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The phase diagram and electrical transport properties of strongly type-II superconductors are examined in the presence 

of thermal fluctuations and random vortex pinning. Pinning destroys the vortex lattice phase, probably replacing it with a 

vortex glass phase that has spin-glass like off-diagonal order and strictly zero resistivity in contrast to the conventional 

picture. The properties of this novel phase and the phase transition into it are summarized and experiments on YBa,Cu,O, 

and Bi,Sr,CaCu,O, are discussed in light of the results. The latter is argued to exhibit quasi-two-dimensional behavior 

over a wide range of temperature and magnetic field. 

1. Introduction 

In type-II superconductors above their lower 
critical field, Hc,, their defining property - 
vanishing resistivity - has never been adequately 
understood. Indeed, whether the linear resistiv- 
ity actually vanishes at low temperatures or is 
merely exponentially small is not known. This 
question is largely academic for conventional 
bulk superconductors in which fluctuation effects 
are very small. 

A series of recent transport measurements on 
the high-T, cuprate superconductors show that in 
these materials, fluctuation effects are much 
larger: in Bi,Sr,CaCu,O, (BSCCO) the linear 
resistivity in moderate magnetic fields is readily 
measurable down to less than a third of the zero 
field transition temperature T, [ 11. This has been 
attributed to melting, by thermal fluctuations, of 
the Abrikosov vortex lattice into a vortex fluid 
phase [2]. In the absence of vortex pinning, 
however, such melting has little effect on simple 
transport properties: under an applied current, 
both a vortex lattice and a vortex fluid will move 
leading to linear “flux flow” resistivity. 

In this paper we explore the effects of thermal 
fluctuations and vortex pinning on the phase 
diagram and transport properties of strongly 
type-II anisotropic superconductors, focussing on 
measurements on BSCCO and YBa,CuO, 
(YBCO) - which exhibit rather different be- 
havior. A much more detailed presentation will 
appear in [3]. We see that YBCO behaves as a 
three-dimensional system and appears to have a 
truly superconducting vortex glass phase replac- 
ing the vortex lattice [3]. BSCCO, on the other 
hand, is much more anisotropic: the penetration 
length anisotropy y = AL/h, (where _L and z 
denote in-plane and c-axis directions) is of order 
& for BSCCO but only $ for YBCO [4]. This 
results in two-dimensional behavior over a wide 
range of the H-T plane in BSCCO, roughly for 
fields greater than -10 kG, where the system 
consists of weakly coupled two-dimensional 
layers. 

We first consider critical behavior at the zero- 
field transition since, for small magnetic fields, 
this determines where vortex correlations be- 
come strong and in the absence of disorder the 
vortex lattice melting line. The main effect of 
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random pinning is to destroy the long-range 
order of the vortex lattice, which may lead to a 
glass-like phase with off-diagonal long-range 
order - the vortex glass [5]. Some properties of 
this phase are outlined, as are those of the 
transition from vortex glass to vortex fluid. 
These together yield a semi-quantitative under- 
standing of many of the experiments on YBCO. 
To understand BSCCO we explore the role of 
quasi-two-dimensionality. 

2. Critical fluctuations 

In small magnetic fields, thermal fluctuations 
become important for T < T, when 

h’ly<, = C&r ) (1) 

where A.,. = +,‘, 116rr2T= 2 x lo8 A, KIT is the 

thermal length set by the flux quantum, &, = hci 
2e, and 5, is the in-plane coherence length. The 
number C, depends on the precise criterion one 
uses, as we will discuss. 

For strongly type-II layered systems with 
K = A, /[, % 1 and y 4 1, the fluctuations can 
become important relatively far from T,. The 
criterion (1) will mark the crossover to an XY 
cvtjcal regi;e. In this regime 5 - 16 I-” and A - 

P. 
Only-v!~~ 5 

with E=(T- T,)lT, and u= $. 

1 - A, will fluctuations of the mag- 
netic field become important; this only occurs 
very close to T, in the cuprate superconductors, 
since K % 1 outside the XY critical region. In the 
XY critical regime, eq. (1) is obeyed as an 
equdity with a universal constant C, = 0.8 [6]. 
For YBCO, this yields a crossover between 
Ginzburg-Landau and XY critical regimes for 
T < T, at a reduced temperature 1~~1 s lo- ‘. 
Note this estimate yields a much larger critical 
regime than the conventional Ginzburg criterion 
for the specific heat. The reason is that the 
fluctuation specific heat has a rather small am- 
plitude, grows only as -E -“* in the Ginzburg- 
Landau regime, and only diverges as Iln ~1 in the 
critical regime. This results in a fluctuation 
specific heat that does not grow to be of order 
the mean-field specific heat discontinuity until 

deep in the critical regime [3]. The fluctuation 
conductivity behaves similarly. 

The non-linear current-voltage (I-V) charac- 
teristics in the Meissner phase should also show 
the effects of fluctuations. Thermally activated 
nucleation of vortex loops [7] leads to non-linear 
dissipation and an electric field 

E - exp[-(JJJ)‘“] 

for small current density J, with p = 1 and 
J’; - 1 lT at low temperatures. Above a charac- 
teristic current density J,, the dissipation rapidly 
increases due to non-activated phase slip pro- 
cesses. In the mean-field regime JT 9 JF, so that 
Jr appears as a sharp critical current. In the 
critical regime, however, J1, - J, so the Z-V 
curves are smoother. 

3. Flux lattice melting 

Above the lower critical field H,, (which 
-(T, - T)” in the XY critical region) vortices 
penetrate the sample. In the absence of random 
pinning, a vortex lattice can then form, but 
thermal fluctuations of the vortices may melt this 
lattice [2]. At fields just above H,, the inter- 
vortex interactions are weak, resulting in a nar- 
row fluid phase near H,,. Here we restrict con- 
sideration entirely to fields in the z-direction well 
in excess of H,, so near-neighbor vortices interact 
logarithmically. The lattice melts at a field 
B,(T) which may be well below the mean field 
HC2 [2]. The latter becomes merely a crossover 
from a normal metal to a vortex fluid. 

The melting field may be estimated using the 
Lindemann criterion [2]. The wave vector of the 
dominant vortex line fluctuation is of order the 
zone boundary v/a, in the plane, (with vortex 
lattice constant a, = m) but a factor of y 
smaller in the z-direction [3]. Thus we must 
include the discreteness of the layers if the layer 
spacing d 3 ya,. This quasi-two-dimensional re- 
gime applies in YBCO only for enormous fields 
3300 kG, however BSCCO should become 
quasi-two-dimensional for B 3 3 kG. 
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3.1, Three-dimensional regime 

At low temperatures the melting boundary will 
approach HcZ( T), but as T increases it can 
drop to considerably lower fields. In the XY 
critical region, the melting field scales as [3] 

BM = ($4: /2rrTr5: - (T, - T)*“, with C, c 0.1. 
The melting temperature, T,, is likely to show a 
maximum very close to T, - near the magnetic 
critical fluctuation regime - before bending back 
down to join the reentrant low-field melting line 

near H,,. 

3.2. Two-dimensional regime 

At high fields in strongly anisotropic materials, 
both the direct and magnetic interlayer coupling 
between the vortices are ineffective. The system 
then acts as a stack of weakly coupled two- 
dimensional layers with fluctuating point vortices 
in each layer. In this regime, the melting 
temperature in a clean system will be roughly 
given by the two-dimensional Kosterlitz- 

Thouless melting temperature [S] which is only 
weakly field dependent for HC2 9 B + H,,: 
T T = 1 - 2 x 10~2~~d/16rr2h~ = 15-30 K with 

the A, = 1400 A as measured at low tempera- 

tures in YBCO [9]. 
A similar A, for BSCCO (the experimental 

value is controversial), implies a low melting 
temperature over a wide range of fields (B 3 
3 kG) which then increases for lower fields, 
eventually approaching T, for B small. In this 
quasi-two-dimensional system, however, the 
stronger fluctuation effects may be enough to 
keep the maximum T, considerably below T,. 

4. Effects of pinning 

The motion of vortex lines and the concomi- 
tant electrical resistance can be impeded by both 
macroscopic defects such as widely spaced grain 
boundaries, or microscopic impurities (or poss- 
ibly microtwins). If only the former were pres- 
ent, the linear resistivity would drop sharply 
when the vortex lattice forms; instead a more 
gradual drop is seen in experiments [l]. In addi- 

tion, flux line imaging at low fields in BSCCO 
[lo] and in twin free crystals of YBCO [ll] 
shows evidence for pinning by small scale disor- 
der. Although macroscopic defects may be im- 
portant for obtaining high critical currents, we 
will concentrate on the effects of microscopic 
pinning which should be more universal. 

Larkin and Ovchinikov [12] showed that 
vortex-lattice long-range order is destroyed by 
random pinning for distances larger than a length 
scale L, which is long for weak pinning. What 
happens on longer length scales has never been 
understood: the usual discussions of “flux creep” 
[13] implicitly assume that the system is a strong- 
ly pinned fluid with independent creep of flux 
bundles up to a maximum characteristic size - 
yielding a finite linear conductivity. Alternative- 
ly, the system may be ordered on long length 
scales but with a specific non-crystalline frozen-in 
configuration of the vortex lines and spinglass- 
like off-diagonal long-range order [5]. Before 
studying the properties of this vortex glass phase, 
we discuss the effective strength of the pinning. 

In the interesting regime of temperature, the 
thermal motion of the vortex lines averages the 
random vortex core pinning over some volume 
[14]. This is particularly effective at low fields. 
At fixed temperature the relative size, L,la,, of 
the crystalline regions decreases with increasing 
field for B b 2H,, . (Very near H,, , the effects of 
pinning can again become more important.) 
Thus the direct observation of fairly well ordered 
flux lattices [lo, 111 at low fields B s 200 g in 
both YBCO and BSCCO does not imply that 
these correlations persist at the much higher 
fields where the transport measurments have 
generally been carried out [l, 9, 151. Differences 
between samples probably also play an im- 
portant role. 

In an experiment on a YBCO film [15] (three- 
dimensional regime), a gradual drop in the resis- 
tivity was observed roughly coinciding with the 
expected position of the melting line in a clean 
system [2]. This gradual drop implies that the 
actual transition is dominated by pinning for that 
sample. In a single crystal YBCO [16] on the 
other hand, the resistivity was seen to drop much 
more sharply with T, consistent with weaker 
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pinning, and a larger L,la, near the clean sys- 
tem’s melting temperature. 

In the zero-field XY critical region, the pin- 
ning is marginally irrelevant, so that its effective 
strength should be almost independent of T, - 
T, implying that all characteristic jields ( @ H,,) 
will scale as (T, - T)2v with v 2: 5, consistent 
with various recent experiments [17]. In this 

regime, the effective pinning strength can be 
quite large due to the small amplitude, Vco of 
the correlation volume [3]: veo - Vcoe~3”. 

5. Vortex glass phase 

In the three-dimensional regime, the vortex 
lattice is likely to be replaced by a truly super- 
conducting vortex glass phase with spin-glass- 
like-off-diagonal long-range order 13, 5, 181 
below a temperature T,. We briefly summarize 
some of the properties of this new phase. 

5.1. Nonlinear response 

With an applied current density, the pinning 
causes barriers B(J) - J -’ for nucleation of vor- 
tex loop or vortex bundle excitations, resulting in 
an Z-V curve of the form eq. (2) with p s 1 and 
a vanishing linear resistivity [3, 51. At higher 
currents above some JF, the vortex lines will 
become depinned and flow. For low tempera- 
tures, 1, G Jr and JF appears as a sharp critical 
current. However, as for the Meissner phase, 

JT - JF near T,, and there will not be a sharp 
critical current. In both the Meissner and vortex 
glass phases, a non-equilibrium current will 
decay as J(t) = J,[l + (T/U) ln(tlt,)]-1’p, with 

T/U = (JFIJ-,.)“ and t, - lop9 s a microscopic 
“attempt” time [19]. This form yields a a J/a In t 
which is non-monotonic in temperature, in con- 
trast to the Anderson-Kim theory and consistent 
with experiments on YBCO crystals [20]. Due to 
the strong non-linearities and the broad distribu- 
tion of energy barriers, hysteresis and other non- 
equilibrium effects will be predominant in the 
vortex glass phase, consistent with experimental 
findings. (We have ignored finite penetration 
length effects and the resulting current 

inhomogeneities which can be important in ex- 
periments on the vortex glass. For A 9 a,,, how- 
ever, our results apply directly to small samples.) 

5.2. Linear response 

The response of the vortex glass phase to a linear 
AC applied current or magnetic field is rather 
subtle. Since any additional DC field will pene- 
trate the sample, one might expect that the 
w + 0 limit of the complex conductivity a(w) 
would qualitatively differ from that of the Meis- 
sner phase. Nevertheless, we find that [3] 

a(w) - 
PS 

-iiw+e +Oi,,l,‘,,J ’ 

so that, in fact, there exists a linear-response 
superfluid density p,! Penetration of an applied 
AC field should be rather inhomogeneous due to 
rare “soft spots” where the field penetrates arbit- 
rarily far, so that the penetrating field typically 
falls off exponentially even as o --, 0, although its 
mean decays as a power law [3]. Thus, depend- 
ing on the measurement, one could conclude 
that either the AC penetration length &(w) goes 
to a constant as w -+ 0 as implied by eq. (3), or 
that it diverges as a power of Iln WI. A non-zero 
superfluid density nevertheless still exists be- 
cause the large thermally active excitations (“soft 
spots”) occupy only a small fraction of the vol- 
ume. Thus even a low-frequency current can 
circumvent those regions resulting in only a finite 
reduction of p, [3], in contrast to earlier expecta- 
tions [ 181. 

5.3. Vortex glass transition 

Near the vortex-glass to vortex-fluid transition, 
at T,, the critical behavior of the non-linear Z-V 
curve has the scaling form [15] 

E- 5,‘-‘~,(J5&,lcT,), 

in three-dimensions where LJ~ - ) ~1 -S is the 
vortex glass correlation length which can be in- 
directly inferred from the scale of the current 
density in eq. (4). Here l G is the reduced tem- 
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perature (T- TG)ITG. For T < TG and J-0, 
the scaling function Z_ reduces to eq. (2); for 
T > T, and small J, %+ - J yielding cr - 

l 1)u. , while for T = T,, E - .I@+‘)‘*, this 
power law behavior thus providing a good criter- 

ion for TG. The expression eq. (4) has been 
successfully used [ 151 to analyze recent data from 
YBCO films yielding z = 5 and ~,a = 1.8. Be- 
havior consistent with eq. (4) was found [15] 
over the field range 20-40 kG. We note that the 
small length scales inferred from eq. (4) (-500 8, 
at 40 kG) suggest the pinning dominates at 
length scales 3 uVr in the sample of [15]. 

To strengthen the case for a true phase transi- 
tion into a vortex glass phase, it would be very 
helpful to also measure the AC linear conductivi- 
ty on the same samples. This should scale as 

m(w, t) - ~‘,-‘L(wro) , (5) 

where the characteristic time scale ro - S’,. At 
low frequencies, for T < T,, this yields u - ip,iw 
with [17] ps - S,‘; for T > TG, a(w)-+ real con- 
stant; while for T = TG, (T(O) - e’~“-w-(‘~“” 
with [21] $c = n(z - 1) /2z y 70”, assuming 2 = 

5. 

5.4. Two-dimensional regime 

We now briefly turn to the strongly anisotropic 
case of BSCCO. At very low fields the magnetic 
interlayer coupling causes a three-dimensional 
vortex lattice similar to YBCO, as found in 
imaging experiments [lo]. For fields of a few kG 
and above, the interlayer coupling becomes inef- 
fective, resulting in quasi-two-dimensional be- 
havior. In this two-dimensional regime, there 
will be a finite in-plane vortex glass correlation 
length to - l/ T”*, and only weak interlayer cor- 
relations. Concommitantly, free energy barriers, 
B, for the motion of point vortices over distances 
of order .$o will gradually grow as T decreases, 
but these barriers cannot grow faster than 
B - In to - ln( l/ T). This gives rise to a charac- 
teristic relaxational time 7o - exp(B( T) /T), 
which grows at most slightly faster than Ar- 
rhenius. The conductivity will diverge in the 
same manner. Both of these are consistent with 

linear AC magnetic screening measurements [lo] 
in the range 15K<T<80K and lOkG<H< 
120 kG. At low temperatures, probably below 
T $, the in-plane correlation length will become 
long enough that the interlayer coupling become 
important, presumably driving the system to a 
three-dimensional vortex glass phase. Careful 
non-linear Z-V data taken in conjunction with 
the linear AC transport on BSCCO is needed. 

Finally, we note that the best systems to study 
some of these issues are probably artificially 
layered materials in which many more parame- 
ters can be controlled. However, it does appear 
that the high-T, materials have already given 
substantial clues to the answer of the question: 
Are superconductors in a magnetic field really 
superconducting? 
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