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We review recent work on a bosonic formulation of both anyon superconductivity and the
fractional quantum Hall eflect (FQHE). Central to this approach is the concept of charge-
vortex duality in two-dimensional (2d) boson systems. A formal duality transformation
which takes one from a particle to a vortex representation of a 2d boson model is described
in detail. The duality transformation is employed to obtain detailed properties of both
the FQHE hierarchy and a hierarchy of anyon superconducting phases.

1. Statistics Transmutation

The best known example in which electrons undergo “statistics transmutation”
(ST) at low energies is Cooper pairing! in superconductors. Due to the existence
of a phonon mediated attraction, electrons with opposite spin pair together to form
composite particles of charge 2e (for the purpose of conceptual simplicity consider
the case of real-space pairing). As a result, at length scales much greater than the
size of the pair they behave like bosons. These composite bosons can subsequently
acquire phase coherence and condense into a superconducting state.?

A new mechanism for statistical transmutation of electrons, which involves bind-
ing the electrons to magnetic fluxes or vortices, has recently been the focus of much
attention.® In contrast to Cooper pairing, this mechanism is only possible in two
space dimensions. In order to see how it works, imagine calculating the parti-
tion function for a collection of charge-vortex composite particles (each made up of
charge ¢ and vorticity ®) via a Feynman path integral.? As usual these composite
particles traverse world lines in the 2+ 1-dimensional space-time which contribute to
the partition function through the action. The action consists of a real and an imag-
inary part. For these composite particles, every time two world-lines braid around
each other, the action picks up a pure imaginary contribution equal to £i(8; + ¢@),
the plus sign for counterclockwise and minus sign for clockwise exchanges. Here 6;
is the intrinsic statistics angle associated with the charge, i.e. 0; = 0(mod 27) for
bosons and 8; = 7(mod 27) for fermions. The other part, q®, is an Aharonov-Bohm
phase factor or Berry’s phase® resulting from the adiabatic transport of charge rela-
tive to magnetic fluxes or vortices. Since the Berry’s phase is added to the intrinsic
phase angle 6; the statistics of the particles is effectively changed. For example, if
the charged particles are fermions and ¢® = w, the composite particles have Bose
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statistics. In general, since ¢® need not be an integer multiple of 7, the composite
particles can have statistics lying between that of fermions and bosons. Such par-
ticles are called anyons.® Here it is important to notice that if ¢® # nm, with n an
integer, clockwise and counterclockwise exchanges give different phase factors, so
that time reversal” and parity” symmetries are no longer respected. Strictly speak-
ing, in order for the flux (or vortex) attachment not to introduce any singularities,
the particles must have a hard-core repulsion among themselves. The reason that
anyons can exist is due to the fact that a closed loop enclosing an impenetrable
point cannot be contracted to a point in two space dimensions.

Unlike Cooper pairing, charge-vortex binding is favored by a short-range repul-
sion. This is because, due to the form of the kinetic energy operator, a vortex
forces the wave function to vanish when two particles coincide. As a result, the
short-range correlation energy is greatly reduced. In general, it is quite nontrivial
to show that charge-vortex binding is energetically favorable. In fact the only well
established case is in the quantum-Hall effect (QHE), where explicit wave functions
exhibiting charge-vortex binding can be shown to be the exact ground state when
the interaction between particles is sufficiently short range.” In this paper we will
be less ambitious, in that we will assume that charge-vortex binding does occur,
and ask what are the consequences.

In this paper we expand our recent work® on anyon superconductivity and more
generally statistical transmutations in 2d electron systems such as that which arises
in the FQHE. Our approach to anyon superconductivity and the FQHE is to re-
formulate both problems in terms of an underlying boson field theory with Chern-
Simons term which attaches flux tubes to the bosons. In this way, with an appro-
priate choice of ¢®, the boson plus flux-tube composite can either model an anyon
or an ordinary fermion such as an electron. We emphasize that this approach differs
from the vast majority of the literature, which employs a fermion representation of
anyons.>

A bosonic formulation allows us to exploit the concept of charge-vortex
duality.3 9 Since vortices in a 2d boson system are point-like, there are two com-
plementary representations of such a system: A conventional representation or a
dual one in which the vortices are treated as particles and the particles as vortices.
In Sec. 2 we describe in detail a formal duality transformation which allows one to
pass between representations. In contrast to most previous works,® 1% though, the
duality transformation will be carried out in the spatial continuum, rather than on
a lattice. The standard properties of a boson superfluid are extracted from the dual
representation in this section.

Section 3, which comprises the bulk of this paper, is devoted to a discussion of the
FQHE hierarchy in a bosonic representation applying the duality transformation. In
Sec. 4 a boson representation of anyons is used to discuss the anyon superconducting
phase. In both Secs. 3 and 4 an intuitive pictorial description is developed in parallel
with the formal manipulations. Section 5 is devoted to a very brief discussion of the
possible relevance of “semion” superconductivity to the high temperature copper-
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oxide superconductors.

2. Duality Transformation: Application to Boson Superfluidity

In this section we describe in detail a formal duality transformation® between parti-
ces and vortices for a 2d Bose system.!? In simple terms duality means the follow-
ing. For bosonic systems in two space dimensions, both the charge and vortices are
point-like particles. There are two equivalent ways to represent the charge-vortex
mixture. In the first representation, charges are viewed as charges and vortices are
viewed as vortices. In doing the path integrals whenever a charge and a vortex braid
around each other the action picks up a Berry phase. The alternative representation
is to view the charges as vortices and the vortices as charges. These two represen-
tations are equivalent in the sense that the relative Berry phase is invariant under
the exchange. The mathematical manipulation which leads from one representation
to the other is the duality transformation.

In this section, we will illustrate the use of the duality transformation by con-
sidering a relatively simple problem, namely, the superfluidity of bosons. This will
prepare us for the bosonic formulations of both anyon superconductivity and the
FQHE in subsequent sections. Indeed, aside from a slight complication caused by
the “Chern-Simons” term, which will be discussed in detail later, most of the boson
duality results are directly applicable to anyon superconductivity.

Consider then a 2-D interacting boson Hamiltonian in second quantized form:

1 ¥ ol
= [ x| Bo| + [ xdix (6 08() -V =X )E I
(2.1)

Here ¢ is the boson annihilation operator, m is the effective mass, and p is the av-

26

erage density. We are interested in the zero termperature state of this Hamiltonian.
Following the standard steps leading from Hamiltonian formalism to the coherent
state path-integral representation,!’ one can show that the partition function at
zero temperature takes the form

Z= f D, dle= J = (2.2)
where )
c=i62gs || + @8- avide-2). (23)

Here ¢ and ¢ are c-number complex fields, and ¢ is the complex conjugate of ¢.
The partial derivative, 8, in (2.3) 1s with respect to imaginary time. Throughout
the paper we take h =c=e¢ = 1.

We now derive a dual representation for the partition function (2.2)-(2.3), which
is expressed in terms of the vortices in the boson field ¢. In Ref. 10a this duality
transformation was carried out for a lattice model of bosons. Here we modify the
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formulation slightly and carry out the duality transformation in the continuum.
Since the phase of the order parameter changes by 27 upon encircling a vortex,
it is convenient to separate out the magnitude dependence of ¢ from its phase
dependence by writing

¢ =p'/%x (2.4)

where p is positive definite, which gives the density of particles, and y is a unimod-

ular complex field: gy = 1. The Lagrangian (2.3), when expressed in terms of p
and x by insertion of (2.4), takes the form,

2
Logatmpy Voo e
+ 2mlt”»ﬂ I“ + 2(.0 PIWV(p—p) . (2.5)

. _Op p|_0
£~szix+2m lxz.x

In the second term above we have added in an extra field y, which leaves the term
invariant since x has unit modulus. We now decouple this term by introduction of
" a Hubbard-Stratanovich field, J , which gives

.V m 1 | - N
L=i) x=x+ 2+ 51902 + 5P =B)V(p—p). (2.6)

Here we have defined a 3-current, J = (p,J). From now on we use the notation that
an underbar denotes a 3-vector, i.e. J and a 2-vector is denoted J. If the bosons
are charged they couple to the external electromagnetic gauge field A via the usual

minimal coupling: -’!i — 5 — A in Eq. (2.3). This amounts to adding —iJ - A to
Eq. (2.6). Thus J is identified as the physical 3-current of the bosons. To calculate
the partition function one has to perform path integrals over J and X-

We are now in the position to isolate the vortices in y. In each time slice,
x(r,7) will in general be spatially smoothly varying except at a discrete set of
singular points, the locations of vortices, at which p vanishes, and around which
the phase of x will wind by plus or minus 2112 We thus decompose y in each time
slice as,

X = xve'’, (2.7)

where 0 is a single valued real field, which describes the smooth “spin-wave” dis-
tortions of x and

Xv(r,7) = exp iZq,-@(r—-rj(r)) , (2.8)

represents the vortices. Here the function O(r) gives the angle that r makes with
the z-axis and r; denote the positions of the vortices with “charge” g; = +1. Notice
that as defined y, has unit modulus. Away from the vortex cores, X,@/ix, is simply
the gradient of the phase of Xv, S0 that

_ad
Oz (Xu ;Xv) = Pv , (29)
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where p, is the vortex density:

r) = 2«2%-52[1-— r;(7)] . (2.10)

We now insert (2.7) into the Lagrangian (2.6), and replace the functional integral
over x by a sum over all possible vortex positions and signs, in each time slice, and an
integral over the real field §. After an integration by parts, 8 enters the Lagrangian
only in the combination iV - J. Performing the 6 integral then leads to a constraint

Y-d=0. (2.11)
At this point the Lagrangian has the same form as in (2.6) except with x, replacing
X, and the integral over J subject to the constraint (2.11). Strictly speaking the
functional integral over J depends on the positions of the vortices, since the boson
density, Jo, must vanish at the vortex cores. Below we ignore this “coupling”
and take the functional integral over J and the sum over the vortex world-lines as
independent.

We solve the continuity constraint (2.11) on the boson particles 3-current by
writing

J=Vxb, (2.12)

where b is an unconstrained field. The functional integral over J is then replaced
by a functional integral over the new field . Substituting (2.12) back into (2.6)
then gives

£ = s (T X 0L P 5 AT XY+ (T xBYo—AV (T xBYo—+ib: 1o
! (2.13)
In (2.13) we have defined a vortex 3-current J, as
v
Jv = VXX, 'i—iu . (2.14)

From its very definition J, satisfies a continuity equation V - J, = 0. Moreover J?
1s precisely the vortex “charge” density as defined in (2.10). In (2.13) (¥ x b)o and
(V x b). denote the time and space components of the 3-vector V x b respectively.
In its final representation the Lagrangian (2.13) represents a vortex 3-current
coupled to a fluctuating gauge field. As (2.12) shows, the curl of this gauge field
1s the original boson particles 3-current. The partition function is expressed as a
trace over the “gauge field” b and a sum over vortex world line configurations with
vortex density (2.10) and a vortex current expressed in terms of the paths as

(xr,7) = Zq,a r;6%[r —r;(7)] . (2.15)
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Thus, this final dual representation is in a sense “mixed”, with the original particles
represented as a second quantized “coarse-grained” 3-current (via (2.12)) and the
vortices represented in a “first-quantized” world-line description.

In order to understand the final dual representation (2.13), it is useful to intro-
duce a shifted “gauge”-field 6b as,

with @x(b) = p. Upon substituting (2.16) into (2.13) we obtain

1
L= -|(v x 6b)L|* + 5(Y x 8b)oV(V x 6b)o +ib - Jv (2.17)

where we have replaced (V x b)o in the first term of (2.13) by p and ignored the
second term, which should be valid at long wavelengths.

Let’s consider first the properties of the Bose system in the absence of vortices.
This will correspond to the superfluid or superconducting phase, as we shall see
below. Setting J, = 0 then reduces (2.17) to a pure “gauge-field” Lagrangian,

s %[(Y x 6b)1|* + %(Y x 6b)oV(V x 8b)o . (2.18)

This is a simple quadratic Lagrangian and can easily be diagonalized to yield a
normal mode dispersion

w? = £Iq|2V(q) . (2.19)

If the two-body interaction is short range, V(q = 0) = const., (2.19) gives the usual
linear dispersion of the quantized sound mode.

If the bosons are charged, they couple to an external electromagnetlc field 64
via a term of the form —iV x 6b -6 A in Eq. (2.18). Then, upon integration over db
an effective gauge field action quadratic in § A is obtained:

La = —i6Aop + = |(64) 1 + %Mgv-lmo . (2.20)

Here we have chosen the Coulomb gauge, @-6A = 0. Equation (2.20) is the famous
Higgs gauge action of a superconductor.

In order to examine the role of vortices, a particularly convenient choice of gauge
in (2.17) is the Coulomb gauge: 8-b = 0. The terms entering the Lagrangian which
involve the time component of the gauge field then take the form:

%wboﬁ + ibopy - (2.21)

It is clear from (2.21), that upon tracing out by a logarithmic interaction between
vortices will be generated. The full Lagrangian can then be written as £ = Ly +
Ly + Lin with
Vv
Ly = ;”_ﬁwoabﬁ + 50 x 8b)’, (2.22a)

__P : o ,
/E,,dr = Term /drdr pu(r)In(|r — r'])py (x') , (2.22b)
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and,
Lin =1ib-J°. (2.22¢)

As in (2.18) the matter Lagrangian (2.22a) represents the density fluctuations
of the original boson particles, and describes the quantized sound mode. Equation
(2.22b) describes the vortex excitations in the boson field. Just as in the classical
treatment of superfluid (or superconducting) films, the vortices interact logarithmi-
cally with one another.!” In the presence of an external magnetic field Hy applied
perpendicular to the 2d boson system, p, in Eq. (2.22b) is replaced by p, — Hp.
Therefore, this magnetic field will induce a predominance of positive vortices, with
one extra positive vortex per flux quanta of the applied magnetic field.

The third term in the above Lagrangian couples together the vortices and the
boson density fluctuations. When the vortices move they “see” a fictitious magnetic
field (@ x b) with strength proportional to the boson density. A given vortex, which
feels a force from the other vortices as a gradient of their logarithmic interaction
(in (2.22b)), is thus effectively moving in crossed electric and magnetic fields. It
will thus undergo an E x B drift, perpendicular to both fields. It should be empha-
sized, though, that the vortices are quantum particles which themselves have Bose
statistics. A full quantum treatment involves as usual a sum over all possible vortex
paths weighted by the above Lagrangian. If the explicit forms for the vortex density
(2.10) and current (2.15) operators are inserted into the above Lagrangian, a saddle
point evaluation leads as usual to a classical equation of motion. The explicit form
is

1
qjorrj = z—ﬁix o;U , (2.23)

where U is the potential of interaction between the vortices:
p
U= — zj: gig;jIn(|e; — ;) . (2.24)

As we saw above, the boson’s superfluid or superconducting phase (with zero
applied magnetic field) is essentially just a vortex vacuum — a phase with no
vortices present. More correctly, there will only be virtual fluctuations of vortices,
that is vortex—antivortex pairs which live for only a short time. Because there are
no real vortex excitations (at 7' = 0), low energy properties of the superfluid phase
can be correctly obtained from (2.18) and (2.20), wherein J, has been set to zero.

At finite temperatures, at the Kosterlitz-Thouless transition,!® the vortex anti-
vortex pairs will thermally unbind and the 2d boson system become normal. Is
it possible for the vortex pairs to unbind at zero temperature due to quantum
fluctuations alone? Indeed it is! Once unbound, being at T' = 0, the vortices will
undergo a Bose condensation into a “vortex-superfluid” phase. Since the vortices
“see” a fictitious magnetic field, the “magnetic” flux, @x b, which corresponds to the
original boson’s density, will form an Abrikosov flux lattice. Since each flux quanta
corresponds to one boson, this phase is none other than a boson crystal.!* If the
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original bosons were moving in a random potential, as for example in a disordered
- superconducting film, the “vortex-superfluid” phase would correspond to a localized
boson-insulator!® (a Bose glass).

A comment is in order here about the notion of a vortex inertial mass. First
notice the absence of a vortex mass term, my|J,|?/2, in (2.22b). In general if
the boson system is translationally invariant, as for example in a superfluid *He
fluid, we expect that m, is identically zero. Then the vortices cannot sustain a
magnus force,'® and at T' = 0 must move with a velocity equal to that of the local
superfluid flow!” (i.e. Eq. (2.23)). But if the translational invariance is broken,
either spontaneously as in the formation of a solid phase or by some external periodic
or random potential, we expect that a vortex mass will be generated. Generally,
however, this mass term will not effect the long wavelength physics, since it is less
singular than the term quadratic in J, that is generated upon integration over éb
in (2.22). In the superfluid phase, on scales long compared to the vortices cyclotron
radius, one still expects the guiding center to undergo an E x B drift as in (2.23).

In the rest of the paper we shall apply the above duality transformation to
study problems where statistics transmutation plays an important role. Section 3 is
devoted to the fractional quantum Hall effect (FQHE) and anyon superconductivity
will be examined in Sec. 4. In each of these two sections we will present the technical
and pictorial arguments in parallel.

3. The Fractional Quantum Hall Effect
a) Technical discussion

Our first example where statistics transmutation (ST) plays an essential role is the
FQHE. Although the title of this paper emphasizes anyon superconductivity, we
will discuss mostly the FQHE. This is because the FQHE involves a wide range of
technical and conceptual aspects that are necessary for an understanding of anyon
superconductivity.

In its simplest and best known form, the FQHE can be described as follows.!®
When a high mobility 2d electron gas is placed in a strong magnetic field, Hy, at
low temperature, the Hall conductivity o, develops plateaus at values e?/kh when
v, the filling factor (defined as the total number of electrons divided by the total
number of Dirac flux quanta passing through the sample), is near to 1/k where k is
an odd integer. Moreover, the longitudinal conductivity o,, develops minima near
the same filling factors. The values of o;; at these minima are found to vanish
exponentially with temperature, oy, oc e~ 8/¥sT

An explanation of this effect, due to Laughlin,!® involves the following wave
function describing an incompressible quantum liquid at the filling factor v = 1/k,

2, = %/dzl o den ()6 (21) ... 9 H (2m)]0) (3.1a)




Anyon Superconductivity and Charge-Vorter Duality 2683

where

®:({z)) = [ (2 — z) exp [-(1/4)2 |2s'|2] ; (3.1b)

i>]

Here ¥ is an electron creation operator, z = (z + iy) /€y (€y = \/hc/eHy) is the
dimensionless complex coordinate of the particles. The Laughlin wave functions
have enjoyed tremendous success in explaining the ground state and the low-energy
excited state properties of the quantum-Hall liquid. Rather than repeat these dis-
cussions, we will follow the seminal work of Girvin and MacDonald?® and Read®!
and ask “Is there an order parameter characterizing the Laughlin state?”. The
task of finding an order parameter is to identify an operator whose auto-correlation
function exhibits long-range order. In order to dramatize the effect of finding the
right operator, let us start by considering the equal time single electron correlation
function,

Ty(z — /) = (Telw (2)9() L) - (32)

It turns out that I'y can be computed exactly for Laughlin’s wave functions (3.1)
and the result is 2°

Ty(z—=2') = ﬁexp[—k — 2'|*/4)exp[(22' — 2'2/4] . (3.3)
Notice the gaussian decay of the siﬁgle electron correlations, which is faster than
the usual exponential decays in a localized electronic phase in the absence of mag-
netic field. In any case, as expected from Yang’s theorem,?? long-ranged order is
not present in the single electron correlation function. How about multi-electron
correlation functions? In a BCS superconductor, for example, while the single elec-
tron correlation function decays exponentially, the pair electron correlation function
exhibits long-range order. Can the same thing happen here in the Laughlin state?
Unfortunately, the multi-electron correlation functions can no longer be computed
exactly. Nevertheless, there are numerical results®® as well as physical arguments?*
which suggest that all finite number of electron correlation functions decay as gaus-
sians. An operator that does exhibit (quasi-)long-ranged order, though, was found
by Girvin and MacDonald?® and Read.?! Following Ref. 20 we write it as

621 = exp ik [ dx'0(s — (N9 e) (3.4)

where ©(z — z') is the angle subtended by the z-axis and a vector connecting the
origin and the point z — 2. Notice that ¢t as defined is an infinite-body operator,
as can be seen upon expanding the exponential function. The correlation function
between these ¢-operators.

Ly(z — 2') = (Ux|o™ (2)8(2)[¥i) (3.5)
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can be computed for Laughlin’s wave function and it is found®® that it decays
algebraically with distance:

L(z —2') o |2 — 2| 7F/2 (3.6)

exhibiting quasi-long-ranged order!

The operator ¢ satisfies $%(z) = 0 and [¢(z),¢(z')] = 0 for z # 2’. It is thus
possible to represent the Hilbert space spanned by {[]¢%|0)} as the finite-energy
sub-Hilbert space of hard-core bosons. Despite its complicated appearance the
operator ¢ in (3.4) has a simple physical interpretation. Specifically, the bosons
created by ¢* can be viewed as a composite particle made up of a fermion, created
by ¥*, and k attached vortices. As (3.6) shows, this boson has condensed and
exhibits (quasi-)long-ranged order in Laughlin’s state.

Since the boson in (3.4) is condensed in Laughlin’s state, it can serve as an order
parameter for the FQHE. This suggests an alternative formulation of the FQHE
in which the original electron Hamiltonian is re-expressed in terms of these new
composite boson operators.?® To this end, it is useful to invert the transformation
(3.4) between ¢ and ¢ to give

5 = e |-t [ ax'0(e - 8 (2)6()]| 6% (2) (37)

which expresses each electron as a boson plus k-attached antivortices. Then (3.7)

can be substituted directly into the electron Hamiltonian appropriate for the
FQHE,*

H= %n. / d*x|Dy(x)|*

+ % f d*xd®x' (Y (x) " ¥(x) = AV (x — x') ($(x")* (x’) — p)
(3.8)

where D = 2 — (A) and 8x(A) = H, with Hy being the external magnetic field.

1]
This gives an effective boson Hamiltonian

M= ] d*x|(D + a(x))$(x)|?
3 / d2xd?x' (6 (x)8(x) — DV (x — )G (x)(x) = 5)  (3.9)

where p is the average particle density and

x —:x'

a(x) = kix / d2x'|—¢+(x')¢(x') (3.10)

x —x'|?
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is the so-called “statistical vector potential”.?® In a coherent state path integral
representation, the partition function associated with the boson Hamiltonian (3.9)
can then be expressed as

¢ =/ D6, §1D'[a,Je™ I 4= (3.11)

where
c—'Jaa" LD 24 Lgs_ V(6 —5) — Laod 3.12
=ig| — +ao ¢+%1( + a)¢| +§(¢‘¢“P) (¢¢—P)—Eﬂo xa. (3.12)

In (3.11) D’ denotes that the path integral over the statistical gauge field a, is
restricted to the Coulomb gauge, i.e. @-a = 0. The last term in (3.12) is the so-
called Chern-Simons term and it has the effect of attaching fluxes @ x a to particles.
More specifically, integration over ag gives a functional delta function which sets
d x a = ké¢, thereby attaching k fluxes in @ x a to reach boson particle, turning
them into fermions (cf. Eq. (3.7)). A gauge-invariant formulation is obtained via
the replacement?® _ _

ia:zm:'ix a— %Eg-y X a (3.13)

in Eq. (3.12), and removal of the constraint on the path integrals over a, in (3.11).
In this form the Lagrangian becomes

= ¢(3—° + ao)¢+ (D +a)gf? + 5(86 — AV (36— 7) - a-Txa. (3.14)

Thus we have succeeded in re-expressing the original electron problem in terms
of a boson field theory with Chern-Simons term. Morever, it is this boson which
condenses in the FQHE phase. In Ref. 25, Zhang et al. directly exploited this fact
and used (3.14) as a basis for a Ginzburg-Landau theory of the FQHE. Here we take
a slightly different tack® and study the boson Hamiltonian (3.14) using the duality
transformation of Sec. 2.

Here we outline the main steps in performing the duality transformation in the
presence of the Chern-Simons term. As in Sec. 2 we first separate the modulus and
phase degrees of freedom of the boson field using the decomposition (2.4). Upon
substitution of (2.4) into (3.14) we obtain:

; _30 P _3 4
L=ip|X—x+a—Ap)+—[Xxsx+ta—A
1 2m |7 1

1 o, Lo ar, o A
+2mlfhrJ I+2(P P)\V(p—p) apa Y xa (3.15)

where 4 = (A) + 6 A. Here we have added in a source vector potential 6 A so as to
be able to discuss the electromagnetic response functions. Once again we decouple
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the second term via a Hubbard-Stratonovich transformation to give

- ¥ m g2 1 1/22
L=i]- (X';.-X'Fg—é) +$|J| +§nflapl |
+5(=V(p—5)- fea-Vxa (3.16)
where J = (p,J). The form of the coupling between J and A in the first term shows
that J is the physical electron 3-current. To calculate the partition function one
has to perform a path integral over J, x and ay.

We now follow identically the steps leading from (2.6) to (2.13): Decompose y
into a vortex contribution x,, and a spin wave phase 6, integrate over @ to give a
continuity constraint V-J = 0, and solve this constraint by introducing a new field,
J = V x b. In addition, we now integrate over the statistical gauge field a. In this
way (3.16) is re-expressed as

-_"_m'_'“ 2 _1_ 1/22 1
L:_Q(YXQ)OI(YXQ)J.I +2m|8(gxg)0 | + 517 x b)o

= AVIT X Do =7l +ib- (Lo = ¥ x A) +ieb- ¥ xb (3.17)

where J, = V X Xy Xu Is once again the vortex 3-current. This is our final
dual representation. Once again, as in (2.13), (3.17) describes a system of vortices,
with 3-current J,, which “sees” a gauge field b whose curl is the original electrons
3-current; J = V x b.

How can we describe the FQHE in this dual representation? As discussed above,
in the QHE phase the boson field in (3.14) condenses. This implies an absence of vor-
tices in the boson’s wave function. But in general an applied magnetic field induces
vortices (see (2.22b)). However, at the special fillings v = 1 /k, the physical external
magnetic field, Hy, is on average precisely cancelled by the statistical magnetic field
carried with each boson. This can be made explicit by noting that the linear terms
in bg in (3.17) are multiplied by p, — Ho+k(@x b). Moreover, in the Coulomb gauge,
upon integration over by a term of the form (2.22b) with p, — p, — Hy+ k& x b
is generated which effectively sets {(pv) = Ho — k(@ x b) = Hy — kp. Thus at the
special filling, v = p/Hy = 1/k, the mean number of vortices vanishes. The FQHE
phase is thus a vortex vacuum.

In order to study this phase we define b = b + (b) where @ x (b) = p, and at
the filling factor v = 1/k set (A) = k(b) which gives

m

L= gap (v x bl + gi—nra(y x b)o’*[? + %(Y X 6b)oV (¥ x 8b)o

k
+ 186 (Jy — ¥ X 64) +i58b - ¥ x 8b +i(b) - I, — i6Aop . (3.18)
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Moreover, at long wavelengths, we replace (V x éb)q in the first term in (3.18) by
p and ignore the second term to obtain

) : 1
£ = 52T x 80). [+ (T x 8b)oV(V X 8b)o +ib - (Jy = ¥ x 64)

2%
+ igég 7 % Bb +ilB) - Ty — i . (3.19)

Finally we set the number of vortices, and the vortex current, to zero. The La-
grangian is now reduced to a purely quadratic form which in the absence of source
terms, 64 = 0, is

1 k
L= 52I(Y X 8b)1 P+ (¥ x 60)oV(V X 8b)o +i58b -V x 8b.  (320)

Equation (3.20) can be easily diagonalized to yield a normal mode dispersion

AN
= (2) + Liavia) . (3:21)

When V is short-ranged, Eq. (3.21) gives a normal mode frequency equal to w, =
k-f% at q = 0 and disperses quadratically away from q = 0. Notice that this
frequency is precisely equal to the electron cyclotron frequency, w. = Hp/m. Indeed,
this collective mode corresponds to the inter-Landau level particle-hole excitations,
although it has been mis-identified®?® in the literature as the lowest Landau level
collective mode discovered by Girvin, McDonald and Platzman.?® (For details see
Lee and Zhang.?")

The response of the incompressible quantum-Hall liquid to an external electro-
magnetic field can be obtained by retaining § 4 in (3.19) and integrating out ép with
Jv = 0. This gives an effective gauge field action,?®

__P 2, 1 i
CA-kazl(Yx‘s‘ﬂ)J-l +2k2(Y’<54)0V(Yx54)0 2k6z_1 V x 64

+ %(A) (VY x64)1L (3.22)

which summarizes all electromagnetic response functions. For example, by calcu-
lating 6L£4/6Ao in the limit §4 = 0 we obtain the average density p = }(8z(A)).
Taking the second derivative with respect to 6 Ag gives the finite q compressibility,
which vanishes in the q — 0 limit: K(q,w =0) = F'E,-qu. By differentiating (3.22)
with respect to § A we obtain the induced current. From the components propor-
tional to E = 8p6A —86 A, and z x E follow the longitudinal and Hall conductivities,
respectively. As expected we find o, = 0 and oyy = 1/k in the DC limit.

The correlation function between the ¢ operators in (3.5) can also be calculated
from the effective gauge-field action (3.22). First note that éA enters into the
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original Lagrangian (3.14) in the combination (@0 —6A), where 6 is the phase of the
¢-field. Provided we choose the Coulomb gauge, @-0A = 0, the effective spin-wave
Lagrangian for the f-field describing the FQHE phase, can be obtained by simply
replacing §A by @0 in (3.22). (The Coulomb gauge insures that all cross terms of
the form @ §A vanish.) Upon integration over 64, this gives

__PF 2, M 09
Ly = kazlaagﬂl + 2,6|39| . (3.23)

In Fourier space Eq. (3.23) is diagonal and gives a 6@ correlation function equal to

ol [(wii)zu] |

Using (3.24) it is straightforward to show that the ¢ ~ ¢*® has an equal-time corre-
lation function which indeed decays algebraically,

(g(qsw)e('—(b _w)) = (3.24)

'blla

Pg(z —2') = (¢(2,8)$(2', 1)) |z — T (3.25)

The exponent k/2 agrees with Girvin and McDonald’s result,2° (3.6).

We can study the properties of the static vortex excitations by keeping a finite
density of vortices in (3.19), ie. py(x) # 0, but setting the vortex current, J,,
to zero. The energy associated with such a prescribed vortex density can then be
obtained by integrating over the field §p in (3.19) and equating E[p,] = —(1/8) In
Z. This gives

1
2k?

Elp,] = fdzxdzx'pu(x)V(x —x)py(x') . (3.26)
Notice that the quasiparticles described by (3.26) interact via the Coulomb potential
V(x), but with an effective charge of strength 1/k. This is because each quasiparticle
consists of one vortex and a screening cloud of 1/k electrons.!® The screening cloud
of electrons corresponds to an excess flux of @x b, of strength 1/k. Upon interchange
of two vortices and their screening clouds,® this flux gives a Berry’s phase of 7 /k.
The quasiparticles thus have fractional 1/k-statistics,2%:30

Away from the special filling, v # 1/k, a non-zero density of vortices, {pe) =
Ho — kp, is induced. (This can be inferred from (3.19) upon integration over by in
the Coulomb gauge, say.) Since the vortices see a fictitious magnetic field of average
strength p, they can form a Laughlin liquid themselves.3! The only difference here
is that the vortices are now being treated as (boson) particles. If (pv) = p/2p the
vortices can condense into a boson fractional quantum-Hall liquid with o, = 1/2p.
By analogy to the original electron case, we can view this phase as a Bose condensate
of composite particles, each made up of a vortex and 2p of their vortices. The
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appropriate Lagrangian for this phase can be obtained from (3.19) by attaching 2p
flux tubes to each vortex:

1
L=l x 8)u |+ 5(T x 88)oV(Y x 8b)o+ib- Jo

+igag.gxég—qu-g+ a-Vxa—ib-Vx(6A).

(3.27)

Here dz(6A) = Ho — kp, and g is the new statistical gauge field which attaches 2p
fluxes to each vortex. When (p,) = {;, which corresponds to filling

1
o (3.28)
k+ 2—p

the statistical magnetic field @ x a seen by the vortices cancels on average the field
dz(b) = jp. This enables the vortices to Bose condense, since they now see zero
average magnetic field. In this Bose condensed state the discrete particle nature of
the vortices can be neglected and at long wavelengths J, replaced by

J, =V xb. (3.29)

Here b’ is an unconstrained field. Equation (3.29) still insures that the vortex num-
ber density is conserved. Upon substituting Eq. (3.29) into (3.27) and integrating
out a we obtain the following Lagrangian:

m

L=

1 k
(¥ x 8b) 1| + 5(¥ x 60)aV(¥ x 6b)o +ib - ¥ x b’ +i58b - ¥V x 6b
— 52U x b’ —ib U x (3A) . (3:30)
Moreover, b’ can also be integrated out to give:

£= 21T x )11+ 5(T x 86)oV(Y X 6b)o + 1(k + i)ag .V x8b. (331)
2p 2 2 2p
Notice that this Lagrangian is identical in form to the first hierarchy Lagrangian
(3.20) except that k is replaced by k + (1/2p). The collective mode frequency can
thus be obtained from (3.21) by replacing k by k + 21—?. The frequency at q = 0
can be reexpressed in terms of the magnetic field and one finds it is equal to the
cyclotron frequency, w. = Ho/m, just as it was for the first hierarchy. Once again,
the collective mode represents the inter-Landau level particle-hole excitations. The
effective action for the external electromagnetic field can also be read off directly
from (3.22) with the same replacement, thereby enabling calculation of conductivi-
ties and compressibilities.
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If the filling factor does not satisfy the form given by (3.28), there will be a finite
density of vortices in the vortez wave function. In that case we have to add iJ/ - b’
to the Lagrangian in (3.30). Then following the steps between (3.27) to (3.31) will
give an effective action as in (3.32), but with k + 5 replaced by k + T“:?E' The

filling fraction at which the new vortices condense is given by

1
i et (3.32)
k4 —
+2 1
p+ 2PI

By iterating the above procedure we can generate all filling fractions at which an
incompressible fractional quantum-Hall liquid exists, namely29:3!

1
v= (3.33)
1
k+ 7
2pn
where k = odd integer and py,... ,p, are integers.

b) Heuristic discussion

Now we switch gears and develop a pictorial representation of the FQHE discussed
so far. For simplicity, we focus on the case of » = 1/3, in which the external
magnetic field induces, on average, three vortices per electron. In the FQHE phase,
each electron simply binds with three vortices and converts itself into a boson (see
Fig. 1a). We note that in order to transmute the statistics from Fermi to Bose,
an odd integer number of vortices is required. The ground state is then a Bose
condensate of these bosons which has algebraic long-range order. (The reason for
algebraic instead of true long-ranged order will become clear below.) Consider now
the outcome of a Hall measurement. Figure 1b shows a schematic representation
of the Hall strip. The current flowing down the channel is carried by the electron-
plus-vortex composite particles. Since each of them consists of a unit charge and
three vortices, accompanying the charge current is a vortex current three times as
big. To the particles in the system, uniform vortex current has the same effect as
a moving uniform magnetic field. Therefore it generates a transverse electric field,
which in turn produces a transverse Hall voltage Vi equals to h/e? times the vortex
current. The Hall resistance, obtained by dividing Vi by the charge current, is thus
equal to 3h/e? where the “3” simply reflects the ratio of the vortex number to the
charge number in the electron-vortex opposite.

How about the incompressibility? Based on the physics of 2D superfluids at
T # 0, one would naively associate a linear dispersive sound mode with algebraic off-
diagonal-long-range-order. However, we know that the Hall liquid is incompressible
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at the magic filling factors, at least in the absence of disorder, with a massive normal
mode (3.21). What has gone wrong? The answer is that spatial fluctuations in the
condensate-boson density interact logarithmically (see Fig. 1¢). This is because
when the boson density fluctuates it causes a local excess or deficit in vorticity,
which in turn sets up a circulating current which costs a logarithmically divergent
energy. This generates an effective logarithmic interaction between the composite
bosons. This long range interaction is responsible for both opening up a gap for
long wavelength density fluctuations, (3.21), as well as suppressing the true long
range order of these bosons.®? How about the vortex excitations? If we force in
an extra static vortex, say by increasing the applied magnetic field by one flux
quantum, the composite bosons will screen it by creating a deficit of one vortex in
the vicinity of the extra vortex. Since each condensate boson carries three vortices,
the screening cloud involves a net deficit of 1/3 bosons and hence a deficit of charge
1/3 e (see Fig. 1d). This dressed vortex is the Laughlin quasihole. Since it consists
of a vortex bound to one-third of a charge, as discussed after Eq. (3.26), it has
fractional statistics, i.e. the Berry phase due to adiabatic exchange is 7/3.3°

With an additional concept—duality, the hierarchy?®3! of the FQHE can also
be understood pictorially. Imagine starting with N electrons moving under mag-
netic field at filling factor v # 1/k. Again, the field induces Nv~! vortices. Each
electron binds to k vortices leaving N(v~! — k) unbound ones (see Fig. 2a). Now
we can exploit the concept of duality: If we regard each vortex as a “particle”, then
the composite bosons appear to these “particles” as vortices. This is because the
composite boson carries charge, and when a vortex goes around a unit of charge
it picks up a Berry’s phase of 27. (If we bring one vortex around another, there
1s no Berry’s phase, so that the vortices behave like bosons among themselves.)
Therefore, in the dual picture, we have N(v~! — k) new bosons and N new vor-
tices (see Fig. 2b). A second level of charge-vortex binding can now occur. Since
the new particles are bosons, they can bind with an even number, 2p,, of vor-
tices (Fig. 2¢) and still maintain their Bose nature. If such binding eliminates all
the new vortices, then the new composite bosons can condense. The condition for
thisis 2p;N(v™!' —k) = N,orv = mll.m-the special filling factors corresponding
to the second hierarchy of the FQHE, (3.28). If we iterate the above procedure, a
sequence of filling factors given by Eq. (3.33) is generated, at which an appropriate
composite bosons can bose condense.

4. Anyon Superconductivity
a) Technical discussion

Finally we are in a position to consider anyon superconductivity.®®33 Since the
anyons most likely to have any relevance to the high T, copper oxides are “semions”,
we will concentrate on this case. Semions have the property that when a pair of
them are exchanged, counterclockwise say, they pick up a phase factor of ¢™/2. Since
the ground state properties of both a collection of weakly interacting bosons, which
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Fig. 1. a) Schematic representation of statistics transmutation (ST) in the FQHE at filling v=
1/k with k an odd integer. Here the solid circle represents an electron, and the center-dotted
circle represents a vortex. In the FQHE phase k vortices bind to each electron. b) A schematic
representation of a Hall measurement. The charge current is carried by the bound electron-vortex
composite bosons. Here Vp and Vg are the longitudinal and transverse voltage drops, respectively.
c) Logarithmic repulsion between the composite bosons. d) Screening of an extra vortex by the
composite bosons.

exhibit superfluidity and one-particle off-diagonal long-range order (ODLRO), and
free fermions, which form a Fermi liquid, are well understood, it is extremely nat-
ural to inquire: “What is the ground state of a gas of non-interacting semions?”.
Since, as it turns out, a weak repulsive interaction does not qualitatively affect the
zero temperature state of anyons, we will discuss repulsively interacting semions in
the following. The Hamiltonian describing a collection of semions moving in zero
magnetic field can be obtained from (3.9) and (3.10) by setting (A) — 0 and putting
k = 1/2. Similarly, the Lagrangian in a coherent-state path integral representation
can be obtained from (3.14) with the same replacements. Then following the steps
from (3.15) to (3.19) with (A) — 0 we obtain

1
L= ";I(Y x 6b) 11 + =(¥ % 8b)oV (Y x 8b)o +i8b - (Ju — V x 64)

25 2
= iag .V x 6b +i(b) - J, — i6Agp — %61:05 . (4.1)

Once again, the V x b is the original semion 3-current and J, is the vortex 3-
current. Here 6A is a source electromagnetic field used to generate correlation
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(a)

Ne+Nv'o—~N(e+k©)+N(y'-k)o

(b)
N(e+ko)+N(»'-k)o
‘ DUAL l
Ne + Ny 1-k)e
(c) |
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Ne+N(»'-k)o —N(y'-k)(0+P,©)

Fig. 2. a) Schematic representation ol the first level in the FQHE hierarchical construction. Here
k vortices bind to each electron, converting into a composite bosons. b) The dual representation of
the composite boson-vortex mixture. Here the hatched circle represents an original vortex which
behaves as a Bose particle in the dual picture, and the hatched and center-dotted circle represents
the original composite boson which behaves like a vortex in the dual picture. ¢) Schematic repre-
sentation of the second level in the hierarchical construction. Here p; new vortices bind to each
new boson, with p; an even integer.

functions below. The last term in (4.1) effectively forces in a finite density (= p/2)
of vortices. This can be seen upon integration over bg, in the Coulomb gauge,
which generates a term of the form (2.22b) with p, — p, — p/2. As in Secs. 2 and
3, these vortices see an average magnetic field equalt to p. As a result the effective
filling factor for these vortices is v = % which is a magic filling factor at which
the vortices, being bosons, can themselves condense into a fractional quantum-Hall
state. To implement this we follow (3.27) and introduce a statistical gauge field for

the vortices to obtain:
1 .
L= 52l x 8b)o[* + 5(T x 86)oV(V X 8b)o +i(8b + (b)) - J.
—26b-Ux6b—iJ,-a+=a-V xba— 26bop . (4.2)
4 4 2
Here we have momentarily dropped the source field § A. We now follow precisely

the steps between (3.29) and (3.31), namely, replace J, — V x b’ and integrate
out g and b'. In this way we arrive at the final effective Lagrangian describing the
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anyon condensate.

£ = (T x @)1 [ + 5T x ED)oV(T x 8b)o (43)

It is very important to notice that, in contrast to the FQHE condensate described
by (3.31), the final effective anyon Lagrangian above has no Chern-Simons term. As
a result, the collective excitation is gapless. The explicit dispersion relation follows
by diagonalizing (4.3):

w2 =LlaPV(a) . (4.4)

For short range interactions this gives a linearly dispersing density or sound mode.
If we turn the external electromagnetic source field § A back on, and integrate out 6b
we obtain an effective gauge field Lagrangian which in the Coulomb gauge (3-A = 0)
reads:

7 i |
La=—i6Agp+ 2%“54)”2 + 5840V 640 . (4.5)

Notice that Eq. (4.5) is identical to Eq. (2.20), i.e. it is precisely the Higgs gauge
action of a conventional superconductor. Thus the anyon condensate will have 1den-
tical electromagnetic response functions to a superconductor, exhibiting a Meissner
effect, possessing an infinite d.c. conductivity, o, etc.

In general, if the original anyon model (3.14) had lacked translational symmetry,
for example, being on a lattice or with a small random background potential, a
vortex inertial mass would have been generated, being allowed by symmetry. This
could be introduced phenomenologically into (4.1) by adding a term of the form
(1/2)m,J2%, where m, is the vortex mass. Carrying through the steps leading to
(4.3) in the presence of this term leads to an additional term in (4.3) of the form,

im,V x (V x 8b) - (V x 6b) . (4.6)

This is a Chern-Simons like term but involves (V x 6b) rather than éb itself, and
thus does not generate a mass in the dispersion relation (4.4). It does, however,
modify the effective gauge-field Lagrangian (4.5): Upon integration over 8b in (4.3)
with inclusion of the additional term (4.6) gives,

La=—i6Aop+ L= \(54) 1 + %6A0V‘16A0 +iabA U x6A. (A7)
Notice the additional Chern-Simons term with a a non-universal constant propor-
tional to the square of the vortex mass. From this extra term follows a non-zero
value for the Hall conductivity in the anyon superconducting phase, ozy = a. (To
see this recall that differentiation with respect to A generates the current, and that
the electric field is given by E = §,6 A — 36 Ao as usual.) In Ref. 8 we studied a lat-
tice anyon model, and a non-zero value of o5, was indeed found. Using a Gallilean
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(a)
Ne — N(e+1/2®)+N/20
(b)
N(e+I1/2®)+N/20
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Ne + N/2o
(c)
Ne+N/2e—N/2(e+20)

Fig. 3. a) Schematic representation of the first level in the hierarchical construction for a semion
superconductor. Here the solid circle represents a semion, the center-crossed circle an antivortex
and the dotted open circle a vortex. One-half of an antivortex binds to each anyon converting
it into a composite boson. b) The dual representation of the composite boson-vortex mixture.
Here the hatched circle represents an original vortex which behaves as a Bose particle in the
dual picture, and the hatched and center-dotted circle represents the original semion-antivortex
composite boson which behaves like a vortex in the dual picture. c) Schematic representation of
the second level, in which each new boson binds to two new vortices and Bose condenses.

transformation, Chen et al.33 have argued that for a translationally invariant system
ozy should be identically zero, consistent with the above considerations.

b) Heuristic discussion

Let’s consider the above technical discussion of anyon superconductivity in a picto-
rial representation. Ignoring for now any repulsive interaction between the anyons,
the only energy scale is the kinetic energy, and the system will do whatever possi-
ble to minimize it. The state with the lowest possible kinetic energy is of course
a condensate in which all the particles have zero momentum. Unfortunately, this
state is forbidden by the statistics of the semions. From this point of view, the
statistics of the semions frustrates minimization of the kinetic energy. In order to
circumvent this frustration, the vacuum spontaneously nucleates N/2 vortices and
N/2 antivortices, with N the number of semions. The antivortices bind to the
semions and convert them into composite bosons (see Fig. 3a). In the dual picture
the remaining N/2 free vortices behave like new bosons and the N composite bosons
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behave like new vortices (see Fig. 3b). Since the new vortex to new boson ratio is
exactly 2:1, each new boson simply binds with two new vortices and Bose condenses
(see Fig. 3c). By tracking back the duality transformation, depicted schematically
in Fig. 3, one can easily see that the final boson which condenses consists of two
charges and no original vortices.

Because the condensate boson contains no vortices, their density fluctuations do
not have a long-range interaction. As a result, the density fluctuations, described
by (4.4), are gapless in contrast to the FQHE. Moreover, since they possess no vor-
ticity, the composite bosons cannot screen the interaction between vortices which
are induced, say, by an external magnetic field. Thus, in contrast to the FQHE
case, these vortices will interact via a bare logarithmic interaction. This fact is par-
ticularly important since it implies that thermally created vortex anti-vortex pairs
can remain bound at low but non-zero temperatures. Anyon superconductivity will
thus survive up to some Kosterlitz-Thouless transition temperature,®>* at which
point the positive and negative vortices unbind. This should be contrasted to the
FQHE effect which is a zero temperature phenomena: At any finite temperature the
quantum Hall system will no longer exhibit long-ranged order, oz, will no longer
be zero and the Hall conductivity will not be perfectly quantized.

It is possibled to generalize the hierarchical construction of the FQHE, which
lead to the condition (3.33), to anyons with “statistics parameter” o, not equal to
1/2 (as for semions). Specifically we can show that Bose condensation and anyon
superconductivity is possible for any a, which can be expressed as

oy = : (4.8)

1
2p1 +

1
g 4 o o —
P2 2n
where all the p’s are integers. If we define a, = P/Q for the above fractions, in
general Q anyons will bind and condense forming a superconductor.

5. On the Possible Relevance to Copper Oxides

How might semions be formed in the copper oxide planes of the high T supercon-
ductors? Here we outline one possible scenario.®® The doped copper oxide planes
consist of positively charged holes (i.e. empty sites) moving in a sea of short-range
antiferromagnetically ordered spins.?® As the hole hops around, the spins are trans-
ported. For example, if a hole hops around a closed loop, the final state of the spins
along the loop differs from its initial state (see Fig. 4). The quantum amplitude for
the hopping of the hole is proportional to the overlap between the initial and final
spin states, which can be shown to be proportional to e¥/? where Q is the solid
angle subtended by the three unit vectors S;, Sz and S3.37 Therefore /2 simu-
lates the loop integral of a fictitious gauge field. The idea is that due to quantum
frustration in the spin degrees of freedom, there might be a condensation of these
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Fig. 4. The spin arrangements before (a) and after (b) a hole (open circle) hops counterclockwise
around the square plaquette.

fictitious fluxes. Morever, it is argued that a half flux quantum of this fictitious
gauge field will bind to a hole and transform it into a semion.

Is there any experimental evidence for semions in the high-T, superconductors?
Below we very briefly summarize the current status of the experimental searches
for semion superconductivity in the copper oxides.

The first experiment is flux quantization. A semion superconductor, like or-
dinary superconductors, will exhibit charge 2e flux quantization. However, since
time reversal symmetry must be broken just to have semions present in the first
place, the value of the quantized flux can in general differ from he/2e. However, the
relevant theoretical issues here are not currently settled. The subtlety lies in the
question “what is the appropriate boundary condition for anyons on a torus?”.3%:3°
In any case, the experimental results show no apparent shift*® from hc/2e.

Since in real materials the translational symmetry is always broken, both by the
crystal and by imperfections, an anyon superconductor will be described by (4.7)
and have a nonzero Hall conductivity o4y in its superconducting phase. Hence, if one
introduces a positively charged particle like a muon into an anyon superconductor,
the electric field from the muon will induce a current which circles around the muon,
out to the charge screening length. This current will generate a magnetic field which
in turn will influence the precession of the muon spin. The influence of such internal
fields on muon spin precession have not been observed in the copper oxides.*!

Another effect expected in an anyon superconductor is photon polarization ro-
tation. Provided both time reversal and parity (T-P) symmetries are indeed broken
in the copper oxides, one expects*’ that photons propagating normal to the a-b
plane will undergo rotation of their polarization axis at sufficiently low frequencies.
The experimental result on this effect are currently controversial.*3

The final effect is tunneling. If one makes a large area tunnel junction be-
tween a T-P violating superconductor and an ordinary superconductor, one might
expect the absence of persistent current because the symmetries of the two super-
conductors are different. Here again the theoretical issues are not entirely settled.
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Experimentally persistent current are observed between high T, and conventional

superconductors.
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