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We present a general method for determining the phase diagram of systems of a finite number of one-
dimensional Hubbard-like systems coupled by single-particle hopping with weak interactions. The technique is
illustrated by detailed calculations for the two-chain Hubbard model, providing controlled results for arbitrary
doping and interchain hopping. Of nine possible states which could occur in such a spin-1/2 ladder, we find
seven at weak coupling. We discuss the conditions under which the model can be regarded as a one-
dimensional analog of a superconductor.

I. INTRODUCTION

One-dimensional~1D! electron systems provide an impor-
tant testing ground for understanding electron-correlation ef-
fects. Many methods have been applied to the problem of a
single Hubbard chain, and there is general agreement that the
system remains, for repulsive interactions, in a Luttinger-
liquid state with gapless spin and charge modes.1 The 1D
analog of a superconductor, a state with one gapless charge
mode and dominant pairing~rather than charge-density
wave! correlations, does not arise in that case.

Two-chain systems are interesting as a first step towards
true 2D materials, and may be relevant for some experimen-
tal systems.2 Moreover, on a ladder, statistics are more im-
portant, since particles can exchange without passing
through one another. However, the theoretical situation in
such models is much less clear.3–8 Recent simulations sug-
gest that states with dominant pairing correlations can indeed
arise.9

In this paper, we present a systematic weak-coupling
analysis of two Hubbard chains coupled by single-particle
hopping, t' . Our approach is acontrolled renormalization
group valid for smallU but for arbitrary interchain hopping
and filling,n.10 The general methods described here may be
applied to any system composed of a finite number of
Hubbard-like chains with weak short-range four-fermion in-
teractions.

The possible phases of such models can be characterized
by the number of charge and spin modes which are gapless at
zero momentum. For anN-chain system the number of gap-
less charge modes can vary from zero toN, and likewise for
spin. Remarkably, of the nine possible phases for two chains,
seven are realized within the simple Hubbard model at weak
coupling, reflecting the proliferation of marginal operators.
Denoting a phase withx gapless charge modes andy gapless
spin modes as CxSy, the smallU phase diagram as a func-
tion of interchain hoppingt' and fillingn is shown in Fig. 1.
Particularly noteworthy is the phase C1S0, present with
purely repulsiveinteractions~positiveU). This phase has a
spin gap and asinglegapless charge mode, and is thus the
1D analog of either a superconductor~SC! or charge-density
wave ~CDW!. As found by other authors, the pairing of up
and down spins in this phase is ‘‘d-wave-like,’’ in the sense
that the pair wave function has opposite sign in the bonding

and antibonding bands (k'50,p).9,4 A more precise and
general definition of this type of pairing is given below in
terms of bosonization.

Two alternative physical criteria distinguish the two pos-
sibilities for an array of weakly coupled ladders, depending
upon the relative strength of the interladder coupling and of
quenched impurities. If the impurity interactions dominate,
localization must be avoided within each ladder indepen-
dently. This requires a very slow decay of pairing
correlations.11 In particular, if the equal time pairing corre-
lation function ^D(x)D†(0)&;1/uxuk, where D5c1↑c2↓ ,
this requiresk,kc51/3. If interladder couplings are stron-
ger than impurity scattering, two-~or three-! dimensional
phase coherence can set in and further stabilize the SC. It
must compete, however, with the formation of a CDW
~which, due to pinning, is an insulating phase!. For
1/2,k,2, the situation is best summarized in Fig. 2, which
shows a schematic phase diagram at fixed disorder as a func-
tion of interladder pair-hopping (P) and interladder Cou-
lomb interaction (V). The exponentk determines thecurva-
ture of the SC-CDW phase boundary in this plane:
V;P(221/k)/(22k). The traditional requirement12 of ‘‘domi-
nant SC correlations’’ giveskc51 ~see below!, and corre-
sponds to a straight line on this plot. Note that fork,1/2
and any weak ~but still larger than the impurity potential!
pair hopping, the system is a SC; conversely, fork.2 and

FIG. 1. Phase diagram in theU→01 limit.
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anyweak interchain interactions it is a CDW.
Interestingly, the spin-gapped C1S0 phase occurs in two

different regimes~Fig. 1!, one for doping,d512n, away
from half-filling, and the other when the Fermi energy coin-
cides with a band edge,kF150. In the former case, pairing
correlations develop upon doping the spin-gapped Mott in-
sulator at half filling,n51, as in Anderson’s original reso-
nating valence bond picture for superconductivity in the
cuprates.13 The critical dopingdc at which C1S0 gives way
to a gapless spin state, C2S1 and C2S2, is large for weak
interchain hopping, decreasing fromdc51 for small t' to
dc50 ast'→2t. Note that the phase C2S2 is the 1D analog
of a Fermi liquid with all spin and charge modes gapless.
The presence of the spin-gapped state~C1S0! nearkF150,
can be attributed to the coincidence of the Fermi energy with
the Van Hove singularity at the 1D band edge.

II. MODEL

The two-chain Hubbard model is described by the Hamil-
tonianH5H01HU , with

H05(
x,a

$2t~cx,a
† cx11,a1c↔d!2t'cx,a

† dx,a1H.c.%,

HU5(
x
U:~cx,↑

† cx,↑cx,↓
† cx,↓1c↔d!:, ~2.1!

wherec (c†) andd (d†) are fermion annihilation~creation!
operators on the first and second chain, respectively, and
a5↑,↓ is a spin index. The parameterst andt' are hopping
matrix elements along and between the chains, andU is an
on-site Hubbard interaction. Equation~2.1! has the usual
U~1!3SU~2! charge/spin symmetry.

For weak coupling it is natural to proceed by first diago-
nalizing the quadratic portion of the Hamiltonian. This is
achieved by canonically transforming to bonding and anti-
bonding band operators:c ia5„ca1(21)ida…/A2, with
i51,2. In momentum spaceH0 becomes

H05(
i ,a

E
2p

p dp

2p
e i~p!c ia

† ~p!c ia~p!, ~2.2!

where e15t'22t cosp and e252t'22t cosp. For
t'.2t, the two bands are completely separated. At half-
filling, the system is then a band insulator, and when doped
becomes an ordinary spin-1/2 Luttinger-liquid, denoted

C1S1~see Fig. 1!. For t',2t, the bands overlap over some
range of energies. When the Fermi level lies within this re-
gion, interaction effects must be reexamined in detail.

It is sufficient to consider the behavior of the system only
near the two Fermi momentakFi , defined bye i(kFi)5m.
The chemical potential,m, is fixed by the requirement
kF11kF25np, wheren is the particle number per site. The
decompositionc ia'cRiae

ikFix1cLiae
2 ikFix gives, up to a

constant

H05(
i ,a

E dx v i~cRia
† i ]xcRia2cLia

† i ]xcLia!, ~2.3!

where v i52t sinkFi . The allowed four Fermi interactions
are highly constrained by symmetry. In addition toU(2)
invariance, these terms must be preserved by time reversal,
parity, chain interchange, and spatial translation operations.
At generic fillings, the two Fermi momenta are incommen-
surate, and the symmetry under translations is effectively
doubled into independent transformations in each band. To
delineate the couplings in a physical way, we employ the
notation of current algebra,

JiR5cRia
† cRia , JiR5

1

2
cRia
† sabcRib ,

LR5cR1a
† cR2a , LR5

1

2
cR1a
† sabcR2b ,

MiR52 icRi↑cRi↓ , NRab5cR1acR2b , ~2.4!

wheres denotes Pauli matrices. Although we have not ex-
plicitly indicated it here, all the currents in Eq.~2.4! are
defined as normal-ordered quantities~see Appendix A!. Left-
moving currents are defined analogously. There are eight al-
lowed interactions connecting left and right movers for ge-
neric fillings, with Hamiltonian densities

2H int
~1!5g̃1r J1R J1L1g̃2r J2R J2L1g̃xr~J1RJ2L1J2RJ1L!

1g̃1s J1R•J1L1g̃2s J2R•J2L1g̃xs~J1R•J2L

1J2R•J1L!1g̃tr~LRLL1LR
†LL

†!

1g̃ts~LR•LL1LR
†
•LL

†!. ~2.5!

Six additional interactions are completely chiral,

TABLE I. Hubbard model coupling constants. Theg-ology no-
tation is given for comparison with Ref. 14.

Coupling g-ology Hubbard value

g̃1r gAAAA
1 /22gAAAA

2 2U/4

g̃2r gBBBB
1 /22gBBBB

2 2U/4

g̃xr gABAB
1 /22gABBA

2 2U/4

g̃ tr gAABB
1 /22gAABB

2 2U/4

g̃1s 2gAAAA
1 U

g̃2s 2gBBBB
1 U

g̃xs 2gABAB
1 U

g̃is 2gAABB
1 U

FIG. 2. Fate of the C1S0 phase for various value ofk, provided
the interladder pair hopping matrix element is larger than typical
impurity pinning energies.
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2H int
~2!5l̃1r~J1R

2 1J1L
2 !1l̃2r~J2R

2 1J2L
2 !1l̃xr~J1RJ2R

1J1LJ2L!1l̃1s~J1R•J1R1J1L•J1L!1l̃2s~J2R•J2R

1J2L•J2L!1l̃xs~J1R•J2R1J1L•J2L!. ~2.6!

The couplings in Eq.~2.6! renormalize ‘‘velocities’’ of vari-
ous charge and spin modes, and can be neglected to leading
order inU for what follows. Additional operators are needed
to treat umklapp processes at special dopings:

2H int
~3!5g̃1u~M1R

† M1L1M1L
† M1R!1g̃2u~M2R

† M2L1M2L
† M2R!1g̃xu~M1R

† M2L1M1RM2L
† 1M2R

† M1L1M2RM1L
† !

1g̃tu1~NRab
† NLab1NRabNLab

† !1g̃tu2~NRab
† NLba1NRabNLba

† !. ~2.7!

The single-band umklapp term,g̃iu , is nonzero only if
kFi5p/2. At half-filling the three interband umklapp terms
(g̃xu ,g̃tu1 ,g̃tu2) are nonvanishing.

III. RENORMALIZATION GROUP

The Hubbard model values for the coupling constants,
obtained from Eq.~2.1!, are shown in Table I. To analyze the
behavior of the weakly interacting system, we employ the
renormalization-group~RG! approach. In the RG, short-
wavelength modes are progressively eliminated in a system-
atic way, leading to differential equations for the renormal-
ized coupling constants which describe the physics of the
model at longer and longer length scales. The flow equations
for this system in the absence ofui were first obtained in
Ref. 14 using conventional diagrammatic methods. The full
set of RG equations is more directly obtained using current
algebra, described in more detail in Appendix A. Away from
half-filling, they are

ġ1r5bS gtr2 1
3

16
gts
2 D2ag1u

2 ,

ġ2r5aS gtr2 1
3

16
gts
2 D2bg2u

2 ,

ġxr52S gtr2 1
3

16
gts
2 D ,

ġ1s52ag1s
2 2

b

2
gts
2 12bgtrgts ,

ġ2s52bg2s
2 2

a

2
gts
2 12agtrgts ,

ġxs52gxs
2 2

1

2
gts
2 22gtrgts ,ġtr5g0rgtr1

3

16
g0sgts ,

ġts5g0sgtr1~g0r2g0s/222gxs!gts ,

ġ1u522ag1rg1u ,

ġ2u522bg2rg2u , ~3.1!

where g̃i[p(v11v2)gi , a[(v11v2)/(2v1), b[(v1
1v2)/(2v2), g0r5ag1r1bg2r22gxr , and g0s5ag1s

1bg2s22gxs . The dots indicate logarithmic derivatives with
respect to the length scale, i.e.,ġi[]gi /]l , wherel 5 lnL.

Equations~3.1! are valid until max$gi%;O(1). To analyze
them, we employ the following approach. Starting with the
appropriate initial values~cf. Table I!, we integrate the equa-
tions numerically. If, asl →`, all the couplings approach
finite values, the procedure is controlled, since
max$gi(l 5`)% becomes arbitrarily small asU→0. If any
coupling diverges, we determine the asymptotic behavior of
all the couplings with Eqs.~3.1!. Specifically, we imagine
integrating the flow equations up to a scalel * , at which
point the largest couplinggmax5max$gi(l * )% satisfies
U/t!gmax!1. This allows us to ignore the higher-order
terms@O(g3)# in the RG flow equations. AsU→0, the res-
caling parameterl *→`, so we need only analyze the as-
ymptotic largel behavior of Eq.~3.1!.

To do so, we make the ansatzgi(l )5kgi0 /(12kl ),
where 1/k is the scale at which the couplings diverge. Equa-
tions ~3.1! then reduce to a set of coupled quadratic equa-
tions for the$gi0%. The search for appropriate solutions is
considerably aided by the numerical integration of the flow
equations. After locating a divergence~which fixesk), we
plot (12kl )gi versusl , from whichgi0 is extracted from
the intercept with the linel 51/k.

Applying this procedure for generic fillings with Hubbard
initial values, we found three distinct phases~in the regime
with both bands partially filled forU50). For a*4.8, the
flows are stable, with fixed-point values
gis* 5gxs* 5gts* 5gtr* 50. When 4.3&a&4.8, the system is
singly unstable, withg2s,0521/b, and all othergi050. For
more comparable Fermi velocities, 1,a&4.3, all the opera-
tors except gxs0* 50 diverge, but in such a way that
ag1s05bg2s0,0 andgtr0521/4gts0.0. The behavior for
1/2,a,1 is obtained by interchanging band indices in all
quantities.

The physics of these phases is elucidated through the use
of Abelian bosonization.12,10 With the conventioncR/Lia

}exp(iA4pfR/Lia), dual canonical Bose fields may be de-
fined asf ia5fRia1fLia andu ia5fRia2fLia . They sat-
isfy @f(x),u(y)#52 i sgn(x2y)/2. A further canonical
transformation to (f,u) ir5@(f,u) i↑1(f,u) i↓#/A2 and
(f,u) is5@(f,u) i↑2(f,u) i↓#/A2 yields the spin-charge-
separated Euclidean action

S05(
in

E
x,t

v i
2

@~]xf in!21~]xu in!2#1 i ]xu in]tf in ,

~3.2!
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wheren5r,s. Using the scheme discussed in the Introduc-
tion, the noninteracting system with both bands occupied
@Eq. ~3.2!# is classified as C2S2. The largea phase found
above is also of C2S2-type, though it contains the additional
~marginal! couplings gir , gxr , l ir , lxr ,l is , and lxs ,
which makes the behavior highly nonuniversal.16

In the intermediate state (4.3&a&4.8), g2s becomes
large and negative. Using bosonization, this interaction~ne-
glecting unimportant gradient terms! is

S2s}g̃2sE
x,t
M2cos~A8pu2s!, ~3.3!

where the coefficientM is cutoff dependent. In the scaling
limit, it is appropriate to expand the cosine and obtain a true
massM for u2s . The resulting phase is therefore C2S1. For
a&4.3, an analogous cosine appears in the 1s sector, and
the asymptotic divergence ofgtr and gts is such that the
interband hopping terms sum to

St}g̃trE
x,t
cos~A4pf2r!cos~A2pu1s!cos~A2pu2s!,

~3.4!

wheref6r[(f1r6f2r)/A2. It is natural to assign masses
to u1s and u2s , after which Eq. ~3.4! acts to fix
f2r5Ap/2 ~up to gapped fluctuations!, sinceg̃tr.0. Note
thatA4pf2r appears as the phase difference between pair-
ing operators in the bonding and antibonding bands, so that
this value off2r leads tô c1↑c1↓(c2↑c2↓)

†&,0. A natural
definition of ‘‘d-wave’’ in this context is just
^eiA4pf2r&,0. The resulting state has only a single un-
gapped charge mode~with dual fieldsu1r ,f1r), and will be
labeled C1S0. It may be characterized by a single dimension-
less stiffnessK1r and a velocityv1r , such that the effective
action foru1r is

S1r5
K1r

2 E
x,t

$v1r~]xu1r!21v1r
21~]tu1r!2%, ~3.5!

with a similar dual (K1r→K1r
21) form for f1r . Equation

~3.5! interpolates smoothly between a CDW~at largeK1r)
and a superconductor~at small K1r). The pairing
exponent k5K1r/2, while the CDW-like correlator
^n2(x)n2(0)&c;cos@2(kF11kF2)x#/x

2/K1r, plus power laws
(1/x2) at k50. We are unable to determineK1r andv1r in
a controlled way, because they depend on the entire cross-
over from the noninteracting state to the C1S0 fixed line~see
Appendix B!. However, heuristic calculations suggest that
superconducting fluctuations (K1r

21) increase with increasing
v12v2 . Interestingly, the usual power-law term at 2kF is
missing from the density-density correlation function in the
C1S0 phase, as noted by Nagaosa8 in a similar model, due to
strong fluctuations of theu2r andf is fields.

It remains to discuss the behavior at several ‘‘special’’
points in the phase diagram. WhenkF25p/2, umklapp pro-
cesses implyg2uÞ0. For t'.t, this occurs with band 1
empty, and one gets the usual C0S1 spin-density wave, as

shown in Fig. 1. Fort',t, we must consider interband cou-
pling via Eqs.~3.1!. For almost all ratios of the velocities, we
find that a charge gap develops in band 2, simultaneously
suppressing the other potential instabilities, leading to a
C1S2 phase. Surprisingly, over the narrow range
0.6&b&0.85,g2u renormalizes to zero, yielding instead the
C1S0 state~see Fig. 1!. The behavior at half-filling is more
difficult to obtain, because it requires the inclusion of the
gxu , gtu1 , andgtu2 operators in Eq.~2.7!. The RG equations
in this case are given in Appendix A. Their analysis indicates
a completely gapped~C0S0! phase, as suggested by a large
U picture of coupled antiferromagnetic Heisenberg chains.15

The final remaining special point occurs when the Fermi
level lies precisely at the bottom of band 1. It is outside the
scope of conventional RG’s, because the dispersion in band
1 is quadratic, with the Hamiltonian

H152E
x

1

2m̃e c1
†]x

11ec1 , ~3.6!

wheree51 for the quadratic band, but must be taken as a
small parameter to control the perturbative treatment. The
allowed couplings areg2r , g2s , l2r , and the four interband
terms

2H1225ũr~JR21JL2!J11ũs~JR21JL2!•J12
ṽ
2
J1
2

2ũt~cR2a
† cL2b

† c1bc1a1H.c.!, ~3.7!

where J15c1a
† c1a and J15c1a

† sabc1b/2. The RG equa-
tions in this case must be derived via conventional diagram-
matic techniques~see, e.g., Ref. 14!, since current algebra
methods rely on having a linear spectrum at the Fermi en-
ergy. They are

ġ2r5ut
2/2, ġ2s52gs

222ut
2 , u̇r5gm2eut

2 ,

u̇s52gus
2 , v̇5ev22v22ut

2 ,

u̇t5~e/222v24gur23gs/41gr!ut , ~3.8!

FIG. 3. Cut through the phase diagram at constantt' . Note that
two of the lines in Fig. 1 associated with special fillings have broad-
ened into fans for finiteU. The vertical line atn51 ~half-filling!
does notbroaden, because it corresponds to the exact point of
particle-hole symmetry of the original Hubbard Hamiltonian.
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where m52m̃e, g51/(11m2e), ut5me/2ũt , v5meṽ/
(4p), (g2 ,u)r,s5(g̃2 ,ũ)r,s /(2pv2) ~we have taken a mo-
mentum cutoff of 1). Because of the relative simplicity of
Eqs.~3.8!, we have been able to analytically show an insta-
bility for Hubbard initial conditions.15 Analysis of the flow
asymptotics indicates that at this special point, fluctuation-
induced attractive interactionsv,0 in band 1 populate it
with spinless bound pairs. Simultaneously,g2s,0 creates a
spin gap in band 2, andut Josephson couples the two bands,
gapping the out of phase charge mode to leave a C1S0 phase.
This RG analysis holds forU!e!1, but we expect the ten-
dency to pairing toincreasewith e, due to the increased
density of states for interband scattering. Physically, the
presence of the C1S0 phase atkF150 can be attributed to the
Van Hove singularity at the band edge. Note that this Van
Hove mechanism also leads to ‘‘d-wave’’-like pairing, in the
sense that the interband pair hopping interaction (ut) remains
repulsive, encouraginĝc1↑c1↓(c2↑c2↓)

†&,0, as in the
other C1S0 phase.

The above results at special fillings are valid only at iso-
lated points for infinitesimalU. For finiteU, the RG sug-
gests that the regions of attraction of these phases widen into
fans of widthdt';exp(2ct/U), wherec is a constant. The
nonuniformity of Eqs.~3.8! allows for additional structure
within the fan. In particular, because the instability is driven
by theg2s term, we expect a narrow intermediate wedge of
C2S1, as shown in Fig. 3. In the future, it will be interesting
to generalize these calculations to three-chain systems
(N53!, to help clarify which features are particular to even
N.

IV. COMPARISON WITH PREVIOUS WORK

Problems of coupled Luttinger liquids have been investi-
gated previously by many authors. Indeed, our RG equations
for generic fillings were calculated by Varma and Zawad-
owski in Ref. 14. These authors noted the existence of an
instability in a large range of parameters. Using purely RG
methods, without the benefit of the organization of a current
algebra description or the interpretation allowed by
bosonization, they did not identify the nature of the C1S0
phase. Other authors have also noted the enhancement of
pair tunneling processes.18

Some years later, Penc and So´lyom19 ~PS! calculated the
two-loop ~cubic-order! RG equations, which exhibit fixed
points instead of instabilities. Because these fixed points oc-
cur at values of the coupling constants of order one, how-
ever, the calculation of properties from these fixed point val-
ues is uncontrolled. Indeed, experience with bosonization
leads us to believe that the instabilities at the one-loop level
signal the development of various gaps, which cannot be
captured within such a description.

An approach much closer to our own was taken by
Fabrizio,10 who employed bosonization to rewrite the effec-
tive Hamiltonian of the putative fixed points of PS. These
fixed point forms contain the same cosine terms found above
@Eqs. ~3.3!–~3.4!#, which allowed Fabrizio to postulate an
appropriate set of gaps for the phases he found. Three of the
phases in his phase diagram~Fig. 9 of Ref. 10! correspond to
ours: LL1, which is our C1S1; LL2, our C2S2 state; and I,
our C1S0 phase.

We note, however, that the assignment of a particular
phase to a particlar set of Hubbard parameters based on the
PS fixed points isincorrect. Indeed, a detailed comparison
with our results shows a disagreement in the location of the
phase boundaries, and, more seriously, the complete absence
of the C2S1 phase. In addition, using the full PS equations at
largeU, Fabrizio finds two extra phases~denoted II and III!.
As we have emphasized, however, these fixed points~par-
ticularly strong-coupling ones! have no particular physical
significance, and the existence of additional strong-coupling
phases is questionable.

Our approach does not make use of these unphysical fixed
points, and relies only on the small-coupling results of the
RG. Instead, we havematchedthe asymptotic form of the
weak-coupling instabilities to the possible~inherently strong-
coupling! phases which are characterized by various gaps.
The nature of the RG instabilities are entirely contained in
the one-loop RG equations, and because the two-loop correc-
tions obtained by PS are small in this regime, they need not
be included in the calculation~see the discussion in Sec. III!.
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Note added in proof.Recent work with Lin20 has discov-
ered avery weak instabilityof the asymptotics leading to
the C1S0 phase. This implies that, in theextremeweak cou-
pling limit, U/t,1025, the C2S1 phase expands to fill the
majority of the C1S0 region in Fig. 1. In this limit, the C1S0
phase persists only in a narrow sliver near half-filling. For
small but noninfinitestimal coupling, 1025,U/t!1, how-
ever, the asymptotic analysis leading to the phase diagram in
Fig. 1 is correct, and the main conclusions of the text are
unchanged.

APPENDIX A: CURRENT ALGEBRA

Current algebra methods allow, among other things, an
algebraiccalculation of the one-loop RG equations. It is dis-
cussed in some depth in Ref. 17. Here we give a very terse
description of the method, stressing the new points of our
calculation. All the currents are defined in terms of the ferm-
ion fieldscR/Laa (a51,2), which obey the operator products

cRaa~x,t!cRbb
† ~0,0!;

dabdab

2pza
1O~1!,

cLaa~x,t!cLbb
† ~0,0!;

dabdab

2pza*
1O~1!, ~A1!

whereza5vat2 ix. The operators products should be under-
stood to hold when two points (x,t) and (0,0) are brought
close together, as replacements within correlation functions.
Equations~1.1! allow a simple calculation of the operator
products of the currents defined in Eq.~2.4!. As an example,
consider the productJR1

i JR1
j . Performing all possible con-

tractions gives
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J1R
i ~z1!J1R

j ~0,0!;:c1Ra
† ~z1!c1Rb~z1!::c1Rg

† ~0!c1Re~0!:
1

4
sab
i sge

j ~A2!

;F2S 21

2pz1
D S 1

2pz1
D daedbg1

dbg

2pz1
:c1Ra

† c1Re :1
dae

2pz1
:c1Rbc1Rg

† :1:c1Ra
† c1Rbc1Rg

† c1Re : G14sab
i sge

j

;
1/2

~2pz1!
2 d i j1

1

2pz1
i e i jkJ1R

k 1O~1!. ~A3!

Note that the structure arises as a result of extending the
normal-ordering (:) symbol to the full product. To perform
the final simplification, we used the relation
s is j5d i j1 i e i jksk. Computation of the full set of operator
products is equally simple~though tedious!. The ones needed
away from 1/2 filling are

JaRJbR;
2

~2pza!
2 dab , ~A4!

JaR
i JbR

j ;F 1/2

~2pza!
2 d i j1

1

2pza
i e i jkJaR

k Gdab , ~A5!

LRLR
†;

2

~2p!2z1z2
1

J1R
2pz2

2
J2R
2pz1

, ~A6!

LR
i LR

j†;
1/2d i j

~2p!2z1z2
1

i

2
e i jk S J1R

k

2pz2
1

J2R
k

2pz1
D

1
1

4
d i j S J1R

2pz2
2

J2R
2pz1

D , ~A7!

LR
i LR

†;
J1R
i

2pz2
2

J2R
i

2pz1
, ~A8!

LRJaR;~21!a
1

2pza
LR , ~A9!

LR
†JaR;~21!a11

1

2pza
LR
† , ~A10!

LRJaR
i ;~21!a

1

2pza
LR
i , ~A11!

LR
†JaR

i ;~21!a11
1

2pza
LR
i† , ~A12!

LR
i JaR;~21!a

1

2pza
LR
i , ~A13!

LR
i†JaR;~21!a11

1

2pza
LR
i† , ~A14!

LR
i JaR

j ;
1

2pza
F i2 e i jkLR

k1~21!a
1

4
d i j LRG , ~A15!

LR
i†JaR

j ;
1

2pza
F i2 e i jkLR

k†2~21!a
1

4
d i j LR

† G , ~A16!

MaRMbR
† ;F 1

~2pza!
2 2

JaR
2pza

Gdab , ~A17!

MaRJbR;
2dab
2pza

MaR , ~A18!

MaR
† JbR;2

2dab
2pza

MaR
† , ~A19!

where the coordinates of the two operators on each left-hand
side are consecutively (x,t) and (0,0). The operator prod-
uctsMaRLR andMaR

† LR
† are also nonvanishing, but do not

enter in the one-loop RG away from half-filling~but see
below!. Similar forms hold for the left-moving currents, but
with za→za* .

The renormalization-group equations are obtained very
simply from Eqs.~A4!–~A19!. We use the functional inte-
gral formulation, in which the terms of Eq.~2.5! appear as
interactions in an Euclidean action,SE5*dxdtH, and

Z5E @dc̄#@dc#e2SE. ~A20!

To perform the RG, the exponential is expanded to quadratic
order inH int . A typical term takes the form

g̃1s
2

2 E
z,w

^J1R
i ~z!J1L

i ~z!J1R
j ~w!J1L

j ~w!&, ~A21!

where*z,w denotes a four-dimensional integral over the two
complex planesz andw. As in any RG, we wish to integrate
out the short-scale degrees of freedom to derive the effective
theory at long wavelengths and low energies. Here this is
accomplished by considering the contributions to Eq.~A21!
when the two pointsz andw are close together~near the
cutoff scale!. It is then appropriate to employ the operator
product expansion, which gives

g̃1s
2

2
i e i jk i e i j l E

z,w

1

2p~z12w1!

1

2p~z1*2w1* !
J1R
k J1L

l .

~A22!

At this stage, it is necessary to more carefully specify the
cutoff prescription. We will choose a short-distance cutoff
a in space, but none in imaginary time. For a rescaling factor
b, we must then perform the integral
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I 15E
a,uxu,ba

dxE
2`

`

dt
1

~2p!2~v1
2t21x2!

5
lnb

2pv1
~A23!

over the relative coordinates (x,t). Using Eq.~A23! in Eq.
~A22! gives

2
g̃1s
2

2pv1
lnbE

z
J1R•J1L , ~A24!

which, when re-exponentiated, renormalizesg̃1s , and for
b5edl gives the first term in the flow equation forg1s

in Eq. ~3.1!. Similar calculations for the remaining terms
result in the denominatorsuz12w1u2, uz22w2u2, and
(z12w1)(z2*2w2* ), which yield the factors 1/(2pv1),
1/(2pv2), and 1/@p(v11v2)#, respectively, and thereby
lead to thea and b factors in Eqs.~3.1!. All other forms
appearing in the integrals over the relative coordinates give
zero contribution, reflecting causality of the ballistic fermion
propagators.

For the special case of half-filling, additional operator
products are required. To simplify the analysis, we note,
however, that at half-filling, the two velocities are equal,
v15v2[v. It is therefore not necessary in this case to dif-
ferentiate betweenz15z2[z. Making this assumption, the
new relations are

NRabNRge
† ;1

dagdbe

~2pz!2
2

dagdbe

4pz
~J1R1J2R! ~A25!

2
1

2pz
@dagJ2R•seb1dbeJ1R•sga#,

NRabJaR;
1

2pz
NRab ,

NRab
† JaR;2

1

2pz
NRab
† ,

NRabJ1R;
1

2pz

sag

2
NRgb ,

NRabJ2R;
1

2pz

sbg

2
NRag ,

NRab
† J1R;2

1

2pz

sga

2
NRgb
† ,

NRab
† J2R;2

1

2pz

sgb

2
NRag
† ,

NRabLR;2
1

2pz
sab
y M2R ,

NRab
† LR;2

1

2pz
sab
y M1R

† ,

NRabLR
†;2

1

2pz
sab
y M1R ,

NRab
† LR

†;2
1

2pz
sab
y M2R

† ,

NRabLR;2
1

2pz

~ssy!ab

2
M2R ,

NRab
† LR;2

1

2pz

~sys!ab

2
M1R

† ,

NRabLR
†;

1

2pz

~ssy!ab

2
M1R ,

NRab
† LR

†;
1

2pz

~sys!ab

2
M2R

† ,

M1RLR;
sab
y

2pz
NRab ,

M1R
† LR

†;
sab
y

2pz
NRab
† ,

M2RLR
†;

sab
y

2pz
NRab ,

M2R
† LR;

sab
y

2pz
NRab
† ,

M1RLR;
1

2pz

~sys!ab

2
NRab ,

M1R
† LR

†;2
1

2pz

~ssy!ab

2
NRab
† ,

M2RLR
†;2

1

2pz

~sys!ab

2
NRab ,

M2R
† LR;

1

2pz

~ssy!ab

2
NRab
† ,

M1RNRab
† ;2

1

2pz Fsab
y

2
LR
†1LR

†
•~sys!abG ,

M1R
† NRab;2

1

2pz Fsab
y

2
LR2LR•~ssy!abG ,

M2RNRab
† ;2

1

2pz Fsab
y

2
LR2LR•~sys!abG ,

M2R
† NRab;2

1

2pz Fsab
y

2
LR
†1LR

†
•~ssy!abG .

With these operator products, a full set of RG equations can
be derived at half-filling, using the previously described pro-
cedure. After some lengthy algebra, one finds

53 12 139WEAK-COUPLING PHASE DIAGRAM OF THE TWO-CHAIN . . .



ġ1r5gtr
2 1

3

16
gts
2 2gtu1

2 2gtu1gtu22gtu2
2 ,

ġxr52gtr
2 2

3

16
gts
2 2gtu1

2 2gtu1gtu22gtu2
2 2gxu

2 ,

ġ1s52gtrgts2
1

2
gts
2 24gtu1

2 24gtu1gtu22g1s
2 ,

ġxs522gtrgts2
1

2
gts
2 24gtu1gtu224gtu2

2 2gxs
2 ,

ġtr5g0rgtr1
3

16
g0sgts2gxu~gtu12gtu2!,

ġts5g0sgtr1S g0r2
1

2
g0s22gxsDgts

14gxu~gtu11gtu2!,

ġxu52S 2gtr2
3

2
gtsDgtu1

1S 2gtr1
3

2
gtsDgtu224gxrgxu ,

ġtu152~2gtr2gts/2!gxu2gtu2g1s

2gtu1S 2gxr2
1

2
gxs12g1r1

3

2
g1sD ,

ġtu252gtu1gxs1~2gtr1gts/2!gxu

2gtu2S 2gxr1
3

2
gxs12g1r2

1

2
g1sD , ~A26!

where we have assumed, as dictated by chain-interchange
symmetry, thatg1r5g2r andg1s5g2s , and that, as is the
case for generict' , g1u5g2u50.

APPENDIX B: STIFFNESS OF THE C1S0 PHASE

In this appendix, we attempt to compute the stiffness
K1r in the C1S0 phase, by following the RG flows and usual
standard ‘‘matching’’ procedures. We find, however, that for
v1Þv2 , the value ofK1r depends on the details of this
crossover, and hence is not accessible by the present method.

Our strategy is to integrate Eqs.~3.1! until the diverging
couplings are order 1 in the renormalized action. It is then
justified to assign gaps to the appropriate fields and simply
integrate out the massive modes. In the C1S0 phase, we need
only consider the charge sector: both spin modes are gapped,
and may be integrated out without affecting the long-
wavelength properties of the charge modes. From the asymp-
totic analysis of Sec. III, we know that the remaining
@O(1)# interactions take the form

H int52G̃@bJ1RJ1L1aJ2RJ2L2J1RJ2L2J2RJ1L

2gcos~A4pf2r!#, ~B1!

where G̃.0 andg.0 areO(1) constants. It is crucial to
note thatG̃ is not precisely known. It depends upon the point
at which one stops integrating the perturbative flow equa-
tions. This reflects the fact that what one really wishes to do
is calculate crossover properties from the unstable fixed
point atU50 to the final C1S0 fixed line. Some such cross-
over properties may require a knowledge of the RG flows
along the entire trajectory between these fixed spaces. We
will see that this is the case forK1r .

From Eq.~2.1!, we may easily derive the bosonized rep-
resentation of the charge sector of the action. Following the
notation introduced in the text, one finds

Sr5
1

2E dx dtH (
n56

~ @ v̄2G~a1b22n!#~]xunr!21@ v̄1G~a1b22n!#~]xfnr!2!1@D22G~b2a!#]xu1r]xu2r

1@D12G~b2a!#]xf1r]xf2r12i ]tu1r]xf1r12i ]tu2r]xf2r14pGg cos~A4pf2r!J , ~B2!

where v̄5(v11v2)/2, D5v12v2 , andG5G̃/(2p). In the
renormalized theory withGg of order 1, it is legitimate to
expand the cosine around its minimum value:
f2r5Ap/21s. Integrating out thes field effectively re-
moves all terms containingf2r in Eq. ~2.2! ~only irrelevant
Laplacian-squared-type couplings are generated!. The u1r

field is isolated by integrating out theu2r andf1r fields to
yield

S1r5
1

2E dx dtH F v̄1G~22a2b!2
1

4

@D22G~b2a!#2

v̄2G~a1b12! G
3~]xu1r!21

1

v̄2G~22a2b!
~]tu1r!2J . ~B3!

Comparison with Eq.~3.5! gives
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K1r
2 5S v̄2G~a1b22!2

1

4

@D22G~b2a!#2

v̄2G~a1b12! D
3

1

v̄2G~22a2b!
. ~B4!

Note thatK1r depends onG, as promised. We note, how-

ever, a trend: assumingG is roughly constant asv1 andv2
are varied, SC correlations are enhanced~i.e., K1r is re-
duced! for increasingv12v2 .
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