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The rich low energy structure at the edge of fractional quantum Hall fluids provides an ideal arena
for the study of strongly correlated low dimensional systems. The chiral Luttinger liquid model
offers a general and powerful framework for describing these edge excitations. Here we review recent
theoretical progress, focusing on edge state transport. The chiral Luttinger model is first introduced
for the integer quantum Hall state at filling ν = 1 and the Laughlin states at filling ν = 1/m (m
odd), where there is only a single edge mode. For the fractional quantum Hall effect this edge
mode is a strongly correlated Luttinger liquid, which leads to a number of striking predictions for
the transport behavior through a point contact. For ν = 1/3 the point contact conductance is
predicted to vanish as T 4 at low temperatures, whereas for resonant tunneling a universal lineshape
with width scaling to zero as T 2/3 is predicted. A recent experiment by Milliken, Umbach and
Webb gives evidence for this striking behavior. For hierarchical quantum Hall fluids, the edge is
more complicated, consisting of multiple modes. In this case impurity scattering at the edge is
argued to play an essential role, allowing the different modes to equilibrate with one another. In
the absence of such equilibration the Hall conductance can be non universal. We show that edge
impurity scattering leads to a new disorder dominated phase. The low energy physics in this phase is
described by a new, exactly soluble, fixed point. Various experimental predictions and implications
which follow from this exact solution are described in detail.

PACS numbers: 72.10.-d 73.20.Dx

I. INTRODUCTION

The most striking feature of the quantum Hall ef-
fect is the remarkably precise quantization of the Hall
conductance1. It was in 1980 that von Klitzing2 ob-
served unanticipated plateaus in the Hall conductance
of a two-dimensional electron gas, precisely quantized at
integer multiples of the fundamental unit, e2/h. This
spectacular result was so surprising that a nobel prize
was awarded to von Klitzing for his discovery of the inte-
ger quantum Hall effect (IQHE) within five years of the
discovery. Only two years later, in 1982, the fractional
quantum Hall effect was discovered3.

Already in 1981 Laughlin proposed an appealing and
general explanation of the precise quantization in the
IQHE4. Laughlin’s argument, as elaborated on by
Halperin5, focussed on an annulus which was threaded by
a time dependent magnetic flux - a Corbino disk geome-
try. Each time the flux was increased by one flux quan-
tum, an electron was argued to be adiabatically trans-
ferred from the inside to the outside edge of the annu-
lus. This resulted in a flow of electrical current propor-
tional to the electro-motive driving force, with a precisely
quantized coefficient of proportionality - the Hall conduc-
tance. While theoretically appealing the connection with
experimental transport measurements was somewhat un-
clear. In particular, the experimental samples were not
multi-connected, but rather had a single outer edge, to
which multiple current and voltage probes were attached.

The important current carrying edge states, elucidated
by Halperin5, could then carry the transport current be-
tween adjacent contacts along the edge. In contrast to
the Corbino-disk geometry, a bulk current was, at least
in principle, unnecessary.

Laughlin’s wave function6 for the FQHE was the crit-
ical step in identifying the origin of plateaus with frac-
tional Hall conductance. At filling ν = 1/m, for odd
integer m, the wave function described a featureless fluid
with a gap to all excitations. The lowest lying excita-
tions were shown to be fractionally charged quasiparti-
cles, with charge νe. Within a Corbino-disk geometry,
the quantized Hall conductance could be understood as
a discrete transfer of such quasiparticles between the in-
ner and outer edges, one for each magnetic flux quan-
tum threading the bore of the disk. But again, there
were questions of relevance to experimental geometries.
Since there was an energy gap for quasiparticle creation,
should one really expect the current to be carried by
them? Also, as in the IQHE, there were nagging ques-
tions about the role of disorder. Impurity scattering was
believed to be important for giving the Hall plateaus an
observable width, but was also expected to destroy the
incompressibility, and lead to low-lying, possibly local-
ized, bulk excitations. These, however, had better not
destroy the precise quantization!

The difficulties in relating the microscopic Laughlin
wave function to the measured quantized conductance,
were reminiscent of the situation in superconductivity
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soon after BCS theory. While leading to many verifi-
able microscopic predictions, the connection of the BCS
wave function to the macroscopic behavior of supercon-
ductors - the Meissner effect and zero resistance even with
impurity scattering - was not altogether apparent. In
fact, the macroscopic behavior of superconductors follows
more directly from effective theories, such as Ginzburg-
Landau theory. Guided by this a number of theorists
sought to develop a more phenomenological approach to
the FQHE. The key step was undertaken by Girvin and
MacDonald7 who emphasized a striking analogy between
Laughlin’s wave function and superfluidity. As earlier
emphasized by Halperin8, in Laughlin’s ν = 1/3 wave
function three vortices, or zeroes in the wave function,
sit on each electron. Such binding of electrons to vor-
tices was believed to be a universal feature of the incom-
pressible Hall fluid. Girvin and MacDonald pointed out
that the electron/vortex composite, when viewed as a
new “particle”, is not a Fermion, but rather has bosonic
statistics. Moreover, these composite boson particles
were shown to be bose condensed in Laughlins state, ex-
hibiting (algebraic) off-diagonal long-ranged order, much
as in a conventional superfluid. This appealing picture
was placed on a firm theoretical foundation by Zhang
Hanson and Kivelson9 and Read10, who developed a full-
blown Ginzburg-Landau like description of the quantum
Hall fluid. The superfluidity accounted naturally for the
dissipationless flow in the QHE, and the bound vortices
dragged along by the current generated a quantized Hall
voltage. However, these effective theories did not initially
address the question of realistic finite geometries, and so
the relation with the quantized conductance measured in
transport experiments remained unclear.

During this period of intense interest in effective the-
ories of the FQHE, Buttiker was re-considering the role
of edge states in the IQHE11. He emphasized that ex-
periments with complicated geometries involving mul-
tiple current and voltage probes, could be easily inter-
preted in terms of transmission and reflection of edge
states. In Landauer transport theory12, generalized by
Büttiker13 to multiple contacts, the conductance is ex-
pressed in terms of the transmission of electron waves
incident from the leads at the Fermi energy. Within this
framework, for a fluid of non-interacting electrons within
an IQHE state, all of the transport current is confined
to flow along the edges of the sample. This approach
offered a simple and unifying picture of numerous trans-
port experiments in the IQHE. But being a theory for
non-interacting electrons, it was unclear how to general-
ize the edge-state approach to the FQHE. Following early
work by Chang14, Beenakker15 and MacDonald16, a pio-
neering step was made by Wen, who developed a general
theory for the edge excitations in the FQHE17. This the-
ory rested firmly on the Ginzburg-Landau description of
the bulk FQHE.

In this paper we offer an overview of the edge-state
approach to transport in the FQHE. While providing a
simple and direct understanding of the quantized Hall

plateaus, the edge excitations of a fractional Hall fluid
are extremely interesting in their own right. As empha-
sized by Wen17, the FQHE edge excitations cannot be
described in terms of non-interacting electrons. Rather,
they must be thought of as a fluid of fractionally charged
quasiparticle excitations. For the Laughlin sequence of
fractions, ν = 1/m, the edge can be viewed as a gas of
Laughlin quasiparticles, which is liberated and free to
move along the sample edge. Wen emphasized the close
analogy between these edge excitations, and the low en-
ergy excitations in models of interacting one-dimensional
(1d) electron gases.

It was over a quarter of a century earlier that pio-
neering theoretical work first revealed the profound ef-
fects that electron interactions can have on a 1d elec-
tron gas18–20. Even weak interactions were found to de-
stablize a Fermi-liquid description of the 1d gas. Instead,
the 1d gas exhibited a novel phase, termed a “Luttinger
liquid” some years later by Haldane21. In a Luttinger
liquid the low energy excitations are not weakly dressed
electrons, but are collective density waves, moving to the
right and left without scattering. Wen emphasized that
the edge excitations in a FQHE state at ν = 1/m, which
move only in one direction (say right), are formally equiv-
alent to the right moving half of a Luttinger liquid. He
coined the term “chiral Luttinger liquid” to describe such
edge excitations17. The Luttinger liquid has remained
primarily a theoretical curiosity, since even with mod-
ern lithographic techniques it is very difficult to fabricate
clean one-channel quantum wires. However, the current
carrying FQHE edge states, which are unaffected by dis-
order (see below) provide a unique laboratory for the
study of “ideal” Luttinger liquids.

For the Laughlin sequence ν = 1/m, the FQHE edge
is predicted to consist of a single branch chiral Lut-
tinger liquid17. In this case, the IQHE edge-state trans-
port theory can be readily generalized. The quanti-
zation of the conductance follows readily, even in the
presence of disorder. In the hierarchical FQHE states,
multiple edge excitations are predicted - in some cases
with edge modes moving in both directions. For exam-
ple, for ν = 2/3 two oppositely moving edge modes are
predicted16,17,22. This disagrees, however, with a recent
time domain experiment24 in which only a single propa-
gating mode was observed. Moreover, in these cases, the
edge state theory predicts a Hall conductance which is
neither universal nor quantized23! The conductance de-
pends on microscopic details, such as the strength of the
electron interaction between the two edge modes. This
is clearly an unsatisfactory state of affairs.

For such hierarchical states it is absolutely essential
to incorporate impurity scattering at the edge. Edge
impurity-scattering transfers charge between the chan-
nels, as depicted in Fig. 1. When the channels move in
the same direction (Fig. 1a), interchannel charge transfer
does not affect the net transmission. In contrast, charge
transfer between oppositely moving edge channels (Fig.
1b), modifies the net transmitted edge current and con-
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ductance. As shown below, for ν = 2/3 such impurity
scattering drives an edge phase transition which sepa-
rates a weakly and strongly disordered edge phase. An
exact solution in the disorder dominated phase23, reveals
the existence of two modes: A charge mode which gives
an appropriately quantized Hall conductance, (2/3)e2/h,
and a neutral mode, propagating in the opposite direc-
tion. Since an electron is a superposition of the charge
and neutral modes, it should be possible to excite the
neutral mode by tunneling an electron into the edge.
With suitable time domain experiments it might thus
be possible to directly detect the neutral mode. At fi-
nite temperatures the neutral mode is predicted to de-
cay, with a rate varying as T 2, behavior reminiscent of
a quasiparticle in a Fermi liquid. The exact solution for
the disorder dominated phase of the ν = 2/3 edge, can
be readily generalized to a broad class of FQHE fluids25,
at filling ν = n/(np + 1), with integer n and even integer
p.

Unfortunately, the rich low energy structure at the
edge of FQHE fluids is not readily exposed via bulk trans-
port measurements. Much more revealing are laterally
confined samples, in which different edges of a given sam-
ple are brought into close contact, allowing for inter edge
tunneling. The simplest case is that of a single point con-
tact or constriction, in an otherwise bulk Hall fluid, as
depicted in Fig. 2. In this case, backscattering between
edge states on the top and bottom edges can occur via
tunneling at the point contact. The magnitude of this
backscattering can be inferred by simply measuring the
conductance, or transmission, through the point contact.

For a ν = 1/m Hall fluid, in which each edge has only
one mode, a point contact is in fact isomorphic to a point
scatterer in a one-channel 1d electron gas. Moreover, for
ν = 1 the electron gas is a non-interacting Fermi liquid,
whereas for fractional ν the gas is a Luttinger liquid.
Point contacts in Hall fluids thus provide an ideal arena
to study experimentally the differences between Fermi
and Luttinger liquids. In particular, since the transport
current through the point contact depends on the tun-
neling density of states (DOS) for each edge mode, by
varying the temperature one can effectively use trans-
port to directly extract the energy dependent DOS of
a Luttinger liquid. In striking contrast to the IQHE
where the conductance through the point contact should
go to a constant at low temperatures, the conductance
for a FQHE fluid with ν = 1/m is predicted26,27 to vary
strongly with temperature, vanishing algebraically at low
temperatures, G(T ) ∼ T (2/ν)−2. This can be attributed
to the suppressed tunneling density of states in a Lut-
tinger liquid28. Preliminary evidence for this signature
of a Luttinger liquid has been seen in recent experiments
by Milliken, Umbach and Webb29. In the presence of
two adjacent defects, one has the possibility for resonant
tunneling through an isolated localized state. In con-
trast to resonances in the IQHE, which are expected to
have temperature independent Lorentzian line-widths at
low temperatures, for ν = 1/3 the resonance widths are

predicted27,30 to vanish with temperature as T 2/3. More-
over, at low temperatures the resonance is predicted to
be strongly non-Lorentzian with a completely universal
lineshape. This lineshape has been computed by Monte
Carlo simulations27 and more recently by Bethe Ansatz
methods31, and is in reasonable agreement with measure-
ments by Milliken et. al.29.

The point contact geometry in Fig. 2 should also be
useful as a probe of the composite edge structure of hi-
erarchical Hall fluids. Indeed, the presence of the pre-
dicted neutral modes, at fillings such as ν = 2/3, leads
to a modification in the temperature dependence of the
conductance through the point contact23. Although in-
direct, such an experiment could thus provide evidence
of the exotic neutral edge excitations.

This paper is organized as follows. Section II is devoted
to a brief overview of the chiral Luttinger-liquid edge
state theory for clean IQHE and FQHE edges. In Section
3 we consider the effects of impurity scattering of hier-
archical states which have multiple edge modes, focusing
on the inter-mode equilibration. Transport through a
point contact in the FQHE is discussed in Section 4, as
a probe of Luttinger liquids. Section 5 is devoted to a
brief summary and discussion, emphasizing experimental
implications.

II. EDGE STATES

A. IQHE

Consider first a non-interacting electron gas moving in
two-dimensions and confined by a potential V (y), which
is constant (say zero) for |y| < W/2, where W is the
width of the system, and rises rapidly for larger values of
|y|. A magnetic field of strength B is taken perpendicular
to the x − y plane. In the Landau gauge with vector
potential Ax = By the Hamiltonian takes the form

H =
1

2m
(px +

e

c
By)2 +

1
2m

p2
y + V (y), (2.1)

with momentum pµ = −ih̄∂µ. Being separable eigen-
states can be written

ψ(x, y) =
1
2π

eikxΦ(y) (2.2)

where Φ(y) satisfies

[− h̄2

2m
∂2

y +
1
2
mω2

c (y − y0)2 + V (y)]Φ(y) = EΦ. (2.3)

Here the cyclotron frequency is ωc = eB/mc, and y0 =
k`2, with the magnetic length ` =

√
h̄/mωc. If the con-

fining potential is taken as slowly varying, ∂yV (y) <<
h̄ωc/`, then the potential V (y) in (2.3) can be approxi-
mated by the constant V (y0), and the eigenfunctions are
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then simply harmonic oscillator wave functions, Φn cen-
tered at y0. Thus wavefunctions which satisfy the time
dependent Schrodinger equation take the form,

ψ(x, y, t) =
1
2π

ei(kx−ωkt)Φn(y − kx`2) (2.4)

with energies

h̄ωk = (n +
1
2
)h̄ωc + V (k`2). (2.5)

The eigenstates are plane waves in the x-direction with
dispersion ωk, sketched in Fig. 3.

When the Fermi energy, µ, lies between bulk Landau
levels, the only low lying excitations are at the edges,
where h̄ωk = µ. For one full bulk Landau level, there are
then only two Fermi points, a right moving one which is
confined to the top edge, and a left mover confined to
the bottom edge. The low energy physics is isomorphic
to a one-dimensional non-interacting electron gas, which
likewise has two Fermi points, at ±kF . At low energies it
is legitimate to linearize the spectrum so that the wave
functions take the form ψ ∼ eik(x−vt) with velocity v =
∂ωk/∂k.

The quantization of the Hall conductance in the IQHE
can be very easily understood in terms of edge states, as
emphasized by Büttiker11. Imagine raising the chemical
potential (or Fermi energy) of the “source” electrode by
an amount eV , while keeping the “drain” electrode at
µ. The top edge state, being injected from the source
electrode, will be at higher chemical potential and carry
more current. The additional current can be expressed
as

I = evδn (2.6)

where δn = δk/2π is the change in the (1d) electron
density on the top edge. Since the velocity v = δω/δk
this can be re-written as

I =
e

2π
δωk = GV (2.7)

with a conductance G = e2/h. Notice that the conduc-
tance is independent of the velocity v, depending only on
fundamental constants. More generally, for n-full Lan-
dau levels there will be n edge modes, each contribut-
ing a quantized value, e2/h, to the conductance. The
edge state approach to quantum transport can be suit-
ably generalized to more complicated geometries, with
multiple current and voltage probes11.

An appealing feature of the edge theory of the quan-
tized conductance is the insensitivity to disorder. Im-
purity scattering at the edge cannot degrade the source-
to-drain current, since all of the n edge modes move in
the same direction. The only effect of scattering is an
unimportant forward scattering phase shift. Backscatter-
ing is only possible when the opposite edges are brought
into close proximity, so that inter-edge tunneling becomes

feasible. The quantized conductance is also insensitive
to electron-electron interactions, as we will argue be-
low. For some hierarchical FQHE states multiple edge
modes which move in both directions on each edge are
predicted. In these cases impurity scattering, rather than
being unimportant, is in fact essential in order to explain
the observed quantized conductance.

Before generalizing to FQHE edge states, it will be
useful to discuss a second-quantized formulation of the
IQHE edge. For simplicity, consider an edge with only
one mode, corresponding to one full Landau level. The
low energy states may be described by linearizing (2.5)
about the Fermi wavevector to obtain,

H = v

∫
dk

2π
kψ†(k)ψ(k). (2.8)

Here we have taken the Fermi energy to be the zero of
energy and kF to be the zero of momentum. It is also
useful to transform to real space, which leads to

H = v

∫
dxψ†(x)i∂xψ(x). (2.9)

where ψ(x) is a (1d) Fermion field operator, which satis-
fies the usual anticommutation
relations, [ψ(x), ψ†(x′)]− = δ(x − x′). It will often be
convenient to consider a Grassman path integral for the
associated partition function. The appropriate Euclidean
action is

S =
∫

dxdτψ∗(∂τ + iv∂x)ψ (2.10)

where τ is imaginary time.
As discussed, each free fermion edge channel con-

tributes a conductance of one, in units of e2/h. However,
in the FQHE the conductance is fractional, G = νe2/h.
For this reason a free fermion description of FQHE edge
states is not possible. Rather, an appropriate descrip-
tion is in terms of a bosonic field, roughly analogous to
the displacement field for phonons in a solid. Before dis-
cussing this, we first show how the IQHE edge can be
“bosonized”32–34. While unnecessary for the IQHE edge,
the bosonized description is useful since it can be easily
generalized to describe FQHE edges.

By way of motivation, consider the nature of the low
energy edge excitations of a quantum Hall fluid. The
incompressible Hall fluid can support long wavelength
fluctuations at its edge - analogous to water waves on
the surface of the sea. However, unlike water waves, the
edge waves can propagate only in one direction, which is
determined by the sign of the magnetic field. Classically,
this can be understood as an E×B drift of the electrons
caused by the edge confining potential. A quantum me-
chanical description may be developed in terms of the 1d
edge density operator, defined as

ρ(x) =: ψ†(x)ψ(x) : (2.11)
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where the dots denote a normal ordering with respect
to the filled Fermi sea of the Hamiltonian (2.8). It is
convenient to work with a new field φ defined by

ρ(x) =
1
2π

∂xφ(x). (2.12)

¿From the continuity equation for charge conservation
the electron edge current is then

I =
e

2π
φ̇ (2.13)

By carefully accounting for the normal ordering with
an appropriate “point splitting”, one can show that
the operator φ(x) obeys the Kac Moody commutation
relation32,34,33

[φ(x), φ(x′)] = iπsgn(x − x′). (2.14)

Notice that the momentum Π(x) conjugate to φ(x) is not
independent, but rather given by Π(x) = (1/2π)∂xφ.

The electron operator at the edge may be constructed
by noting that removing a charge is equivalent to creating
a 2π instanton in the field configuration φ(x). This may
be accomplished via

ψ(x) = ei2π
∫ x

dx′Π(x′) (2.15)
= eiφ(x). (2.16)

Using the Kac-Moody algebra, one can readily show
that the fermion anticommutation relations are obeyed,
ψ(x)ψ(x′) = −ψ(x′)ψ(x).

After normal ordering the Hamiltonian (2.8) - sub-
tracting an appropriate constant from the energy so that
the filled Fermi sea has zero energy - it can be re-
expressed in terms of the density as32,34,33:

H = πv

∫
dxρ2(x). (2.17)

Upon using the conjugate momentum to obtain the La-
grangian, one arrives at the appropriate bosonized action,
which in imaginary time is

S =
1
4π

∫
dxdτ∂xφ(i∂τ + v∂x)φ. (2.18)

The first term reflects the Kac-Moody commutation re-
lations. Clearly, this action describes modes which prop-
agate in one direction at a velocity v.

It is instructive to re-derive the quantized conductance
for the IQHE using the bosonized action (2.18). To this
end, consider an edge state which flows between two
reservoirs which are in equilibrium at different chemi-
cal potentials (see Fig. 4). We model the reservoirs by
considering an infinite edge, in which the “sample” re-
sides between xL and xR. The left and right reservoirs
are then defined for x < xL and x > xR respectively. We
suppose that the system is driven from equilibrium by an

electrostatic potential eV (x), which couples to the edge
charge density ρ(x), and is a constant eVL(R) in the left
(right) reservoir. The underlying physical assumption of
this approach is that the edge states which emanate from
a given reservoir are in equilibrium at the chemical po-
tential of that reservoir.

Since the edge current operator is linear in the boson
field, the edge current at x which flows in linear response
to V (x′) may be computed directly. Specifically,

〈I(x)〉 =
∫

dx′DR(x − x′, ω → 0)V (x′), (2.19)

where the retarded response function is given by

DR(x − x′, ω) = −i

∫ 0

−∞
dte−iωt e2

(2π)2h̄

〈[φ̇(x, 0), ∂x′φ(x′, t)]〉. (2.20)

This may be computed using (2.18) by analytically con-
tinuing the imaginary time response function

D(x − x′, ωn) = −e2

h

∑
q

eiq(x−x′) qωn

q(ηiωn − vq)
(2.21)

to real frequencies, iωn → ω+iε. Here η = ±1 determines
the direction of edge propagation. We find

DR(x − x′, ω) =
e2

h
θ (η(x − x′))

iηω

v
eiη(ω+iε)(x−x′)/v.

(2.22)

The θ function reflects the chiral nature of the edge prop-
agation, showing that the current at x depends only on
the voltages at positions x′ “upstream” of x. In the limit
ω → 0, the integral in (2.19) will be dominated by val-
ues of x′ that are deep into the “upstream” reservoir.
Thus, for η = +1, which corresponds to an edge which
propagates from left to right, the current is

〈I〉 =
e2

h
VL. (2.23)

The two terminal conductance of a Hall bar follows upon
adding a contribution from the opposite edge which em-
anates from the right reservoir and contributes a current
−(e2/h)VR. The net current is thus I = G(VL − VR),
with an appropriately quantized two terminal conduc-
tance: G = e2/h.

It is straightforward to generalize the above ap-
proach, based on the right/left conductances, to com-
pute the conductance measured in a four terminal geome-
try. One thereby reproduces the multiterminal Buttiker-
Landauer13 transport formula for non-interacting elec-
trons.

An advantage of bosonization even for the IQHE edge
is the ease in which electron interactions can be in-
corporated. Consider specifically short-range electron-
electron interactions acting between the electrons along
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the edge. (In this paper, we will ignore throughout the
long-ranged piece of the Coulomb interaction, assuming
it to be screened by a ground plane.) The appropriate
term to add to the Hamiltonian is vintρ

2, with ρ the elec-
tron density. This term is quartic in fermion fields, but
can be simply absorbed into the velocity in the bosonized
Hamiltonian (2.17). Thus electron interactions simply
shift the edge velocity. They do not alter the quantized
conductance, which is independent of v.

B. FQHE

In the fractional quantum Hall effect one typically has
a partially filled Landau level. In the absence of electron-
electron interactions there would then be an enormous
ground state degeneracy, but this degeneracy is lifted
by the interactions. At special filling factors, such as
ν = 1/3, the system is expected to condense into a corre-
lated liquid state. This liquid state is incompressible,
and has a gap for all excitations. In the presence of
edges one anticipates low lying edge excitations, as in
the IQHE. There are several routes to the appropriate
description of the FQHE edge states. We briefly describe
two. The first, heuristic in nature, involves generalizing
the bosonized action of the IQHE edge so that the result-
ing conductance is fractional. The second, discussed in
subsection 2 below, generates the equivalent edge descrip-
tion starting from a Landau-Ginsburg theory for the bulk
Hall fluid. The latter approach can be easily generalized
to hierarchical FQHE states, as described in subsection
3.

1. Heuristic motivation

In the derivation of the conductance for the IQHE edge
from the bosonized action, the quantization can be traced
to the prefactor of the first term in (2.18) - which is a
fixed dimensionless number (1/4π). This prefactor also
determines the coefficient on the right side of the Kac-
Moody commutation relation (2.14). By simply replacing
the prefactor 1/4π by 1/4πν, where ν is the filling factor,
one obtains an edge action,

S =
1

4πν

∫
dxdτ∂xφ(i∂τ + v∂x)φ, (2.24)

which has the required fractional conductance:

G = ν
e2

h
. (2.25)

This innocuous looking change has most striking con-
sequences. The most dramatic is that the charge e ex-
citation will generally have fractional statistics. To see
this note first that the boson field now satisfies a modified
commutation relation

[φ(x), φ(x′)] = iπνsgn(x − x′). (2.26)

The conjugate momentum is thus no longer the edge den-
sity, but rather Π = (1/ν)ρ with ρ = (1/2π)∂xφ as before.
The operator for a charge e edge excitation then becomes

ψ(x) = ei2π
∫ x

dx′Π(x′) → eiφ/ν . (2.27)

Upon using the commutation relation (2.26) for the φ
field, one deduces that the charge e operator generally
has fractional statistics:

ψ(x)ψ(x′) = eiπsgn(x−x′)/νψ(x′)ψ(x). (2.28)

Notice that for the special case of 1/ν an odd integer, the
charge e excitation is fermionic, and can then be associ-
ated with the electron.

For more general ν, the absence of a charge e fermionic
edge excitation is rather worrisome. Since the bulk
FQHE state is built from physical electrons, one would
expect electrons to be present at the edge also. This rea-
soning suggests that the effective action (2.24) is only a
valid description of the Hall edge, when ν = 1/m with m
an odd integer17. This conclusion will be confirmed be-
low, where it is shown that for Hall states with ν 6= 1/m,
there are multiple edge modes.

Besides the operator ψ(x) = eiφ/ν which creates a
charge e fermion at the edge of the ν = 1/m fluid, one
can consider other operators, such as eiφ. This opera-
tor creates an edge excitation with fractional charge, νe.
The statistics is also fractional, with a phase factor of
exp(±iνπ) under exchange. It is apparent that eiφ cre-
ates a Laughlin quasiparticle at the edge. This will be
confirmed below starting from a Ginsburg-Landau de-
scription of the Hall fluid.

2. From Ginzburg-Landau theory

The physical idea behind the Ginzburg-Landau the-
ory of the FQHE9,10 is that vortices in the electron wave
function bind to the electrons. For the Laughlin sequence
of states at filling ν = 1/m, each electron binds with m
vortices. This can be seen explicitly in Laughlin’s cele-
brated wave function, in which m vortices sit right on top
of each electron, but is expected to be a general feature
of the incompressible Hall fluid. Due to the 2π phase
accumulated upon encircling each vortex, the statistics
of the electron/vortex composites are bosonic, since m
is an odd integer. At the magic filling ν = 1/m all of
the field induced vortices are accommodated by binding
to electrons, and the composite bosons do not “see” any
residual vortices. They can then Bose condense, forming
a superfluid. This condensed fluid describes dissipation-
less flow and a (bulk) quantized Hall conductance, the
two hallmarks of a quantum Hall fluid.

The original Ginzburg-Landau theory focussed on the
bosonic wave function of the electron/vortex composite.
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There is an alternate dual description, though, which
consists of a bosonic field eiφ which creates a vortex in
the Ginzburg-Landau complex boson field36,35. This field
is minimally coupled to a gauge field, aµ. The gauge field
is directly related to the electron three-current via

jµ = εµνλ∂νaλ/2π. (2.29)

Thus when a vortex moves, it sees the electrons as a
source of “fictitious” flux. In a quantum Hall fluid at
magic filling there are no free vortices in the Ginzburg-
Landau field. Vortex anti-vortex pairs can be created,
but cost a finite energy and are unimportant at low tem-
peratures. (This corresponds to a Laughlin quasiparticle
and quasihole pair.) The low energy description thus re-
duces to that of the gauge field alone. Keeping the most
important terms, the resulting Euclidean action for this
gauge field is

Sbulk = im
1
4π

∫
aµεµνλ∂νaλ. (2.30)

This effective action describes the long wavelength den-
sity fluctuations of the condensed fluid. The energy gap
for the bulk quasiparticle excitations is not specified.
Provided the temperature is well below this gap, the ef-
fective action (2.30) provides an adequate description.
However, at filling factors away from ν = 1/m, there will
be some residual vortices, and the electron/vortex com-
posites can only condense if these residual vortices are
pinned and localized by bulk impurities. In this case,
there will be many low energy, but spatially localized,
excitations involving re-arranging the positions of these
vortices. The effective action (2.1) can presumably still
be used to extract transport properties, though, since
at low temperatures the localized vortices will not con-
tribute significantly to the transport. (This is not the
case for other physical properties such as the electronic
specific heat.)

Although the vortex (quasiparticle) excitations are not
important at low T in the bulk, they play a crucial role at
the edge. At the edge their gap vanishes and they form
the edge states. The edge excitations can be naturally
expressed in terms of the phase φ of the vortex creation
operator, eiφ, which is minimally coupled to the gauge
field, ∂µφ − aµ. Specifically, as shown by Wen17, the
bulk degrees of freedom can be eliminated from (2.30)
by integration over aτ , which imposes an incompressibil-
ity constraint on bulk density fluctuations: ~∇ × ~a = 0,
with the vector referring to the two spatial components.
A scalar field can then be introduced to solve this con-
straint, ~a = ~∇φ, where φ can be interpreted as the phase
of the vortex. After an integration by parts the final Eu-
clidean action for the edge states is given by (2.14) - the
form we arrived at by heuristic argument above.

As discussed by Wen17, the magnitude of the edge ve-
locity v depends on the precise boundary conditions as-
sumed for the field aτ . Since v will depend on the edge
confining potential and the edge Coulomb interaction, it

cannot be determined from the bulk action (2.30). It is
thus appropriate to take the velocity v as a phenomeno-
logical parameter.

It follows from (2.29) that the 1d charge density along
the edge is given by ρ = ∂xφ/2π, precisely as in (2.12).
Our identification of eiφ as the creation operator for a
quasiparticle (or vortex) at the edge was also appropri-
ate. We have thereby arrived a description of the ν =
1/m edge, identical to that obtained heuristically above.
While neither “derivation” is rigorous, the final effec-
tive action (2.24) is undoubtedly correct. The Ginzburg-
Landau approach is advantageous, though, since it can
be readily generalized to hierarchical quantum Hall flu-
ids, as we now describe

3. Hierarchical states

Soon after Laughlin’s wavefunction, Haldane and
Halperin37 suggested a way to account for Hall plateaus
at other rational fillings, besides ν = 1/m. Their ba-
sic idea was that the vortices introduced upon moving
away from filling ν = 1/m would themselves condense
into a Laughlin fluid. By successively iterating this pro-
cedure, incompressible Hall fluids at arbitrary rational
ν, with odd denominator, could be generated. An alter-
nate hierarchical construction, suggested by Jain, con-
sists of attaching an even number, p, of flux tubes (or
vortices) to each electron, and then putting the resulting
fermionic electron/vortex composites into n full Landau
levels. This describes states at filling ν = n/(np + 1),
a robust sequence of fractions. While the wavefunctions
in these different constructions certainly differ in detail,
it was initially unclear as to whether they describe the
“same phase”.

This was clarified by Wen and Zee36 and Read38 who
emphasized a “hidden” topological order in the Hall flu-
ids, and introduced a scheme to characterize and clas-
sify them. Specifically, at the n’th level of the Hal-
dane/Halperin hierarchy the fluid can be characterized
by a symmetric n × n matrix K. The appropriate effec-
tive action which generalizes (2.30) can be expressed in
terms of n gauge fields and takes the form:

Sbulk =
i

4π

∫
ai

µKijεµνλ∂νaj
λ. (2.31)

The electron 3-current is given by

jµ =
∑

i

tiεµνλ∂νai
λ/2π, (2.32)

where ti are basis dependent integers or “charges”. This
is the multi-component generalization of (2.29). The fill-
ing factor is given by

ν =
∑
ij

tiK
−1
ij tj . (2.33)
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The K matrix also characterizes the charge and statis-
tics of the bulk quasiparticle excitations. Specifically, the
quasiparticles are labeled by a set of integers mj , with
j = 1, 2, .., n, with charge (in units of the electron charge)

Q =
∑
ij

miK
−1
ij tj (2.34)

and statistics angle

Θ
π

=
∑
ij

miK
−1
ij mj . (2.35)

In this approach, all of the universal properties of the
bulk quantum Hall state follow directly from the K ma-
trix.

The explicit form of the K matrix for a given quan-
tum Hall state depends on the choice of basis, as do the
integers ti

36,38. Under a basis transformation

K → K ′ = WT KW, (2.36)

ti → t′i = WT
ij tj , (2.37)

and

mi → m′
i = WT

ij mj , (2.38)

where W is an n by n matrix with integer matrix elements
and unit determinant. This transformation leaves the
filling ν as well as the quasiparticle charge and statistics
invariant. The basis in which ti = 1 for all i, is called the
“symmetric” basis by Wen and Zee. In the “hierarchical”
basis, t1 = 1 and ti = 0 for i = 2, 3, ..., n.

The form of the K matrix obtained for a FQHE fluid
at filling ν from the Haldane/Halperin hierarchy scheme
is identical to that obtained via Jain’s construction40.
Thus the two states are topologically equivalent. In the
“symmetric” basis, for filling ν = n/(np+1) with integer
n and even integer p, the K matrix is given explicitly by

Kij = δij + p. (2.39)

At filling ν = 1/(p1 − 1/p2) where p1 and p2 are odd and
even integers respectively, the K matrix in the “hierar-
chical” basis takes the simple form:

K =
(

p1 −1
−1 p2

)
. (2.40)

The edge excitations may be described by eliminating
the bulk degrees of freedom, as described in subsection
2 above. Upon integration over ai

τ , a constraint on the
density fluctuations in the bulk is imposed: ~∇× ~ai = 0,
for all i = 1, 2, ..., n. Scalar fields can then be introduced
to solve these constraints, ~ai = ~∇φi, one for each gauge
field. As above, the edge excitations are described in
terms of these scalar fields. The appropriate effective

action at the edge can then be written as S = S0 + S1

with

S0 =
∫

dxdτ
1
4π

∑
ij

(∂xφi)Kij(i∂τφj) (2.41)

and

S1 =
∫

dxdτ
1
4π

∑
ij

Vij∂xφi∂xφj . (2.42)

The first term is solely determined from bulk physics of
the Hall fluid. This term determines the commutation
relations for the bose fields:

[φi(x), φj(x′)] = iπK−1
ij sgn(x − x′), (2.43)

the generalization of (2.26). In addition we also have
interaction terms of the form ∂xφi∂xφj . These interac-
tion strengths are non-universal, depending on the edge
confining potential and edge electron interactions.

It follows from (2.32) that the edge charge density is
given by

ρ(x) =
1
2π

n∑
i=1

ti∂xφi. (2.44)

Operators which create charge at the edge can be
deduced from the conjugate momentum: Πi =
(1/2π)Kij∂xφj . An operator of the form exp iφi(x) cre-
ates “instantons” in the boson fields φj at position x.
These instantons carry charge, as seen from (2.44). The
general operator

T̂ (x) = e
i
∑n

j=1
mjφj(x) (2.45)

for integer mj , creates an edge excitation at x with charge
Q given by (2.34).

Since the effective action (2.41)-(2.42) is quadratic in
the boson fields, all physical quantities can be readily
computed. Unfortunately, when the eigenvalues of K are
not all of the same sign, the computed conductance is
not given23,25 by the quantized value |ν|e2/h. To see
why consider for simplicity a two channel case such as
ν = 2/3. Since the sign of the eigenvalues of the K
matrix determine the direction of propagation, the two
modes will be moving in opposite directions, as sketched
in Fig. 5. Consider a two-terminal transport situation in
which the source and drain are held at different chemi-
cal potentials. Since an edge mode is, by assumption, in
equilibrium with the reservoir from which it emanates,
the current on the top edge will depend on the voltages
in both reservoirs. Specifically, the current at the top
edge can be written

Itop =
e2

h
(g+VL − g−VR) , (2.46)

where g+ (g−) is the dimensionless conductance for the
right (left) moving channel. This form can be derived
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explicitly by generalizing (2.19) to include multiple edge
modes.

The two terminal conductance follows by considering
the other edge, which carries a current g−VL − g+VR,
giving

G =
e2

h
(g+ + g−). (2.47)

Notice that the conductances add, even though the chan-
nels are moving in opposite directions. Using (2.19) and
the action (2.41)-(2.42) one can explicitly compute g+

and g−. Their difference is found to be universal and
quantized, g+ − g− = ν. However, their sum, which en-
ters in the conductance, is non universal, depending on
the interaction strengths Vij in (2.42).

It is straightforward to generalize this approach to
compute the conductance measured in a four terminal
geometry. In particular, we find that the four terminal
Hall conductance is given by

GH =
e2

h

g2
+ + g2

−
g+ − g−

. (2.48)

It is only when all channels propagate in the same direc-
tion that GH is universal and equal to νe2/h.

The non-quantized conductance for hierarchical states
with multiple modes which move in both directions, is
in glaring contradiction with experiment. Clearly some
important physics must be absent from the simple effec-
tive action (2.41)-(2.42). A clue can be seen from Fig. 5,
where it is clear that in a transport situation, right mov-
ing edge modes are in equilibrium with the left reservoir,
and left movers in equilibrium with the right reservoir.
Thus in the presence of a non-zero source-to-drain volt-
age, opposite moving edge modes on a given edge will
be out of equilibrium with one another. But since these
modes are in close proximity, what stops them from equi-
librating?

In the effective action (2.41)-(2.42) there are no terms
which transfer charge between the different edge modes,
to allow for possible equilibration. But surely in real ex-
perimental systems there will be equilibration processes
present. A stringent constraint is that charge transfer
must conserve energy and momentum. Generally, differ-
ent edge modes have different momenta - the gauge in-
variant momentum difference between two modes being
proportional to the magnetic flux threading the space be-
tween them. Since the edge modes are all at the same en-
ergy (in equilibrium), charge transfer processes with the
emission of phonons or photons to take up the momen-
tum, will not conserve overall energy. These processes
are thus forbidden.

However, if there are impurities near the edge, mo-
mentum of the edge modes need not be conserved. Mo-
mentum can be transferred to the center of mass of the
sample, through the impurities. Thus impurity scatter-
ing at the edge will mix the different modes and tend
to equilibrate them. In Section 4 we study this effect in
detail.

III. RANDOMNESS AND HIERARCHICAL
EDGE STATES

A. Introduction

In section II we argued that for hierarchical states with
multiple edge branches moving in both directions, the
conductance is predicted to be non-universal due to an
absence of inter-mode equilibration. Edge impurity scat-
tering is then critical, to allow for equilibration, and must
be incorporated into a realistic edge state theory. We
now consider the general problem of random impurity
scattering at the edge of a quantum Hall state. For a
broad class of hierarchical states, we will show that the
low temperature physics is described by a new random
fixed point.

In contrast to the hierarchical states, for Laughlin
states which have a single edge channel disorder is unim-
portant. To see this consider first a ν = 1 edge with a
spatially dependent random edge potential µ(x). Treat-
ing the electrons as non-interacting, we may add this
random potential to the fermion action (2.10):

S =
∫

dxdτψ∗(∂τ + iv∂x)ψ + µ(x)ψ∗ψ. (3.1)

The random term can be eliminated by performing a
spatially dependent U(1) gauge transformation, ψ̃ =
ψ exp iδ(x), with

δ(x) =
1
v

∫ x

−∞
dx′µ(x′). (3.2)

Thus, the only effect of the random potential is to in-
troduce an unimportant forward scattering phase shift,
δ(x).

This result may be extended to interacting systems and
to Laughlin states by using the chiral boson representa-
tion (2.24). In this representation, the random potential
µ(x) couples to ρ(x) = ∂xφ/2π, and may be eliminated
via the transformation φ̃(x) = φ(x) + νδ(x).

Clearly, any non trivial effects of edge disorder must
arise from tunneling between different channels. To study
such effects, we consider first the IQHE with ν = 2 in de-
tail. In doing so we will develop the necessary machinery
to describe hierarchical FQHE states. We will then focus
on three specific cases, ν = 2/3, ν = 2/5 and ν = 4/5. As
emphasized in section II the case ν = 2/3 is particularly
important, since the model without disorder predicts a
non quantized conductance.

B. ν = 2 Random Edge

1. Fermion Representation

Consider first the simplest possible two channel model:
non interacting electrons with ν = 2, where the two edge
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modes are identical. In terms of a two component chi-
ral fermion field, Ψ = (ψ1, ψ2), the appropriate action
generalizing (2.10) is,

S0 =
∫

dxdτΨ†(∂τ + iv∂x)Ψ. (3.3)

Note that S0 is invariant under a global U(2) transfor-
mation. This symmetry is a product of a U(1) symme-
try, arising from conservation of charge, and an SU(2)
symmetry arising from the conservation of “spin”. As
we shall see below, this high symmetry, which appears
rather artificial since it requires the channels to be iden-
tical, is actually a generic property of the groundstate
when impurity scattering is present.

Consider now the effect of randomness. In addition
to random potentials coupling to the charge densities in
each channel, randomness will also introduce tunneling
between the two channels. In general we may write,

Srandom =
∫

dxdτΨ†
[
µ(x) + ~ξ(x) · ~σ

]
Ψ, (3.4)

where ~σ are Pauli matrices. Here µ(x) ± ξz(x) are ran-
dom potentials coupling separately to the two channels.
The spatially random coefficients, ξ± = ξx ± iξy, mul-
tiply ψ†

1ψ2 and ψ†
2ψ1, and correspond to inter-channel

tunneling.
As in the single channel case, µ(x) may be eliminated

by the U(1) gauge transformation (3.2). Similarly, ~ξ(x)
may be eliminated by an SU(2) rotation. We thus write

Ψ̃(x) = eiδ(x)U(x)Ψ(x), (3.5)

where δ is given by (3.2) and and U(x) is an SU(2) ro-
tation, given by

U(x) = Tx exp
[

i

v

∫ x

−∞
dx′~ξ(x′) · ~σ

]
, (3.6)

where Tx is an x-ordering operator. The resulting ran-
dom problem is then given by

S0 + Srandom =
∫

dxdτΨ̃†(∂τ + iv∂x)Ψ̃. (3.7)

In terms of the new field Ψ̃, the random problem still has
an exact global U(2) symmetry.

The exact solution (3.7) gives a complete description
of the non-interacting problem. The eigenstates are sim-
ply plane waves in which the channel index (or “spin”) is
rotated by U(x). The strength of the random interchan-
nel tunneling introduces a mean free path, `, which is
the length scale over which U(x) varies. On length scales
longer than `, eiδU(x) will be an uncorrelated random
U(2) matrix.

Wen has generalized the above solution to allow for dif-
ferent velocities of the two channels39. In this case, the
U(2) symmetry of the clean edge is broken. Nevertheless,

on length scales longer than the mean free path `, all ex-
citations move at a single velocity: v̄ = 2v1v2/(v1 + v2).
This is physically reasonable, since upon averaging over
long times an electron spends equal time in each chan-
nel, regardless of it’s initial channel. The long distance
behavior is thus argued by Wen to be the same as that of
the U(2) symmetric model (3.3) in which the velocities
are equal.

2. Boson Representation

The above non-interacting electron theory cannot be
easily generalized to include the effects of interactions,
and moreover is not suited to the FQHE. It is therefore
desirable to reformulate the random edge in a chiral bo-
son representation. In doing so, we shall establish that
the low energy physics of the random ν = 2 edge is de-
scribed by a stable random fixed point. However, in con-
trast to the non interacting problem (3.7), in which both
modes move at the same velocity, the interactions play an
important role by giving rise to “spin-charge” separation,
in which the charged and neutral modes propagate at dif-
ferent velocities. The final fixed point has a U(1)xSU(2)
symmetry, rather than the full U(2) symmetry present in
the non-interacting case (3.7).

Using (2.18) the bosonized action for a ν = 2 edge can
be written as,

S = S0 + Srandom (3.8)

with,

S0 =
∫

dxdτ
1
4π

[∂xφ1(i∂τ + v1∂x)φ1 +

∂xφ2(i∂τ+v2∂x)φ2 + 2v12∂xφ1∂xφ2] (3.9)

Electron interactions between the two channels are ac-
counted for by v12. By using (2.16), which expresses the
electron operator as eiφ, the interchannel tunneling may
be written

Srandom =
∫

dxdτ
[
ξ+(x)ei(φ1−φ2) + ξ−(x)e−i(φ1−φ2)

]
.

(3.10)

As in (3.4) ξ±(x) are spatially random complex tunneling
amplitudes. We omit the random potentials µ(x) and
ξz(x), which couple to ∂x(φ1 ± φ2), since they may be
eliminated via a suitable redefinition of φ1,2.

Since the operators in (3.10) are non-linear in the bo-
son fields, the random model appears rather intractable.
One approach is to expand for small ξ±(x) about the free
theory, S0. This is problematic, however, because the
perturbation theory is divergent at low energies. One can
nevertheless define a perturbative renormalization group
(RG) transformation23,25 in powers of the variance, W ,
defined via [ξ+(x)ξ−(0)]ens = Wδ(x). Here the square
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brackets denote an ensemble average over realizations of
the disorder. As outlined in appendix A, the leading or-
der RG flow equations take the form

∂W

∂`
= (3 − 2∆)W (3.11)

where ∆ is the scaling dimension of the operator Ô =
exp(i(φ1 − φ2)) evaluated in the free theory, S0. One
finds ∆ = 1, which also follows from the fermion rep-
resentation (3.3), since Ô is the product of two fermion
operators. From (3.11) it is clear that the random po-
tential is relevant, so that non perturbative methods are
necessary. Fortunately, the low energy physics is con-
trolled by a stable fixed point which is accessible non-
perturbatively, as we now show.

To proceed it is convenient to introduce charge and
“spin” variables23,

φρ= φ1 + φ2 (3.12)
φσ= φ1 − φ2. (3.13)

The net charge density on the edge is ∂xφρ/2π. The
field φσ, which commutes with φρ, represents the neutral
degree of freedom associated with tunneling between the
channels. In terms of these new variables we may rewrite
(3.8) as

S = Sρ + Sσ + Sint (3.14)

with charge and neutral pieces

Sρ =
1
8π

∫
dxdτ∂xφρ(i∂τ + vρ∂x)φρ, (3.15)

Sσ =
∫

dxdτ [
1
8π

∂xφσ(i∂τ + vσ∂x)φσ + ξ+(x)eiφσ + c.c.],

(3.16)

coupled together via

Sint =
vint

4π

∫
dxdτ∂xφρ∂xφσ. (3.17)

The velocities vρ, vσ and vint depend on the original ve-
locities in (3.9). Note that vρ is not necessarily equal to
vσ. Indeed, a short range interaction which couples to
the total charge affects only vρ.

Consider first the U(2) symmetric model, as considered
in (3.3), with v1 = v2 = v, v12 = 0. Upon transforming
to the charge-spin variables, we then find vρ = vσ = v
and vint = 0. The system thus decouples into a “charge”
sector described by Sρ and a “spin” sector Sσ. Note that
the interchannel tunneling terms only affect the spin sec-
tor. Despite the presence of complicated nonlinear ran-
dom terms in Sσ, we know that this model is equivalent
to the exactly soluble fermion model (3.7). The hidden
simplicity in Sσ is a consequence of the fact that the op-
erators cos φσ, sin φσ and ∂xφσ transform as Sx, Sy and

Sz in an SU(2) algebra, known as a level-one SU(2) cur-
rent algebra. It is this connection that will allow us to
formulate a general solution of the interacting problem.

Consider now the case in which vint = 0, but vρ 6= vσ.
This no longer corresponds to noninteracting electrons.
The charge and neutral sectors are still decoupled, but
now the charge and neutral modes propagate at differ-
ent velocities. Again, the only non trivial part of the
problem is the neutral sector, which involves nonlinear
random terms. But the neutral sector is identical to the
neutral sector of the exactly soluble problem (3.3) pro-
vided we identify v = vσ. Since the soluble fermion prob-
lem includes a charge sector, in order to take advantage
of this connection we must introduce an auxiliary field
φ̃ρ with an action S̃ρ which is the same as Sρ, except
vρ is replaced by vσ. The field φ̃ρ does not enter phys-
ical observables, but allows a convenient representation
of the SU(2) symmetry in the neutral sector. The com-
bined action S̃ρ + Sσ may be “fermionized”, by letting
ψ1 = exp[i(φ̃ρ + φσ)/2] and ψ2 = exp[i(φ̃ρ −φσ)/2]. The
operator corresponding to ∂xφσ is Ψ†σzΨ. The resulting
fermion problem is identical to (3.4), and may be solved
by the space dependent transformation Ψ̃ = U(x)Ψ with
U(x) given in (3.6). The action is then simply by (3.7)
with v = vσ. This form exposes the hidden but exact
global SU(2) symmetry of the neutral sector (3.16).

Thus, we see that when vint = 0, the problem is ex-
actly soluble even in the presence of interactions, and the
ground state has an exact U(1) × SU(2) symmetry de-
scribed by (3.15) and (3.7). However, in contrast to the
non interacting case the charge and neutral modes need
not move at the same velocity: there is “charge-spin sep-
aration”. We now must study the effects of vint, which
couples the charge and neutral sectors, and hence breaks
the SU(2) symmetry. Using the above exact solution we
will show that in the presence of a random potential, vint

is irrelevant. Under an RG transformation, the system
scales to the charge-neutral decoupled fixed point.

It is convenient to re-express Sint in terms of the
fermion field Ψ̃. We find

Sint =
vint

4π

∫
dxdτ∂xφρΨ̃†U(x)σzU

†(x)Ψ̃. (3.18)

The relevancy of this term may be deduced from the scal-
ing dimension of the operator Ôij = ∂xφρΨ̃

†
i Ψ̃j , which we

denote δv. Using (3.17) and (3.15) one readily obtains
δv = 2. Since this operator has a random x dependent
coefficient v(x) ≈ vintUσzU

†, which is uncorrelated on
spatial scales large compared to the mean free path `,
it is most useful to consider the scaling behavior of the
mean square average, Wv = [v(x)2]ens, where the square
brackets denote an ensemble average. As outlined in ap-
pendix A, to leading order in Wv the RG flow equation
is

dWv

d`
= (3 − 2δv)Wv. (3.19)
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Since δv = 2 the perturbation is irrelevant. It should
be emphasized that in the absence of randomness, the
dimension 2 operators in Sint are marginal and do
not renormalize to zero! Thus disorder is seen to
be absolutely critical in the stability of the decoupled
U(1)xSU(2) fixed point.

In summary, impurity scattering has played a crucial
role in driving the charge/neutral coupling to zero. The
final fixed point theory has a global U(1)xSU(2) symme-
try, a much higher symmetry than the underlying ran-
dom Hamiltonian. While it is difficult to compute the
fully renormalized velocities vρ and vσ, it is clear that
they will be equal only in the absence of interactions.
Thus, generically, we expect “charge-spin” separation on
the ν = 2 edge.

C. Fractional Quantum Hall Random Edge

Using the results of the previous section for ν = 2, we
are now in a position to analyze the effects of impurity
scattering on hierarchical FQHE edges. We will initially
focus on Hall states at the second level of the Haldane-
Halperin hierarchy, with ν = 1/(p1 − 1/p2), where p1

and p2 are odd and even integers respectively. We will
consider three specific examples which display different
generic behavior : ν = 2/3, 2/5 and 4/5. We will then
discuss generalizations to other fractions, including those
at higher levels in the hierarchy.

At filling ν−1 = p1 − 1/p2 the edge consists of two
modes, as described in section II. Without impurity scat-
tering the edge can be described by the action (2.41)-
(2.42) with K an appropriate 2x2 matrix. In the hierar-
chy basis the explicit form for K is given in (2.40). As
in the preceding section, it will be useful to represent
the problem in terms of charge and neutral (or “spin”)
variables. These variables are related to the “hierarchy
basis” variables by

φρ= φ1 (3.20)
φσ= φ1 − p2φ2. (3.21)

The charge and neutral fields commute with one another,
as can be seen using (2.43). The action (2.41)-(2.42) may
then be expressed in the form

S = Sρ + Sσ + Sint (3.22)

with charge and neutral pieces

Sρ =
1

4πν

∫
dxdτ∂xφρ(i∂τ + vρ∂x)φρ (3.23)

Sσ =
1

4πp2

∫
dxdτ∂xφσ(i∂τ + vσsgn(p2)∂x)φσ (3.24)

coupled together via

Sint =
vint

4π

∫
dxdτ∂xφρ∂xφσ. (3.25)

Again, the velocities vρ, vσ and vint depend on the origi-
nal velocities, Vij in (2.42).

The most important terms generated by a random edge
potential will be tunneling terms, as in (3.10), which
transfer charge between the two channels. Charge con-
servation dictates that such processes do not create a net
charge, so Q = 0 in (2.34). The most relevant such term
is given by exp±i(φ1 − p2φ2) = exp iφσ. We are thus
lead to consider,

Srandom =
∫

dxdτ
[
ξ+(x)eiφσ + c.c.

]
. (3.26)

Note that the random tunneling operators only involve
the neutral field, φσ.

We now consider three specific examples which display
different types of generic behavior.

1. ν = 2/3

The ν = 2/3 edge is described by p1 = 1 and p2 = −2.
Consider first an impurity free edge with Srandom = 0.
In this case, when vint = 0 the charge and neutral modes
decouple, and the neutral mode propagates in the direc-
tion opposite to the charge mode. Since the conductance
depends only on the charge mode, it may be seen using
(2.25) that it is appropriately quantized, G = (2/3)e2/h.
However, when vint 6= 0, the conductance will be non-
quantized and non-universal, depending on vint. This
can be seen explicitly using (2.19). The two modes con-
tinue to propagate in different directions, but both con-
tribute to the conductance. In general we may write
G = (2/3)∆e2/h, where ∆ > 1. Then ∆ = 1 only when
vint = 0.

We shall now argue, that as in the ν = 2 case, the
presence of a random edge potential can drive the system
to the decoupled fixed point with vint = 0. Thus the
conductance is quantized even when channels move in
opposite directions.

Consider again the decoupled point, vint = 0. Since
p2 = −2, the neutral sector (3.24) and (3.26) is identical
to the neutral sector (3.16) for ν = 2 studied in the previ-
ous section (up to a sign which determines the direction
of propagation). Thus, the exact solution obtained there
by re-fermionizing the problem may be applied. More-
over, we may use exactly the same arguments to show
that vint is irrelevant. We thus establish that the decou-
pled fixed line is stable. The fixed point is characterized
by an exact SU(2) × U(1) symmetry.

Having established the stability of the decoupled fixed
line, we must also consider the possibility of other stable
fixed points which could describe different phases. Con-
sider treating the randomness (3.26) perturbatively. As
in (3.11), we may analyze the relevancy of weak disorder
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by considering the leading order RG for the variance, W,
of ξ±:

dW

d`
= (3 − 2∆)W. (3.27)

Here ∆ is the scaling dimension of the operator exp iφσ,
and may be computed explicitly using the action (3.23)-
(3.25). When vint = 0, then ∆ = 1, but ∆ > 1 is nonuni-
versal when vint 6= 0. Indeed, ∆ is the same quantity
which entered into the conductance above. As seen from
(3.27) when vint is tuned so that ∆ exceeds 3/2, there will
be an edge phase transition to a phase in which (weak)
disorder is irrelevant. For filling ν = 2/3 this transition
was analyzed in Ref. 23. There it was shown that the
transition is of Kosterlitz-Thouless type, with the RG
flows shown in Fig. 6.

We thus conclude that there are two possible phases
for the random ν = 2/3 edge. For sufficiently large vint

there is a phase in which disorder is irrelevant. At zero
temperature, this phase is characterized by a nonuniver-
sal conductance, and nonuniversal tunneling exponents
as shown in Section IV. The more generic phase, favored
by electron interactions is characterized by charge spin
separation, an exact U(1)×SU(2) symmetry, and a quan-
tized conductance. Unlike the case ν = 2, however, the
charge and neutral (or “spin”) modes propagate in op-
posite directions.

2. ν = 2/5

The ν = 2/5 edge is described by p1 = 3 and p2 = 2. In
this case, since p2 > 0, both modes propagate in the same
direction, as seen from (3.24). Thus, as shown in Section
II, even in the absence of edge impurity scattering the
conductance is quantized: G = (2/5)e2/h. Nonetheless,
when impurity scattering is present the edge re-structures
and exhibits spin-charge separation. To see this sim-
ply repeat the argument for ν = 2/3, which shows that
the charge and neutral sectors decouple at low energies,
vint → 0. The fixed point with U(1)xSU(2) symmetry is
stable. Both the charge and neutral modes move in the
same direction, generally with different velocities. Since
the scaling dimension of the tunneling operator in (3.26)
is ∆ = 1 for any interaction strength, the disorder free
edge is always perturbatively unstable to impurity scat-
tering, in contrast to the ν = 2/3 case.

3. ν = 4/5

The Hall fluid with ν = 4/5 is described by p1 = 1
and p2 = −4, and the two edge modes move in opposite
directions. In this case, since |p2| 6= 2, the neutral sec-
tor is no longer identical to the neutral sector of ν = 2,
so the exact solution employed there can no longer be

used. Weak impurity scattering can be analyzed pertur-
batively, however, by computing the scaling dimension of
the tunneling operators (3.26) in the clean theory. When
vint = 0 it can be shown that ∆ = 2. Including vint we
find ∆ > 2. Thus ∆ > 3/2, and from (3.27) weak impu-
rity scattering is always irrelevant. Thus the only low en-
ergy fixed point is the clean edge, (3.23)-(3.25) Since the
channels move in opposite directions, the zero tempera-
ture conductance is thus predicted to be non universal.
At finite temperatures, however, as we see in subsection
D, quantization is restored.

4. SU(n) Generalizations

We have shown that the edges of disordered ν = 2/3
and 2/5 fluids are described by a stable T = 0 fixed point,
with an exact U(1)×SU(2) symmetry. This will also be
the case for any state with |p2| = 2. These filling factors
can be written as ν = 2/(2p ± 1), with p an even inte-
ger. Within Jain’s construction40, these are precisely the
states which can be obtained by attaching p flux quanta
to each electron and filling two Landau levels. This sug-
gests that the above results can be generalized to the
quantum Hall states derivable from n full Landau levels,
which occur at filling factors ν = n/(np + 1).

This case was studied in detail in reference 25, where it
was shown that a random potential drives the edge to a
stable fixed point characterized by an exact U(1)×SU(n)
symmetry. Again, the stable fixed point is characterized
by “spin - charge” separation, but now with a more gen-
eral SU(n) spin. In this case, there is a single charged
mode, and n − 1 neutral modes. The neutral modes are
related by the exact SU(n) symmetry, and it follows that
they all move at the same velocity. In general, the charge
mode moves at a different velocity, and when p < 0
it moves in the opposite direction of the n − 1 neutral
modes. Only the charge mode contributes to the con-
ductance, which is appropriately quantized, G = νe2/h.

D. Finite Temperature Effects

The exact solution of the random edge which describes
a stable zero temperature fixed point can also be used to
extract physical properties of the edge at low but non-
zero temperatures. These properties will be determined
by the structure of the fixed point itself, and the lead-
ing irrelevant operators, such as vint in (3.18). At low
but non-zero temperatures these operators have not had
“time” to fully renormalize to zero, and can then have an
important effect on physical observables. Although one
can show that the irrelevant operators do not modify the
quantized Hall conductance itself, they do dramatically
effect the propagation of the neutral modes at finite tem-
perature.
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To see why, we first note that the existence of the
propagating neutral modes is tied intimately to the exact
SU(n) symmetry in the neutral sector at the fixed point.
But at finite temperatures, this symmetry is no longer ex-
act, due to the presence of irrelevant operators, so that
the neutral modes should no longer be strictly conserved.
Thus, one expects that at finite temperatures the neutral
modes should decay away at a non-vanishing rate, 1/τσ.
Equivalently, one expects a finite decay length, or “in-
elastic scattering length”, `σ = vστσ. On scales L much
larger than `σ, the neutral modes should not propagate.
Since the fixed point is approached as T → 0, however,
the decay length should diverge in this limit.

By analyzing the leading irrelevant operators (such as
(3.25)) which control the flows into the zero temperature
fixed point, it was shown in Ref. 25 that the decay rate
vanishes algebraically with temperature:

1
τσ

∝ T 2. (3.28)

In contrast, the charge mode cannot decay, even at fi-
nite temperature, since electric charge is always con-
served. However, due to irrelevant operators, such as
(3.25), which couple the charge and neutral sectors, the
charge mode can scatter off the neutral modes. This
leads to a charge mode which propagates with a disper-
sion ω = vρq+iDq2, with a “diffusion” constant D which
is temperature independent at low temperatures. This
implies a diffusive spreading of a charge pulse as it prop-
agates along an edge.

For ν = 4/5 we arrived at the striking conclusion that
impurity scattering at the edge was ineffective at equili-
brating the two edge modes, leading to a non-quantized
conductance at T = 0. But a quantized plateau is seen
at ν = 4/5, albeit with less vigor than might have been
expected given estimates for the bulk energy gap. This
apparent conflict is resolved when one considers finite
temperature effects at the ν = 4/5 edge. Although dis-
order, W , is formally irrelevant, since ∆ > 2 in (3.27),
at finite temperatures W has not had “time” to scale all
the way to zero. In fact, by cutting off the RG flows
with temperature, it was shown in Ref. 25 that there is a
characteristic inelastic scattering length, which diverges
at low temperatures as

`−1 ∝ WT 2∆−2. (3.29)

On scales longer than this length, equilibration takes
place and charge does not propagate upstream. Pro-
vided this length is shorter than the distance between
sample probes, a quantized conductance is recovered, as
discussed in Ref. 25. However, this does raise the inter-
esting possibility of observing deviations from quantiza-
tion in short Hall bars at ν = 4/5 and low temperatures.
A very clean sample would be favorable for observing
such deviations.

IV. TUNNELING AS A PROBE OF EDGE STATE
STRUCTURE

The rich physics “hidden” at the edge of FQHE fluids
is not easily revealed via bulk transport measurements.
An ideal way to access this edge physics is via laterally
confined samples in which two edges of a given sample
are brought into close proximity, allowing for inter-edge
tunneling. The simplest situation is a point contact in
an otherwise bulk quantum Hall fluid, as depicted in the
Fig. 2. The point contact can be controlled electrostat-
ically by a gate voltage. When the constriction is open,
the two terminal conductance is given by its quantized
value. However, as the channel is pinched off, and the
top and bottom edges are brought into close proximity,
charge will begin to backscatter between the right and left
moving edge channels. Such backscattering reduces the
two terminal conductance. Ultimately, as the gate volt-
age is increased, the Hall bar will be completely pinched
off, and the two terminal conductance will be zero.

In Fig. 7, the two terminal conductance as a function
of gate voltage is shown for a GaAs quantum Hall point
contact29 taken at 42mK. The two curves are taken at
magnetic fields which correspond to ν = 1 and ν = 1/3
plateaus. To the right the point contact is open, and the
conductance is quantized, whereas to the left the point
contact is pinched off. Between there are many reso-
nant structures resulting from random impurities in the
vicinity of the point contact. Note the qualitative differ-
ence between the behavior for ν = 1 and ν = 1/3. For
ν = 1/3, the valleys between the resonances are deeper
and the resonances are sharper.

How are we to understand this qualitative difference?
In this section we present a theory of tunneling and res-
onant tunneling at a point contact which answers this
question. We begin in IV.A with a discussion of tun-
neling at a point contact. We show that, in contrast
to the IQHE, the conductance of a FQHE point contact
vanishes in the limit of zero temperature. We study reso-
nant tunneling in section IV.B, where we show that in the
fractional quantum Hall effect resonances have a temper-
ature dependent width and a universal, non Lorentzian
lineshape at low temperatures. Finally, in section IV.C,
we discuss low frequency shot noise at a quantum Hall
point contact and suggest a method for the direct ob-
servation of the fractional charge of the Laughlin quasi-
particle. We will confine our attention initially to the
Laughlin states, ν = 1/m, for which the edge states have
a single branch. A discussion of tunneling in hierarchical
quantum Hall states will be deferred to subsection C.

A. Tunneling at a Point Contact

A point contact in an IQHE fluid at ν = 1, is isomor-
phic to a barrier in a 1d non-interacting electron gas. As
discussed in Section II, the right and left moving edge
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states, which feed the point contact, are equivalent to
the right and left Fermi points of a 1d non-interacting
electron gas. According to Landauer-Buttiker trans-
port theory11, the two-terminal conductance through the
point contact is proportional to the transmission prob-
ability, |t|2, for an incident wave - the edge state - to
propagate through the point contact:

G =
e2

h
|t|2. (4.1)

For an IQHE state at ν = n, the transmission will in-
volve the transmission probabilities of all n of the edge
channels.

For a FQHE fluid at ν = 1/m a point contact is iso-
morphic to a barrier in a 1d interacting electron gas - a
Luttinger liquid. How is the relation (4.1) for the point
contact conductance modified in this case? To answer
this question we use the chiral boson description of FQHE
edges described in Section II. The effects of the point
contact can be analyzed perturbatively in the two limits
depicted schematically in Fig. 8a,b: (1) a pinched off
channel with weak tunneling, and (2) an open channel
with weak backscattering. These limits will be discussed
in subsections 1 and 2, respectively. In subsection 3 we
shall piece these two limits together into a unified de-
scription.

1. Weak Tunneling Limit

Consider a point contact which is almost completely
pinched off. As shown in Fig. 8a, this may be described
by quantum Hall fluids on the left and right hand sides,
which are coupled by a weak perturbation which tunnels
electrons between them. For ν = 1/m the low energy
physics will be described by an edge state model of the
form,

S = S0
L + S0

R + Stun., (4.2)

where the left and right edges are described by

S0
a =

m

4π

∫
dxadτ∂xφa(i∂τ + ∂x)φa, (4.3)

with a = L,R. The tunneling between these two edge
states at the point contact can be expressed in terms of
the edge creation and annihilation operators, and has the
form

Stun. =
∫

dτteim(φL−φR) + c.c. (4.4)

where φa is evaluated at the point contact, xa = 0. Here
t is the amplitude for the tunneling process (not to be
confused with real time, which appears in (4.8) below).

The two-terminal conductance through the point con-
tact can now be computed perturbatively for small tun-
neling amplitude t. In the presence of a voltage V across

the junction, the tunneling rate to leading order can be
obtained from Fermi’s Golden rule:

I =
2πe

h̄

∑
n

sn|〈n|Htun.|0〉|2δ(En − E0 − sneV ). (4.5)

Here Htun. is the tunneling Hamiltonian corresponding to
(4.4). The sum on n is over many body states in which
an electron has been transferred across the junction in
the sn = ±1 direction. It is straightforward to re-express
this as

I =
et2

2πh̄

∫
dE

[
G>

L (E)G<
R(E − eV ) − G<

L (E − eV )G>
R(E)

]

(4.6)

where G>
a and G<

a are (local) tunneling in and tunneling
out densities of states for the edge modes, related by
G<(E) = G>(−E). These can be expressed as,

G>
a (E)= 2π

∑
n

|〈n|eimφa |0〉|2δ(En − E0 − E) (4.7)

=
∫

dteiEt〈eimφa(t)e−imφa(0)〉, (4.8)

where φa is evaluated at x = 0. The tunneling density of
states is related to the imaginary time Green’s function,

G(τ) = 〈Tτ [eim(φ(τ)−φ(0))]〉 (4.9)

via analytic continuation, G>(t) = G(τ → it). Since the
Euclidean action (4.3) is quadratic G(τ) may be readily
computed, giving

G(τ) =
(

τc

|τ | + τc

)m

, (4.10)

where τc is a short time cutoff. Upon analytic continu-
ation and Fourier transformation, the tunneling density
of states is thereby obtained

G>(E) = θ(E)2πΓ(m)τm
c Em−1. (4.11)

For m = 1, corresponding to the IQHE at ν = 1,
the tunneling density of states is a constant at zero en-
ergy (the Fermi energy). From (4.6) this gives an Ohmic
I-V characteristic, with a tunneling conductance, I/V ,
proportional to t2. This is the expected result, consis-
tent with Landauer transport theory (4.1). However, for
m > 1 the tunneling density of states vanishes at zero en-
ergy, giving rise to a non Ohmic I-V characteristic17,28:

I ∝ t2|V |2m−2V. (4.12)

The linear conductance is strictly zero! At finite temper-
atures the density of states is sampled at E ≈ kT , and a
non-zero (linear) conductance is expected. Generalizing
Fermi’s Golden rule to T 6= 0 gives the expected result
for the conductance17,28:
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G ∝ t2T 2m−2. (4.13)

For ν = 1/3 the predicted conductance vanishes with a
large power of temperature, G ∝ T 4.

In striking contrast to the IQHE, the FQHE point con-
tact conductance vanishes identically at zero tempera-
ture. What is the physical origin of this difference? At
the edge of an IQHE fluid the electrons behave at low
energies as if they were not interacting - the edge state
is a Fermi liquid. Thus an electron can be added or re-
moved from the edge without appreciably disturbing the
other electrons. In contrast, the electrons at the edge of
a Laughlin FQHE fluid are in a highly correlated state.
Indeed, after removal of an electron from the edge, the
remaining electrons are not left in the groundstate of the
edge with one less electron. Rather, the resulting state
contains a “shakeup” spectrum of many low energy edge
excitations, and is orthogonal to the groundstate. It thus
follows that the many body matrix element for tunnel-
ing in (4.5) vanishes. This is a nice example of a general
phenomenon known as the orthogonality catastrophe41,
which arises in such contexts as the Kondo problem and
the X ray edge problem.

This orthogonality catastrophe is directly accessible to
measurement. Fig. 9 shows data29 for the conductance
as a function of temperature through a point contact in
an IQHE fluid at ν = 1 and a FQHE fluid at ν = 1/3.
The difference in behavior is striking. For ν = 1 the
conductance approaches a constant at low temperatures,
whereas for ν = 1/3 the conductance continues to de-
crease upon cooling. Moreover, the low temperature be-
havior for ν = 1/3 is consistent with the T 4 dependence
predicted in (4.13). In our view, this data provides the
first compelling experimental evidence for the Luttinger
liquid, a phase discussed theoretically over 30 years ear-
lier.

It is instructive to re-cast the result (4.13) in the lan-
guage of the renormalization group (RG)28. Specifically,
the vanishing conductance in the FQHE indicates that
the tunneling perturbation, t, is irrelevant. As shown in
Appendix A, the lowest order RG flow equation can be
obtained from the scaling dimension, ∆, of the tunnel-
ing operator eim(φL−φR). From the power law behavior
of the Greens function in (4.10) we may deduce that the
scaling dimension of eimφL,R is m/2. It then follows that
∆ = m. The RG flow equation is then simply

dt

d`
= (1 − m)t. (4.14)

For FQHE states with m > 1, t is irrelevant as expected.
The perturbative results (4.12) and (4.13) can be ob-
tained by integrating this RG flow equation until the
cutoff is of order kT (or eV ), giving teff ∼ tm−1 and
G ∼ t2eff .

2. Weak Backscattering Limit

Having established that the conductance of a FQHE
point contact vanishes at T = 0 for weak tunneling, we
now turn to the opposite limit in which the point con-
tact is almost completely open. Consider then a bulk
quantum Hall fluid in which the top and bottom edges
are weakly coupled together, as depicted in Fig. 8b. As
before, the low energy physics is at the edges, and can
be described by the action,

S = S0
T + S0

B + Stun.. (4.15)

Here S0
T and S0

B describe the top and bottom edge modes,
respectively, and are given by the chiral boson action
(4.3). In contrast to the weak tunneling limit, the charge
which tunnels between the two edges is now tunneling
through the quantum Hall fluid. It is therefore possi-
ble that a single Laughlin quasiparticle, with fractional
charge e/m, could tunnel between the edges. This pro-
cess can be described by a term of the form,

Stun. =
∫

dτvei(φT −φB), (4.16)

where v is the tunneling amplitude. In addition, higher
order processes involving tunneling of multiple quasipar-
ticles (or electrons) are also possible. However, as shown
below, such processes are less “relevant” at low energies
and temperatures.

Consider now applying a voltage V between the source
and drain electrodes. In the absence of any coupling, the
top and bottom edges would then be in equilibrium at
chemical potentials differing by the voltage V . This re-
sults in the flow of a net edge current, I = (1/m)(e2/h)V .
Quasiparticle tunneling between the top and bottom
edges backscatters charge, and will tend to reduce this
current. The reduction may be computed perturbatively
in v, also using the Golden Rule. In fact, the backscat-
tering current will be given by the Golden rule expression
(4.5), with two differences. First, the charge e in (4.5)
must be replaced by the quasiparticle charge, e∗ = e/m.
Second, the electron tunneling operator (4.4) must be
replaced by the quasiparticle tunneling term in (4.16).
This difference is crucial, replacing the electron tunneling
DOS (4.11) with the density of states for the addition of a
quasiparticle. This follows from the quasiparticle Green’s
function

Gq.p.(τ)= 〈Tτ [ei(φ(τ)−φ(0))]〉 (4.17)

=
(

τc

|τ | + τc

)1/m

, (4.18)

which has the same form as the electron Greens function
(4.10) with m → 1/m. The backscattering current can
thus be obtained from (4.12) by replacing m with 1/m,
giving at zero temperature17,28

Iback ∝ v2|V |2/m−2V. (4.19)
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Likewise, at temperature T , the backscattering contribu-
tion to the (linear) conductance is given by

G − 1
m

e2

h
∝ −v2T 2/m−2. (4.20)

Once again, for the IQHE with m = 1, a temperature
independent correction to the two terminal conductance
is obtained, as expected from Landauer transport the-
ory. However, for the FQHE the perturbation theory
(4.20) is divergent at low temperatures. The quasipar-
ticle tunneling rate grows at low energies, in contrast to
electron tunneling. Rather than an orthogonality catas-
trophe, quasiparticle tunneling causes quite the opposite
- an “overlap catastrophe”.

The divergent perturbation theory indicates that the
quasiparticle tunneling operator is a relevant perturba-
tion. This may be seen directly by noting from (4.18)
that the scaling dimension of the quasiparticle creation
operator eiφ is equal to 1/2m. The leading order RG
flow equation for the quasiparticle tunneling amplitude
is then simply

dv

d`
= (1 − 1

m
)v. (4.21)

For the FQHE, v grows upon scaling to lower energies,
flowing out of the perturbative regime where (4.21) is
valid. The behavior in this limit will be discussed in the
next section.

It is instructive to consider, in addition, backscat-
tering processes involving multiple quasiparticles. The
operator which tunnels n-quasiparticles is of the form:
vnein(φT −φB). It is straightforward to show that the lead-
ing order RG flow equation for vn is

dvn

d`
= (1 − n2

m
)vn. (4.22)

Notice that for ν = 1/3, (m = 3), the single quasiparticle
backscattering process is the only relevant perturbation.
In contrast, for m = 5, 7, ... more than one operator is
relevant. In all cases, however, the single quasiparticle
term is the most relevant.

3. Crossover between the two limits

The preceding results can now be pieced together to
form a global picture of the behavior of a point contact
in the FQHE. The above perturbative results describe
the stability of two renormalization group fixed points.
The “perfectly insulating” fixed point, with zero electron
tunneling t = 0, is stable, whereas the “perfectly con-
ducting” fixed point, with zero quasiparticle tunneling
v = 0, is unstable. Provided these are the only two fixed
points, it follows that the RG flows out of the conducting
fixed point eventually make their way to the insulating
fixed point. This is a very striking conclusion, since it

implies that an arbitrarily weak quasiparticle backscat-
tering amplitude v will cause the conductance to vanish
completely at zero temperature. Of course, for v very
small, very low temperatures would be necessary to see
this. In this scenario, the conductance as a function of
temperature will behave as shown in Fig. 10. At high
temperatures, the system does not have “time” to flow
out of the perturbative regime, so the conductance is
given by G ≈ (1/m)(e2/h) − v2T 2/m−2. As the tem-
perature is lowered below a scale T ∗ ∝ vm/(m−1), per-
turbation theory breaks down. Eventually, the system
crosses over into a low temperature regime in which the
conductance vanishes as T 2m−2.

The validity of this scenario rests on the assump-
tion that no other fixed points intervene. This as-
sumption has been verified both by quantum Monte
Carlo simulations27, and more recently by exact non-
perturbative methods based on the thermodynamic
Bethe ansatz31.

As seen from (4.22), for ν = 1/3 the single quasipar-
ticle backscattering operator, with amplitude v = v1,
is the only relevant perturbation about the conducting
fixed point. All higher order processes are irrelevant,
and hence less important at low temperatures. Indeed,
for small v and T , the conductance will depend on these
parameters only in the combination v/T 2/3. In this limit
the conductance can be expressed in terms of a universal
crossover scaling function27,30,42

lim
v,T→0

G(v, T ) =
1
3

e2

h
G̃(cv/T 2/3), (4.23)

where c is a non universal dimensionful constant. The
limiting behavior of the scaling function, G̃(X), may be
deduced from the perturbative limits. For small argu-
ment X, the perturbation theory result (4.20) implies

G̃(X) = 1 − X2. (4.24)

For large argument, corresponding to the limit T → 0,
the scaling function must match on to the low temper-
ature regime (4.13), which gives a T 4 dependence for
nu = 1/3. This implies that for X → ∞,

G̃(X) ∝ X−6. (4.25)

The exact scaling function, recently computed by Fend-
ley et. al.31, indeed reduces to (4.23) and (4.24) for small
and large argument, respectively. The universal crossover
scaling function G̃ is of particular interest because it de-
termines the experimentally accessible lineshape for res-
onant tunneling, as we now describe.

B. Resonant Tunneling

We now consider the phenomena of resonant tunneling
through a point contact in the FQHE. Resonances in the
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conductance are expected when the energy of the incident
edge mode coincides with a localized state in the vicinity
of the point contact. As a point of reference, we first re-
view resonant tunneling theory for a non-interacting elec-
tron gas, which should be applicable to a point contact
in the IQHE. As the chemical potential µ of the incident
edge mode sweeps through the energy of the localized
state, ε0, the conductance will exhibit a peak described
by,

G =
e2

h

∫
dεf ′(ε − µ)

ΓLΓR

(ε − ε0)2 + Γ2
. (4.26)

Here ΓL and ΓR are tunneling rates from the reso-
nant (localized) state to the left and right leads and
Γ = (ΓL + ΓR)/2. The Fermi function is denoted f(ε).
At high temperatures, T > Γ, the resonance has an am-
plitude Γ/T and a width T . At low temperatures, the
lineshape is Lorentzian, with a temperature independent
width. Moreover, when the left and right barriers are
identical, the on-resonance transmission at zero temper-
ature is perfect, G = e2/h.

How is this modified for tunneling through a FQHE
point contact? Since arbitrarily weak quasiparticle
backscattering causes the zero temperature conductance
through the point contact to vanish, one might expect
that resonances are simply not present at T = 0. As
we now show, this is not the case. Rather, perfect reso-
nances are possible, but in striking contrast to (4.26) for
non- interacting electrons, they become infinitely sharp
in the zero temperature limit. As before, it is useful to
consider perturbatively two limits, the weak tunneling
limit in Section 1 below, and then in Section 2 the oppo-
site limit of weak backscattering.

1. Weak Tunneling limit

Consider then tunneling through a localized state sep-
arating two FQHE fluids. Focusing once again on the
FQHE edge modes, we consider the model,

S = S0
L + S0

R + Sres. + Stun. (4.27)

where S0
L and S0

R, given in (4.3), describe the edge modes
in the two FQHE fluids, and

Sres. =
∫

dτε0d
†d (4.28)

describes the localized state with energy ε0. The edge
modes are coupled to the localized state via a tunneling
term,

Stun. =
∫

dτt(eiφL + eiφR)d + h.c, (4.29)

with the tunneling amplitude, t, taken to be the same for
left and right edge modes. Once again, the boson fields
φL/R are evaluated at x = 0.

Consider first computing the rate, Γ, for an electron
to tunnel from the localized state into the edge modes,
perturbatively in t. From Fermi’s golden rule, this will
depend on the density of states for tunneling into the
edge, which is given in (4.11). We thus find

Γ = t2G>(ε0 − µ). (4.30)

At finite temperatures, and µ ≈ ε0, we thus have

Γ ∝ t2Tm−1. (4.31)

Once again at zero temperature there is an orthogonal-
ity catastrophe which prevents tunneling to FQHE edge
states, m > 1. However, it is only half as severe as
that for tunneling between two edge modes (4.13), since
only a single mode is being disturbed. For FQHE states
(m ≥ 3), (4.31) implies that Γ << T at low temper-
atures. In Ref. 43, 44 it was argued that in this limit
the conductance is well approximated by the form (4.26)
with a temperature dependent tunneling rate Γ in (4.31).
This implies resonances with a width varying as T and a
height Γ(T )/T , which gives an on-resonance conductance
varying as:

Gres. ∝ t2Tm−2. (4.32)

Thus, in the limit of small tunneling t, resonances are in-
deed suppressed at zero temperature. However, at finite
temperatures, peak heights are predicted to vanish more
slowly (as T for ν = 1/3) than the tails (T 4 for ν = 1/3).

What happens when the tunneling, t, to the localized
state is increased? In Ref. 42 a renormalization group
calculation was performed to higher order in t, which
revealed that the exponent in (4.32) is renormalized when
t is finite. Specifically, to O(t2) the following RG flow
equations were obtained,

dt

d`
= (1 − 1

2
(m − α))t (4.33)

dα

d`
= 8τ2

c t2(1 − 2α

m
). (4.34)

The RG flow is shown in Fig. 11. Initially, α = 0, how-
ever, when t is finite it becomes positive. For small t, the
RG flows to a fixed line with t = 0, and α = α∗. The
on-resonance conductance then decays with a modified
exponent,

Gres. ∝ t2Tm−2−α∗
. (4.35)

For ν = 1/3 (m = 3) when t is larger than a critical value
tc, for which α∗

c = m − 2, the flows cross a Kosterlitz-
Thouless like separatrix, and scale towards large tunnel-
ing t (see Fig. 11). In this case, it is extremely plausible
that the flows take the system all the way to the perfectly
conducting fixed point, as argued in Ref. 42. This cer-
tainly happens for the IQHE m = 1, since (4.26) shows
a perfect on-resonance conductance when ΓL = ΓR. (In
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this case the renormalization of α is inconsequential, how-
ever, since from (4.33) t is always relevant.) For the
FQHE the equality of the left and right tunneling am-
plitudes assumed in (4.29) is critical. Indeed, when they
are unequal, the RG flows are modified, and the system
crosses over to off-resonance behavior (4.13). For m ≥ 5
the RG flows reveal that the tunneling amplitude always
scales to zero. Thus for ν ≤ 1/5 perfect resonances are
not readily attainable.

In summary, we conclude that for a localized state cou-
pled symmetrically to two ν = 1/3 FQHE fluids, robust
resonances are indeed possible. Since the conductance on
resonance is expected to be large, the above perturbative
analysis in t cannot be used to calculate the resonance
lineshape. The behavior near the resonance peak, how-
ever, can be obtained easily in the opposite limit of weak
backscattering, as we now describe.

2. Weak Backscattering: Theory of the Perfect Resonance

Resonant tunneling is not normally studied for weak
backscattering, since in this limit the transmission is
large even off resonance, which tends to obscure the res-
onance. However, for FQHE states, the off resonance
conductance vanishes at zero temperature, leaving an un-
obscured resonance peak.

Consider a point contact which has two nearby parallel
tunneling paths for the backscattering of quasiparticles,
as depicted in Fig. 12. These tunneling paths may be
due to a random impurity potential or an intentionally
created quantum dot. By varying the gate voltage and
magnetic field it should be possible to achieve a destruc-
tive interference,

veff = vL + vR = 0 (4.36)

which shuts off the inter-edge quasiparticle tunneling.
This is the condition for a resonance. Provided all higher
order tunneling processes are irrelevant, there will be per-
fect transmission on-resonance at T = 0, with a conduc-
tance G = νe2/h. Upon tuning away from the reso-
nance, so veff 6= 0, the conductance will vanish at zero
temperature, as shown in Section A above. Thus, at
zero temperature, there will be an infinitely sharp per-
fect resonance30.

How easy is it to achieve such a perfect resonance?
The criterion is that the renormalized value of veff and
all other relevant v’s equal zero. In general, the net quasi-
particle backscattering amplitude veff is a complex num-
ber, so that the resonance condition requires the simulta-
neous tuning of two parameters. If barriers (or quasipar-
ticle tunneling paths) are symmetric, however, then veff

may be chosen real, so that only a single parameter, such
as a gate voltage, need be tuned. For ν = 1/3, all higher
order backscattering processes are indeed irrelevant, so
that tuning veff = 0 is sufficient to achieve resonance.
For ν = 1/5, however, the parameter v2 in (4.22) is also

relevant, so a perfect resonance requiring the tuning of 4
parameters. The situation gets even worse for m > 5. For
this reason, we focus on resonances for ν = 1/3, which
should be the easiest to find.

Consider tuning through such a perfect resonance by
varying a parameter, such as the gate voltage. It is con-
venient to denote by δ the “distance” from the peak po-
sition in the control parameter. Close enough to the res-
onance one has veff ∝ δ. For very small δ the RG flows
will thus pass very near to the perfectly conducting fixed
point, since all of the other irrelevant operators will scale
to zero before veff has time to grow large. Eventually,
veff does grow large and the flows crossover to the insu-
lating fixed point, as depicted in Fig. 13. Temperature
serves as a cutoff to the RG flows, as usual. This reason-
ing reveals that for both δ and temperature small, the
conductance will depend only on the universal crossover
trajectory which joins the two fixed points. The unique-
ness of the RG trajectory implies that the conductance
will be described by a universal crossover scaling func-
tion. Thus, for small T and δ, the resonance lineshape is
given by a universal scaling function,

G(T, δ) =
1
3

e2

h
G̃(δ/T 2/3), (4.37)

where G̃ is the same scaling function introduced in (4.23).
The scaling form (4.37) shows that the resonance width

scales as T 2/3, at low temperatures. Moreover, rescaled
data from different temperatures should collapse onto the
same universal curve. As seen from (4.25), the resonance
lineshape is predicted to be non-Lorentzian, with a tail
falling off as δ−6.

Fig. 14 shows a scaling plot of one of the resonances
for ν = 1/3 in Fig. 7. from the data of Webb et. al.. The
widths of the resonances at several different temperatures
have been rescaled by T 2/3, as suggested by (4.37). Since
the peak heights were also weakly temperature dependent
(and roughly one third of the quantized value (1/3)e2/h)
the amplitudes have also been normalized to have unit
height at the peak. The temperature scaling of the peak
widths is indeed very well fit by T 2/3. Also shown in
Fig. 14 are quantum Monte Carlo data and an exact
computation from Bethe Ansatz for the universal scaling
function in (4.37). The agreement is striking. Although
the experimental lineshape does drop somewhat faster
in the tails, the shape is distinctly non Lorentzian with
a tail decaying with a power close to that predicted by
theory. It should be emphasized that the experimental
data does not represent a “perfect resonance”, since the
peak amplitude is dropping (slowly) upon cooling, rather
than approaching the quantized value, (1/3)e2/h. By
varying an additional parameter besides the gate voltage
(such as the magnetic field) though, it should be possible
to find a perfect resonance for ν = 1/3.
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C. Generalization to Hierarchical States

The above theory of tunneling through a point contact
for FQHE fluids at filling ν = 1/m, can be generalized
to hierarchical FQHE states25. The additional complica-
tion is that the hierarchical states have composite edges,
with multiple branches, as described in detail in Section
II. Moreover, for those states with edge branches moving
in both directions, such as ν = 2/3, the conductance is
non-universal unless edge impurity scattering is present.
Likewise, it can be shown that without impurity scatter-
ing, the conductance through a point contact in a ν = 2/3
fluid varies as

G ∼ Tα (4.38)

with a non-universal exponent α. However, impurity
scattering drives an edge phase transition, as shown in
Section III, and the system flows to a fixed point which
exhibits an appropriately quantized conductance. At this
fixed point, the exponent α is likewise universal. Thus,
measuring α, gives critical information about the low en-
ergy properties of the composite edge.

Generally, the exponent α can be determined from the
density of states to tunnel an electron into the composite
edge. Specifically, one must consider all tunneling oper-
ators of the form (2.45), which create an edge excitation
with charge e, as determined from (2.34). For filling fac-
tors ν = n/(np+1), with integer n and even integer p, the
edge fixed point with impurity scattering is known (see
Section IIIc) so that the tunneling DOS can be readily
computed, by generalizing (4.9). For ν = 2/3 one finds

α = (2/ν − 2) + 1. (4.39)

This exponent depends on the presence of the neutral
mode at the ν = 2/3 edge! The electron edge creation op-
erator is a combination of the charge and neutral modes,
so that tunneling an electron into the edge also “shakes
up” the neutral mode. Indeed, the second contribution
in (4.39) is due to shakeup of the neutral mode. The
charge mode gives the first term, which has the same
form as (4.14) for filling ν = 1/m. Thus, an observation
of α = 2 for a ν = 2/3 point contact, would constitute a
measurement of the neutral mode!

More generally for ν = n/np + 1 it can be shown that

α =
{

2p for p ≥ 0
2|p| − (4/n) for p < 0.

(4.40)

Notice that α depends on the sign of p, which determines
the direction of propagation of the neutral modes relative
to the charge mode. For the p = −2 sequence, the pre-
dicted exponents are displayed in table 1. The exponents
approach α = 4 as ν approaches 1/2.

For filling ν = 4/5 the conductance at T = 0 was
argued in Section IIIc to be non-universal even in the
presence of edge impurity scattering, although at T 6= 0

a universal quantized conductance is restored for sam-
ples larger than the edge equilibration length (3.29). In
contrast, the exponent α is predicted to be non-universal
even for samples much longer than the edge equilibration
length.

For a point contact which is only very weakly pinched
off, the conductance can be computed perturbatively for
small backscattering. The backscattering will reduce the
conductance from its quantized value, as in the single
channel case (4.20). Generally, for ν = n/(np + 1) we
find a temperature dependent suppression given by,

G(T ) = |ν|e
2

h
− v2T 2(|ν|−1), (4.41)

where v is the amplitude of the most relevant backscatter-
ing operator of the general form (2.45). If there were no
other relevant backscattering operators, as for ν = 1/3,
this would imply that resonances narrow with tempera-
ture as T (1−|ν|) - the generalization of (4.37). However,
for hierarchical states there will generically be several
relevant backscattering processes, so that resonances will
not be very robust, and tend to vanish at very low tem-
peratures. Nevertheless, one expects there should be a
range of temperature over which the resonance width nar-
rows as T (1−|ν|).

D. Shot Noise

In addition to measuring the conductance of a point
contact, it is also possible to measure time dependent
fluctuations, or noise, in the transmitted current. Most
interesting is the non-equilibrium noise present at fi-
nite bias voltage, rather than the equilibrium Nyquist
noise. At frequencies comparable to the bias voltage,
there may be Josephson type oscillations, as discussed by
Chamon et. al.45. At low frequencies one expects shot
noise, arising from the discreteness of the electron. As
we briefly describe, shot noise might enable a rather di-
rect measurement of the fractional charge of the Laughlin
quasiparticle46.

Consider first a very high resistance point contact in
a QHE fluid. In the presence of a bias voltage electrons
will occasionally tunnel. This will give rise to tempo-
ral fluctuations in the current. At low enough currents,
successive tunneling events will be uncorrelated. Assum-
ing Poisson statistics for the tunneling events, the low
frequency current noise will be given by the classic ex-
pression:

〈|δI(ω)|2〉ω→0 = e〈I〉. (4.42)

Note that the amplitude of the low frequency noise de-
pends on the absolute magnitude of the electric charge,
e.

With increasing current, correlations between tunnel-
ing events are expected, and the above expression must
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break down. Recently Lesovik47–49 has analyzed shot
noise for a 1d non-interacting electron gas, which is rele-
vant to a ν = 1 point contact. For a single barrier with
transmission probability |t|2, he finds

〈|δI(ω)|2〉ω→0 =
e2

h
|t|2(1 − |t|2)eV, (4.43)

where V is the bias voltage. In the limit |t|2 → 0, this re-
duces to the classic expression (4.42). But when |t|2 → 1,
the noise is greatly suppressed. Indeed, in the absence
of any backscattering (|t|2 = 1) the noise vanishes alto-
gether. For 1 − |t|2 small (4.43) may be re-written as

〈|δI(ω)|2〉ω→0 ≈ e〈Iback〉 = e(
e2

h
V − 〈I〉). (4.44)

The noise arises from the discrete, uncorrelated backscat-
tering of electrons at the point contact.

How are these results modified for a point contact in
the FQHE? In Ref. 46 we developed a detailed theory
of non-equilibrium shot noise at FQHE point contacts
for filling ν = 1/m. The results may be understood very
simply. In the weak tunneling limit the transport is dom-
inated by the discrete tunneling of electrons through the
point contact. As for non-interacting electrons, the tun-
neling events satisfy Poisson statistics and the noise is
given by (4.42). In the opposite limit of weak backscat-
tering, however, there are qualitative differences, because
the dominant backscattering processes in the FQHE are
fractionally charged quasiparticles. When the conduc-
tance is just slightly less than νe2/h, (attained by ad-
justing the gate on the point contact) these backscatter-
ing processes are infrequent, and should be uncorrelated.
Indeed, in this limit we find a low frequency noise given
by

〈|δI(ω)|2〉ω→0 ≈ e∗〈Iback〉 = e∗(ν
e2

h
V − 〈I〉), (4.45)

with e∗ the quasiparticle charge: e∗ = e/m. This form is
identical to the non-interacting result (4.44), except with
the electron charge replaced by the quasiparticle charge.
A measurement of the current noise and mean current,
〈I〉, in this regime should enable a direct measure of the
quasiparticle charge.

V. CONCLUSION

In this article we have presented a theory of edge state
transport in the fractional quantum Hall effect based on
the chiral Luttinger liquid model. For the Laughlin states
at filling ν = 1/m with odd m, this model provides a
very simple description of the low energy edge excita-
tions, which consist of a single propagating mode corre-
sponding to charge density fluctuations. This provides a
simple framework for understanding the quantization of
the Hall conductance in an edge state picture, analogous

to the Landauer-Buttiker theory for the integer quantum
Hall effect.

In addition, this theory makes specific, experimentally
testable predictions for the behavior of tunneling and res-
onant tunneling through a point contact in a Hall fluid.
The behavior for a FQHE fluid is predicted to be quali-
tatively different than that in the integer effect. Specifi-
cally, for ν = 1/3 the conductance through a point con-
tact is predicted to vanish at low temperatures as T 4,
in contrast to the temperature independent result ex-
pected for ν = 1. Moreover, resonances in the tunneling
between two ν = 1/3 states are predicted to have a tem-
perature dependent line width, which vanishes as T 2/3 at
low temperatures. The shape of the resonances are uni-
versal and described by a scaling function which has been
computed exactly. These predictions agree qualitatively
- if not quantitatively - with recent measurements of edge
state transport through a point contact at ν = 1/329.

It is worth emphasizing that a point contact in a QHE
fluid provides a simple and experimentally accessible ex-
ample of a broad class of so-called “quantum impurity
problems”. Quantum impurity problems50 consist of an
“impurity” which is coupled to an extensive set of low
energy degrees of freedom. The classic example is in the
Kondo effect51, where an impurity spin is coupled to the
particle-hole excitations of a metallic host. In the quan-
tum Hall effect, the point contact is an impurity, coupled
to the low energy edge excitations. The powerful meth-
ods of boundary conformal field theory50 and “boundary
integrability” are ideal for analyzing this class of prob-
lems.

In contrast to the Laughlin sequence, ν = 1/m, the
edge excitations of hierarchical quantum Hall states can-
not be described by a single mode. Rather, multiple Lut-
tinger liquid edge modes are expected, which in general
can propagate in different directions. This can lead to a
breakdown of conductance quantization due to a lack of
equilibration between opposite moving modes. It is thus
essential to incorporate edge impurity scattering, which
has a profound effect on the low energy edge state struc-
ture. Specifically, for a broad class of hierarchical quan-
tum Hall states, ν = n/(np + 1) with integer n and even
integer p, impurity scattering is perturbatively relevant,
and drives the edge to a new disorder dominated low en-
ergy fixed point, where quantization is restored. At this
fixed point the charge is carried in a single mode. The
remaining n − 1 neutral modes propagate at a different
velocity and are related by an exact SU(n) symmetry. In
the specific case ν = 2/3, there is a single neutral mode,
which propagates in the direction opposite to the charge
mode.

Despite carrying no charge, the upstream propagat-
ing neutral mode can be detected in at least two ways.
The first, which is less direct, involves tunneling through
a constricted point contact in a ν = 2/3 Hall fluid.
For filling ν = 1/m, where there is only a single edge
mode, the point contact conductance is predicted to van-
ish with temperature as G(T ) ∼ T 2/ν−2. For ν = 2/3 one
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might therefore expect a power law, G(T ) ∼ T . How-
ever, the presence of the neutral mode at the ν = 2/3
edge increases this power by one, giving the prediction
G(T ) ∼ T 2.

Time domain transport experiments at filling ν = 2/3,
might enable a much more direct measurement of the
neutral mode. Imagine two leads coupled via tunnel junc-
tions to the opposite sides of a large Hall droplet at fill-
ing ν = 2/3. A short current pulse incident in one lead,
upon tunneling into the droplet edge, would excite both
the charge and neutral edge modes. These excitations,
after propagating in opposite directions and with differ-
ent speeds along the droplet edge would, upon arrival at
the far tunnel junction, excite two current pulses into the
outgoing lead. By tailoring the placement of the leads, a
measurement of the direction of propagation and decay
length of the neutral mode should also be possible.

The disorder dominated fixed point which describes
the edge structure at filling ν = n/(np + 1) has higher
symmetry - an exact U(1)xSU(n) symmetry - than the
underlying Hamiltonian. This is reminiscent of Fermi liq-
uid theory, where the attractive zero temperature fixed
point also has higher symmetry than the underlying
Hamiltonian. In addition to conserved electric charge,
the (T=0) Fermi liquid fixed point has an infinity of con-
served charges (and hence an infinity of U(1) symmetries)
associated with each point on the Fermi surface. This
is the symmetry responsible for the quasiparticle excita-
tions. At finite temperatures this symmetry is broken,
leading to a finite scattering lifetime for the quasipar-
ticles, proportional to T−2. Since total electric charge
is always conserved, propagating zero sound in a Fermi-
liquid does not decay even at T 6= 0. At the FQHE edge,
it is the SU(n) symmetry which is responsible for the
existence of the neutral modes. But, as in Fermi liquid
theory, this symmetry is only exact at T = 0, so that the
neutral edge excitations are expected to decay at finite
temperatures. It is amusing that the predicted scattering
rate for the neutral modes vanishes with the same power
of temperature - T 2 - as for quasiparticles in a Fermi
liquid.

In conclusion, edge states of fractional Hall fluids pro-
vide an ideal arena for the study of correlations in low di-
mensional quantum transport. The remarkable richness
of the edge state structure in both the Laughlin states
and the hierarchical quantum Hall states is directly acces-
sible to experimental study. We hope that this overview
will stimulate further experimental and theoretical work
in this exciting area.
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APPENDIX A: RENORMALIZATION GROUP
ANALYSIS

The renormalization group (RG) provides a powerful
framework for understanding the global behavior of the
models in this article and for piecing together results ob-
tained in perturbative limits. Here we outline the pro-
cedure for deriving the lowest order RG flow equations
which are referred to in the text.

Consider first a point contact in a ν = 1/m fluid in the
limit of weak backscattering, discussed in Section IVA.
The action in (4.15)-(4.16) may be written

S = S0 + v

∫
dτeiφ(τ) + c.c., (A1)

where S0 = S0
T + S0

B is the quadratic edge action given
in (4.3) and φ(τ) = φT (x = 0, τ) − φB(x = 0, τ). The
perturbation v acts at a single space point, x = 0.

The RG of two steps: (i) Integrate out degrees of free-
dom φT/B(k, ω) which lie in a momentum shell Λ/b <
k < Λ. First split the field into “slow” and “fast”
modes, below and inside the momentum shell, respec-
tively: φ = φs + φf . To lowest order in v one must
average over the fast modes:

〈eiφ〉f = eiφs〈eiφf 〉f (A2)
= b−∆eiφs . (A3)

Here ∆ is the scaling dimension of the operator eiφ. The
scaling dimension is most easily deduced from the two
point correlation function,

〈eiφ(τ)e−iφ(0)〉 ∝ |τ |−2∆. (A4)

(ii) The RG transformation is completed by rescaling
space and time, τ ′ = τ/b, x′ = x/b. The resulting action
is then equivalent to the original one with v replaced by
v′ = vb1−∆. Upon setting b = e`, one thereby obtains
the leading order differential RG flow equation,

dv

d`
= (1 − ∆)v. (A5)

Consider now a spatially random perturbation, as in
section III,

S = S0 +
∫

dxdτξ(x)eiφ(x,τ) + c.c. (A6)

where ξ(x) is a Gaussian random variable satisfying
[ξ∗(x)ξ(x′)]ens = Wδ(x−x′). The square brackets denote
an ensemble average over the quenched disorder. Our
analysis follows closely that of Giamarchi and Schultz52,
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who studied the effects of randomness on a (non chiral)
Luttinger liquid. To lowest order in W , ensemble av-
eraged quantities may be computed from the ensemble
average of the partition function. (At higher order the
introduction of replicas would be useful.) Performing the
average over ξ, give the effective action

Seff = S0 − W

∫
dxdτdτ ′eiφ(x,τ)e−iφ(x,τ ′). (A7)

The leading order RG flow equation for W may now be
derived by applying steps (i) and (ii) to (A7). This gives

dW

d`
= (3 − 2∆)W, (A8)

where again ∆ is the scaling dimension of eiφ. The “2”
arises from step (i) because eiφ appears twice in (A7).
The “3” arises from rescaling, step (ii), because there
are 3 space/time integrals.
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FIG. 1. Schematic portrait of the edge of a quantum Hall
state with two channels. The solid lines with arrows represent
the edge states. The presence of random impurities, denoted
by the small circles, allows for momentum non-conserving
scattering between the different channels. When the chan-
nels move in the same direction (e.g. ν = 2), as shown in (a),
inter-channel scattering does not effect the net transmission
of the edge. However, when the channels move in opposite
directions, as in ν = 2/3, depicted in (b), the back scattering
of charge plays a crucial role.

FIG. 2. Schematic portrait of a point contact, in which the
top and bottom edges of a Hall fluid are brought together
by an electrostatically controlled gate (G), allowing for the
tunneling of charge between the two edges. Here S and D
denote source and drain, respectively.

FIG. 3. Dispersion of energy levels in a quantum Hall bar
as a function of the one dimensional momentum k. Here µ is
the Fermi energy at bulk filling ν = 1.

FIG. 4. Schematic diagram of a two terminal conductance
measurement for a ν = 1 quantum Hall state. The shaded re-
gions denote the reservoirs, which are assumed to be in equi-
librium at different chemical potentials.

FIG. 5. Schematic diagram of a two terminal conductance
measurement for a quantum Hall state such as ν = 2/3 in
which two edge channels move in opposite directions.

FIG. 6. Renormalization group flow diagram for a ν = 2/3
random edge as a function of disorder strength W and the
scaling dimension ∆ of the tunneling operator. For ∆ < 3/2
all flows end up at the exactly soluble fixed line ∆ = 1. For
∆ > 3/2 there is a Kosterlitz-Thouless like separatrix sepa-
rating the disorder dominated phase from a phase in which
disorder is irrelevant.

FIG. 7. Two terminal conductance as a function of gate
voltage of a GaAs quantum Hall point contact taken at 42mK.
The two curves are taken at magnetic fields which correspond
to ν = 1 and ν = 1/3 plateaus. Taken from Ref. 29.

FIG. 8. A quantum Hall point contact in the (a) weak
tunneling limit and (b) the weak backscattering limit. The
shaded regions represent the quantum Hall fluid with edge
states depicted as lines with arrows. The dashed line rep-
resents a weak tunneling matrix element connecting the two
edges.

FIG. 9. Conductance of a quantum Hall point contact as a
function of temperature for (a) ν = 1 and (b) ν = 1/3 from
Ref. 29.

FIG. 10. Schematic plot of the crossover from the weak
backscattering limit to the weak tunneling limit as the tem-
perature is lowered. At high temperatures, weak backscatter-
ing leads to a small correction to the quantized conductance.
As the temperature is lowered below T ∗ ∝ vm/(m−1) the sys-
tem crosses over to the insulating limit.

FIG. 11. Renormalization group flow diagram describing
the on resonance transmission. For weak tunneling, small
t, the system flows to the fixed line with t = 0. The peak
conductance then vanishes at low temperature as T m−2−α∗

.
As the coupling t is increased, the system crosses a Koster-
litz Thouless separatrix, and flows to the v = 0 fixed point
described in section IVB2.

FIG. 12. A quantum Hall point contact with two parallel
backscattering paths, v1 and v2. A perfect resonance occurs
when the backscattering amplitudes destructively interfere.

FIG. 13. Schematic renormalization group flow diagram
showing the universal trajectory connecting the perfectly con-
ducting v = 0 fixed point to the insulating t = 0 fixed point.
On resonance, the system flows into the unstable v = 0 fixed
point. Slightly off resonance, the system flows past the v = 0
fixed point and flows along the universal trajectory to t = 0.

FIG. 14. Log-log scaling plot of the lineshape of resonances
at different temperatures from Ref. 29. The x axis is rescaled
by T 2/3. The crosses represent experimental data at tempera-
tures between 40mK and 140mK. The squares are the results
of the Monte Carlo simulation, and the solid line is the exact
solution from Ref. 31.
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