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We introduce and analyze a class of nonlinear Langevin equations that describe electrical transport in
systems with electric-field thresholds, such as charge-density-wave systems biased just above threshold.
For sufficiently large nonlinearities, the models are argued to exhibit scale-invariant phases wherein spa-
tial and temporal correlations decay algebraically; in particular, current and voltage fluctuations show
1/f © noise with universal exponents a. The values of physical parameters required for the experimental

observation of these phases are estimated.
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Fluctuations with a 1/f* power spectrum are a ubiqui-
tous feature of electrical transport and many other none-
quilibrium phenomena [1,2]. The power-law form and
apparent universality of such fluctuations—a==1 in many
situations— is reminiscent of critical phenomena. It has
nevertheless been argued [2] that, at least in condensed-
matter systems, 1/f noise is not a consequence of collec-
tive behavior or spatial coherence that extends over long
distances. Rather, it is usually ascribed to system-
specific, short-distance physics, such as carrier trapping.

In recent years, however, it has been recognized that a
class of stochastic, nonlinear, nonequilibrium systems ex-
hibit nontrivial, universal 1/ % fluctuations as a conse-
quence of either a conservation law or special symmetry
that generates slowly (algebraically)} decaying spatial and
temporal correlations under generic conditions [3].
Prominent in this class are nonlinear growing interfaces
[4], whose velocity noise spectrum has been explicitly
shown [5] to behave like 1/f® with universal a. A second
class of nonequilibrium systems, characterized by driving
rates negligibly small compared to relaxation rates, have
likewise been argued to display power-law spatial and
temporal correlations, and hence 1/f * noise, without the
tuning of external parameters, a behavior termed *self-
organized criticality” [6].

Motivated by these recent theoretical developments, we
ask whether there are circumstances in nonequilibrium
electrical transport in which 1/f® fluctuations do arise
from a universal source of long-length-scale fluctuations,
and, if so, with what consequences. To attempt to answer
this question, we introduce and study a new class of non-
linear Langevin equations appropriate for electrical trans-
port in systems with electric-field thresholds, such as
reverse-biased diodes, or charge-density-wave (CDW)
systems biased just above threshold.

Our main result is the existence of a nontrivial, strong-
coupling, scale-invariant phase in 2D systems, and in 3D
systems with sufficiently strong nonlinearities. The scale
invariance follows from gauge invariance (i.e., from the
photon being massless), and results in current and voltage
fluctuations that show 1/ % noise with universal ex-
ponents in these phases. We estimate the values of physi-
cal parameters required for the experimental observation
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of 1/f ¢ noise from this mechanism.

In order to study fluctuations in the presence of a none-
quilibrium transport current, consider a cylindrical sam-
ple with a current running parallel to its axis. A uniform
current generates an azimuthal magnetic field which in-
creases linearly with the radiai distance from the axis,
thereby destroying translational invariance and greatly
complicating the analysis. In order to study nonequilibri-
um electrical transport in systems that are very nearly
translationally invariant, we consider insulators with an
electric-field threshold for conduction. Examples include
CDW [7] systems, which allow very little current to pass
below a threshold electric field E7, or p-n junction diodes
with reversed bias voltage, which admit negligible current
flow below a breakdown voltage [8]. When biased just
above threshold such systems, while clearly out of equilib-
rium, have a very small average transport current, so that
inhomogeneities in the average background magnetic field
are negligibly small. Time-dependent fluctuations of the
magnetic field, which are present even in equilibrium,
need not be small, however. The analysis below focuses
exclusively on these fluctuations.

Traditionally, nonequilibrium transport is modeled by
a Boltzmann equation that describes scattering in an elec-
tron gas. This approach typically ignores Coulomb in-
teractions, effectively treating the electrons as neutral
particles. In contrast, our approach focuses on the elec-
tromagnetic fluctuations, starting with Maxwell’s equa-
tions for the electromagnetic fields in the presence of the
electron charge (p) and electrical current (J) densities.
These are supplemented by an empirical equation relating
J to the electric and magnetic fields. For simplicity we
consider first a very simple model system with a current
which is zero below a threshold electric field Er and is
linear above it: J=0(E —Er). In a gauge with zero
scalar potential, both E and J can be expressed in terms
of the vector potential, 3, A= —E, and from Ampere’s
law, ugJ=VxVXxA. In the latter we have dropped
Maxwell’s displacement current, dE/d¢, since it involves
two time derivatives of A and hence is unimportant for
the low-frequency fluctuations of interest to us. Within
this model, the dynamical equation for A, when the sys-
tem is biased just above threshold with an electric field in
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the x direction, is
dA=—Erx—vwWx(VxA)+q, (1

where v=1/ouo; for the moment we ignore any anisotro-
py of the conductivity. Here we have added a fluctuating
white-noise term 5, which is appropriate on length and
time scales long compared to the correlation length and
time of the transition at £ =F7. The electron charge
density follows from (1) via p= —gV-9,A. Since Eq.
(1) is linear, current and voltage noise spectra are easily
shown to approach finite constants in the low-frequency
limit [1].

In general, however, additional nonlinear terms should
be added to (1). For example, the threshold field Er
must depend, even if weakly, on the magnetic field. This
will produce on the right-hand side of (1) a term of the
form AB2, where A~(8%E7/dB2})p=¢. Following the
Langevin or fluctuating hydrodynamic approach often
used to treat coarse-grained nonequilibrium systems [9],
we consider all possible nonlinear terms allowed by the
symmetries of the problem, and then restrict our atten-
tion to those which dominate at long lengths and times.
As usual, this procedure can be systematized within a
dynamical renormalization-group (RG) analysis [10].

The most restrictive symmetry is gauge invariance,
which, by ensuring that the equations are unchanged by
the transformation A— A+c for any constant c, is re-
sponsible for the scale invariance of the system. Even in
the gauge with zero scalar potential, there is an addition-
al gauge freedom, namely, invariance under A— A
+VA(r), for any time-independent function A(r). We
also assume the system is invariant under rotations about
the x axis, the direction of the external electric field. Fi-
nally, combining parity and charge conjugation (change
in sign of charge) shows that the equations must be in-
variant under r— —r, even with the external field. Re-
taining only the most relevant terms which satisfy these
symmetries yields

0 Ax = — vEap0,Bp+ 11 BZ+ 1B+ 1, (2a)
6rAa=5aﬁ(VlaxBﬂ— V2aﬁBx)+A-SBxBa+77a s (2b)

with a,=y,z and B=VxA. The external white noise
satisfies

(m(r,t)n;(r',t'))=5iij53(r—r')5(t—t') (3)

with Dy =D and D,=D . If the system were in thermal
equilibrium one would have D; =2kgT/o, from detailed
balance. Note that the symmetry allows (in fact,
demands) three different v values in Eq. (2), correspond-
ing, e.g., to anisotropic conductivity in our simple model.
Note too, however, that in deriving Eq. (2) purely from
symmetry one no longer needs to assume that J is linear
in E for E> Er: Any arbitrary constitutive relation J
=J(E,B) above threshold will result in the same equa-
tions.

The linear equations obtained by setting the three non-

linear couplings {A;} to zero describe a fixed point of a
simple RG transformation. Specifically, the equations in
d space dimensions are invariant upon integration over
modes with wave vectors in a shell between k/b and &,
and all frequencies, and then a rescaling of all lengths by
b, time by b2 and the field 4 by 5?~972 Under this
transformation, the {A;} are multiplied by 6 =42, which
implies that the nonlinearities are a marginal perturba-
tion in 2D, and, to leading order, irrelevant in 3D. We
now show, however, that for d=2 they are marginally
relevant, indicating the existence of a strong-coupling
phase in 2D, and the probable existence of such a phase
for sufficiently large values of the A} in 3D.

Consider first the 2D situation, such as arises in a
reverse-biased diode. Since essentially all of the voltage
drop occurs across the thin depletion layer separating the
two bulk electrodes, it seems reasonable to model the two
electrodes as perfect metals, with zero internal electric
fields [11]. In this case, one need only retain the x com-
ponent of the vector potential, with 9,4, giving the elec-
tric field across the junction. Moreover, the spatial argu-
ments of 4, can be restricted to the two coordinates, y
and z, in the plane of the junction. Equations (2) then
reduce simply to

ale =V63Ax+}"l(6an)2+nx s (4)

which is precisely the Kardar-Parisi-Zhang (KPZ) equa-
tion [4] for a growing interface, with A4, playing the role
of the interfacial ““height.” In terms of the dimensionless
coupling constant g =A%D/v3, the RG flow equations to
leading order are as found by KPZ: 8g/8! =g2/4r. Thus
g grows under renormalization, and the system is driven
into a strong-coupling phase.

Before discussing the noise spectra of this phase, we
outline a perturbative RG analysis of the fully 3D equa-
tions (2). Although the nonlinear terms are irrelevant to
leading order, a distinct strong-coupling phase is possible
for larger values of A;. To see this, it is convenient to
eliminate A, from the linear terms on the right-hand side
of (2b) by the change of variable: 4,=9,f+a,, where
fk,0) =vikyAx(k,w)/(vik?—iw). The perpendicular
components of the magnetic field then become

Ba=s.,ﬂ(6,;¢—axaﬂ) s (5)

whereas By =¢,30,a5. Here we have introduced a new
scalar field ¢, defined by

3, —v18)o(r,1) =0,A:(r,1) . (6)
In terms of ¢ and a, the full equations (2) become
8,0 =v1820+v32¢ — vd,d.a,
+A1BE + 1B+ (7a)
0,0, =Vv102a, — £45v205Bx +13B Byt 1), . (7b)

To establish the existence of a strong-coupling phase,
consider first the limit @, =0. Physically this corresponds
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to having B, =0, with magnetic field confined to lie per-
pendicular to the applied electric field. Formally it can
be achieved by setting A3 and the transverse noise
strength D, to zero, which allows (7b) to be solved by
a,=0. In this limit the third and fifth terms on the
right-hand side of Eq. (7a) can be dropped, reducing this
equation to an anisotropic 3D KPZ-like equation for the
scalar field ¢, the nonlinear term having only two com-
ponents: A;(9,0)%. A dynamical RG analysis, perturba-
tive in Ay, can then be carried out [10,12]. One integrates
over a shell in k, from 1/b to 1, and all k, and ®. Re-
scaling as ry =bry, x=b%", t=>b%t', and ¢=b%', and
choosing the exponents a, z, and ¢ to keep v, v;, and D
fixed, one computes the RG flows of the remaining cou-
pling constant, ;. In terms of the dimensionless coupiing
g=W1/v)'2DA}/v3, the resulting flow equation, analyti-
cally continued to e=d — 2 parallel and two perpendicu-
lar dimensions, is

8g/0l =2 —d)g+Cyg?+0(g?), (8)

where the coefficient Cy is positive for all d =2. For
d =2+ ¢ and ¢ small, there is an unstable critical point at
g.=¢&/C, which separates weak- and strong-coupling
phases. Assuming that this same flow structure persists
up to d =3, one concludes that a strong-coupling phase
occurs for all sufficiently large g in 3D as well [12,13].

Does this strong-coupling phase survive in the full
equations (7), which include the fluctuations of the trans-
verse field a,? At the critical point found above all four
couplings, v, vi, D, and A, are, of course, fixed: Treating
the other four coupling constants (D, v, Ay, and A3) in
(7), we show below that this critical fixed point is locally
stable. This demonstrates that Egs. (7) have (in d =2
+¢) a perturbatively accessible critical fixed point with
only one unstable direction [namely, g in (8)]. This criti-
cal point separates flows towards weak and strong cou-
pling, providing powerful evidence for the existence of a
strong-coupling phase in d =3 for the full equations.

It is straightforward to evaluate the dimensions of the
four remaining coupling constants at the fixed point de-
scribed by (8). We find that D is irrelevant with dimen-
sion —5g./64r, A3 is dimensionless, and v, and A, are ap-
parently relevant with positive dimensions, g./327. How-
ever, whenever A, or A3 enter diagramatically they con-
tribute only in the combination D AA;/vo. This com-
bination of couplings has a negative dimension, and so
scales to zero at the fixed point. Thus in fact the contri-
bution of A, and v, vanishes. The full equations thus
have an (unstable) critical point with g=g., D, =1/v»
=1/A,=0, and A; finite and nonuniversal.

Having argued that strong electric fields drive certain
insulators into a strong-coupling phase where nonlineari-
ties are important, we now examine some of the scaling
properties of that phase. Consider first the 3D model.
The fundamental correlation function is G(r,t)={¢(r,t)
x $(0,0))., where ¢ is defined in (6). The rescaling dis-
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cussed before Eq. (8) implies the following RG equation
for G:

Gri,x,1)=b%G(r /b,x/b%1/b%) . 9)

Voltage correlations of experimental interest can then be
extracted from (9), since (6) relates the electric field to ¢:
E.=—0¢/8t+v,820. To be specific, consider the volt-
age drop across the sample in the x direction, averaged
over y and z (where we assume the electrodes are as wide
as the sample): V() =[f¢*dydzf¢*dx Ex(1))/L}. The
associated noise, Sy (¢) ={(V(¢)V(0)), has three contribu-
tions, each of which can be related to G. For example,
one contribution takes the form

Sy(t)~(Lx/Li)fdydzd(x1 —x2)0%,02,
XG(y,z,xl —Xx1).

Using (9) and assuming the spatial integrals all converge
at large distance yields a RG equation of the form
Sy(t)=b2732%25,(1/b%), or equivalently, a power-law
time dependence: Sy (1) ~(L,/L3)¢¥¢73a+2¥0/z  yith
0=0. The other two contributions are also power laws,
except with 6=2a—z and 2(2a—z), respectively.
Clearly the sign of 2a —z determines which contribution
dominates at long times. Finally, Fourier transformation
yields a voltage noise spectrum, Sy (w)~(L,/L3})w ™",
where k=14 (Q¢—3a+2+6)/z, valid down to a low-
frequency cutoff, w; ~L [ ?, set by the width of the sam-
ple (which is assumed smaller than its length L,). This
result is valid when the exponent x is less than unity. For
k> 1, the spatial integrals no longer converge, and one
obtains the result Sy(w)~L, L3273+, =% yith
k'=1—(2¢—3a+6)/z. Spatial dependences of voltage
fluctuations can be obtained by similar applications of
(9).

Current fluctuations can be extracted from the relation
J~VxVxA and Eq. (6). The most relevant experimen-
tal quantity is the noise spectrum of fluctuations of the
total current in the x direction, i.e., the Fourier transform
of the correlation function S;(t)=(I,(¢)1,(0)), where
I, =fd?*,J.(t), and J, = — 924, +9,0,4,. Gauge in-
variance guarantees that the scaling of the two terms of
this last expression is identical, so one need only consider
the first of them. Using Egs. (6) and (9) one again ob-
tains three separate contributions of the form S;(r)
~131272=0/z  ywhere once again 6=0, 2a—z, or
2(2a—1z). These yield a power spectrum dominated by
the most singular contribution of the three: S;(w)
2= 0):

The above results depend on the unknown exponents ¢,
z, and a characterizing the strong-coupling fixed point.
Recall that fluctuations in B, were unimportant at the
(unstable) 3D critical point analyzed above (i.e., the non-
linear terms with coupling constants X, and A3 were ir-
relevant). It seems physically reasonable that this might
also be true in the strong-coupling phase. If so, then one
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can argue that neither A; nor v, renormalizes, from which
follow the relations {+z =2 and z =2a. In this case the
current and voltage noise spectra respectively behave like
Si(@)~w %% and Sy (0)~w ~*, where k=6/z —5/2
if z>12/7, and k=9/2—4/z if z < 12/7. If, for purposes
of illustration, one uses the numerical estimate [14]
z~1.67 for the isotropic 3D KPZ fixed point, one obtains
Si(w)~w %0 and Sy (w) ~w ~%!. This should be com-
pared with the results for the linear theory, Eq. (1), for
which z =2, ¢{=(2—d)/2, and a=1, so that both S; and
Sy approach constants in the low-frequency limit.

Similar scaling arguments can also be carried out in
the case of a 2D reverse-biased junction, described by Eq.
(4). For example, from the expression J, = —92A, for
the current density through the junction, one readily
derives the noise spectrum for the total current: S;(w)
~L2%"' "7~ 7% Similarly, we find the power spec-
trum of fluctuations in the voltage averaged over the L2
area of the junction: Sy(w)~L 2w 83— 075
Here we have used the exponent identity {+z =2 for the
2D KPZ equation (4), and the numerical estimate [14]
for the exponent z of 1.6.

It remains to argue under what conditions these various
consequences of nonlinearity will be experimentally ac-
cessible. In 3D (e.g., in charge-density-wave materials),
it is apparent from the flow equation (8) that one must
find systems with sufficiently large values of the dimen-
sionless coupling g to belong in the domain of attraction
of the strong-coupling fixed point. From the simple mod-
el discussed above, where the source of the nonlinearity is
the magnetic field dependence of the threshold electric
field for depinning, one can write

g~2AkgTuio?(92E1/dB3)?, (10)

where A ™! is a characteristic microscopic length (5 A,

say), and o is the differential conductivity at the bias
electric field above threshold. The requirement g2 | can
be cast in terms of the effective magnetic field B.g needed
to produce appreciable changes in the threshold electric
field Er through the definition Er/B¥%=0%Er/0B>
Numbers typical for CDW systems, 7~ 100 K, Er~100
V/m, and 6~350/(Q m), imply that Beg must be rather
small— of order 0.1 G—in order for g=1. Although this
does not seem particularly optimistic, there is consider-
able room for increasing g by choosing materials with
larger values of o and/or E7.

Though in the 2D case the weak-coupling fixed point at
g =0 is unstable to flows toward strong coupling for arbi-
trarily small g, g must still be of order unity for the non-
linear effects to be manifest on observable length and
time scales. The marginal instability of the weak-
coupling fixed point in 2D implies that for small g non-

linear effects first manifest themselves on exponentially
long length scales: A~ 'e'2. Similarly, the frequency
below which the 1/f® noise predicted above is manifest
decreases like e ~22, so g~1 is still imperative. Never-
theless, this requirement might be more easily obtained in
2D p-n junctions than in 3D CDW systems, due to the
extremely large threshold fields in typical p-n junctions,
Er~10°-107 V/m. With Er~10" V/m, a conductivity
of only 100/(Q m) yields Beg’s as high as 100 G.

Finally we note that as the electric field is increased
further above threshold, all the above results eventually
break down due to magnetic field inhomogeneities from
the (now) non-negligible average current J,. Specifi-
cally, inhomogeneities become important when poJxL 1
Z B.s, where L, is the sample dimension transverse to
the applied current. For this reason, care should be taken
to bias the system just above threshold.
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