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We introduce and analyze a class of model systems to study transitions in the integer quantum Hall
effect (IQHE). Even without disorder our model exhibits an IQHE transition as a control parameter is
varied. We find that the transition is in the two-dimensional Ising universality class and compute all as-
sociated exponents and critical transport properties. The fixed point has time-reversal, particle-hole, and
parity invariance. We then consider the effect of quenched disorder on the IQHE transition and find the
following. (i) Randomness in the control parameter (which breaks all the above symmetries) translates
into bond randomness in the Ising model and is hence marginally irrelevant. The transition may equally
well be viewed as a quantum percolation of edge states localized on equipotentials. The absence of
random-phase factors for the edge states is responsible for the nongeneric (Ising) critical properties. (ii)
For a random magnetic field (which preserves particle-hole symmetry in every realization) the model ex-
hibits an exactly solvable fixed line, described in terms of a product of a Luttinger liquid and an SU(n)
spin chain. While exponents vary continuously along the fixed line, the longitudinal conductivity is con-
stant due to a general conformal sum rule for Kac-Moody algebras (derived here), and is computed ex-
actly. We also obtain a closed expression for the extended zero-energy wave function for every realiza-
tion of disorder and compute its exact multifractal spectrum f(a) and the exponents of all participation
ratios. One point on the fixed line corresponds to a recently proposed model by Gade and Wegner. (iii)
The model in the presence of a random on-site potential scales to a strong disorder regime, which is ar-
gued to be described by a symplectic nonlinear-sigma-model fixed point. (iv) We find a plausible global
phase diagram in which all forms of disorder are simultaneously considered. In this generic case, the
presence of random-phase factors in the edge-state description indicates that the transition is described
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by a Chalker-Coddington model, with a so far analytically inaccessible fixed point.

I. INTRODUCTION

The discovery of the quantum Hall effect was one of
the most surprising and startling events in condensed-
matter physics.! While a theoretical framework for un-
derstanding the remarkable quantization in both the in-
teger and fractional cases was obtained shortly after the
discovery, there remained some unresolved issues con-
cerning the important role of quenched disorder.?
Indeed, it was initially unclear how to avoid localization
in such a 2d disordered system. In 1983 Levine, Libby,
and Pruisken® argued that it was necessary to include an
important topological term in the usual nonlinear-sigma-
model description of 2d localization, and that this term
was responsible for delocalization in the middle of a Lan-
dau band. Despite the extreme appeal of this approach,
it was not possible to carry-out an explicit calculation of
the critical properties associated with this delocalization
transition. Indeed, to this day a calculable theory for the
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transition in the integer quantum Hall effect has
remained elusive.

The difficulty in describing the integer quantum Hall
transition is due in large part to the fact that the phases
on both sides of the transition are localized insulators.
Such localized phases are notoriously difficult to model
theoretically, making it nearly impossible to approach the
transition by expanding around the neighboring phases.
This should be contrasted with the Anderson metal-
insulator transition, where an expansion about the metal-
lic phase for dimensions just above two can be used to ac-
cess the localization transition.

An alternate approach to the integer quantum Hall
transition, which we adopt here, involves first construct-
ing a model which exhibits such a transition in the ab-
sence of any quenched disorder. Then upon including
disorder, one can try to expand about the critical point in
the pure system, rather than expanding about one of the
nearby phases. To this end we introduce and analyze a
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lattice model of spinless fermions which exhibits an in-
teger Hall transition as a control parameter is varied even
in the absence of disorder. We show that the critical
properties of this pure Hall transition are described by a
single massless Dirac fermion. This enables us to extract
detailed critical properties, including the critical conduc-
tivities.

We then include and analyze various types of disorder.
The disorder is characterized by the symmetries of the
pure fixed point which they break. We find a rich array
of fixed points and lines in the presence of disorder. Crit-
ical exponents and transport properties are obtained ex-
actly for a number of the cases. Unfortunately, we have
not been able so far to access the generic fixed point
which describes the integer Hall transition when all types
of randomness are simultaneously present.

Our starting point is a system of spinless nonrelativistic
fermions on a square lattice with nearest-neighbor and di-
agonal hopping amplitudes, and with half a unit of mag-
netic flux per square plaquette. As shown in Sec. II, the
low-energy physics of the pure system is given by a pair
of Dirac fermions. The masses of these fermions are un-
equal, and split by a staggered chemical potential which
serves as the control parameter used to tune through the
integer Hall transition.* As the latter is varied, one of the
fermion masses changes sign at a critical point, and there
is a jump of e?/h in the Hall conductance. The correla-
tion length exponent at this pure Hall transition is v=1,
as might be expected given the equivalence between a
massless Dirac fermion in (24 1) dimensions and the crit-
ical point of a classical two-dimensional (2D) Ising mod-
el. In Sec. IIT we study transport properties near the
pure Hall transition, and find that the longitudinal con-
ductivity is universal at the transition, given by
o, =(m/8)e?/h). However, the density of states van-
ishes at the transition. The fixed-point Hamiltonian is
shown to be invariant under parity, time reversal, and
particle-hole transformations.

We then add to the pure system various forms of
quenched disorder, and discuss their symmetry properties
in Sec. IV. In Sec. V we study the model in detail in the
presence of a random Dirac mass M (x,y) which breaks
all the above-mentioned symmetries. For a smoothly
varying M we show that the eigenstates are confined to
constant M contours with the Dirac spin parallel to the
contours. Upon encircling a closed loop, the spin picks
up a phase of 27 and hence a minus sign. This is
equivalent to a spinless particle experiencing half a flux
quantum as it goes around the contour. As the control
parameter, the constant part of M, is varied, these isolat-
ed contours will percolate. We use renormalization
group RG methods to see how this happens and find, not
surprisingly, that the system flows to the pure Ising fixed
point. This result is to be expected since we show that
the theory describing averaged properties in our model
with random M can be mapped into the classical 2D ran-
dom bond Ising model. The control parameter M in our
model corresponds to the temperature variable in the Is-
ing model. Randomness in the latter is known® to be ir-
relevant (in the RG sense) with calculable logarithmic
corrections. While our analysis is valid for small M, oth-
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er evidence suggests that any quantum effects on the clas-
sical percolation fixed point drive us away from classical
percolation’ to the Ising point.> We also propose a possi-
ble way of accessing experimentally the transition with
random Dirac mass.

Next, in Sec. VI, we study the effect of a random vector
potential A. The corresponding random magnetic field B
has a Gaussian distribution with variance

B(X)B(kK)=(2m)28%k+k')A 4k? (1)

(k is the 2D momentum). Note that B(k=0) has no
variance, i.e., the total flux in each realization is fixed at
zero. We derive the zero-energy wave function for every
realization and study in detail its multifractal scaling
characteristics’ ~!? as well as the scaling of all participa-
tion ratios. We work out the exact multifractal f(a)
spectrum, which in this case is precisely a parabola (its
curvature and maximum depending on A ,) reflecting
log-normal character. We then turn to properties that do
not simply follow from the zero-energy wave function.
We show that the averaged properties are described by a
fixed line, parametrized by A ,. The density of states,
which vanished linearly in the nonrandom case as we ap-
proached zero energy, now vanishes as a power, that de-
creases as A, increases; when A , =, the density of
states is constant, and starts diverging for larger values of
A 4. We show that the longitudinal conductivity, defined
as a product of the diffusion constant and density of
states (see, e.g., Ref. 13), is constant along the fixed line.
This result is established by means of a nonperturbative
result of conformal field theory, similar in spirit to
Zamolodchikov’s ¢ theorem,'* using an underlying SU(2)
symmetry between fields with positive and negative fre-
quencies. Averaged properties on the fixed line are de-
scribed by a tensor product of a Luttinger liquid and a
critical SU(n) [or SU(2n)] spin chain. The replica limit
n—0 does not introduce unphysical results here, due to
gluing conditions between charge and spin excitations.

In Sec. VII we show that a random scalar potential is a
relevant perturbation at the pure system’s critical point,
and we suggest, based on universality, that the flows take
one into the 2D symplectic localization fixed point.!>

In Sec. VIII we consider the general situation where all
types of randomness are simultaneously present. We find
that the presence of a random Dirac mass term destabi-
lizes the fixed line of the random vector potential model.
Physically, the edge states which move on closed con-
tours of constant Dirac mass (discussed above) will now
acquire random-phase factors, as in the Chalker-
Coddington model. We thus expect that in this case the
RG flows will terminate at the generic Hall fixed point
with v=1 (Refs. 16—18). We propose a global phase dia-
gram, when all three types of impurities are present
simultaneously.

In Sec. IX we discuss the relationship between our
work and other recent analytic and numerical studies of
the integer quantum Hall transition.
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II. HALL TRANSITION IN A PURE SYSTEM

In this section we will consider a pure system which
exhibits a quantum Hall transition as a control parameter
is varied. The low-energy physics of this system is de-
scribed by the free Dirac equation. This allows us to
characterize the system in detail: calculate its density of
states, the conductivities 0 5ys0 xx» €tC. Subsequently we
will couple the system to disordering interactions of vari-
ous symmetries. Let us begin with the derivation of the
Dirac equation.

A. Derivation of the Dirac equation

Consider a system of noninteracting spinless fermions
on a 2d square lattice with the following situation (Fig.
1).

(i) There is an external magnetic field with one half of a
magnetic flux quanta per square plaquette.

(ii) There is a nearest-neighbor hopping, with ampli-
tude t =1.

(iii) There is a second-neighbor (diagonal) hopping with
amplitude ¢’ /4.

(iv) There is a staggered potential u(—1)
and y are the integer coordinates on the lattice.

In Fig. 1 we see the lattice divided into repeating unit
cells marked off by squares, each enclosing four sites
numbered 1-4. The vector potential due to the external
magnetic field produces a phase factor of —1 as we go
around a square plaquette. By a gauge choice we have
arranged to have all the phase factor come from the bond
connecting sites 3 and 4 in each cell. The phase factor
for diagonal hopping is i along the arrows, and —i if we
go against them. The solid circles mark the sublattice

**Y where x

2
H = [ Syl — ol — o]

LUDWIG, FISHER, SHANKAR, AND GRINSTEIN 50

FIG. 1. A schematic representation of the spinless fermion
model. The fermions hop on a square lattice with a nearest-
neighbor hopping amplitude ¢ =1, except where a — 1 is shown.
The diagonal (next-nearest neighbor) hopping amplitude is ¢’ in
magnitude; the phase being +i (—i) if along (against) the ar-
rows shown. There is a staggered chemical potential of size u,
which is positive on the sites with a dark circle and negative on
the others.

where the alternating staggered potential is positive.

The Hamiltonian can be expressed as a sum over sites
and bonds in the usual way, with each site and bond
covered once. We reexpress the Hamiltonian in terms of
four fermion fields v, . . .44, which live on the four sites
of each unit cell. In a Fourier representation the Hamil-
tonian then takes the form

(W — 0l + Ol Ui+ Wlte T Hulse T —plyie ™+ olve " +H.C.]

it’ ik —ik ik, —ik, —i
+ Ol ol Tl e e e T e

We may write this all down in matrix form as

_ [ 4% gt
H—fm‘ll (OH (k)¥(K) ,

R glge ™ +lee +H.c.] . @)

(3)

where V¥ is the four-component field, s its adjoint, and H (k) is the matrix

p (14e ™)
(1+eik") —u
o= —%1(1—e"‘y)<1~e”‘*) (14¢™)
(1+e™) Ea—e"u—e")

%(1—e‘”‘y)(1~e‘”‘*) (1+e ™)
(1+e ™) —%(1—~e_iky)(l—eik")
I —(1+eik")
—(14e %) —u
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If we consider this matrix at p=t'=0, it is readily seen
that it vanishes at k=(m,m). Near this point lies the
low-energy sector on which we focus. To this end let us
introduce a lattice spacing a and write

k=(m,7)+ap, 4)
t'=aT’, (5)
u=am , (6)

and expand H (k) to first order in a, and divide both sides
by a to obtain the following continuum Hamiltonian:

H

H, = o o))
m ip, iT’ ip,
—ip, —m ip, —iT’
S|l —ip, m  ip, ®
—ip, iT" —ip, —m
mo,—pyo, iT'oc,tio,p,
- —iT'o,—iowp, mo,—p,0, ©

=mo,81 —p, 0,8l —T'0,®7,—p,0,7,, (10)

where o and 7 are two copies of the standard Pauli ma-
trices. We remark that in the absence of diagonal hop-
ping t’, the original lattice Hamiltonian of Eq. (2) is
time-reversal invariant, since there is half a flux quantum
per plaquette. The time-reversal operation is implement-
ed on the continuum Hamiltonian in Eq. (10) by

H,—o,H'o, . (11

Notice that under this operation T'— —T' and m —m,
so that this Hamiltonian is time reversal invariant in the
absence of diagonal hopping, as it must be.
In the last equation (10), let us make the change
<>—p, to obtain finally

H.=mo,®I +p,0,81 —T'0,®7,+p,0,7, . (12)

Hereafter we will drop the subscript on H,. Since Ty
commutes with all the other operators, it behaves like a ¢
number. If we set it equal to its eigenvalues +1, we ob-

tain in the corresponding subspaces
H . =opto,mFT"), (13)

where o and p will always stand for vectors in the x-y
plane. The above Hamiltonians describe two massive
Dirac fermions.
The eigenvalues of H . give the single-particle levels
E, -, =xVp*+(mFT')}. (14)

Ty

The ground state will consist of a filled Fermi sea of all
the negative-energy levels. This corresponds to half-
filling, i.e., a spinless particle for every other site on the
lattice.

The low-energy physics of interest to us is dominated
by the sector of 7, which has the smallest gap (the “light-
est particle”). Let us choose
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m—T'=M, (15)

with M very small. Then the relevant sector is 7,=1,
while the other sector, with gap m + T", will not contrib-
ute to physical properties such as the diagonal conduc-
tivity, density of states, etc. It will, however, contribute
to the Hall conductivity o,, in a very interesting way as
we shall see shortly. Till then, let us focus on the “light

particle” with small M.

B. Phase diagram of the pure system

In order to obtain the phase diagram it is convenient
(though hardly necessary) to pass from the operator for-
malism for the Dirac Hamiltonian of the light species,

2
H= fz—ﬂ%‘l/T(p)(a-p-Fon)‘I/(p) , (16)

to a path integral formulation. We use fermionic
coherent states.!” The zero-temperature theory is then
given by the following imaginary-time functional integral:

Z= [[d¥w,p)ddo,p)le =] Z, , (17

fm dw_g [¥(w,plioy(w,p)

Sk —H@W)].  (18)

In the above, ¥ and ¢ are completely independent
Grassmann variables. In particular ¢ is not the adjoint of
the two-component spinor ¢. This means that they may
be subject to completely independent transformations.
Notice that Z factorizes into a product over frequencies
of Z,. This will be true even in the presence of a static
random potential that we will introduce later [in contrast
to the factorization over momenta implicit in (16)]. This
is clear provided there are no genuine interactions be-
tween the fermions, since we can then describe them in
terms of exact energy eigenstates in the random potential.

In this paper we will sometimes, but not always, ex-
ploit this factorization. If the question involves a single
frequency, we will then ignore all modes not at that fre-
quency since they will be just dead weight in the calcula-
tion, canceling between numerator and denominator. (To
average over an ensemble, we will first calculate at the
given frequency using Z,, and then average the result.)
On the other hand, if we need an integral over all fre-
quencies, it is necessary to retain the full partition func-
tion Z. In the former case, we will be dealing with a
Dirac theory in two dimensions, with » being simply a
parameter.

Let us now compute some of the properties of this sys-
tem, starting with the density of states at energy E. This
is given by

Glio—E,p), (19)

.1
plE)= —iir%);lm Tty spin

where the Green’s function for the light fermion is

1
G(io—E,p)= .
(iw p) io—E—op—Mo, (20)

Notice that only a single frequency w comes into play,
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and the answer is given as a two-dimensional integral.
Rationalizing the denominator, we obtain

2 Tr(io—E +o-p+o,M)
(io—E)—p?—M?

pE)=— lim -—1 f

21

where Tr is now only over the “spin space.” Droppmg
terms of order »’ in the denominator and of order  in
the numerator, and all traceless objects, we end up with

E|

p(E)='Te(E2—M2) . (22)

This result can be readily checked from the dispersion re-
lation E =+V p2+M? by taking E >0 and computing
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[Note that in (23) there is no factor of 2 for “spin,” since
in this problem the “spin” is just an index that keeps
track of the sign of the energy: At each momentum p
there is only one state for a given sign of E.]

Observe that the density of states vanishes at zero ener-
gy, even when the Dirac mass is zero, M =0. This will be
significant in what follows.

Let us now consider a quantity which forces us to deal
with all frequencies: o,,. To this end we apply a static
electric field in the y dlrectlon, and measure the current
in the x direction. For the Dirac field the current and
charge density are given by

2
ptE)= [ SLBE —VpI M) . 23)
J
Jx _ i i
= = ’I‘
7%, qyf "\~ io—E—0-p—Mo, io—E
=_l__fT 4 Mazayqy dzpdw
q, io—E)Y—p?—M?)? 8r°

In order to reach the last line we had to (i) rationalize the
denominators, (ii) set g, =0 in the denominator due to the
explicit power of g, in the numerator, and (iii) drop all
terms in the numerator that would not survive the trace
operation or integration over p,. Continuing on, we find

da)
x 27
T 41r3f[(lw E)2 —p— M} 27
_Mr> do —1
27 Y —w 21 [0—i(E+|M)])[wo—i(E—|M|)]
(28)
0(|Ml (29)

T4 IMI

Repeating the calculation for negative E reveals that E
should be replaced by |E| in the above. If we measure
the conductivity in standard units, we must put back the
factor /% which has been set equal to unity. In these
units the Hall conductivity at E =0 is

2
S; e
0= —EHL 0)

The situation is depicted in Fig. 2, which shows that
the Hall conductivity o,, is nonzero only in the
bandgaps, |E| <M. Consider now specializing to E =0,
which puts the Fermi level right between the upper and
lower Dirac bands, and varying M from some positive
value to a negative value, moving along the y axis in Fig.
2. We see a jump from —1 to 1 in o, /(e /h). Includ-
ing the contribution from the other heavy Dirac field,
whose contribution does not change as the light mass

J =1Z¢n/} s
_ (24)
p=yvy.
Thus from Wick’s theorem we have
L dpde (25)
—o'p—q,0,—Mo, 87’
(26)

changes sign, implies that the total physical Hall conduc-
tivity jumps from O to 1 in these units. Thus, at E =0, as
M is tuned through zero, the system undergoes an integer
Hall transition. This reveals our main reason for intro-
ducing the Dirac system. It manages to have an integer
jump in o, (in units of e?/h) without any need for topo-
logical terms

There are, however, striking similarities between the
topological term in the sigma model of Pruisken?® and
the Dirac mass term here. To see this consider first the
symmetries of the massless Dirac Hamiltonian

E=M

FIG. 2. The phase diagram of the pure system. The density
of states is nonzero only in the regions where |E|>|M|. The
Hall conductivity jumps by an integer upon crossing the E axis
at E =0.
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Hy=op . (31)

The following can be said of H, [we chose, for conveni-
ence, a (nonstandard) basis of the Pauli matrices, where
o, and o, are both real and symmetric. This implies
that o, is purely imaginary and antisymmetric]:

(i) It is invariant under the discrete symmetry transfor-
mation defined as

T: 0,H}o,=H, (32)

since the complex conjugation reverses the sign of
p=—1iV, and conjugation by o, brings in a second com-
pensating sign change (o, and o, are chosen real.) This
implies a Kramers degeneracy in the spectrum: 4% and
o,P* are degenerate eigenstates. This discrete symmetry
is not to be confused with the time-reversal operation of
the original lattice model [Eq. (2)] as defined in Eq. (11).
However, it does correspond to an effective time-reversal
symmetry for the massless sector of this theory.
(ii) It has a particle-hole symmetry

PH#H: o,Hyo,=—H,, (33)

which means that every eigenstate ¥ of energy E is ac-
companied by a partner o, with energy —E.
(iii) It has a parity invariance under y reflections,

?y: HyO'XHOO'xHy=HO ’ (34)

and parity invariance under x reflections. (Recall that in
two dimensions, the parity operation reflects only x or y
since changing the sign of both is equivalent to a rotation

by m.)
The Dirac mass term
Hy,=Mo, (35)

is odd under 7, and ?,. It does not respect particle-hole
symmetry P7f. It has no time-reversal symmetry since,
having chosen the other two Pauli matrices real, we can-
not also choose o, real.

Let us now compare the role of M in our problem to
the role of the topological parameter 6 in the nonlinear-
sigma-model of Levine, Libby, and Pruisken.’

(i) The topological term, with its single derivative in x
and y, is odd under parity. The same goes for the mass
term, as shown above.

(ii) Under parity, the 6 parameter that multiplies the
topological term changes sign. Since adding 27 to it
makes no difference, we might as well say 6—27—0.
This amounts to a reflection about the point 6=7. The
fixed point of this transformation is 6= which is where
the Hall transition is located. In our problem, M behaves
like @ — 1, and the transition is at M =0.

Returning to Figure 2, let us ask what happens if we
vary M from negative to positive values at E+#0, say
E >0. In this case the system undergoes two transitions,
one at E = — M as it goes from the gap with positive Hall
conductance to the gapless region where the Hall conduc-
tance is zero, and then once more at E =M from the gap-
less region to the gapped region with negative Hall con-
ductance. Thus we have “halved” the Hall transition,
since the jump is half as much in each stage.

INTEGER QUANTUM HALL TRANSITION: AN ALTERNATIVE ...
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III. TRANSPORT PROPERTIES
OF THE PURE SYSTEM

A. Kubo conductivities

We have already computed the dc Hall conductivity to
establish the phase diagram of the pure system in the
M —E plane. Now we limit ourselves to E =0, and com-
pute the frequency dependent longitudinal and Hall con-
ductivities.

The ac conductivities as obtained from the Kubo for-
mula are

oulo,M)
_gh—(21r/a))fd2rd7(J (r,7)J,(0,0))[e "™—1],

wv=x,y , (36)

where the subtraction arises from the diamagnetic contri-
bution. Here @ is a Matsubara frequency. We evaluate
this explicitly in the Appendix for the theory of a single

noninteracting Dirac fermion. The result [with
Z=(w/M)*]is
2
oylom=—<M r1z), 37
2

(@, M)_T—Z\/—Z— f[Z]+(1 f[Z])] (38)
where

flZ]= arcsm —Z (39)

VZ(Z+4)
For small and large arguments we have
_ 1, if Z—0
f1z1= ~(w/VZ) ssZ—>+ . “0)

For the dc conductivities of the single Dirac fermion, this
implies

2 __
e ZsgnM) e prsg
a;dc)= h 2
Y . 41)
0 if M=0,
0 if M0 @
(do)— | ,2
T xx "Tv/s if M=0.

In our problem we have two Dirac fermions, one with
mass M which changes sign at the transition, the other al-
ways having mass M of fixed sign (say M <0). Thus for
the total dc conductivities we obtain

2
gh—(%)[l—sgn(M)] if M0
(dc)— ) 43)

xy g__l_ 1 =
—(3) if M=0,
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{
0 if M+#0
(do)— | 2 44)

Toxx fh—7r/8 it M=0.

We remark that the Hall conductivity axy should
equal (1 )e2/h at the transition (M =0) due to particle-
hole symmetry 21 This is reproduced precisely by our cal-
culations.

B. Alternate definition of longitudinal conductivity

So far we have used the Kubo formula to calculate the
conductivities. This required us to integrate over fre-
quency o, which posed no problem in the case without
disorder [since described by a (2+1)-dimensional Gauss-
ian theory]. We now develop another definition of the
longitudinal dc conductivity, which we call &,,, involv-
ing only the fields at ®=0. The latter is more tractable
when randomness is present. In this section we evaluate
it in the free theory, and find &,, =1/7 [see Eq. (59)].

Excluding interactions among the particles the action
is, as discussed in Sec. II, a sum of independent actions
S ,» one for each Matsubara frequency:

@ dw
45
s=J" =8 (45)
where
=I5k )2 Ju(PH,4,(p) (46)
and
H,=op+Mo,—io . (47)

Note that for each value of » we get a (2-+0)-dimensional
theory, i.e., a two-dimensional classical statistical
mechanics model, or, equivalently, a one-dimensional
quantum field theory. The Matsubara frequency plays
the role of a coupling constant, like a mass term.

Ultimately we are interested in the properties of the
physical 2D Hamiltonian H_,_,. We see from Eq. (46)
that the single-particle Green’s functions of field opera-
tors at the same frequency just give the single-particle
Green’s functions of this 2D Hamiltonian:

- L
(¢, (P, (p))= H (48)

or, using a mixed representation in 2D position space
r=(x,y), and 1D Matsubara-frequency space (®),

<¢a(war1){[b(w9r2)>
v, (r)¥, (r,)

— na'T17 om0 T2 49
> E,—iw ’ “9)

G (1, Tp0)=

n

where we have used an orthonormal set of (spinor-) wave
functions

¥, (r)

¥, (r)= W, ,(r)

n

) (50)
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H,_¥,(r)=E,¥,(r) . (51)

Thus the single-particle Green’s function of the (2+0)-
dimensional Lagrangian of Eq. (46) give us the Green’s
function of the Hamiltonian H,,_,. Of course, this is not
new (see, e.g., Refs. 13 and 22). The novelty of our ap-
proach consists (partly) in the fact, as we will describe in
more detail later, that the (2+0) Lagrangian is a critical
theory for =0, and is therefore conformally invariant.
This will remain true when specific forms of randomness
are included. The frequency w is then a particular (in
general massive) perturbation of this conformal field
theory. We will exploit this in Sec. VIC.

Let us now discuss the longitudinal conductivity in this

language: introduce the function (see, e.g., Refs. 13 and
23)
K(q0)=1 [d e97G 4 (0,5;0)Gp, (1,0, — ) . (52)
From the spectral decomposition Eq.(49), we get
K(0,0)="E2) (53)
2]w|

where p(w)=—(1/7)TrG(r,r;w). More generally one
expects the expansion (see, e.g., Ref. 13)

mplw)
2|lo|+Dg*+ - -

_L _&(_)D 2+
2|l 4¢)?

K(qw)=

2
L<<1 ,  (54)
w

with D an expansion coefficient. Consider now the quan-
tity

- ez . 2 d
O =(—1)== lim 80° | —5 K(q,») (55)
w—0 aq lg=0
~2)1Lr{) Tw?‘fdzr r2G,(0,1;0)G, (1,0, —w) . (56)

When the density of states is nonzero, p(0)7#0, the dc
conductivity can be written as o, =, =p(0)D (e /#),
which follows from an Einstein relatlon (see, e.g., Ref.
13), D representing a diffusion coefficient. However,
when the density of states vanishes, p(0)=0, such a sim-
ple interpretation of &, in Eq. (56) is not appropriate.
This is the case for the massless Dirac equation and for
other situations with disorder discussed below. In those
cases the finite limit on the right-hand side of Eq. (56)
defines a universal scaling amplitude, which characterizes
the theory with ©#0 in the scaling region. This
definition of conductivity is often used in the sigma-
model literature of localization (see, e.g., Refs. 13 and 24).
Since this amplitude is universal, it may be compared
with results obtained using other techniques. Further-
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more, when the density of states is finite, p(0)7=0 [as is in
fact the case at one particular point A , = on the line of
fixed points we find in the presence of a random vector
potential (Sec. VI)], &,, should agree with the conduc-
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tivity as computed from the Kubo formula.

We now compute 7, in Eq. (56) for the pure model at
criticality (E =M =0). Using Eqgs. (46) and (47) we can
write

K(q,0)=

1
2

9g? (2m)?

After performing the trace and expanding for small g2,
we find

1
_rdyp | 59 w2 |_(=1)
RHS f(2’rr)2{(p2+a)2)2 (p2+0? | 8me?
(58)

We thereby obtain for the critical theory (E =M =0)
Ty =—S—>=——. (59)

It is noteworthy that this value of 7, is different from
the critical value of o, obtained from the Kubo formula,
although the two numerical values are actually quite
close.

IV. THE MODEL
WITH VARIOUS FORMS OF DISORDER

We now consider incorporating quenched disorder into
the above description. Of primary interest to us is how
the disorder will effect the integer quantum Hall phase
transition at E =M =0. In general, quenched disorder
will generate spatially random perturbations to the pure
Lagrangian (at E =M =0):

Ly=ylio—a-p)Y . (60)

Specifically, in the Dirac language we consider three
types of randomness:

(1): L ;=90 Alx,p)¥ , 61)
(I1): Ly =9M(x,p)0,¥ , (62)
(IID): L, =3V (x,p) , (63)

where the functions A, M, and V are nonuniform and
random in space, but constant in time. Thus they mix up
the momenta but not the frequencies. To be concrete we
will assume that all three random potentials are symme-
trically distributed about zero mean.

Let us understand the significance of these random per-
turbations in terms of the original lattice spinless fer-
mions, and in terms of the symmetries they break.?’

The perturbation L , is the most apparent: it corre-
sponds to a random vector potential. We know this be-
cause the coupling of the gauge field is uniquely given by
the principle of minimal coupling: p—p— A. This term
preserves the P7 symmetry of Hy,. Notice *hat this is

3 f d*p Tr{lo-(p+q/2)+tiv]le-(p—q/2)—iwl}
g =0 [(p+¢/2P+0?|[(p —q/2)*+ 0]

(57)

—

true sample by sample, since for every realization of the
random potential we have

—o,Ho,=H . (64)

However, L , violates both time reversal and parity in a
fixed sample, but not on the average.

Next consider L,,, the addition of a spatially inhomo-
geneous Dirac mass term. If we go back to the spinless
fermion Hamiltonian, it is clear that with all other pa-
rameters fixed, varying the staggered chemical potential
p in the Hamiltonian amounts to varying M [see Eq.
(15)]. Since the Dirac mass couples to the two com-
ponents of the spinor with opposite sign (due to o, ), and
the staggered chemical potential couples to the two sub-
lattices with opposite sign, it is clear that the two com-
ponents stand for the two sublattices within each unit
cell. Now one may ask about the fact that each unit cell
had two sites from the same sublattice. The answer is
that within the eigenspace 7, =1, in which we are work-
ing, the variables on the two sublattices are slaved to
each other by the eigenvalue equation. (The other eigen-
value represents heavy modes which will not be excited.)
The random Dirac mass term breaks P, P#, and T.

Let us finally consider the random term L,. Since it
couples to the two spinor components equally, it corre-
sponds to a smooth nonstaggered potential that varies
very little over each unit cell of the original lattice. It is
readily shown that this term preserves 7, but violates
both P# and P.

The symmetry properties of these various random po-
tentials are summarized in Table I. They play a funda-
mental role in the following sections.

V. RANDOM DIRAC MASS:
EDGE STATES AND QUANTUM PERCOLATION

In this section we specialize to a case where the only
randomness present in the model is in the Dirac mass
term. Of the three types of randomness considered in

TABLE 1. Symmetries of the free massless Dirac Hamiltoni-
an.

Symmetry op Mo, Mxylo, Vixy o-A
Parity Yes No No No No
Time reversal Yes No No Yes No
Particle hole Yes No No No Yes
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Sec. IV, a random Dirac mass is the only term which
breaks time-reversal invariance, parity, and particle-hole
symmetry in a fixed sample (see Table I, Sec. IX). One
might therefore guess that a random Dirac mass term
would be sufficient to place the system in the generic
quantum Hall universality class. However, as we shall
now show, at least for weak randomness this is in fact not
the case, since this type of disorder is insufficient to gen-
erate a nonvanishing density of states (at £ =0). Never-
theless, the model with random Dirac mass alone is an in-
structive case to explore, since it exhibits edge states and
allows for contact with the quantum percolation pictures
of the quantum Hall transition.26

As we saw in Sec. II, for the pure system in the absence
of any disorder one could pass through a quantum Hall
transition by changing the sign of the Dirac mass M.
Thus in our lattice model the Dirac mass, which tunes
through the transition, plays a role analogous to the Fer-
mi energy in a conventional discussion of the quantum
Hall transition. A spatially varying potential energy in a
conventional treatment of electrons in a Landau band
would thus correspond in our model to a spatially vary-
ing Dirac mass term.

Let us elaborate on this. Consider a single Dirac parti-
cle of mass M in a constant scalar potential V. The
dispersion relation is

P2+ M?*=(E—V)?, (65)

from which it follows that
P=V(E—-V?-M?. (66)

First let ¥ =0. We see that if E <M, P is imaginary, and
the wave function is suppressed exponentially. Consider
now a region in which M rises as we move away from the
origin as shown in Fig. 3(a). It is clear that the particle
will be confined to the region where E > M.

Compare this with a case where V rises from zero as
we move away from the origin, but M is constant as in
Fig. 3(b). We see from Eq. (66) that P is real when
V —E >M. The reason is of course that in a region of
large positive ¥ we can have a negative- (kinetic-) energy
state of sufficiently large momentum.

So far we have considered the nature of single-particle
wave functions. Let us consider now the response of the
filled and empty Dirac states below and above the filled
Fermi sea, to a spatially varying V and M depicted in
Figs. 4(a) and 4(b). To be concrete we are assuming the
Fermi energy is at zero energy. Figure 4(a) shows the
band structure of a massless Dirac field subject to a spa-
tially varying M. Notice that with the Fermi energy at
zero, low-energy excitations exist only where M (x) van-
ishes. On the other hand, we see in Fig. 4(b) that when a
spatially varying potential V is applied, both the filled
and empty bands bend in the same direction, and gapless
excitations exist everywhere at the Fermi energy as
M —0.

Consider finally Fig. 5, which shows a mass which is
negative within a finite region around the origin and posi-
tive beyond. The only gapless excitations exist on the
M =0 contour. Except for the replacement V— M, this

(0) / N

p=E-V

FIG. 3. Comparison of relativistic and nonrelativistic fer-
mions. The former are confined by a mass term M, and the
latter by a scalar potential V.

// ///////7>>%

(

N TTT 777777

FIG. 4. Schematic representation of the effects of a confining
potential on relativistic fermions. Notice that a scalar potential
V is unable to confine the electrons since the negative (kinetic)
energy electrons are not forbidden in the region of positive V.
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/% / ; ; M
FIG. 5. With a spatially varying Dirac mass M, the states are
filled as shown. Notice that the only gapless excitations are at

the edges where M =0. The gap is sensitive only to the magni-
tude of M.

.-

is exactly what is found with nonrelativistic fermions in
the lowest Landau level and a confining potential V.

To reiterate, M in our problem plays the role of ¥ in
the conventional formulation of the Hall effect.

We now turn our attention to the edge states that live
near the M =0 contours. Consider a Hamiltonian of the
form

H=op+M(x,y)o, , (67)

where the Dirac mass term depends on the spatial coordi-
nates. As discussed above, we anticipate that when the
spatial variation of the Dirac mass is slow, the eigenstates
of this Hamiltonian resemble edge states confined to the
equipotential, M (x,y)=0. This can be seen most readily
by considering a Dirac mass which depends only on one
coordinate, say y, and is given by

M(x,y)=f(y), (68)

where f changes sign at y =0 as shown in Fig. 6. Let us

y= -L y=0

M>0 M<0 M>0

V<0 V>0

FIG. 6. A system with two edges caused by a spatially vary-
ing Dirac mass. A slight bias in the potential across the system
causes a quantized edge current, as explained in the text.
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assume, in addition, that there is also a scalar potential
which depends only on x, V(x). In this case an exact
eigenstate, confined to the right edge (i.e., which falls off
exponentially as one moves away from the edge at y =0),
with arbitrary energy E, can be written

S 1
\I'E=e'f0 [E—V(x")]dx - (69)

exp [—foyf(y')dy'}

If we consider a constant ¥, we have a propagating plane
wave of momentum k, =E —V along the edge. These
eigenstates have an amplitude which varies in the y direc-
tion. The eigenstate resembles an ‘“edge state.” Note
that the spinor of this state is in an eigenstate of o, (ei-
genvalue +1). The spin is thus parallel to the edge.

Let us assume now that far to the left, at y =—L, we
have another edge, where M changes back to positive.
The wave function there is

1

(70)

x
—i [ TE—V(x")]dx’
Yp=e A

exp [ijf(y')dy’ ]

We could either obtain this solution from scratch or,
better still, obtain it from the following argument. Sup-
pose we slowly bend the right edge till it reverses direc-
tion to become the left edge. Assuming the solution
found for the straight edge evolves adiabatically, we end
up with the above result. Note in particular that the
spin, which is always parallel to the edge, has undergone
a rotation by 180°. It is interesting that upon fully encir-
cling an equipotential that closes on itself, the spinor will
rotate by 27, and thus change the sign of the wave func-
tion. It is as if there is one-half of a magnetic flux quan-
tum penetrating such closed loops. This causes a destruc-
tive interference which suppresses the zero-energy eigen-
states on such isolated closed loops. Note also that there
are no random phases for the E =0 closed loops in the
absence of the potential V [from Eq. (69)]. This explains
the presence of a universality class for the integer Hall
transition with random M alone (see below), which is not
in the generic universality class, such as that in the
Chalker-Coddington model.' !

The edge states allow us to gain a physical understand-
ing of the behavior of o,,, computed earlier from the
Kubo formula in Sec. II B. To this end consider a system
with two edges as in Fig. 6. The edges are subject to a
bias voltage which is =V at the right/left. From Egs.
(69) and (70) we see that the additional current on each
edge flows in the same direction, causing a net Hall
current. If we now reverse M globally, the Hall current
will change sign explaining the sgnM factor in o,,. (To
see this we must first find solutions that once again are
confined to the edges. These are just the old solutions
with right and left edges exchanged.)

For a random potential M (x,y) with mean zero and a
symmetric distribution, the equipotential M (x,y)=0 will
percolate throughout the entire system. For a slowly
varying (and possibly large) random Dirac mass, the
zero-energy eigenstate will tend to be confined to this per-
colating backbone, as in the original quantum percolation
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picture.”® However, this semiclassical percolation picture
has to break down at the saddle points in M (x,y), where
the equipotential lines intersect, due to quantum tunnel-
ing effects. In fact we now show that when the random
Dirac mass is small, the tunneling dominates, driving the
effective randomness to zero at long-length scales.

To analyze the effects of the random Dirac mass term
at small randomness, we introduce a generating function-
al Z, which can be used to extract Green’s functions of
the Hamiltonian in Eq. (67):

Z=[DyDye 5, (71)
with action
S=[d* Jlop+M(x)a,l¥, (72)

where ¢ and ¢ are independent two-component
Grassmass fields. We shall assume that the random
Dirac mass is Gaussian with mean zero and variance A,,.
Before ensemble averaging it is convenient to let
Y¥—iYo, and to rotate by 7 /2 about the z axis to put the
action in the form

S=[d* Jlop+iM(x)]y . (73)

Notice that this transformation eliminated the o, multi-
plying the Dirac mass, and replaced it with an i.

We now use the replica trick, and ensemble average
over the random Dirac mass. The effective action finally
becomes

S=[d% §o-pla+Ay [ dx (@Y ) IPYp , (14

where a sum over the replica indices a and B from 1 to n
is understood. This replicated action is formally
equivalent to the classical two-dimensional random bond
Ising model, where A,; is a measure of the strength of
randomness in the Ising bonds.® The corresponding Ising
model is at its critical point. The connection with per-
colation discussed above thus becomes apparent. With
increasing random bond strength, the transition tempera-
ture in the 2d Ising model is driven down, and is eventu-
ally driven to zero at the classical percolation point. The
zero-temperature percolation critical properties are
known to be unstable to thermul fluctuations.” More-
over, following Ref. 6, one can easily show that a pertur-
bative RG analysis on the above action gives

MM (75)

so that weak randomness is irrelevant, and the critical
properties are determined by the pure 2d Ising model. If
this transition is observed, it will be interesting to look
for the calculable logarithmically decaying corrections to
the pure Ising results.®

The work of LeDoussal and Georges® on diluted Ising
models indicates that the irrelevant flow into the Ising
fixed point originates at the classical percolation fixed
point, as shown in Fig. 7. There are no intermediate fixed
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FIG. 7. A schematic flow diagram for the diluted Ising mag-
net as a function of temperature T and dilution probability p,
with the ferromagnetic phase at small T and p. The fixed points
denoted I and P correspond to the pure Ising fixed point and the
percolation fixed point.

points. In terms of our quantum percolation picture of
edge states, this means that quantum tunneling between
the edges dominates at large length scales, driving the
system into the pure Ising fixed point.

This analysis then strongly suggest that for the critical
properties of the quantum Hall transition described by
the Hamiltonian Eq. (67), the random Dirac mass term is
always irrelevant. The transition is described by the free
Dirac theory, with logarithmic corrections. Since the
free Dirac theory has a vanishing density of states (at
E =0), it is apparent that this is not in the same univer-
sality class as the generic disordered quantum Hall tran-
sition. (It is less clear whether or not there will be a
finite, noncritical, background density of states for the
random Dirac mass model.)

How then is this transition to be observed? A possible
way is to design an array of quantum Hall droplets whose
edge states enclose half a unit of flux. As the particle
density is varied, the droplets will percolate and the tran-
sition should lie in the class described. There is also nu-
merical evidence?’ that if a Chalker-Coddington'®!’
model is constructed with the random-phase factors re-
moved, the transition has v=1. By the same token, if we
introduce random phases into our closed loops, we
presumably crossover to the generic Hall transition.
From the preceding analysis it is clear that if a random V'
or nonzero E is introduced it will generate [see Eq. (69)]
such random phases §(E —V)dx depending on the de-
tails of each closed loop. Thus adding both random M
and random V to our Dirac theory is presumably
sufficient to put the model into the basin of attraction of
the generic Hall fixed point.

We also remark that the percolation picture permits to
produce approximate estimates for the diagonal conduc-
tivity.?® Since we are focusing here on exact methods, we
have not attempted to apply these approximate methods
to our model. Nevertheless, it might be interesting to fol-
low this route in future work.



V1. THE RANDOM VECTOR POTENTIAL
FIXED LINE

In this section we specialize to the case where the only
disorder present is in the vector potential. We drop from
consideration completely the random Dirac mass term
and the random scalar potential. As we shall see, with
this simplification our random Hamiltonian becomes
analytically tractable.

Let us then consider the Hamiltonian

H=o0-pto-A, (76)

where the vector potential is taken as a quenched random
variable which satisfies a Gaussian white-noise distribu-
tion with mean zero and variance A 4. Physical proper-
ties can of course depend only on the magnetic field,
B =¢€;;0; 4;, which is then also Gaussian with variance:

B(k)B(k')=(2m)*8%k + k')A 4k? . (77)

Notice that the average field B (k =0) has no fluctua-
tions.

As in the pure model studied in Secs. II and III, the
above Hamiltonian describes a critical theory (i.e., a
quantum Hall transition), because the Dirac mass has
been set to zero. Below we will focus on the associated
random critical behavior, but it is instructive first to con-
sider the massive theory in the presence of the random
vector potential. Specifically, we examine the spectra of
H,,=H +Mo,, where H is the above Hamiltonian, and
M is a uniform Dirac mass. It is straightforward to show
that HZ =H?+M?, for every given realization of the
random vector potential. Thus all eigenstates of the ran-
dom Hamiltonian H,, have energies E,, which satisfy
E%>M? Thus the band gaps in the pure model (at
E?<M?) are not filled in by a random vector potential
term, no matter how large A , is. As a result, at zero en-
ergy the Hall conductance for nonzero M will take on the
same quantized values as in the pure case (see Fig. 2). As
one tunes M through zero the quantized Hall conduc-
tance will jump by e2/h. But now at M =0 we have a
random Hall critical point.

As we shall show below, despite the presence of the
random term this critical point is quite tractable. In Sec.
VI A we show that (for M =0) it is possible to obtain ex-
act zero-energy wave functions for the Hamiltonian, for
arbitrary randomness A 4. This is a nice example of the
so-called Atiyah-Singer index theorem. These wave func-
tions are neither plane waves nor exponentially localized,
but rather are a pedagogical example of multifrac-
tals.” 12 We work out explicitly the multifractal f(a)
spectrum, which is an exact parabola in this case,
reflecting the log-normal distribution of the wave func-
tions. We also compute all participation ratios. The
presence of exact “extended” wave functions for this
two-dimensional random Hamiltonian, in a given realiza-
tion of disorder and at arbitrary disorder strength, estab-
lishes the presence of a nontrivial fixed line of quantum
Hall phase transitions (parametrized by A ;). While we
do not believe that the generic and physical integer quan-
tum Hall effect (IQHE) phase transitions lie on this fixed
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line of critical points, it is certainly noteworthy that nu-
merical calculations'® for the generic IQHE transition
have revealed extended wave functions with similar mul-
tifractal scaling properties.

In Secs. VI B and VI C we turn to properties of the ran-
dom Hamiltonian (with M =0) which do not follow sim-
ply from the properties of the zero-energy wave function.
We analyze single-particle properties, focusing on the
ensemble-averaged single-particle Green’s function and
the resulting density of states (DOS) and mean free path.
We show that the DOS is singular at zero energy, with a
power-law dependence on energy with an exponent that
varies continuously with A , along the fixed line. There
is one special point along the fixed line where the DOS is
in fact constant (i.e., the power is zero).

Lastly we focus on two-particle properties with an em-
phasis on the electrical conductivity. We show that the
longitudinal conductivity defined from the DOS and the
diffusion constant, via an Einstein relation (as discussed
in Sec. III B), is independent of disorder along the fixed
line and exactly equal to e?/mh. This result is established
using methods from the conformal field theory, and ex-
ploits an underlying SU(2) symmetry between positive
and negative frequency fields along the critical line.

A. Exact zero-energy wave functions

We first discuss the two-component eigenfunctions
¥(x) of the random Hamiltonian in a fixed realization of
disorder, which satisfy HY=EW¥ with zero energy,
E =0. First we note that since o, anticommutes with the
Hamiltonian, we have the particle-hole symmetry P# as
established earlier in Sec. III: for every eigenfunction W
with energy E there is a corresponding eigenfunction
¥=0"¥ which has energy —E. Thus the number of
zero-energy eigenfunctions is even. This is also implied
by the Atiyah-Singer index theorem (see, e.g., Ref. 29),
which tells us that the number of right-handed and left-
handed solutions (o0, ==1) at zero energy must differ by
the total number of flux quanta, which is zero in our case.

In order to write an exact zero-energy eigenfunction it
is convenient to specialize to the Coulomb gauge,
d; A;=0. In this gauge one can express the vector poten-
tial in terms of a scalar field &:

A;=€,3,® . (78)

The magnetic field satisfies B =V>®, so that we must
take

D(K)P(k')=(2m)"8(k +k')7 ; (79)

It is then straightforward to verify that the random Ham-
iltonian annihilates the two wave functions

e(b(x)

V., =(const)(1to,) , (80)

e —P(x)

so that they are exact zero-energy eigenfunctions, in a
given realization of disorder.
Notice that these wave functions are real and nodeless.
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Although they are highly inhomogeneous, it is clear that
they are not exponentially localized. In fact, in the ther-
modynamic limit they are non-normalizable, as is ap-
parent from Eq. (80) since even the logarithm of the wave
function has an infinite variance. In order to quantify the
“extended” nature of these wave functions it is useful’ to
consider a normalized wave function in an L X L box with
periodic boundary conditions:

—®(x)

e
VR
[f e—2<l>(x)]
.

where we are now focusing exclusively on ¥, , and so ¥
in Eq. (81) is a scalar. The integration above is under-
stood to be over the L X L square. In order to satisfy the
periodic boundary conditions we require that ®(x) in Eq.
(80) is also periodic, and moreover take ®(k =0)=0 in
every member of the ensemble.

In order to characterize the wave function it is useful’
to consider the participation ratios, i.e., moments of the
square of the wave function:

W(x)= (81)

P,(L)=|¥(x)|* (participation ratios) , (82)

where the power g need not be integer. Here it is impor-
tant that W(x) is a normalized wave function in the L XL
square. The large L behavior of P (L) characterizes the
degree to which the wave function is “extended.” For ex-
ample, for a plane wave one would have P,~1/L 2
whereas Pq~1/L2 for an exponentially localized state.
More generally one expects
| 1
L2t79 [ 2+(@—DD(q) ’

P, (L)~ (83)
with some function 7(q) and D (q). Were the wave func-
tion a simple fractal, D(q) would be independent of g.
But in a multifractal, D will depend on g, and equivalent-
ly 7(gq) will be a nonlinear function of g. It is then cus-
tomary to perform a Legendre transform on 7(q), by
defining a=d(q)/dq and a function

fla)=aq —7(q) . (84)

The general meaning of f(a) can be understood as fol-
lows.>!? Let 1, (Y) denote the probability distribution of
Y =|W¥|?, the square of the wave function, so that

P(L)= [dY YN (Y) . (85)

Define a=—In(Y)/In(L). Using a simple steepest des-
cent argument, one can show that in order to obtain the
correct power-law dependence of P (L) on L, the distri-
bution function of a defined via

M, (a)da=1,(Y)dY (86)
must be
fIL(a)~ef“’"“(L’ . (87)

For large L this is dominated by the value of a, a;,,,
which maximizes the function f(a). It is thus clear (see,
e.g., Ref. 12) that a_,, is the exponent for the typical
value of ¥ = |W¥|%
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1
L Zmax )

We now proceed to evaluate the f (a) spectrum for our
exact zero-energy wave function. Although @ is assumed
to have a Gaussian distribution, the average one needs to
perform in Eq. (82) is not completely trivial since the
wave function must be normalized first. The averaging
can, though, be carried out straightforwardly, as shown
in the Appendix, to yield

PypicalL) =exp(In(|¥]?)) ~ (88)

AA
T(q)=2(q—1)+—7r——q(1—q). (89)

Notice that the term proportional to A 4 is nonlinear in g,
which indicates that the wave function is indeed a mul-
tifractal for nonzero disorder A ,. The resulting f(a)
spectrum is (exactly) parabolic:

(@)=2— {0 mar)” (90
TP )
with
A
Q=2+ —2 . 1)
o

We thus see that the exact zero-energy wave functions
are multifractals, and that the typical (local) value of the
probability varies with an exponent a,,,,, for large system
size L. Notice that a,,, increases as we increase the dis-
order strength moving along the fixed line. (For zero dis-
order, the probability distribution II becomes trivial.) In
several recent numerical calculations'® on models of two-
dimensional noninteracting electrons moving in magnetic
field and random potential, it was found that the “extend-
ed” wave functions at the middle of the disorder-
broadened Landau levels were indeed multifractals.
Moreover, all simulations showed a roughly parabolic
f(a) with a,,,=2.3. [Deviations from exact parabolic
form (e.g., the presence of cubic terms) could not be
confirmed with certainty because of numerical errors.*°]

This behavior would be consistent with one particular
point on our fixed line. However, we believe that the gen-
eric IQHE critical point probed in the numerical work
does not lie on the fixed line of the Hamiltonian Eq. (76).

B. Single-particle properties

1. Perturbative RG

We now study the scaling properties of averaged
single-particle quantities of the random-vector-potential
model through perturbation theory in the disorder
strength A ,. The starting point is the generating func-
tional Z = [ DyDie 54 where S 4 is the effective action
written in terms of the independent Grassmann variables
1 and ¥, for frequency w:

5 4= [d*piip)o-p—io)(p)

+ [d% §ix)o- Ax)¥(x) . 92)
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One can then average over the randomness with the repli-
ca method to arrive at the replicated effective action

s3=0= fpz b0 -p—iol,

A [ 3 3 a0 bapo, Vs - 93)

*a,B p=xy

Here the replica indices a and B are summed from 1 to n,
and the n —0 limit is to be taken, as usual, at the end of
the calculation. In deriving this last equation we have in-
tegrated over all gauges of the vector potential.

Standard methods®! can now be applied to generate,
perturbatively in A ,, RG recursion relations for o, and
the disorder strength A ,, and RG equations for single-
particle correlation functions of physical interest, such as
the impurity-averaged density of states at energy E:

plE)= lin})ImTr(_}'(iw—E,x=0)/1r; (94)

here G(iw— E, x) is the impurity-averaged, single-particle
Green’s function.

The diagrams of Figs. 8(a) and 8(b), respectively, con-
trol the first-order renormalization of the terms of the
effective action S’ ~, that are quadratic and quartic in
the Grassmann variables ¥ and . Here the solid lines
represent the bare propagator, which in momentum space
takes the form

Gylio—E,p)=(o-p+io—E)/[p*—(io—E)], (95)

while the dashed line represents the coupling constant
A , and the o matrices in Eq. (93). We use the RG re-

N

T X T
o+®+@

FIG. 8. Feynman diagrams contributing to the lowest-order
RG calculation of (a) the self-energy for the propagator in the
model of Eq. (93). Solid lines represent the bare propagator,
and dashed lines the strength A , of the random vector poten-
tial. (b) The renormalization of A , in Eq. (93). (c) The renor-
malization of the frequency w in model of Eq. (118).
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scalings p=b"'p’ and ¥(p)=b*¢'(p’), choosing { to
keep the coefficient of o -p in Eq. (93) fixed. One thereby
straightforwardly obtains from the diagrams in Fig. 8
that =3, and the following recursion relations:

o'=b’w , (96)

A=A, . (C)]
Here the dynamical exponent z is given by

z=14+A, /7. (98)

Since w and E always occur in the combination iw—E in
all Green’s functions, the recursion relation

E'=b’E (99)

follows from Eq. (96).

While the result for { depends on the choice of gauge
for the random vector potential, the recursion relations
for E, o, and A ,, and in particular the value of the ex-
ponent z are gauge invariant. Note that the impurity
strength A , does not renormalize to lowest order. It is
easy to check directly from the form of S, that A , is di-
mensionless in 2D, which accounts for the lack of renor-
malization to zeroth order; to first order, however, the in-
variance is less trivial, requiring the cancellation of the
contributions from the three diagrams of Fig. 8(b). We
show in Sec. VIB2 through bosonization that the recur-
sion relations above and the expression for z actually hold
to all orders in A , so that E =@ =0 for arbitrary A , is a
true fixed line of the RG transformation.

From the above scaling follows immediately a result
for the asymptotic behavior of p(E) for small E: The re-
cursion relation for E (or @) implies the scaling equation
Ja’xgyp~b*[d’x'Py’. Since p(E)~Im(¢y), this
yields the exact result p(E)~b?"2p(E’), whereupon,
from Egq. (99),

P(E)NE(Z—z)/z . (100)

Equation (98) then shows that the density of states devel-
ops a singularity, i.e., an infinite derivative, at E =0 for
any arbitrarily weak disorder A ,. [For the pure system,
A ,=0, and p(E) is simply linear in E, consistent with the
result derived in Sec. II.] This singularity becomes
stronger with increasing A , [see Eq. (98)], corresponding
to the progressive filling in of the hole in the density of
states at zero energy. Finally, at A ,=m, where z =2,
p(E) approaches a constant as E —0, thereby developing
at E =0 the finite density of states expected in the quan-
tum Hall transition. (Recall from the Atiyah-Singer in-
dex theorem of Sec. VI A that there exist extended states
at E =0 for all A,.) For A, >, the density of states
diverges at E =0.

2. Diverging lengths near E =0

Since the states at nonzero energy for any A, are
presumably localized, it is natural to assume that the
singularity in p(E) at E =0 reflects the localization tran-
sition at E =0. Except at the special value A , =,
where there is no singularity, this behavior represents a
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departure from the conventional localization transition
described by the nonlinear sigma model,”>!3 which is
characterized by a finite, nonzero density of states
through the mobility edge. There is another important
difference: The correlation lengths characterizing the de-
cay of the single-particle Green’s function are finite
through the mobility edge in the standard localization
picture,?*!3 whereas they diverge in our model, even at
A ,=m. One can infer the occurrence of single-particle
lengths that diverge at E =0 in the random-vector-
potential model from the RG calculation just described.
In particular, consider the recursion relation Eq. (99)
which shows that E grows like b? under length rescaling.
The value of b at which, starting from some infinitesimal
initial value E,, the renormalized E becomes of order

unity, then defines a characteristic length §, ~E 0- "1 with

vw=1/z . (101)

To make these notions more explicit, it is instructive to
calculate perturbatively in A, the single-particle,
impurity-averaged Green’s function G(iw—E,x) in the
limit @—0. The main physics of the spatial decay being
independent of the gauge, we simplify the computation
by averaging over all gauges. To lowest nontrivial order
in A 4, the only diagram contributing to the one-particle
irreducible self-energy matrix 2, in Dyson’s equation,
G Yio—E,p)=G, (io—E,p)—2(io—E,p), is shown
in Fig. 8(a). Since this diagram does not have any depen-
dence upon external momentum, it is easy to see that to
this order

G '~op—(E+im), (102)
where, in the limit ©—0, E=E[1+A ,In(A/E) /7], and
o=sgn(w)A (E /2; here A is the high-momentum cutoff.
Straightforward Fourier transformation then shows that
the exponential piece of the averaged Green’s function
behaves like

- —x/§,

G(x)~e™*e , (103)
where, for small E,

A~E TR (104)

E~E"'/A, . (105)

The physical significance of the two lengths A and &, is
clear: A is just the wavelength with which a typical wave
function oscillates in space, and so is finite even in the
pure system (A ,=0), where all the states are extended,
diverging only at E =0; £, on the other hand, is the elas-
tic phase-coherence length, and so diverges in the pure
system limit, as well as at E =0. Given the RG argu-
ments above, we expect both of these lengths to diverge
as E—0 like E !, where, from Egs. (98) and (99),
vi=(1+A ,/m)”'. The prefactor of & should itself
diverge as 1/A , as A ;,—0, as seen from Eq. (105). To
the order in which we are working, the results in Egs.
(103) and (105) are both consistent with this expectation.
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3. Exact scaling from bosonization

We now verify to all orders in A 4 the existence of the
fixed line at E =w=0, and the result z=1+A4 , /7. To
do so requires recasting the generating functional Z for
fermions in 2D in terms of a scalar field 6. Recall the
rules for (abelian) bosonization:*?

[ (DYDY [1d6], (106)

Jo-(—iV)p—1V,0)7, (107)

Ja[zpﬁi—\/—l_—sffaje : (108)
™

We will find it convenient to work with left- and right-
moving fermions in 1D, and express them in terms of left-
and right-moving boson fields 6, ;. To write Z in the
conventional form in terms of the Grassmann variables,
Yg and 9, , for right- and left-moving electrons, respec-
tively, in 1D, make the change of variables

(=), 90, = (Pr,¥L) (109)
while
¥ Ur
¥, ] = v, (110)

This has the effect of eliminating the Pauli matrices
(which we take in the standard form for this purpose)
from the action, which then takes the form

-—_3d —0
S~ [dx dy2 Ty + T Ui

+ [dx dy[ A, (Dpvbg — V) +id, (Tpvbp + Tty

—io(P g —UrY¥.)], (111)

where

z=y +ix, z*=y —ix . (112)
Treating the y direction as a (imaginary) time axis (i.e.,
letting ip, —V,) gives this equation an obvious interpre-
tation in terms of two sets of 1D fermions moving to the
right (R) (i.e., with momentum +p, ) and left (L) (—p,).
Thus the problem has been cast in a form to which bo-
sonization in terms of right and left movers can be ap-
plied. We sketch the procedure only briefly; further de-
tails can be found in, e.g., Refs. 33—-35 and 32.

Writing ¥ and ¥, in terms of the boson fields ¢ and
¢ defined by

(113)

(114)

one can express the kinetic-energy term (first line) of Eq.
(111) in the quadratic form



50 INTEGER QUANTUM HALL TRANSITION: AN ALTERNATIVE...

Ske~+ [dx dr{iV 8V $r—iV, 6. V.9,

+(V, 4+ (V8. 7] .

The densities ¥ ¥z and ¥, ¥, , respectively, are given by

(115)

S = fdx dr{iV,¢V,0+[(V, 42 +(V,0721/2+i( A,V ¢+ A,V,.0) /7' +asin(2r'?0)} .

Since no terms higher than quadratic in the field ¢ appear
in this Hamiltonian, one can eliminate ¢ via direct in-
tegration, producing the following rather simple effective
action

Se= [ dx d7[(V,07/2+iB (x,7)0/7'"
+wsin(27'/%6)] , (117

where B is the magnetic field V, 4, —V_A4,. This result
agrees with that quoted in the bosonization dictionary
[Eq. (108)] at the outset of this subsection.

One is now in a position to use replicas to average over
the randomness. The manifest gauge invariance of the
action Eq. (117) allows one to treat 4, and 4, as in-
dependent random variables, and so to average over all
gauges, producing the replicated action

55~0= [dxdr

E (Vuaavueﬁ)(saﬁ+AA /m)/2
af

+o 3 sin(27'%6,) | . (118)
a

In the limit of vanishing @ in which we are ultimately in-
terested, this action is purely quadratic. In consequence,
the only possible renormalization of A , comes from its
“engineering dimension.” Since, as noted earlier, A , is
dimensionless, one concludes that it does not renormalize
to any order in perturbation theory, i.e., that Eq. (97) is
indeed exact.

The fact that A ; enters Eq. (118) only in a quadratic
term likewise enables one to compute the exponent z
governing the renormalization of @ near ®=0 (or that of
E for small E) to all orders in A ,. Figure 8(c) shows the
diagrams governing the renormalization of @ to O(w).
Using the result for the quadratic part of the action, viz.

(0,(q)05(—q))o=(85+A 4 /), (119)

valid in the n —O0 limit, one readily arrives at the exact
expression

144 , /7
1w

o'=b (120)

Comparison with Eq. (96) then confirms the validity of
(98) to all orders in A ,.

4. Correlation length exponent of constant Dirac mass

In the presence of a constant Dirac mass term Mo,
(see Sec. II), in the action, calculations very similar to
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V.¢r and V. é;, while the “backscattering” operator
(¥ —¥r¥,) is  simply  proportional  to
sin[7!"2(¢gr —¢,)]. With a modest amount of algebra,
one can then express the effective action in terms of the
fields p=(dgr +¢;)/2 and O0=(pg —d.)/2:

(116)

those described above can be performed to calculate the
flow of M away from the fixed line. While this can be
done perturbatively in the fermion representation, it can
be accomplished to all orders in A ;4 through the bosoni-
zation methods just discussed. Using (113) and (114) and
the fact that the Dirac mass term can be expressed
(using the standard basis of Pauli matrices) as
M (g, +9,¥g), one readily writes this term in the
form M cos(27'/20). At this point the computation of
the leading flow of M away from the fixed line at
M =E =w=0 for arbitrary A , is seen to be virtually
identical to that of w, just described, and has the same re-
sult, viz.

1+A /7

M'=b M. (121)

Thus the exponent v, governing the divergence of the
length associated with the M —0 limit, is

1

=1+TA/1T_ . (122)

v

C. Exact two-particle properties

In this section we solve the two-particle properties ex-
actly along the random-vector-potential fixed line. In
particular, we compute the exact value of 7,, (see Sec.
III B for its definition), using a new nonperturbative con-
formal sum rule, mentioned above. We find
G, =(1/m)(e?/h), independent of the random-vector-
potential disorder.

The main technical tool for deriving this result is non-
Abelian bosonization,’®3” and the non-Abelian SU(2)
symmetry rotating positive into negative frequency fields.
We choose, for convenience, the replica method to aver-
age over disorder, but the same result would be obtained
by just perturbing in the disorder strength. The SU(2)
symmetry is present in every member of the ensemble,
and is independent of the replica method.

1. Exact solution by quadrature

For the evaluation of the quantity ,, of Eq. (56) with
random vector potentials (discussed in Sec. III B), it will
be very convenient to use non-Abelian bosonization.
Here we first introduce the basic ideas in the case without
disorder.

The main technical complication in computing &,, is
that it involves fields at two frequencies +w:
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¢j(r)E¢jw(r) ’

where j==x1, denotes positive and negative frequency
fields T w.

The action that governs the dynamics of the two fields,
ljzj(r), has an extra non-Abelian SU(2) symmetry, which
rotates positive into negative frequency fields. In order to
exhibit this symmetry, we use the notation of Eq. (111),
Sec. VIB3. We first make a trivial change of variables
multiplying all right-moving, negative frequency fields by
(—1):

d/R’_l(r)—>( —1 )I/JR,_I(I') 5
IZRyﬂ(r)——»( —1 ){l}—R,—l(r)

while all remaining fields are unchanged.
It is convenient to introduce the following compact no-
tation:

(123)

(124)

D)=ty —Pidr; (125)
N J N J
q> (r):% _'2_ T‘I)L,j_’-wjl. T _I/}R,j Iy (126)
J J
J J
—~ U,V = 0—)’
V(1) =1, 5 R¥RE e R (127)
J J
— 4 J — V4 j
Dir) =P 92— W+ "7 Yk - (128)
j j

From Eq. (111) we thus obtain the following form of
the action, governing the dynamics of the two (o) fields
(summation over repeated indices):

1 _
S3= o [dr2Bhd 8,

+2¢,0/3z*¢, ; —iod(r)} .

[Note that we have rescaled the fields ¢ by V27, such
that (Ph(z*)g (0))=8//z*, (PL(2)¢,(0))=5]/z
where z =y +ix.] In this notation, we obtain from Eq.
(56), taking into account the change of variables in Egs.
(109) and (110) as well as Eq. (124):

G (0,1;0)Gp, (1,0; —w)

=1 S ([@%(0)—i®”(0)][®*(r)+iD*(r)])
(27)
where the Green’s function is to be evaluated with the ac-
tion of Eq. (129).
We see from Eq. (12%) that the action in Eq. (129) is in-
variant under the following SU(2) transformations:

(129)

(130)

w

-U

’

[IIJL,-*—I - ¢L,+1
¢L,—l d}L,AI

(JL,H{/;L,ﬂ)—’(JL,H'ZL,-JUT ,

where U is an SU(2) matrix. The right-moving fields are
rotated simultaneously with the same matrix U.

Due to this SU(2) invariance of the action in Eq. (129),
we have in fact

(131)
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G, (0,1;0)Gy, (1,0, —w)= ( (®*(0)D*(r)),, -

)2
(132)

In Sec. VIC3 we show that the SU(2) invariance of the
action of Eq. (129) permits us to evaluate exactly the in-
tegral in Eq. (56), in the presence of random vector poten-
tials, with the same numerical value as for the nonran-
dom system, independent of randomness. This calcula-
tion rests on a nonperturbative result in conformal field
theory, similar in spirit to Zamolodchikov’s ¢ theorem.!*

The action for the two-particle properties, in the pres-
ence of a random vector potential, A=(4,, 4,), is

S=8,+85,+8S, , (133)

where S, and 8S, are defined in Eq. (129), and

SSA:?:.;'EIfdzr[Alejl-ilpR,j—i_ARJ’lI;IpL,j] . (134)
j==%

Here we have introduced a complex notation for the
components of the vector potential:

Ax=A,+id,, A =A,—iA, . (135)

Notice that the change of variables made in Eq. (124),
does not affect 8S ,: we were able to redefine the fields as
in Eq. (124) and introduce the above-mentioned SU(2)
symmetry because the gauge interaction did not mix left
and right movers. Thus the techniques that follow, for
the computation of &, cannot be readily applied to the
problem where the interaction mixes right and left
movers.

Next we use Abelian bosonization®® for the Fermion bi-
linears in Eq. (134), $hig;=id 46" and ¢y, ;
=—i9,6', to obtain

8SA=%lfd2r S (4,869~ 48,671, (136)

j==1

Here 6Y'=60Y'+ 6, where j ==1, denote positive and
negative frequency parts, and we have used the fact that
left (right) fields depend only on z (z*). Integrating by
parts and using B =0,4,—3,4,=(—i[(3/0z*)A,
—(d/9z) Ag ], after introducing replicas a=1, ...,n and
averaging over the Gaussian disorder of the magnetic
field in the Coulomb gauge,*® we obtain

_284 093 3

B(r)B(r,)= (137)
B(r)B(r)=——"7- =~

6(2)(1'1 '—rz)

(the overbar denotes the disorder average), and from Eq.
(136),
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S S 6w

exp{dS, 4} =exp [ifder(r)
a=1 j==%1

A,
=exp{—= [ d*
P | 277.2 f

The full action describing the random system is obtained
by replicating the S, and &S, parts in Eq. (133) as well.
We denote the full replicated action by

S,=S,,+8S,,+8S, , . (140)

The effect of the random-vector-potential term can be
taken into account exactly by a quadratic transformation
(see, e.g., Ref. 37). To this end it is easiest to consider the
(1+1) Hamiltonian, corresponding to the free replicated
action S, . This amounts to considering the x coordinate
as space and the y coordinate as the imaginary time of a
one-dimensional quantum system. This Hamiltonian is
(see, e.g., Ref. 36)

e | d . d
H0=(1/21r)f_w ViV~ PRI Vr,

=Hg +Hog (141)

Clearly this Hamiltonian is invariant under
U(1)XSU(2n) transformations of L and R fermions,
where U(1) describes multiplication by a phase. It is well
known**~#? that it is possible to write it in terms of the
Noether currents that generate these symmetries*
(Sugawara construction®?).

Explicitly, these Noether currents have a simple form
in terms of the fermionic variables:

T (D) =PFpy o, U(1), charge ,
I (2)=¢F(T) . g, SU(2n), spin

(142)
(143)

[T are (2n)*—1 generator matrices of SU(2n)], and simi-
lar expressions for the right-moving components. The
Fourier modes of these currents satisfy the well-known
Kac-Moody commutation relations.*’ SU(2n) has a sub-
group SU(2), which transforms only the j ==*1 frequency
indices, but does not act on the replica indices a,B.
Therefore, the Noether current J associated with this
SU(2) subgroup is a particular linear combination of the
Noether currents I;(z) of Eq. (143). In terms of fer-
mions, it takes on the form

I (V=190 iy, o, SU2), spin, (144)

which can be seen by applying Noether’s theorem to the
(Lagrangian) action corresponding to Eq. (141).

Straightforward algebra, using Wick’s theorem, shows
that (see, e.g., Ref. 44)

Hy=( 1/21r)f_°°w ﬁJLJL + EIITI—IL-IL +(L<R) | .

(145)

d ; 3 .
3072 | | =3 687 (2)
az GE: L oz* ﬂzj L
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(138)

} . (139)

r

The first term describes a Luttinger liquid,3* the second a
critical SU(2n) spin chain,*” and the two terms commute.
It is important to realize that this Hamiltonian describes
the same theory as Eq. (141), and therefore the replica
limit n —0 does not introduce ill-defined expressions.**

Since the Hamiltonian corresponding to S, 4 takes the
form

AA
H,=— |dxJ Jy , (146)
A 272 f LYR

it can be incorporated into the U(1) charge part of H, by
a canonical transformation:**3” Defining

'7L . cosh(d) sinh(d) | [/
Te | = |sinh(9) cosh(d) | |Ug | (147)
we obtain
1 4nA ,
4_n JLJL+JRJR+TJLJR
=L 1 77 4771, (148
4n cosh(2¢) "LTL TTRIR D>
where
4nA 4
2tanh(23)=— (149)
In the limit n — 0 this becomes
nA , 5
d= [1+0(n")]. (150)

The effect of the canonical transformation on the fer-
mion fields is as follows: The fermion can be thought to
be made out of a charge part 6 and a spinon field part gj,.
Explicitly we have*®41:4

—i6, /V2n 0, /Vn 44

gL,ja’ 1/}%’ <e ng )
—i0g V2 44
g}aj ’

VU aj <€ (151)

i /V'2n -
TR g PR e (152)
where T denotes that the corresponding field transforms
in the complex-conjugate representation of the unitary
group. These equations reflect the separation of charge
and spin degrees of freedom in Eq. (141). (The correla-
tion functions of the spinon fields are discussed in Ref.
41.)
The charge boson is related to the charge current by*!

¢R,aj —e

JL<z>z(~i>\/E%9L(z) , (153)
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Je(2)=iVZn Ea—*eR(z*), (154)
z
and a similar relation for tilde variables.*’
The transformation of the fermion fields under the
canonical transformation follows from Eq. (147):

oL cosh(#) —sinh(s) | [Oc
0 |~ |—sinh(3) cosh(8) | |g, | - (153
Inserting these expressions into Eq. (152), and using
<eip§L(z)e —ip@L(0)> o l/sz (156)

(and a similar expression for right movers) permits us to
compute all Green’s functions of the fermion fields.

We remark that the prefactor cosh ™ %(23)=1+0(n?)
in Eq. (148) corresponds to a change of the Fermi veloci-
ty of the charge field 0, while there is no change of the
Fermi velocity of the spinon fields. However, from now
on we will replace cosh™%(2¢#) by =1: This does not
modify our conclusions*® in the replica limit n —0, since
the dziﬂ'erence corresponds to a term in the action of order
O(n”).

Let us pause for a moment to determine the scaling di-
mension of the operator coupling to the frequency, w, in
the replicated theory. In fact, we may consider the more
general operator, which reads, using Eqgs. (151), (152), and
(155),

Vil jo=exp{ —ie "7[0, +Oy ]}(gyBgL,ja) .

This couples to the Matsubara frequency, when traced
over all indices. The g fields are not affected by the
canonical transformation, and therefore their scaling di-
mensions remains unchanged. From Egs. (152) and (156)
we find that the charge part has suffered a change in scal-
ing dimension of (1/2n)[e "2?—1], as can be seen by
computing the two-point function of Eq. (157), using Egs.
(156) and (151) and (152). Its total scaling dimension (be-
ing equal to 1 without disorder) is therefore

(157)

x=1— L [1—e2], (158)

2n
which is always smaller than 1, since by Eq. (149) 4>0
for nonzero disorder. Thus the operator becomes more
relevant for nonzero disorder A , (for arbitrary number n
of replicas). In particular, from Eq. (149) we obtain

x—>1—A,/7 (159)
in the replica limit » —0.

Notice that the discussion just outlined describes one-
particle properties, when SU(2n) is replaced by SU(n).
All results obtained in Sec. VIB can be recovered, using
this non-Abelian formalism.

2. Correlation length exponent of the Dirac mass

A constant Dirac mass M enters the two-particle ac-
tion in the form _‘M['Ezlh,j""ﬁ_'/’k,j]’ as can be seen
from Egs. (47) and (109), using the standard basis of Pauli
matrices.

It thus acquires, after the change of variables in Eq.
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(124), the form —2M®* [see Eq. (128)]. This operator
has the same scaling dimension as the operator in Eq.
(157), along the fixed line. Therefore, the scaling dimen-
sion of M is the same as the scaling dimension of the
Matsubara frequency o, Eq. (159). The correlation
length introduced by a constant Dirac mass into one- and
two-particle Green’s functions therefore diverges with
the same exponent v given in Eq. (122). This is quite
different from conventional localization, where the one-
particle properties remain noncritical.

We remark that this exponent v seems to violate, at
first sight, the inequality of Chayes et al.** However, the
exponent v considered by Chayes et al. refers to a situa-
tion where one tunes through the transition of the ran-
dom system by varying the probability distribution of dis-
order. This is different from the situation discussed here,
where our exponent v arises from tuning through the
transition by varying M, while the distribution for the
random vector potential is kept fixed. The inequality
therefore does not apply to the exponent v we are consid-
ering.®®

3. Exact computation of G ,,
along the random vector potential fixed line

So far we have solved the random-vector-potential
model along its critical line. Next we will consider a
nonzero frequency w, which is a massive perturbation off
this fixed line: We consider the replicated theory with
random vector potential [Eqs. (148) and (145)] for an in-
teger number 7 of replicas. We add the frequency pertur-
bation

=—; |
H,=—i| - Jax® (160)
to the Hamiltonian of this replicated theory, where
(b:{l;kalpl‘,ja—d_)]lzalp&ja ’ (161)

as discussed in Eq. (125). In particular, we wish to com-
pute [see Egs. (132) and (56)]

2
— __92 . 2 (0] 2 2 x X
0= lim = | = Ja¥ r(@¥0)0%r)),  (162)
for nonzero w, where
T OF - a*
=Y YL +¥L 7 Yn (163)

(all j == indices are contracted against the Pauli matrix,
and all replica indices are contracted against each other).
For this calculation we will use the modified action,
where the charge velocity cosh™%(24) is replaced by =1.
As discussed above, this does not modify our conclusions
in the replica limit n —0.

It is remarkable that an exact expression can be ob-
tained for this integral. That this is possible rests on a
general theorem of conformal field theory, the Kac-
Moody sum rule (for a more extensive discussion, see Ref.
51). It exploits the fact that the massive perturbation
does not break the SU(2) symmetry, transforming posi-
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tive into negative frequency fields, present for nonzero
disorder and nonzero frequency » [as can be seen from
Egs. (161), (145), and (146)]. The conservation equation
for the associated SU(2) Noether current allows us to
compute the integral exactly.

We start by outlining the proof of this sum rule. The
Noether current in question is

(164)

which is related to the L and R components of the SU(2)
current in Eq. (144) via

J(0), u=xy,

Jr EJy+in, I =J,—iT, . (165)
It satisfies the conservation equation
9,J,+9,J,=0, (166)
which reads, in terms of L and R components,
d d _
azJR(rH- Py J.(r)=0. (167)

This equation is true, for w zero or not, since the frequen-
cy perturbation does not break SU(2) invariance. When
0=0, Eq. (165) has the form of Eq. (144), and depends
only on z* and z, respectively. Using Eq. (144) and
Wick’s theorem, one can verify that

_nd*n
(z*)?

ab
(Jg(z)Jg(0)>,,,=o=i’%2—/2—,

(JE(z*JE(0)) =0

)

(168)
a=x,y,z

in the absence of the random vector potential. Since, as
we have seen above, the random vector potential affects
only the charge fields, Eq. (168) is also valid at any point
on the fixed line.>

We will consider the z derivative of this current, which
also forms a conserved current, for any w:

a | a |9
azJR(r)]+ a2° [azJL(r)
1

oz
as follows immediately from Eq. (167). The basis of the
following analysis is that a current, being a generator of a
symmetry, cannot become renormalized.’> This means
that even in the perturbed theory »#0, the current still
maintains its scaling dimension =1 (in units of inverse

=0, (169)

fd2,.1...j"12,.'l é-l—

m=1 (Z*_Z,;

where the Kac-Moody Ward identity*' was used. Note
that the right-moving current operator acts in Eq. (175)
as a generator of SU(2) on the right-moving spinon field
contained in ¢ [defined in Eqgs. (161) and (152)], which
transforms as a doublet under SU(2), giving the Pauli ma-
trix in ®*, while it leaves the left-moving spinon field un-
touched.

)((p(rl)...q;.x(rm)...
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spatial distance), and still transforms like e ~7 under ro-
tations (angle ¥ ) of 2D position space. Furthermore it al-
ways transforms as a vector under SU(2). Using these in-
gredients, the Green’s functions of the currents must
have the following form:

F|[In(zz*)
(asz(r)asz(O))m=—l[?f—] , (170)
F,[In(zz*)
(a,J;(r>a,Jg(0)>w=—2[Z32,—] , (171)
F.[In(zz*)
<a,J;(r)a,J§(0)>w=% , (172)

where F;[In(zz*)]=%,[zz*»?*””] and i =1, 2, and 3 are
scaling  functions. Here y=2—x=1+(1/2n)[1
—e 21> 1 for A, >0 [from Eq. (158)], where 9>0 is
given in Eq. (149), is the scaling dimension (in units of in-
verse length) of the perturbation w.

Based on a power counting argument,>* possible since
the current operator maintains its scaling dimension in
the perturbed theory, one can relate the current to the
operator ®*.

Consider the perturbation expansion in terms of o:

2

—iw x
@t

27

a,J;(r)='2—;“’A{”+ (173)

Using the scaling dimension (=2) of the left-hand side,
and the scaling dimension y of w, as well as identical
behavior under spatial and spin rotation of both sides, all
operators multiplying nonlinear powers of » would have
scaling dimensions that do not exist in the spectrum of
the theory.’® Therefore, only the linear term is present.
To find the corresponding operator A7}, consider the
perturbative expansion of the two-point function:

(JR(r)J%(0)),, .
The nth-order term is proportional to

Ja?r, - [dr,(T5*)D(r)) - (r, WE(0)) e -

(174)

(175)

Since this is evaluated in the =0 theory, this has the
simple form*®

®(r, JZ(0)) =0t (176)
|
Taking the derivative 3, of Eq. (176), we obtain
azfdzrmO[(z -z, Nz*—z%)—a?]
L%z, ,2%), (77

(z*—zy)
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where O is the step function, providing a rotationally in-
variant short-distance cutoff. This gives a § function
upon differentiation such that Eq. (177) becomes

T®*(z,z*) . (178)

Since the cutoff @ was just a tool to do the integral, it may
now be set to zero. Putting this result into Eqgs. (174),
(175), and (176), we find

(3,J5(0)JE(0)) = _2;“’ (@Xr)JE(0)), . (179)
This identifies the operator 4{},in Eq. (173), i.e,,
—iw
dIf=m |- = |o. (180)

Note that ®* is the only operator in the theory with this
scaling dimension and the required behavior under spa-
tial and spin rotations.

Equation (180) relates the scaling function F; to the
Green’s function occurring in &,,. Next we use the con-
servation law Eq. (169), providing a relation between Eqgs.

(170) and (171):
F|=3F,—F} (181)

[the prime denotes the derivative with respect to In(zz*)],
and a relation between Egs. (171) and (172):

(—1)F,+F,=2F,—F} . (182)
Defining
K [In(zz*)]=F,—2F,—3F; , (183)
Egs. (181) and (182) give
K'=—6F, . (184)
Using Eq. (172),
1<[12]—1<[11]=(—6)[112(1[111(”*)]1?3 (185)

_ explly) o2 x x
_(—6)fexp(11)d(r 1723, J(1)d,J5(0)),

2
exp(l,)
= 2 24,2 X, X
6 7 [ s 4 IPH@HDRH0)),,

o
21
(186)

where Eq. (180) was used. Now let /;— —co: This de-
scribes the short-distance fixed point, which is the
random-vector-potential fixed line which we know in de-
tail. From Eq. (168) and the fact that the R-L Green’s
functions of a current vanish at a fixed point (see, e.g.,
Ref. 37), we obtain

Fi[— 0 ]=Fy[—]=0, F,[—w]=—3n. (187)

Then let [,—+ w: This describes the long-distance
strong-coupling fixed point, which has no gapless critical
excitations, implying

Fiy[+w]=F,[+o]=F[+®~]=0. (188)
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Using this in Eq. (186) finally gives

5. =limZ
**  ao0n

[0

2
2, ,2 X, X —
oo | Jair e men),=1/7

(units of e2/h) . (189)

This shows that &, is a constant all along the
random-vector-potential critical line, having the same
value as for the nonrandom model [Eq. (59)].

Let us recall that it was possible to calculate &,, be-
cause it was expressed as an integral of an exact
differential in Eqgs. (185) and (186) due to the SU(2) sym-
metry of the theory, even for nonzero frequency w. At
one limit of integration, the integrand was given by the
short-distance limit, the fixed line (which we know in de-
tail), while the other end was given by the strong-
coupling fixed point at large @ which has no low-energy
excitations that could contribute to F; and K. Thus the
value of the integral was determined by the SU(2) symme-
try and the two fixed points.

VII. RANDOM SCALAR POTENTIAL V

Here we consider briefly the case where the only ran-
domness present is a random scalar potential V. Both
random Dirac mass and random vector potentials are set
to zero.

For small random scalar potential ¥ we can use direct-
ly the perturbative results obtained for the random Dirac
mass case in Sec. V, as follows. First recall that these two

terms enter the Lagrangian as
L=yop+Mo,+V){ . (190)

Consider now putting ¥ =0. Upon making the change

J——io, (191)
(with v unchanged) we find that
Lo Xp+iM)y . (192)

A spatial rotation by 90° then maps the problem with
nonzero M to one with a purely imaginary V. Upon re-
plicating and ensemble averaging, this corresponds to a
negative disorder strength, A,,. Equivalently, a positive
A, problem maps on to the negative A,, problem. Since
the latter was a marginal coupling, the flow will now be
away from the origin, rather than toward it. In other
words, a random V drives us to some strong-coupling re-
gime. We do not expect a fixed point in the single-
particle theory. Instead we expect the generation of a
nonzero density of states. If the two-particle properties
are calculated using T o frequencies, a sigma model in the
symplectic ensemble should emerge due to the time-
reversal invariance of the random V model for every
member of the ensemble.

VIIL. GLOBAL PHASE DIAGRAM

In the previous three sections we have considered the
model separately in the presence of the three types of dis-
order introduced in Sec. IV. Generically, for a real phys-
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ical system of electrons, one would expect all three types
of disorder to be simultaneously present. Here we discuss
briefly the expected nature of the quantum Hall transi-
tion in this general case.

To this end consider first the case where both a random
scalar potential V and a random Dirac mass M are simul-
taneously present. As discussed in Sec. V, within the
edge state picture the motion along the edges (at zero en-
ergy) will now be accompanied by random phase factors
due to the random scalar potential V. Similarly, if we
add in the random-vector-potential term, edge states
which close upon themselves will pick up a random-phase
factor from the enclosed magnetic flux. In either case,
the model then becomes equivalent to the Chalker-
Coddington model,'®!” and one expects a generic Hall
transition with v~1. Perturbative RG calculations for
small Ay, Ay, and A, support this conclusion, since
when all three disorder strengths are nonzero the flows
are away from the fixed line (A, line) and the zero-
disorder fixed point. Unfortunately, since the RG flows
carry one into an uncontrolled strong-coupling regime,
we have so far not been able to access the generic critical
point analytically.

In view of the above results we propose the global
phase diagram in Fig. 9. The main features are (1) A
fixed line at Ay, =A, =0, which is unstable to both A,,
and Ay; (2) a 2d Ising fixed point at the origin, stable
when only A,, is nonzero; (3) a fixed point on the A, axis
which is probably in the universality class of the symplec-
tic nonlinear sigma model; and (4) the generic, and so far
unaccessible, quantum Hall fixed point which presumably
attracts all the other flows.

Aa

e GIQHE

y A
¢ M

Ay

FIG. 9. Conjectured global flow diagram. The fixed line on
the A 4 axis is unstable to both Ay, and A,. The fixed point at
the origin is stable along the A,, axis, but unstable along the A,
axis. The perturbatively inaccessible fixed point on the A, axis
is argued to be unstable to either Ay, or A ,. In the text we ar-
gue that all other flows terminate at a strong coupling GIQHE
(generic integer quantum Hall effect) fixed point.
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IX. SUMMARY AND OUTLOOK

A class of models was introduced and studied which
exhibits an IQHE transition as a control parameter is
varied. The model consists of nonrelativistic (spinless)
fermions hopping on a square lattice, with nearest-
neighbor hopping ¢ =1, diagonal hopping ¢’, a staggered
potential (—1)* 74, and half a unit of magnetic flux per
square plaquette. An effective low-energy theory ap-
propriate near the quantum Hall transition was derived,
and expressed in terms of two free Dirac fields (whose
masses differed by the staggering potential). At zero en-
ergy (E =0), when the mass M of one of the Dirac fields
changes, its contribution to the Hall conductivity o,,
jumps from —1 to L in units of e?/h. The heavier Dirac
particle, making a constant contribution of } to o),
leads to a jump in the total Oy from O to 1, so that the
model exhibits an integer Hall transition. In the absence
of disorder, the phase diagram in the M —E plane was
determined explicitly. The correlation length exponent
v=1 and the longitudinal conductivity o,, = /8 at the
transition were computed. In addition, frequency- and
energy-dependent responses were computed.

The free massless Dirac fixed point describing the tran-
sition in the pure system is particle-hole, parity, and
time-reversal invariant. The Dirac mass term, which
serves as the control parameter to tune through the tran-
sition, breaks both parity and time-reversal invariances,
very much like 06— in the nonlinear-sigma-model treat-
ment of Levine, Libby, and Pruisken.® In this respect,
the Dirac mass term plays the role of energy in the usual
treatment of the IQHE.

Since our lattice model already exhibits an IQHE tran-
sition even with no disorder present, it serves as a very
natural starting point for considering the IQHE transi-
tion in disordered systems. We considered disorder in
the Dirac mass M, in a random scalar potential ¥, and in
a random vector potential A. Table I summarizes the
symmetries which the free massless Dirac Hamiltonian as
well as these three random potentials preserve in each
given member of the ensemble.

We found that with a spatially varying and random
Dirac mass M (x,y), the model exhibits edge states with
wave functions confined to the contours M (x,y)=0. In
this case, with only random M present, the IQHE transi-
tion was naturally interpreted in terms of quantum per-
colation of these isolated edge states. The corresponding
Chalker-Coddington model,'®!” however, has random
tunneling amplitudes but no random phases. For this
reason, the model does not exhibit the generic quantum
Hall transition with v~ I, but rather was found to give
v=1. This was established by exploiting the equivalence
between a Dirac field with a random mass and an Ising
model with bond dilution. In the latter case, disorder is
known to be marginally irrelevant, implying the same for
the IQHE transition with random M. Thus at this transi-
tion v=1, with logarithmic corrections coming from the
marginally irrelevant disorder. More generally all ex-
ponents and transport properties at the transition are
those of the pure system, up to logarithmically vanishing
corrections. Recently Lee has analyzed numerically a
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Chalker-Coddington model in which the random phases
are dropped,?’ retaining only random amplitudes. In this
case he finds an exponent v~1. Our analysis strongly
suggests that this transition is in the universality class of
the 2d Ising model.

The case with only a random scalar potential V present
was mapped onto a random Dirac mass problem with
purely imaginary mass. The marginal irrelevance of the
variance of a random, real M, then implies immediately
the marginal relevance of a weak random scalar poten-
tial. It was argued that in this case the transition at
strong coupling would be described by a symplectic non-
linear sigma model.

The case in which the only randomness present was in
the vector potential had many remarkable properties.

(i) Every realization of random A led to a particle-hole
symmetric spectrum.

(ii) The exact zero-energy wave function was found for
every realization.

(iii) The wave function was shown to be extended, and
its multifractal scaling behavior was characterized fully
by the explicit calculation of its f (@) spectrum.

(iv) Ensemble averaged properties were found to be de-
scribed by a fixed line, parametrized by the strength of
the random vector potential.

(v) The density of states was found to exhibit a power-
law dependence on energy near E =0, with an exponent
which varies continuously upon moving along the fixed
line.

(vi) The diagonal conductivity was calculated using a
hidden SU(2) symmetry and a conformal sum rule, and
found to be constant along the fixed line.

Recently, a model exhibiting an IQHE transition in the
presence of random potentials which respect particle-hole
symmetry in every realization of disorder was studied by
Gade.*® She found a vanishing RG S function, signalling
a fixed point. The density of states was found to be diver-
gent. On universality grounds we may identify her fixed
point with a point on our random-vector-potential fixed
line. Indeed, in a 1/N expansion on a related model be-
lieved to be in the same universality class, Hikami, Shirai,
and Wegner?* found a f function vanishing in 1/N and a
longitudinal conductivity &,, which was identical to our
result of (1/m)e?/h in Eq. (189). Furthermore their 1/N
expansion indicated a diverging density of states. This
would seem to indicate that their model corresponds to
one point on our fixed line with A , /7> 1 [see Egs. (98)
and (100)].

It is instructive also to consider the related numerical
work of Refs. 60—62, where nonrelativistic fermions on a
lattice were studied in the presence of a random magnetic
flux per plaquette, uniformly distributed between O and
27. This problem also has a particle-hole symmetry at
zero energy in each realization of the disorder. Their nu-
merical analysis for this model revealed evidence for ex-
tended states in a range of energies centered around zero.
In our model with a random vector potential, we also
found an extended state at E =M =0.5

It would be interesting to extract the value of 7,, in
their model to compare it to the universal value of
T,,=1/m that we have obtained here. Furthermore,
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since the density of states is finite at one particular point
A 4= on the fixed line in our model, the conductivity as
obtained from the Kubo formula should also equal
o,x=1/7 at that point. We also remark that at this
point on our fixed line the lowest participation ratio |¥|*
[Eq. (82)] scales like 1/N* (N is the system size), where
©=1, in reasonable agreement with the behavior ob-
served numerically in Ref. 64. However, it should be
borne in mind that in our model the distribution of mag-
netic flux per plaquette is peaked around 7 and not uni-
formly distributed in the interval [0,27].

Finally, our analysis revealed that in the generic disor-
dered case, in which all three types of disorder are simul-
taneously present, the RG flows take us to a strong-
coupling regime. Using an edge-state picture we argued
that this strong-coupling fixed point was correctly de-
scribed in terms of the Chalker-Coddington model and
should thus have v~%. Unfortunately, we have been un-
able so far to access this generic quantum Hall fixed point
analytically.

In conclusion, we have found a family of IQHE transi-
tions with interesting critical behavior. It would be most
interesting to see if they could be realized experimentally.
In Sec. V we proposed one such scheme for doing this.
We trust that our experimental colleagues can readily im-
prove upon this.

ACKNOWLEDGMENTS

AWWL, MPAF, and R.S. thank the Aspen
Center for Physics where much of this work was carried
out. R.S. was supported in part by a grant from the
Donors of the Petroleum Research Fund and by Grant
No. DMR 9120525 from the National Science Founda-
tion. This research was supported in part by the Nation-
al Science Foundation under Grant No. PHY89-04035.
A.W.W.L. thanks F.D.M. Haldane, J. Chalker, and B.
Huckestein for interesting discussions, and A. P. Arovas,
S. Hikami, and R. Gade for providing copies of their un-
published work.

APPENDIX

1. Transport properties of pure system

In this appendix we derive the expressions for o,, and
o,, quoted in Sec. III. However, we follow a different
and more powerful approach than the one used in Sec.
II B. Specifically, we will use a vector potential, rather
than the scalar potential, to apply the electric field. This
means that we have to subtract the diamagnetic contribu-
tion.

Let us first make some notational changes to introduce
a three-dimensional formalism, which will facilitate the
evaluation of integrals. Going back to the action density
of Sec. II B,

Wiw—o-p—Ma,), (A1)
and making the change
v —io,), (A2)
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we obtain a propagator

1
= , (A3)
G 00, —p,0,+p,0,+iM

which becomes, upon making the change p,— —p,,
py,— P (a 90" rotation),
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Using these notations we obtain, from the Kubo for-
mula,

oo, (o,M)
= [d% dr((y $)r, )Py, $)(0,0))[e T*—1]

-1 (A4)
p—m _ [ |Telntdtmly (pm])
where (271)3 [(p +@*—m*][p*~m?]
m=—iM , (A5)
B=YPus BH=X),Z, (A6) — {same with ¢ =0} (A10)
Pu=(pxsp,,®) , (A7)  where ¢=(0,0,0). Here we  have  used
(F+m)p—m)=p*—m? Next, we use the identities®
Yu=(04,0,,0,). (A8)
) Tr ,1=25,, Tr JYol=2i€,,, (A11)
Corresponding to the propagator in Eq. (A4) is an ac- (77 1528, [y 1= 260
tion density Trv,Y ¥ ¥ o 1=28,,8,0—28,,8,6 128,,6,, (A12)
YP—m . (A9) This leads to
|
(0, M)= f d’p (ZP“pv—Suvp2)+(p“q,,+q#p,,)—8,wqp —Melwpqp—M28m,
OO (27 [(p +q)*+M?][p*+M"]
— {same with ¢ =0} (A13)
[
For the conductivities o, and o ,,, we have flzl= 1
= i fiz1= fo [1+Zs(1—s)]"’-
wvE(1,2}, ¢=(0,0,0). (A14)
Consequently, the third term in the numerator above .is =(2/V'Z )arcsin m (A18)
always absent for these components of o,,. We obtain
the following expressions. The last equality follows, e.g., from Eq. (2.261) in Ref. 69.
(i): oy, We observe that
d’p —Mo .
o,,=(2/w) | ds Zl=1 if Z—0
» fo f (2m)} [p2+2pys0+(sw?+M?)]? f1z] -
~(r/VZ) asZ—>+ o . (A19)
(A15)
(the subtraction from the diamagnetic term vanishes in . .
. . In conclusion, we have obtained
thx§7 case, and we have introduced a Feynman parame-
ter®’ s to rewrite the denominator). After a shift of the — —sgn(M) 2
integration variable,®® p, —»p; —sw, the integral over |p| (@, M) 47 SUo/M)] . (420
(absolute value of the 3D vector p) is elementary: i): o
1 1
05 =(—M/4m) [ ‘ds —p}—wp;—M?
xy 1T fO [M2+(D2S(1“S)]1/2 _(2/ﬂ))f P3—@p3 M
-M " (217)3 [(p +q+M?*][p*+M?]
(1/4w) M| flo/M)*], (A16) 1p24 M2 o
where we have introduced the scaling function [p2+M?2? |’ (
Z=(o/M)?, (A17)  which may be rewritten as
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3 | —Pi—ops—M*+1{(p+9’+ M 2

L+L=0/) [S2 |23 20— S T4 2_M (A22)
(2m) [(p+g)r+M][p-+M*] 3 [p*+M*]
The first term I, now converges’ for large values of p, since it can be expressed as

3y (p2=3p})—awp;+(w?—2M?)
L=(2/3) [ 42 P PP T8 (A23)
(2m) [(p+q)+M)[p-+M*]
Upon introducing a Feynman parameter s, as above, and a subsequent shift p;—(p; —sw), we obtain
(p2—3p3)—pi0(ds — 1)+ o*[(1—s)+2s(1—s)]—2M?
1,=0/3) [ ds [ 4 PP [ ) . (a24)

2 )3

[pt+w’s(1—s)+M?}?

All p-dependent terms in the numerator vanish due to rotational invariance. Scaling out M?, introducing Z as for

0,,, and doing the (elementary) integral over |pl, we obtain

=(1/127r)——1=f1ds Z———(—lj)——+22\/1+2s(l—s)—4——l=+2 (A26)
vZ Yo V1+Zs(1—s) V1+2Zs(1—s)

The integrals J, and J, are elementary [using, e.g., Egs.
(2.264/2) and (2.262/1), respectively, of Ref. 69], and J,
is discussed in 0,,,. This gives the final form

1/477)— —f[ J+(1—£[Z)
) (A27)

0. (2Z)=

»

Z =

’

o
M
where f[Z] is the scaling function introduced for .
We note that
0,,(0)=0, (A28)
(A29)

O l0)=% .

2. Multifractal properties of the zero-energy wave function
in a random vector potential

Consider

#fezqqxx)dzx
P =
q [fequx)dzx]q ’

(A30)

f

where ( - - - ) stands for the average over the distribution
of ® given by Eq. (79). We now use the replica trick,
multiplying the numerator and denominator by

[ [e*®**d?x]" ~9 with n =0. This leads to

1 < 299 )"_q
P =— (%
q L2 1131

2P(x; )dZ d2 . dzxn_q> .

(A31)
The average over the scalar field distribution gives
<e 2g(x) "ﬁq P ’>
j=1

=(L/ay"®™(L /a)>’™"~9f (x,/L), (A32)

where f is a function of the x’s divided by the system size
L, which serves as the cutoff. The L dependence of P,
now follows readily:

ldx” Xn—g 242(n—gq)
Py~ sz L2 (L) f

X(L /@)™a**n =0 (x /L)| _

~L~ 2g +( A/‘n’)q(q-l)

(A33)
(A34)

which concludes the proof.
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