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The Hall effect for disordered superconducting films in magnetic field is discussed, with special 
focus on the vicinity of the magnetic field-tuned superconductor-insulator transition. Evidence is 
presented that upon ensemble averaging this transition possesses a "hidden" particle/hole sym- 
metry. This symmetry implies that right at the transition the Hall resistance vanishes. Relevance to 
recent experiments is discussed briefly. 

Hall effect studies in electronic systems had a renaissance in the 1980's with the 

discovery of  the integer and fractional quantum Hall effects [ 1 ]. One of  the most 

appealing theoretical descriptions of  the quantum Hall effect involves a binding of  

two-dimensional vortices to the electrons, which effectively converts them into bo- 

sons [2,3]. Bose condensation then leads naturally to quantization and dissipation- 

less flow [4,5 ], etc. In light of  this, it is perhaps surprising that our understanding of  

the Hall effect in superconductors, one o f  the most extensively studied bosonic sys- 

tems, is still quite rudimentary (for early theoretical work, see ref. [6] ). This has 

become particularly apparent in the high temperature superconductors, which exhibit 

a mysterious sign reversal in the flux-flow Hall resistance [ 7 ]. 

Of  all superconducting systems, thin disordered films in which the vortices are 

pointlike exhibit phenomena which are perhaps most closely related to the quantum 
Hall effect [ 8]. Indeed, in an applied perpendicular magnetic field, such thin films 

exhibit a field-tuned superconductor-insulator  transition [ 9 ] which is intimately re- 

lated to the transition between plateaus in the integer quantum Hall effect [ 8 ]. Right 

at this transition the films appear to exhibit metallic conduction, a finite resistance 

even in the T ~ 0  limit. The value o f  the resistance, predicted to be universal [8 ], is 

found [9] to be clustered near 5 kfL The value of  the Hall resistivity in this metallic 

state was also predicted to be universal [ 8 ], and the natural expectation was for a 
value comparable to the longitudinal resistance. Recent experiments [ 10 ], though, 
indicate a remarkably small Hall effect, with a Hall resistivity in the 10 f~ range, roughly 

a factor o f  1000 smaller than the longitudinal resistance. Also, at this preliminary 
stage there appears to be a sample dependence and lack of  universality to the Hall 

resistance. 
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This paper  addresses the Hall effect in thin disordered superconducting films. Within 

a class of  models  which focus exclusively on the bosonic degrees of  f reedom, the mag- 

net ic-f ield-tuned superconduc to r - insu la to r  t ransi t ion is argued to possess a hidden 

"pa r t i c l e /ho le"  symmetry,  This symmet ry  implies a vanishing of  the fict i t ious mag- 

netic field "seen"  by the 2D vortices. Since this ficti t ious field is responsible for the 

Hall effect in superconduct ing films, its absence right at the t ransi t ion implies  a van- 

ishing Hall resistance. Away from the t ransi t ion a Hall effect should be present in 

general. 

It is with greatest pleasure that 1 dedicate this article to my father, Michael E. Fisher, 

on the occasion o f  his 60th bir thday.  I feel this dedica t ion  is part icular ly appropr ia te  

since the conclusions in this work rely heavily on universali ty,  a concept that Michael 

has taught us all so much about.  On this special occasion I would like to wish Michael 

many more happy and product ive  years. 

Cons ider  first the forces on a vortex in a 2D superfluid. A vortex at rest in the 

presence of  a t ranspor t  current  densi ty  J=p~t'~, with Ps and vs the superfluid areal num- 

ber densi ty and velocity respectively,  experiences a Magnus force which is at right 

angles to the flow [ l 1 ]: FM= -qvhJ×~.  Here h is Planck 's  constant ,  qv = _+ 1 is the 

vortex "charge"  and ~ is a unit  vector  or thogonal  to the 2D system. When allowed to 

move in a t ransla t ional ly  invar iant  superfluid such as 4He, the vortex will not accel- 

erate in the direct ion of  the Magnus force as would a Newtonian  part icle [ 12 ], but  

rather will move downs t ream with the flow [ 13 ], at least at low tempera tures  where 

diss ipat ion from the normal  fluid can be ignored. The reason for this can be a t t r ibuted 

to a fictitious or pseudo magnetic field, b, that a 2D vortex feels when it moves [ 5,8 ] ~ 

The mot ion  of  the vortex downst ream can then be unders tood as an e × b  drift, result- 

ing from the fict i t ious magnet ic  field crossed with the Magnus force, which can be 

viewed as a pseudo electric field, e. Indeed,  as we show below, in a t ranslat ional ly  

invariant  fluid the fict i t ious field b has precisely the "r ight"  strength to result in an 

e x b  drift  with velocity equal to the flow velocity r'~. Later  we will argue that b might 

in fact be zero at the supe rconduc to r - insu la to r  t ransi t ion in d isordered  films, due to 

a hidden par t ic le /ho le  symmetry.  

The presence o f  the fict i t ious magnet ic  field b can most readily be inferred from the 

effective Euclidean act ion for a system of  non-relat ivis t ic  bosons [ 14b ] : 

f ( , ) S =  d z d 2 x  ~'* c3~'+ ~m [ V~,I 2 - / t  I ~' I u[~,l 4 (1)  

with ~u the boson field. To this end decompose  the field ~ in terms of  the density and 

phase: ~u=x/p exp( iO) .  Insert ion into the first term above reveals that  it is pure ima- 

ginary and can be writ ten 

~ A vortex line in a 3D superfluid sees a 3D analog of the fictitious magnetic field. See e.g. rel\ [ 14]. 
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S ~ : i  I dr d2xp O~q~:i2rc f d2xm(x)p(x) ,  (2) 

where re(x) is an integer winding number field which counts the number of times 

that the phase ~ winds by 27t in moving from time 0 to fib. The second equality above 
only follows strictly when it is legitimate to ignore the time dependence of the density. 

Now imagine the motion of a single vortex through the superfluid at T=  0. Consider 
specifically a vortex trajectory consisting of a single closed loop which is much larger 

than the vortex core radius. A little thought reveals that for this trajectory the winding 
number function re(x)  will be plus one for points x inside the loop and zero for those 
outside, except possibly for points lying within a core radius from the trajectory. For 

a vortex of the opposite circulation (or charge qv) the winding number inside the loop 
will be minus one. Thus, precisely as for a charged particle moving in a perpendicular 
magnetic field, a 2D vortex picks up a complex factor exp(i2rtpA~oop) upon enclosing 
a loop with area A~oop. Notice that the phase factor is equal to 27t times the number of 

bosons encircled, so that the vortices see each boson effectively carrying one unit of 
fictitious magnetic flux. This feature plays a central role in recent charge-to-vortex 

duality transformations, in which the boson density is replaced by the curl of a ficti- 
tious fluctuating gauge field which is seen by the vortices [ 5,8,15 ]. 

Thus when a vortex moves through a superfluid, say with velocity Vv, it experiences 

a pseudo-Lorentz force, FL, from the fictitious magnetic field, with FL = qvhpvv ×:~. In 
a translationally invariant superfluid at T = 0  in which p~=p, this force precisely can- 
cels the Magnus force provided the vortex moves with the flow: Vv = v~. Put another 
way, the vortex e×b drift velocity in the presence of the Magnus force and the ficti- 
tious field b precisely equals the superflow velocity. 

Vortex motion induces 2re slips in the phase of the boson order parameter and a 
resultant perpendicular chemical potential drop, given by V/t = hi × Jv, where Jv is the 
2D vortex number current density. For a translationally invariant 2D superconduct- 

ing film in magnetic field B, the vortex density is eB/h with e the Cooper pair charge, 
so that J r =  (eB/h)vv. When all of the vortices move with the flow velocity, vs, this 
implies a Hall resistance given by Rxy = B/pe. 

As soon as the bosons are placed in an external potential, be it periodic or random, 
the above simplicity vanishes. No longer will a vortex move with the flow. Indeed, in 
superconductors, vortices typically move parallel to the Magnus force with only a 
small component downstream [ 7 ]. To see why this happens it is instructive to model 

the Cooper pairs in a superconductor as lattice bosons, rather than bosons moving in 
the continuum. To be concrete consider bosons hopping on a square lattice with a 
Hamiltonian H=H~ +112 where 

Hi = -- ~ [~j e x p ( i A  a) v / , t v j+h . c . ]  , (3a) 
(d) 



556 M.P.A. Fisher / Hall effect in superconductor~ 

H2 = Z u(n,+ V , -a )  2. (3b) 

Here ~', is a boson destruction operator, the boson number  operator is n i=  ~,,~ ~',, ~; is 

a random on-site potential and r~ sets the average density. An applied (physical) mag- 

netic field has been included in the hopping term. 

The partition function associated with this Hamiltonian can be expressed as an 

imaginary time path integral much as in ( 1 ), except with a discrete spatial lattice 

[ 16]. The complex piece of  the action can still be expressed as in (2) but with a sum 

replacing the integral: S~=i2n~im~n,. Now notice that something very special hap- 

pens when the boson density is chosen to be one boson per site. In this case, putting 

n, = ~ = 1, we see that exp ( - S ~ )  = 1, so that the vortices no longer see a fictitious mag- 

netic field. More precisely, when a vortex moves through the lattice and encloses a 

loop it sees (on average) an integer number  of  fictitious flux quanta, one for each site 

enclosed. Since each contributes a factor of  2n it is as if the vortices are moving in 

zero fictitious field. In this case there is no reason why the vortices should move in 

any direction other than parallel with the Magnus force. The Hall resistance should 

thus vanish. For bosons with an average density of  just less than one per site, the 

vortices will experience a small fictitious field o f  the "wrong" sign and will tend to 

move against the flow, changing the sign of  the Hall effect. 

Below we consider a model, closely related to (3)  above, which has an exact "par- 

t icle/hole" symmetry for integer boson densities per site. This symmetry enables us 

to show that the Hall resistance is identically zero. The model is a rotor model, pop- 

ular in the context o f  Josephson junction arrays [ 17 ]. The hopping term in (3a) is 

replaced by 

H. = -  Z t,j c o s (0 , -0 s -A~s )  , (4) 
< iJ~ 

where 0~ is the phase of  the boson field and t,j = ~Y,j. The full Hamiltonian is a sum of 

tt~ in (4) above and H2 in (3b),  with the number  operator n, in (3b) taken to be 

conjugate to the phase: [O,, nj] = iOis. In this rotor model the eigenvalues of  n, are all 
integers, including negative ones. Such negative integers will be costly in energy and 

should not affect the low energy physics. 
For the special case of  integer r~ in (3b),  the rotor model has an exact particle/hole 

symmetry. In this case, ~ can be absorbed by the shift n~n,+h.  Then with ~ - - 0 ,  
both the rotor Hamiltonian and the phase number  commutat ion relations are invar- 

iant under the particle-hole transformation, 

n--, - n ,  ~'~ - 0 ,  ~ - B .  (5) 

Under  this transformation the current operator, Jij= t~j sin (O~-0j -A, j ) ,  changes sign. 

Since the Hall conductivity, a,~(B),  can be expressed via a Kubo formula as a product 
of  two current operators, the invariance in (5) implies ~,,(B)= ok~,(-B). But since 
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axy is odd in field B we conclude that the Hall conductivity (and hence resistivity) 
vanishes. 

Although randomness in the hopping strength t a in (4) respects this particle/hole 
symmetry, a random potential Vi in (3b) in general does not. But suppose the distri- 

bution function P(V) for the random potential, which is assumed independent from 
site to site, is symmetric: P(V) = P (  - V). In this case, although a given member of 
the ensemble will locally violate the symmetry (5), upon spatial averaging or equiv- 
alently ensemble averaging the symmetry will be restored. In the thermodynamic limit, 
the Hall resistance should thus still vanish. 

A priori there appears to be no reason to expect that a real dirty superconducting 

film will have such a special particle/hole symmetry (even in the average sense). 
However, we will show below that in 1D and zero magnetic field, provided V~ ~ 0, the 
superconductor-insulator transition described by the rotor model is in the generic 

disordered boson universality class [ 16,18 ] even for a symmetric distribution of P(V).  
Thus, at least in this 1D case, terms which break particle/hole symmetry in more 

realistic disordered boson Hamiltonians are apparently irrelevant in the critical re- 
gime of the T = 0  phase transition. This ID result suggests that the 2D field-tuned 
superconductor-insulator transition might also satisfy an ensemble-averaged parti- 
cle/hole symmetry. If  this is true, the Hall resistance right at the transition should 
vanish identically. 

Consider then a 1D rotor model, (3b) and (4) with Aa=0. To be concrete we as- 
sume that the random potential Vi is independent from site to site with a symmetric 

on-site distribution, and that the hopping ta= t+ ~t a, with a random piece ~t a much 
smaller than the average t. The superconductor-insulator transition described by this 
model can be studied by expressing the partition function as a path integral and then 
performing a duality transformation [ 5,16,18 ]. Under duality the density nr-* 0~+ ~ - 0i, 

where 0~ is a real continuous field. The appropriate action takes the form 

1___ cos(2n0i))  (6) S= I dr ~ (½u(O,÷,-O, + V~)2 + ~,,~_l (aTO~)2-,~ 

If  0 is viewed as the height of a crystal interface, the boson (and boson-hole) world 
lines correspond to steps on the interface. The last term in (6) leads to discrete steps 
or equivalently discrete boson particles. 

It is convenient at this stage to perform the change of variables 0 ~  - Wi with 
HI,.= Ej_--I Vj, which shifts the random potential into the cosine term. Also, since the 
hopping strengths are assumed weakly random we can expand 1/ta= 1 It+ 8ta/t 2. In 
this way the action can be separated into two pieces, S=SI +$2 with St independent 
of  the randomness. After replacing the ID lattice by a continuum we have 

1 ) S~= ~ u(Oxff)2+ t (0~ff)2 ' (7a) 
X,T 



5 5 8 M.P.A. Fisher / Hall effect in superconductors 

S2= f { S l ( x ) ( ¢ , ) ~ ) 2  ~cos(2~ff_ i4~v) ) (7b) 
I k [ 2  

~v, r 

Here 6t(x)  can be taken as white noise with mean zero, and W,. has mean zero and 
[W~W,, ]~ , s~A]x -x ' [  where A is the variance of the on-site random potential I.). 
This latter result follows even for symmetric distributions, P(V) = P( - V). 

The action S~ in (7a) describes the sound mode of the superconducting phase, which 

has velocity xfUt. As u and t are varied this term describes a fixed line o fa  renormal- 
ization group transformation which integrates out fast modes and rescales space and 
time isotropically [ 16,18 ]. The superconductor-insulator transition can be studied 
by studying the relevance of $2 on this fixed line. To this end it is convenient to rep- 

licate the system and perform an ensemble average over the disorder fields, 6t(x) and 
W~. Working perturbatively in 2 the second term in (7b) generates, after an appro- 
priate gradient expansion, a term of the form 

6 S ~ -  ~- ~, cos{2~[0,(x, z) - 0~(x, ~' ) ] }, (8) 

where a and fl are replica indices running from 1 to m, with the m-~0 limit under- 
stood as usual. This term has precisely the form obtained by Giamarchi and Schulz 
[ 16,18 ] in their original analysis and becomes a relevant perturbation to the fixed 

line for x/ut> 1/3~. The point x /u t=  1/3~ corresponds to the generic disordered bo- 
son superconductor-insulator transition. The first term in (7b) generates a term of 

the form 

8S~ J" [¢3¢O,~(x,~)c3¢,t~B(x,~")] 2 , (9) 

which is irrelevant (by power counting) at this transition. 
Thus in 1D the rotor model describes a T = 0  transition which is in the generic 

disordered boson universality class [ 16,18 ], even when the random potential distri- 
bution is symmetric so that upon ensemble averaging the model satisfies the symme- 
try ( 5 ). It is worth emphasizing that this result required the presence of the random 
on-site potential, which locally breaks the symmetry ( 5 ). Indeed were we to put V= 0 
in the action (6), it would describe a transition in a different universality class, namely 
that of a classical 2D xy model or a 1D Mott insulator to superconductor transition 
[ 16]. This follows since the term (9) generated from averaging the random piece of 
the second term in (6) is irrelevant at the pure system's 2D xy transition. Thus, as 
has been emphasized previously [ 16 ], a model with random hopping alone, which 
respects the particle/hole symmetry ( 5 ) for each member of  the ensemble and locally, 
is not in the generic disordered boson universality class. 

It seems most plausible that a similar ensemble-averaged particle/hole symmetry 
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will also be present  at the 2D superconduc to r - insu la to r  t ransi t ion.  I f  this is the case, 

the Hall  resistance right at the f ield-tuned t ransi t ion in 2D should vanish. Since the 

symmetry  will be manifest  only right at the t ransi t ion,  away from the t ransi t ion a Hall  

effect will in general be expected. Although pre l iminary  measurements  [ 10 ] at the 

f ield-tuned t ransi t ion indicate  a Hall  resist ivity much smaller  than the longitudinal  

resistivity, a strictly zero value appears  to be ruled out. Can this be reconciled with 

the above symmetry  argument? It is conceivable that  a non-zero Hall resistance could 

be due to the finite sample dimensions,  which might  be insufficient to adequately 

average over  different  regions with locally part icle-l ike or hole-like Hall  resistances. 

In this case, though, one would expect the measured Hall  resistance to have a different  

sign from sample to sample,  depending on whether  the sample was predomina te ly  

hole-like or  particle-like. It is possible that  the measured Hall  resistance is due to 

residual  electrons at the cores o f  the vortices [6 ], which have been neglected in the 

above theoret ical  considerat ions,  which were based on the "boson-only"  Hamil toni -  

a n s (  3 ) or (4) .  In ref. [ 19 ] it was argued that  in the critical regime of  the supercon- 

duc to r - insu la to r  t ransi t ion it should be val id  to ignore unpai red  electrons. This ar- 

gument,  while compel l ing in zero field, might  perhaps be inval id  at the f ield-tuned 

transi t ion,  due to electrons at the cores of  the f ie ld- induced vortices. Finally,  it is 

possible that  for some unant ic ipa ted  reason the par t ic le /ho le  symmetry  at the 1D 

transi t ion breaks down in 2D. Fur ther  Hall  effect measurements  at the f ield-tuned 

t ransi t ion should help clarify the current  si tuation. 
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