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We discuss the Hall effect in the mixed state of type-II superconductors with an emphasis on the re-
gime near the vortex-glass transition. This transition is argued to have a “hidden” particle-hole symme-
try, and a new exponent is introduced to characterize the irrelevance of the particle-hole asymmetry.
This leads to a natural explanation of the scaling of the Hall and longitudinal resistivities observed in
YBa;Cu3O7. At the transition, the nonlinear Hall voltage is predicted to vary with a universal power of
the current, and the linear ac Hall conductivity with a universal power of the frequency.

PACS numbers: 74.40.+k, 74.70.Mq

Since the discovery of the high-temperature supercon-
ductors there has been tremendous interest in the proper-
ties of the mixed state of these fascinating materials. It
was already clear from early experiments [1] that, in con-
trast to conventional superconductors [2], magnetic field-
induced vortices are mobile over a substantial range of
temperatures and fields. In this vortex-liquid regime the
mobile vortices cause resistive losses and destroy super-
conductivity. A central question which has emerged is
whether or not this vortex liquid freezes into a frozen su-
perconducting vortex-glass phase upon cooling [3]. There
is now mounting experimental evidence in films [4,5],
crystals [6], and ceramics [7], from both nonlinear and
frequency-dependent [5] transport measurements, of a
phase transition into a superconducting phase. Detailed
scaling predictions [3,8] for transport properties close to a
putative vortex-glass transition have been verified experi-
mentally. Numerical simulations [9] give supporting
theoretical evidence for the existence of the vortex-glass
phase.

Recent attention has focused on the Hall effect in the
vortex-liquid regime of the oxide superconductors which
has been found to exhibit a number of surprising features.
Specifically, the Hall effect appears to undergo a sign
change upon cooling into the vortex-liquid regime from
the normal state [10]. Moreover, upon further cooling,
Luo et al. [11] have observed a striking power-law depen-
dence between the Hall and the longitudinal resistivities
in YBa,Cu30; (YBCO) films. They find p,, < pg, with
a=1.7.

In this paper we study theoretically the Hall effect near
the putative vortex-glass transition, where the Hall volt-
age should exhibit universal scaling behavior. Insight is
gained by analysis of the zero-field superconducting tran-
sition. Explicit renormalization-group calculations show
that terms in the equations of motion which break par-
ticle-hole symmetry are irrelevant at this transition.
More specifically, the effective particle-hole asymmetry
approaches zero with a universal power of the correlation
length. We hypothesize that the same scenario holds at

the vortex-glass transition, except with a different value
for the exponent. From this hypothesis follows a number
of explicit and testable predictions for the Hall effect near
the vortex-glass transition: (1) The Hall resistivity is ex-
pected to vanish as a universal power of the longitudinal
resistivity, consistent with Luo et al. [11]. (2) The non-
linear Hall electric field E, should exhibit universal scal-
ing, and right at the transition should vanish with a
universal power of the current J,. (3) At the transition
the linear ac Hall conductivity should vary with a univer-
sal power of frequency. In each of the three cases above,
the universal exponent depends on a known way on the
dynamical exponent z (which can be measured indepen-
dently from the I-V curves) and the new exponent which
describes the irrelevance of particle-hole asymmetry.
Thus, even in the absence of a calculation for this new ex-
ponent, measuring one of the above three exponents leads
to a quantitative prediction for the other two. Unfor-
tunately our scaling analysis cannot predict the sign of
the Hall effect in the vortex flow regime. Indeed, the sign
of the irrelevant operator which breaks particle-hole sym-
metry and leads to a Hall effect is nonuniversal and can
in general be material specific. For this reason, we be-
lieve an understanding of the sign change in the Hall
effect in the oxide superconductors might only be possible
once a microscopic pairing theory is in hand.

To describe the static properties of the mixed state we
adopt the usual Ginzburg-Landau description with Ham-
iltonian

7{=fddx

v—2£Aa

h 14

2
h? 2. b 4
n_ + +2
> al‘l’l 2|W|

+L|v><A—H|2], (1)
8r

where v is the pair wave function (or order parameter),
B=VXxA is the induction field, and H is an applied mag-
netic field. Random pinning can be included in the
coefficient of the quadratic term, via a— a+a,(x), with
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a;(x) an appropriate quenched random potential. In a
neutral superfluid, such as 4He, the critical dynamics is
appropriately described by model-F dynamics, in which
the order parameter y is coupled to a conserved density
[12]. Such a coupling is necessary in order to capture the
hydrodynamic (second or fourth) sound mode. In a su-
perconductor this sound mode is pushed to the plasma
frequency due to the Coulomb interaction and need not
be included in the low-frequency dynamics. We thus as-
sume purely relaxational dynamics (model 4) for y [13]:

' +iv)d,wx,t) = —6H/6y* (x,t)+(x,1), )
where the noise has Gaussian white-noise correlations
(C* O, 1)¢(x',t")) =2k TT ~'6%(x,x")6(t — 1) . 3)

The appropriate equation of motion for the vector poten-
tial is 0,0,A=—38%/6A+n, where o, is a “normal-
state” conductivity and n is a current noise satisfying

(NaGe,t)np(x’,t')) =2kpT6,8,p89(x —x")6(t —1') .

An essential feature of (2) is the imaginary part of
the damping coefficient v, on the left-hand side. In the
absence of this term the equations exhibit a “particle-
hole”” symmetry which can be used to show that the Hall
conductivity is identically zero. Specifically, with v =0,
the equations of motion are invariant under the transfor-
mation y— y*, H— —H, and B— —B. Under this
transformation the current Jo<Imy*Vy—(eA/h)|y|?
changes sign; when combined with a Kubo formula for
the conductivity, in which the current enters quadratical-
ly, it follows that oy, (H)=o0,,(—H). On the other
hand, microscopic time-reversal invariance requires the
conductivity to satisfy an Onsager relation oy, (H)
=o0,x(—H). If we further assume that the sample is in-
variant under rotations (by 90°) around the z axis with
H =H3Z, or for the random case is at least statistically so,
then we have oy, (H) = — o, (H). Upon combining these
three conditions we deduce, o, (H)=—o0,,(H), ie., a
zero Hall conductivity.

When the damping in (2) is complex (v=0) the Hall
effect will in general be nonzero. Indeed, for small v we
expect oy, v, so that the sign of v determines the sign of
the Hall effect. This can be seen in the low-field limit
(H < H,>), where a description in terms of single vortices
is appropriate. It is possible to derive from (2) a single-
vortex equation of motion which takes the form [14]

_ m He

AT 4rk?
with x the Ginzburg-Landau parameter, J the transport
current, V, the vortex line velocity, and @, and a; con-
stants which depend on the structure of the vortex. This,
combined with V, =ExZ/B, gives the longitudinal and
Hall conductivity with o,, v from the second term on
the right-hand side of (4).

What determines the sign of v? Some insight comes

[a|(iva)+azL‘VL] , 4)

from BCS theory. In the dirty limit it is possible to
derive a Ginzburg-Landau-type equation of motion, as in
(2), starting from a microscopic BCS theory. A small
imaginary part to the damping is found which is propor-
tional to an energy derivative of the electron density of
states at the Fermi surface [15], 9z N(Er). Thus v is
sensitive to the microscopic particle-hole asymmetry of
the electrons in the normal state. In this particular model
the Hall effect in the mixed state will have the same sign
as in the normal state. In general, though, this can be
complicated by more subtle band-structure effects. An
understanding of the sign change in the Hall effect of the
oxide superconductors will probably require a detailed
microscopic pairing theory which incorporates particle-
hole asymmetries in both the normal and mixed states.
Although the sign of the Hall effect will depend on
band-structure effects, we argue below that the tempera-
ture dependence should nevertheless exhibit some striking
universal features near the vortex-glass transition.

The origin of this universality becomes clear upon
analyzing the zero-field superconducting transition as de-
scribed by the Ginzburg-Landau theory above. For sim-
plicity consider the extreme type-II limit, ignoring all
fluctuations in the gauge field (model-A4 dynamics). The
dynamics with v =0 has been studied extensively [12] us-
ing an €=4 —d expansion, with d the spatial dimension.
How does an imaginary part of the damping modify this
critical behavior? In a mean-field description, valid for
d > 4, v will be unrenormalized and will be nonzero (and
nonuniversal) at the transition. Below d =4 it is possible
to study the role of v in an ¢ expansion. The renor-
malization-group (RG) flows for v can in fact be taken
directly from de Dominicis and Peliti [16], who studied
complex damping in model F. One deduces [16] that v is
an irrelevant perturbation at the transition, flowing to
Zero as

9v/0l=—r.0+00?), )

with an eigenvalue A, = % In(% )2+ 0(£2).

This flow equation implies that right at the zero-field
transition the long length- and time-scale physics is de-
scribed by a particle-hole symmetric theory (v=0).
Right at the transition the dynamics of the system devel-
ops a symmetry which is not present in the underlying
equations of motion. The phase transition exhibits a
higher (dynamical) symmetry than either of the two
phases. A similar result was found at the (7 =0)
superconductor-insulator transition, where a 1D calcula-
tion demonstrated that the transition is particle-hole sym-
metric [17]. Based on these results, we hypothesize that
the vortex-glass transition in the mixed state likewise
possesses a particle-hole symmetry. Moreover, we as-
sume that the asymmetry v has an associated positive ei-
genvalue A, just as in (5), with a value which is deter-
mined by the RG flows near the vortex-glass transition.
As we show below, these assumptions are entirely con-
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sistent with the recent data by Luo et al. [11). In princi-
ple, the irrelevancy of particle-hole asymmetry at the
vortex-glass transition could be checked via a systematic
£=6—d expansion [18] about the mean-field theory [19].
However, to find a nonvanishing contribution might re-
quire an O(g?) calculation, as in the zero-field case (5),
which would be extremely formidable. Below we explore
the consequences of the above assumptions.

Scaling expressions for the conductivities near the
vortex-glass transition can be obtained from the fact that
only a single divergent length scale is expected, a vortex-
glass correlation length, which diverges with an exponent
v, E~|T —Tg| ~*. This length is a measure of the dis-
tance over which the phase of the superconducting wave
function y is correlated. There is also a diverging time
scale, varying as &°, with z the dynamical exponent.
Near the vortex-glass transition, the I-V curves, both
nonlinear and frequency dependent, should scale with the
appropriate powers of the critical length and time scales
[3,8]. Here we generalize this scaling approach to in-
clude the Hall effect.

Consider first the dc linear conductivity. Near T, the
longitudinal conductivity diverges [3,19] as o_Yx—»é:fz—d.
For the Hall conductivity we expect the same dependence
except that the asymmetry parameter v must enter:

Oxy == E7Y27IT (0T (6)

Here Z,,(X) is a scaling function whose argument
X=v§—l", which is a measure of the effective particle-
hole asymmetry, scales to zero with an exponent A, as the
transition is approached. Now, we have argued that
when v =0 the Hall conductivity vanishes, and that the
sign is determined by the sign of v. Thus it is natural to
expect that Z,.(X) is linear for small argument, which
implies oy, ~v¢ “Ms... (Recall that a linearity in v fol-
lowed from the single-vortex equation motion in the low-
field limit.) The Hall angle thus scales to zero upon ap-
proaching the vortex-glass transition. The Hall resistivity
in turn drops to zero more rapidly than the longitudinal
resistance:

=i,
Pxy v Pxx ~p.gx ) (7

with a =1+1,/(z+2—d). The latter expression predicts
a Hall resistivity which vanishes as a universal power of
the resistance upon approaching the vortex-glass transi-
tion. This form is particularly convenient experimentally
since the glass transition temperature, which is normally
taken as a fitting parameter, is not needed. In measure-
ments on YBaCuO films, Luo e al. [11] found such a
power-law behavior with a=1.7. With a value of z==5
[4-7], this gives A, =3 for the asymmetry exponent. In
an alternate scenario, in which v scales to a constant at a
new fixed point, one expects a constant and (probably)
universal Hall angle with a=1 in (7). This appears to be
inconsistent with Luo ef al.’s data.

The arguments above have assumed the existence of a
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vortex-glass transition. However, a vortex-glass transi-
tion is not expected in a strictly two-dimensional (2D)
system [20] (except at T=0). Therefore Bi-Sr-Ca-Cu-O
(BSCCO), which approximates a 2D system due to its
large anisotropy [3], should behave in a manner markedly
different from YBCO. At high temperatures in the 2D
regime [3], one expects that BSCCO will have an activat-
ed Hall resistivity, as seen by Artemenko, Gorlova, and
Latyshev [21]. Upon cooling vortex-glass correlations
will grow, eventually coupling the planes and leading to a
fully 3D vortex-glass transition [3]. Measurements of the
longitudinal resistivity in BSCCO using a SQUID pico-
voltmeter [22] appear to support this scenario; it would
be interesting to have companion results on the Hall
effect. One expects the same (universal) value for the ex-
ponent A, in BSCCO as in YBCO.

Consider next the nonlinear Hall voltage. Imagine ap-
plying a current along the x direction, with current densi-
ty J, and measuring the Hall voltage, or electric field E,,
with J, =0. From (7) and the fact that the current den-
sity should be scaled by [3] £97!, we expect that near T,
E, should satisfy a scaling form:

FTMIGE 1 (90 47T (8)

Ev‘.zvédﬁ:*
Here E +(X) is a scaling function above (+) or below
(—) the transition and ¢o=Ah/2e. For small arguments
E +(X) should approach a constant, corresponding to
an Ohmic Hall effect in the vortex-liquid phase, but
should vanish, probably exponentially, in the vortex-glass
phase: E -(X)~exp(—X ~"¥). The behavior of
E + (X) at large argument follows from the requirement

of a finite electric field E, even as & diverges: E + (X)
G+2—d+2)/d—1) .

~X for X— oo. This implies a power-
law Hall -V curve right at the vortex-glass transition:
B (T =T,)~ &1, ©)

Note that the power in (9) is larger than the correspond-
ing power for E,, which is [3]1 (z+1)/(d—1). A mea-
surement of z from the longitudinal I-V curves and the
particle-hole asymmetry exponent A. from the linear
resistivities, Eq. (7), then leads to a direct prediction for
the Hall voltage power law in (9).

Finally, we discuss the frequency-dependent Hall resis-
tivity. Since the frequency should be scaled by the criti-
cal time scale [3] &7, the following scaling form is expect-
ed to be valid for low frequencies near T,:
z+2—d—Ai, (10)
The scaling function above the transition, ¥4 (X), should
approach a constant at small arguments, being Ohmic in
the dc limit, and in the critical regime must vary for large
argument as X FF27dHE g order to give a finite limit
as & diverges for w=0. This implies a universal power
law at the transition,

oy (T,0) =& T 4 (wE) .

(d+r,—z—2)/=

oy (Tg,0)~(—iw) an
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Note that causality requires the real and imaginary parts
to be related as shown [8]. A critical power law at T, has
recently been observed in the frequency-dependent longi-
tudinal conductivity [5S]. Measuring a frequency-depen-
dent Hall resistance should prove even more challenging.

To summarize, we have developed a scaling theory for
the Hall conductivity near the vortex-glass transition in
type-11 superconductors. One consequence is that the
Hall and longitudinal resistivities should scale with a
universal power, in agreement with the recent results of
Luo ef al. [11]. We also predict that the nonlinear Hall
field should scale with a universal power of the current at
the vortex-glass transition, and that the linear ac Hall
conductivity should scale with a universal power of the
frequency. The observed sign change of the Hall effect
[10] was argued to be a nonuniversal feature which will
likely require detailed microscopic calculations for its
resolution.
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