Eqn. 2. Combining this with (2) implies that
near this transition

H, ~ T2/2, (8)

This provides a direct way to measure the dynamical ex-
ponent, and should allow for a check on the theoretical
prediction, z=1 , for charged systems.

I now address the expected properties of the system
near, and at, the H# 0 vortex-glass superconductor-to-
insulator transition. Most of the scaling results dis-
cussed in Sec. 2 apply equally well to this transition.
Once again, near the transition one expects a diverging

superconducting correlation length, g'vﬂi—ltg_" , and

vanishing characteristic frequency, Q~¢ %2, where the
tilde's are used to differentiate these quantities from
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their H=0-transition analogs. One expects =z=1,
v22/d (but presumably different from v), and a universal
resistivity at the transition (in 2D). Since the crit-

ical fixed point describing this transition is different
than the H=0- transition fixed-point, different values
for the universal resistivities would be expected.

Due to the applied field, a Hall resistivity Py 1is
also expected at the H=#0 vortex-glass to insulator
transition. Like p,,, pxy Should have a universal value
at the transition. In the scaling regime close to this
transition (ie. H—H, and T - 0) both resistivities
should satisfy scaling forms,

pxe = (hj4eDHRy [c — Hy)TY?"], 9)
with a«=x,y and, ¢ a non-universal constant. Here

EMJX] are dimensionless scaling functions, which take

constant wvalues at KEECG{—}%ﬂT1M“=:O, and diverge or
vanish exponentially in X (to some power) for large

positive and negative X, respectively. Plotting ﬁxx
versus Ry, would eliminate the (shared) non-universal
gongtant ¢, giving a wunique universal function,
RWARXQ. (A similar trick is wused in plotting

resistivities near the phase transition between plateaus
in the integer quantum Hall effect?0,)
Can one estimate the wuniversal resistivities,

p;as(h/l;ez)Rm[X—_-O], at this transition? As alluded to
above, Cooper pairs and vortices play a dual role near
the vortex-glass -to-insulator transition: In the
superconducting phase the Cooper pairs have Bose con-
densed, whereas the vortices are condensed in the insu-
lating phase. It turns out that the T =0 vortex-glass
to localized Bose-glass transition, in a model system
of logarithmically interacting bosons moving in a random
potential, is, in fact, self-dual?l, This can be used
to show that the universal resistivities at the transi-
tion satisfy,

(pxx)” + (oyp)? = (hfheD)?. (10)

Since Cooper pairs do not interact logarithmically, but
as l/r , (10) will presumably not be identically satis-
fied in a real physical system. I suspect, though, that
a4 more appropriate model, with 1/r interactions, might
well give a value not substantially different than in
(10) (although presumably not a simple rational times
h/4e?) . In any event, (10) should serve as a useful

guide for experimental investigations of this transi-
tion.
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The scaling theory, outlined herein, is based on a

paper in collaboration with G. Grinstein and §.M.
Girvin, and is a generalization of earlier work with
D.5. Fisher and P.B. Weichman. I am indebted to them
all for their help and support. I also thank D.H. Lee
and D.A. Huse for numerous fruitful conversations.
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