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The conduction properties of a two-dimensional tight-binding model with on-site disorder and 
an applied perpendicular magnetic field with precisely one-half of a magnetic flux quan tum per 
plaquette are studied. A cont inuum hamiltonian is derived which enables the construction of a 
field theory for the diffusive modes. The field theory is shown to be in the universality class of the 
O(2n,2n) /O(2n)  × O(2n)(n--* 0) non-linear o-model implying that all the electronic states are 
localized. The system is shown to be related, via an analytic continuation, to a system of 
self-interacting fermions in 1 + 1 dimensions, in the n --* 0 limit. 

1. Introduction 

A good understanding of the localization problem originally proposed by 
Anderson [1] in 1958 was finally achieved several years ago [2]. It is now well 
accepted that in two dimensions a tight-binding model for non-interacting electrons 
with on-site disorder has all states localized. In the presence of a perpendicular 
magnetic field, however, this system is not so well understood. Hofstadter [3] and 
more recently Thouless et al. [4] have studied a pure d = 2 tight-binding model in a 
transverse magnetic field. Even in the absence of disorder this system has an 
exceedingly rich band structure and has served as a model for gaining an under- 
standing of the integer quantum Hall effect. When both disorder and a magnetic 
field are present, however, an interesting question arises. Are all the states still 
localized? This question, although having received much attention recently [2, 5-9], 
has not been completely resolved. 

We consider the conduction properties of a disordered non-interacting electronic 
system on a two-dimensional tight-binding square lattice immersed in a constant 
magnetic field B perpendicular to the system. The disorder is taken as a white-noise 
random potential on the sites of the lattice. In this work we consider the very special 
case in which the magnetic flux • per plaquette of the square lattice equals one-half 
of the quantum of flux O0- A general magnetic field breaks time-reversal invariance. 
Thus two systems with flux ~ and -q~ are generally inequivalent. However if • is 
equal to ½0 o there is no difference between • and -q~ since the physics of the 
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problem is periodic in • with period ~0- Thus time-reversal invariance is not truly 
broken. Consequently the Hall conductance O~y is identically zero for any filling 
fraction. This, however, does not mean that the magnetic field has no effect on the 
properties of the system. 

In fact the magnetic field causes the system to split up into four sublattices. It is 
shown in sect. 2 that, for states near E = 0, the system effectively describes the 
propagat ion of massless relativistic particles, a property used by Kogut and Susskind 
[10] to write down a lattice version of the Dirac equation. This enables us to 
construct a continuum field theory for the diffusive modes when the Fermi energy is 
near the middle of the band. The resulting theory is shown to be in the universality 
class of the orthogonal O(2n,2n)/O(2n)×O(2n) (n ~ 0) non-linear o-model [11], 

(this reference contains discussions of the orthogonal and unitary non-linear o-mod- 
els and their connection with Anderson localization) implying that all states are 
localized just as they are in the absence of the magnetic field [11-15]. This suggests 
then that if delocalized states do exist in the presence of a magnetic field it must be 
the direct breaking of time-reversal invariance, rather than some other property of 
the field, which is responsible. 

In sect. 3 we show that there is a discrete symmetry in the system which, if 
unbroken, makes the density of states vanish at E = 0. However it breaks down 
spontaneously in the presence of disorder yielding a non-vanishing and smooth 
density of states near E = 0. This justifies the weak localization approach used in 
sect. 2. 

We also point out in sect. 3 that the system studied here is related, via an analytic 
continuation, to a special one-dimensional relativistic interacting Fermi system in 
the n ~ 0 limit. This system is close, but not identical, to some one-dimensional 
Fermi systems at finite n that have been solved with the Bethe ansatz [16]. 

Since in most experimental lattice systems it would take an astronomically large 
magnetic field (B - 1 0  9 G) to generate 4)= ! ~  this study is primarily of theoreti- 2 0 '  

cal interest. However, there are some amorphous systems, such as granular aluminum, 
for which a magnetic field of the order of 10 5 G could on average satisfy this 
condition. Another  system in which • = l 2 ~0 could conceivably be achieved is a 
square array of tunnelling junctions. 

2. The model  and its critical behavior 

We start with a tight binding model for a spinless electron on a two-dimensional 
square lattice with precisely one half of a magnetic flux quantum through each 
plaquette. In the Landau gauge the hamiltonian is 

121 = -t~_, [e 'Y /~+(r+ hx)~(r  ) + eo+(r+ hy)~(r)  + h.c.] 

+ E V(r)~+(r)~b(r), (2.1) 
#- 
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where ~(r )  is the electron field and a is the lattice spacing. The potential V(r)  will 
be taken as randomly distributed gaussian white noise centered about zero: 

( V ( r ) V ( r ' ) )  = T r ( r -  r ' ) ,  ( V ( r ) )  = O. (2.2) 

The pure system has an energy spectrum 

E k = + 2tv/cosZ (kxa)  + cos2(k~a) ,  (2.3) 

where k denotes the Bloch-wave momenta. When the Fermi energy is near zero, the 
Fermi surface consists of four circles centered about the points k = ( + ~r/2a, + 7r/2a) 

(see fig. 1). Near these regions in k-space (2.3) describes a two-dimensional relativis- 
tic massless spectrum [10] 

E =  +2ta lq l  + O(q2),  q = k -  + 2 a ,  + ~-~a . (2.4) 

By exploiting the simplicity of the Fermi surface we now obtain a continuum version 
of (2.1) appropriate for a system with E F = 0. 

ky 

(O,rr/a) 

(0,0) (rrla,O) 
kx 

Fig. 1. With E F = 0 the Fermi surface for the pure system consists of four circles in k-space. 
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From (2.1) we generate the equation of motion which upon fourier transformation 
is 

i d o ( k , t ) =  - l c o s ( a  kva)O(k)-lcOs(k~a" )O(k~ ,k~ , -~ )  

+f dk' ~-~-~  V(k - k') ~,(t,'), (2.5) 

where for simplicity we have set 2ta = 1. With the Fermi energy near zero one can, 
to a good approximation, restrict attention to the four regions in k-space near the 
light cones. This can be achieved by placing a cutoff A (A < ~r/2a) about the four 
points k,,. Then by defining four fields 

q~,,(q,,) = , ( k ) ,  q a = k - k , ,  a= 1 . . . 4 ,  (2.6) 

with k ,  shown in fig. 1, and four potential functions 

v(k)  = 

v l (k)  

v2(k- ~-:~- ~ y ) a  
(2.7) 

in 

equation 
the vicinity of each light cone, eq. (2.5) can be rewritten as a 4 × 4 matrix 

q qx°°o] 
i ff-~d~(q, t ) = 0 qx 0 qv O qv q~ ~b(q) 

0 0 q, - q r J  

V 3 V 1 V 2 V 4 

+ ii4 V2 V1 I/3 (q-q ')d~(q') .  

v2 v4 v3 vL J 

(2.8) 

In the kinetic energy in (2.8) we have expanded to linear order in qa. Notice that this 
term describes two decoupled Dirac fermions in 2 + 1 dimensions [10]. In the 
presence of disorder, however, these are coupled through the potential energy. 



M.P.A. Fisher, E. Fradkin / Localization in a magnetic field 461 

After performing an appropriate orthogonal transformation to diagonalize the 
potential energy we re-express (2.8) back in real space. With an implicit cutoff A 
assumed this leads to the following hamiltonian: 

where 

H~t~(r ) = ia,~a. W,+ 8./~I2.(r), (2.9) 

(0 ° l) 
(ax)"/~  = o3 oi  ' 

I7" = y'. F~'~, (2 .11 )  
i - I  

with 

f,x = (1 ,1 ,1 ,1 ) ,  F~ = ( 1 , 1 , - 1 , - 1 ) ,  

F2 = (1, - 1 , 1 ,  - 1 ) ,  F,4 = (1, - 1 ,  - 1,1).  (2.12) 

Here o 1 and 0 3 are 2 x 2 Pauli matrices. From (2.7) one deduces that the four 
potentials I?,(r) are real functions each with an independent gaussian white noise 
distribution 

1 [L(,)I 2] (2.13) 

Eq. (2.9) constitutes our continuum approximation to the hamiltonian in (2.1). 
Notice that the presence of the magnetic field is now hidden in the four-component 
nature of (2.9). We now proceed to analyze this continuum hamiltonian to see if the 
states are localized or extended. 

The generating functional for the Green functions of the hamiltonian (2.9) is 

Z= f I-I D% Dck *e-s°, (2.14) 
' /  ( /  

with 

so= f d2x,Z(x)[( E + , , )8 . , -  (2.15) 

From (2.15) it appears at first sight that the symmetry underlying the theory will be 
unitary*. However by introducing real fields 

,t,. = ~ ( * . . 1  + i*° ,2) ,  (2.16) 

* In a previous unpublished version of this paper we incorrectly identified the symmetry as being 
unitary. We thank Dr. A. Pruisken for kindly pointing out to us that the actual symmetry is 
orthogonal.  The argument presented below is actually his. 



462 M.P.A. Fisher, E. Fradkin / Localization in a magnetic field 

and performing an appropriate orthogonal transformation on the resulting 8 × 8 
matrix, eq. (2.15) can be block diagonalized (into two 4 × 4 blocks) and in this new 
basis takes the form 

S o =  ½ Y', fd2xqb2(x)[(E+iT1)3~o-~l~o(x)]Od(x), ( 2 . 1 7 )  
c-1,2" 

where 

/ t , ,~ = I',,,~ • ~7 + 3,,of,;',,, ( 2 . 1 8 )  

(0 ° (0 o,) 
F x = , F y =  (2.19) 

o 3 o I 0 " 

Here c labels the two 4 × 4 blocks which, as seen from (2.17), are identical to one 
another. 

We now follow the standard procedure used to describe [11-15] the zero magnetic 
field localization problem in terms of an interacting matrix field theory. The square 
of the retarded single-particle Green function is obtained by squaring the functional 
integral. In order to average over the disorder the replica trick is used. The two 4 × 4 
blocks in (2.17) are seen to simply double the number of replicas. After averaging 
over the disorder with the weighting (2.13), symmetric and real composite Q-fields 
are introduced, as first done by Wegner [12]. The resulting generating functional is 

Z =  l im  [DQexp{-fdZx ~ ½(Q~J(x)) 2-½TrlogA} 
n a ' n b ~ O d  i , j , a  

-- f D Q e - S ,  

(2.20) 

where 

A ~lj ( x , y ) =- B ( x - y ) [ 3 u { ( E + is j~l ) 3~t ~ - Fat ~ • W~ } - 2 ~ 3a~Q yt~ ( x ) ] . 

(2.21) 

The average of the absolute square of the retarded single-particle Green function is 
given by 

IG, o (x ,  y,  E + irl)l z = " y l ( Q ~ , b ( x ) Q ~ h ( y ) ) ,  (2.22) 

where the brackets denote an average with respect to S in (2.20). In (2.20)-(2.22) i 
and j label the two sets of replica indices and run from 1 . . . 2n~  + 2n h where no<b) 
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denotes  the number  of  replicas in the particle (hole) sector. The symbol s: is equal to 

1 ( - 1 )  when j = l . . . 2 n  a ( 2 n a + l . . . 2 n a + 2 n h ) .  The spinor components  are 

labelled by the subscripts a and ft. 
The  average single-particle Green function, on the other  hand, can be obtained at 

the saddle-point  (CPA) level from the following self-consistent equation: 

[ (E + i~)8, ,v- iF, ,v 'p-  27~,,yG°(x,x,E + i~) ] °Gv~(P, E + i~) = ~,,/~ 

(2.23) 

It is instructive to examine the CPA density of  states o0 (E)  defined by 

4 

1 y]  Im G ° ( x ,  x ,  E + iT1) . (2.24) O o ( e )  = - g 
a - - 1  

By solving for the Green function in (2.23) one finds that the four diagonal 
componen t s  are all equal. At  E = 0 this gives 

P o ( E = O ) =  4,4 e _ , / , , ~ H  +O(e_t /4 ,~v)]  
2¢r7 t* • 

(2.25) 

The  full functional  form of o0(E)  is shown in Fig. 2. Notice that as the disorder (7)  
vanishes the linear density of states of  the free 2 + 1 Dirac equation is recovered. 

However  in the presence of  disorder a non-zero density of  states is introduced at 

E = 0. As shown in sect. 3 this non-zero density of states at E = 0 is in fact the result 

of  a spontaneous  breaking of a discrete symmetry in the original generating 

functional.  It is important  that the resulting density of  states is smooth and finite 

i_~2 -ll4wy "~\ 

I 
-I 

Po(E)IA 

/ 
/ 

I 

0 ~ye -I/4~''Y +1 EIA 

Fig. 2. The density of states at the CPA level is denoted Oo(E). The presence of disorder ('r ~ 0) has 
introduced a non-zero density of states at the center of the band. When y -* 0 the linear density of states 

of the free 2 + 1 Dirac equation is recovered. 
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where 

] 1 - 1  1 - 1  
O =  1 1 - 1  1 

1 1 - 1  - 1  

The quadratic forms computed from (2.28) then take a diagonal form: 

with C ~ ± ( p )  at E = 0  given by 

1 -2~ ' y  
c ; - ( p ) =  |1 - 27r~' + O(p2) '  C ~ + ( P ) =  

[2(1 - 2~ry) x 

(2.31) 

(2.32) 

[4~ry ] 
1 + 2~ry 
12+2~r ~, +O(P2)"  

h 

(2.33) 

8,[(E + ro,  ,r] 

-2~/-y6~¢(Q~J(X))o}]-~) 'J(x,x) .  (2.35) 
/ a t ~  

One solution to (2.35) is given in (2.26). However when r/= 0 it is easy to verify that 
for any solution (Q'd)0 eq. (2.35) is also satisfied by \za/ou\'/0 where 

hi  j \ ,  = ( U- , ) 'k (Qkt)oUq ' 
~ a  I0  (2.36) 

with U any invertible 4n x 4n matrix. Since U is independent of the spinor 

Notice that in this representation only one mode (~ = 1) is broken and has massless 
(diffusive) excitations while the other three are unbroken and massive. We now 
discuss the symmetry of the effective field theory for the massless Q [ -  modes. 

The saddle-point equation of the action S defined in (2.20) is obtained by setting 
8S /8Q = 0 giving 

{ 1 (2.34) 
X= 2,3,4.  

In addition since (Q~J)o in (2.26) is independent of the spinor index a we have in 
the new basis 
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components a and the Qx are related to Q,  through a rotation in a-space, (2.36) 
also holds in the new basis. Thus from (2.34) the general solution to the saddle-point 
equation can be written 

0 ] 
0 i ,  0oi u. 

(2.37) 

We now follow previous authors [13-15] and write an effective theory for the 
Q~£~ sector in which the full configurations satisfy the saddle-point equations of the 
original theory. For a given Q ~ - ( =  Q) configuration we define a 4n x 4n matrix 
field 

ho(x) = 
Rl(x  ) Q(x) ] 

(2.38) 
Qt(x) R2(x ) ' J  

where R 1 and R 2 will be chosen such that at each point x, h o is a saddle-point 
solution. From (2.37) this requires setting t r h 0 = 0  and ho 2= -~Tr2yp~]. This 
determines R 1 and R 2 and gives 

ho( x ) = [ - i( ¼~r2~oz] + QQ' i (~ r  2~,Og ] Q+ QtQ )1/2]" (2.39) 

The effective theory is now chosen to include only the saddle-point configurations 
ho(x ). Since in the full theory Q+- enters to lowest order as (OCPA/ 
(~ryp~)) vQabv'Q '~b it would be reasonable to suggest [12-14] that the effective 
theory for Q ÷- is 

Hen = (OCPA/'27rypg) f dex tr ~h  o • V'h o . (2.40) 

Since h o in (2.39) can be written as [11-14] 

-i½w °°i 0 0 ] r(x)' (2.41) 

with T belonging to O(2n,2n), the effective theory is an O(2n,2n)/O(2n)× O(2n) 
non-linear o-model. If we define h = (2/Irf~Oo)h o this becomes 

af Hen= ~ dZx tr V'h- V'h, (2.42) 
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with the inverse coupling constant proportional to the CPA conductivity 
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t -  1 = ½~rOcpa. (2.43) 

We conclude then that the tight-binding model with 4) = ½~0 is in the universality 
class of the orthogonal ensemble. The conductivity can be deduced from the 
fl-function which with n = 0 and d =  2 is [11] 

dt 
f l ( t )  = dlog-----L = 2t2 + O(tS)" (2.44) 

In the infrared t flows towards infinity (o towards zero) implying zero d.c. 
conductivity in the infinite system limit. Thus near E F = 0 all states are localized. 
Far from E v = 0, where our particular continuum model is not a good approxima- 
tion to the original tight-binding model, it is reasonable to assume that the 
orthogonal symmetry should still be apparent leading to localized states at all 
energies. 

For  arbitrary values of the flux ~, terms which explicitly break time-reversal 
invariance are expected. The interplay between the localizing effects of the random 
potential and the additional time-reversal breaking terms is clearly essential in 
understanding fully localization in a magnetic field. A continuum theory has already 
been proposed by Levine, Libby and Pruisken [8, 9]. They show the existence of an 
additional term in the field theory which might be responsible for delocalization of 
the electrons. The coefficient of this extra term is the Hall conductance at the CPA 
level. Since in the model studied here (q) = ½~0)Oxy is identically zero it is consistent 
that this extra term is not found. 

3. Discrete symmetry and one-dimensional Fermi systems 

In this section we demonstrate the existence of a discrete symmetry which governs 
the behavior of the density of states near E = 0. In doing so we show that the system 
studied in sect. 2 is equivalent to a self-interacting Fermi field in the n --} 0 limit. 

The Green functions which correspond to the quantum mechanical equations of 
motion (2.8) can be generated by means of a functional integral. In this section we 
will use the Grassmann representation, more transparent (although not necessary) 
for a connection with the n--} 0 Fermi system. Let ~a(x)  be a complex Fermi 
(Grassmann) field (a  = 1 . . . . .  4). The (one-particle) Green functions 

1 
G (x, y; E _+ i , 7 ) -  <x, l E + i,7 - H IyB> (3.1) 

have the representation 

G ~ ( x ,  y;  E )  - (~o ( .~ )~ ( .V ) ) ,  (3.2) 
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f Dq,*(x)Dq,.(x)Oe A 
( 0 )  = (3 .3 )  

f D~* Dq~ . e - A 

In (3.1) H is the hamiltonian which governs the equations of motion in (2.8). The 
"act ion"  .4 is given by 

A = f d ~ x ¢ ~ ( x ) ( E  +__ i*l - H),,Bd~B(x). (3.4) 

Of particular interest here is the density of states (DOS) which is given by 

L -  2 4 
- - - I m  E fd2xG~=(x,x;  E + i n ) ,  (3.5) o ( e )  = ,~ 

a = l  

where L is a linear dimension of the system. 
We now rewrite the four-component field q~ in terms of a pair of spinor fields 

~, , (x)  (a = 1,2) defined by 

~ I ( X )  = 03 (~2(X)  ' 

q)3(x) (3.6) 
~ 2 ( x ) =  ~, , (x)  " 

The action A now reads 

where 

A = f d 2 x  Y'~ ~b+(x)M~b~b(x ) ,  
a , b - l , 2  

M l l  = io3~73 + i01V 1 - V 1 + 01V 3 + ( E + iB), 

(3.7) 

M22 = i 03V 3 + i o l V  1 - V 1 - OlV 3 + ( E + D/), 

M,2 = Mr1 = - o 3 (  V 4 + V2o,). 

In this new basis the Green functions are 

(3.8) 

G,~s( x ,  y; E )  = < xaa[ l lybfl ) 
ab 

= ( ~ ( x )  ~k~a(y)), (3.9) 
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where a = 1,2 labels the spinors and a = 1,2 labels the component of each spinor. It 
will be convenient to factor i% out of M in (3.9) giving 

1 
G,a(x, y; E)= - i (xaa  I _i%1M%llyflb),  (3.10) 

ab 

where I is the 2 x 2 identity matrix. The functional integral form of (3.10) involves a 
path integral whose lagrangian is 

--iV2( x )~-/aYS( T2),hff/b-- iV3( x )~/,,Yl( r3) ah~bb + iV4(x )~aT3( rl) ahggb, 

(3.11) 

where we have used the (euclidian) relativistic notation 

y1=01 ,  T3=03, Ts~ iTIT3=02 ,  

%=0,  ( i =  1,2,3).  {3.12) 

The lagrangian (3.11) represents two relativistic Dirac fields I/,t a in 1 + 1 dimen- 
sions (in the euclidian metric), interacting with the random potentials ~ ( x )  ( j  = 
1 . . . . .  4). The interaction terms represent the umklapp processes of the original 
lattice model. Making use of the replica trick to average over the disorder, one can 
reinterpret (3.11), after an analytic continuation to Minkowski space, as the 
lagrangian of a pair of self-interacting relativistic Dirac fields with a coupling 
constant proportional to the width of the distribution of the Vj. This type of 
lagrangian is close, but not identical, to the systems recently studied by means of the 
Bethe ansatz. 

The Green functions in (3.10) can be expressed as 

G,#(x, y; E) = -i(g/",(x)d/~( y)) ,  (3.13) 
ab 

where the brackets denote an average with respect to the lagrangian in (3.11). 
Inserting (3.13) into (3.5) gives for the DOS 

o ( E )  = - ---~---Re ~ (3.14) 
awl,2 
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At E = 0 the lagrangian (3.11) has the discrete (chiral) symmetry 

~ --* -~ .~ , , ,  (3.15) 

provided that the probability distributions P [ ~ ]  are even (i.e. P[V] = P [ -  V]). This 
is not a symmetry for a system with a given configuration of the V but of averaged 

quantities. The operator ffa~p~ is odd under (3.15). Hence, at E = 0, p(0) must 
vanish unless the (chiral) symmetry is broken. For E :# 0 the symmetry is explicitly 

broken and, of course, o ( E )  is positive. 
We would like to argue that this symmetry is spontaneously broken and that the 

average DOS is non-zero and smooth near E = 0. Indeed we have already confirmed 
this in sect. 2 (eq. (2.25)) where we showed that p(0) was non-zero even at the CPA 
level. It is important to note that had p(0) remained zero the weak scattering 
approach of sect. 2 would not have been applicable. 

The lagrangian (3.11) is only useful for the computation of single-particle proper- 
ties of the disordered system, such as the DOS and the mean-free-path. To get 
information about localization (i.e. conductivity and localization length) two-particle 
Green functions are needed. This necessitates doubling the number of Fermi fields 
in (3.11), with E-- ,  E + i~/ for the first half of the fields and E ~ E -  irl for the 
remaining fields. 

4. Conclusion 

We have discussed the properties of an electron hopping in a disordered square 
lattice immersed in a magnetic field with one-half of quantum of flux per plaquette. 
We showed that, with time-reversal invariance not being broken, all states are still 
localized. The resulting localization problem falls in the universality class of the 
orthogonal non-linear sigma model [O(2n, 2 n ) / O ( 2 n ) ×  O(2n)] (n-- ,  0). We estab- 
lished the presence of a symmetry in the problem which is spontaneously broken for 
arbitrary disorder rendering the density of states at E = 0 finite and the weak 
scattering non-linear sigma model approach applicable. We also pointed out an 
interesting connection between the problem studied here and a one-dimensional 
Fermi system in 1 + 1 space-time dimensions in the n --, 0 limit. 

We are grateful to S. Duane and M. Stone for helpful discussions. We especially 
thank A. Pruisken for many useful critical comments of an early version of this 
paper. One of us (M.P.A.F.) is grateful for the support by Conoco and by A T & T  
Bell Laboratories during the course of this work. This work has been supported in 
part by National Science Foundation grant no. DMR 81-17182. 
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