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Weak-coupling phase diagram of the two-chain Hubbard model
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We present a general method for determining the phase diagram of systems of a finite number of one-
dimensional Hubbard-like systems coupled by single-particle hopping with weak interactions. The technique is
illustrated by detailed calculations for the two-chain Hubbard model, providing controlled results for arbitrary
doping and interchain hopping. Of nine possible states which could occur in such a spin-1/2 ladder, we find
seven at weak coupling. We discuss the conditions under which the model can be regarded as a one-
dimensional analog of a superconductor.

I. INTRODUCTION and antibonding bandsk(=0,7).>4* A more precise and
general definition of this type of pairing is given below in
One-dimensionallD) electron systems provide an impor- terms of bosonization.
tant testing ground for understanding electron-correlation ef- Two alternative physical criteria distinguish the two pos-
fects. Many methods have been applied to the problem of &ibilities for an array of weakly coupled ladders, depending
single Hubbard chain, and there is general agreement that tigon the relative strength of the interladder coupling and of
system remains, for repulsive interactions, in a Luttinger-duenched impurities. If the impurity interactions dominate,
liquid state with gapless spin and charge mode$he 1D localization must be avoided within each ladder indepen-
analog of a superconductor, a state with one gapless charg@gntly- This requires a very slow decay of pairing
mode and dominant pairingrather than charge-density correlations'! In particular, if the equal time pairing corre-

; ; t - P _
wave correlations, does not arise in that case. lation function (A(x)A%(0))~1/x|*, where A C11C2|

Two-chain systems are interesting as a first step towardtahIS reqU|r_esK<_KC=1/3. ”. interladder couphngs are stron-
er than impurity scattering, twotor three) dimensional

true 2D materials, and may be relevant fpr.some expenme phase coherence can set in and further stabilize the SC. It
tal systemg. Moreover, on a ladder, statistics are more im-

portant, since particles can exchange without passin
through one another. However, the theoretical situation i
such models is much less cléaf. Recent simulations sug-
gest Et)hat states with dominant pairing correlations can indee
arise:

In this paper, we present a systematic weak-couplin
analysis of two Hubbard chains coupled by single-particl
hopping,t, . Our approach is @&ontrolled renormalization
group valid for smallJ but for arbitrary interchain hopping
and filling, n.1° The general methods described here may b
applied to any system composed of a finite number of
Hubbard-like chains with weak short-range four-fermion in-
teractions.

The possible phases of such models can be characterized
by the number of charge and spin modes which are gapless at
zero momentum. For aN-chain system the number of gap- Cis1
less charge modes can vary from zerd\toand likewise for Cis1
spin. Remarkably, of the nine possible phases for two chains,
seven are realized within the simple Hubbard model at weak
coupling, reflecting the proliferation of marginal operators.
Denoting a phase with gapless charge modes apdapless
spin modes as X3y, the smallU phase diagram as a func-
tion of interchain hopping, and filling n is shown in Fig. 1.
Particularly noteworthy is the phase C1SO0, present with
purely repulsiveinteractions(positive U). This phase has a
spin gap and aingle gapless charge mode, and is thus the
1D analog of either a superconduct&®C) or charge-density 0 {/2 1
wave (CDW). As found by other authors, the pairing of up n
and down spins in this phase igl*wave-like,” in the sense
that the pair wave function has opposite sign in the bonding FIG. 1. Phase diagram in th¢—0" limit.

must compete, however, with the formation of a CDW
%Nhich, due to pinning, is an insulating phaseFor

M o< k< 2, the situation is best summarized in Fig. 2, which
hows a schematic phase diagram at fixed disorder as a func-
ion of interladder pair-hoppingR) and interladder Cou-
lomb interaction ¥). The exponenk determines theurva-
Qure of the sc-cbw phase boundary in this plane:
S ~P@-1W/I2-9)_ The traditional requiremetft of “domi-
nant SC correlations” giveg.=1 (see beloy, and corre-
é;ponds to a straight line on this plot. Note that for<1/2
and any weak (but still larger than the impurity potentjal
pair hopping, the system is a SC; conversely, #0r2 and
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C1Si(see Fig. L Fort, <2t, the bands overlap over some
Vi =1 range of energies. When the Fermi level lies within this re-
gion, interaction effects must be reexamined in detail.
. It is sufficient to consider the behavior of the system only
cow! || / ¥~1/2 ) near the two Fermi momente:;, defined bye;(kg;) = u.
K2 The chemical potentialu, is fixed by the requirement
ke1+Kgo=nr, wheren is the particle number per site. The
decompositiony; ,~ ;& F*+ iy & 'KFiX gives, up to a

SC Pt constant
F_IG. 2. Fate of _the Cl_SO phase_ for various valua pprovided _ Ho= 2 dx v ( l//;;iai O ric— ‘//Iiai Obiia), (2.3
the interladder pair hopping matrix element is larger than typical i,a

impurity pinning energies. . . .
where v;=2t sinkg;. The allowed four Fermi interactions

any weak interchain interactions it is a CDW. are highly constrained by symmetry. In addition t{2)

Interestingly, the spin-gapped C1S0 phase occurs in tw§variance, these terms must be pr.eserved by time revt_arsal,
different regimes(Fig. 1), one for doping,6=1—n, away parity, chaln [nterchange, and spatlal translatlon operations.
from half-filling, and the other when the Fermi energy coin-At generic fillings, the two Fermi momenta are incommen-
cides with a band edgé; =0. In the former case, pairing surate, a_nd the symmetry under trar_lslatl(_)ns is effectively
correlations develop upon doping the spin-gapped Mott in_doqbled into mdepepden_t transformatlons in each band. To
sulator at half filing,n=1, as in Anderson’s original reso- delineate the couplings in a physical way, we employ the
nating valence bond picture for superconductivity in thenetation of current algebra,
cuprates? The critical dopings, at which C1S0 gives way
to a gapless spin state, C2S1 and C2S2, is large for weak
interchain hopping, decreasing from=1 for smallt, to
6.=0 ast, —2t. Note that the phase C2S2 is the 1D analog

t 14
JirR= YRia¥Riar  IRT5 YRiaTapirip,

of a Fermi liquid with all spin and charge modes gapless. Le= s o L =E¢T _—
The presence of the spin-gapped st@@4S0 nearkg;=0, R™ YRla¥R2ar =R™ 5 YRlaTaf7R2B:
can be attributed to the coincidence of the Fermi energy with
the Van Hove singularity at the 1D band edge. Mir=—i¢ri1¥ri|» Nrap= ¥ria¥r2s (2.4
Il. MODEL where o denotes Pauli matrices. Although we have not ex-

plicitly indicated it here, all the currents in Eq2.4) are
The two-chain Hubbard model is described by the Hamil-defined as normal-ordered quantitisse Appendix A Left-
tonianH=Hy+H, with moving currents are defined analogously. There are eight al-
lowed interactions connecting left and right movers for ge-
neric fillings, with Hamiltonian densities
HO=% {—t(c] sxs1atcmd)—t, cf dy o+ H.Cl, 1 f " 3
_J4nt):91p Jir J1 02, J2r JoL +0x,(J1rI2L T I2rI10)
Hy=>, U3(Cl,TCx,TCl,1Cx,L+C‘—>d)3' (2.3 +016 J1r J1L T 020 J2r- Jor + Oxo(J1r J2L
X
+J,r-J11) + G, (LeL +LELT
wherec (c™) andd (d") are fermion annihilatioricreation 2R 1)+ Gyl LrbLHLRLD
operators on the first and second chain, respectively, and +0i,(Lr- L+ LJ,QL[). (2.5
a=1,] is a spin index. The parametdrandt, are hopping } . ] ] ]
matrix elements along and between the chains, @rid an Six additional interactions are completely chiral,
on-site Hubbard interaction. Equatid2.1) has the usual )
U(1)X SU(2) charge/spin symmetry. TABLE I. Hubbard model coupling constants. Theology no-
For weak coupling it is natural to proceed by first diago- 210N is given for comparison with Ref. 14.
nalizing the quadratic portion of the Hamiltonian. This is

achieved by canonically transforming to bonding and anti-COuIOIIng g-ology Hubbard value
bonding band operatorsi; = (c,+(—1)'d,)/\2, with T, Oanan2— Oannn —u/4
i=1,2. In momentum spadd, becomes Tz Oieed2— 02aas —U/4
= dp gx,; ngABIZ_ giBBA —U/4
HOZE j Z_Gi(p)'ﬂ?a(p)‘ﬁia(p)i (2.2 Oip gkABBlz_giABB —U/4
l,a —q&T ~ 1
Yic 20anAA U
where e€;=t, —2t cosp and e,=—t, —2t cosp. For 920 295888 U
t, >2t, the two bands are completely separated. At half- T,, 20hsAB u
filling, the system is then a band insulator, and when doped 7§, 20488 U

becomes an ordinary spin-1/2 Luttinger-liquid, denoted
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~IE :le(J%R"‘ Vi) +X2p(J§R+ i) +Xxp(‘]lR‘]2R
+J1.J21) +Xla(‘]lR' Jigt - Ju) +X2a(~]2R' Jor

+J2L'J2L)+XXI;-(‘]1R"]2R+‘]1L'J2L)- (2.9

12 135

The couplings in Eq(2.6) renormalize “velocities” of vari-

ous charge and spin modes, and can be neglected to leading
order inU for what follows. Additional operators are needed

to treat umklapp processes at special dopings:

— 73 =TF1u(MIgM + M] M 1g) +Gou( MM + M3 Mog) + Geu( MIgM o + M1gM 3 + MMy +MopMT )

+Grua( NaaﬂNLaﬂ"' NRa,BNIaﬂ) +Grua( NaaﬂNLBa"' NRaﬁN[Ba)-

The single-band umklapp terng;,, is nonzero only if

(2.7

+80,,— 20y, - The dots indicate logarithmic derivatives with

kej= /2. At half-filling the three interband umklapp terms respect to the length scale, i.g;=dg;/d/, where/=InL.

(9xu+9tu1,9:u2) @re nonvanishing.

IIl. RENORMALIZATION GROUP

The Hubbard model values for the coupling constantsfinite

Equations(3.1) are valid until mag;}~0O(1). To analyze
them, we employ the following approach. Starting with the
appropriate initial valueg&cf. Table |), we integrate the equa-
tions numerically. If, as”—, all the couplings approach
values, the procedure is controlled, since

obtained from Eq(2.1), are shown in Table I. To analyze the Maxgi(/' =)} becomes arbitrarily small as—0. If any
behavior of the weakly interacting system, we employ thecoupling diverges, we determine the asymptotic behavior of
renormalization-group(RG) approach. In the RG, short- all the couplings with Egs(3.1). Specifically, we imagine
wavelength modes are progressively eliminated in a systeniitegrating the flow equations up to a scai&, at which
atic way, leading to differential equations for the renormal-Point the largest couplinggma,=maxg(/™)} satisfies
ized coupling constants which describe the physics of thé//t<Gmax<1. This allows us to ignore the higher-order

model at longer and longer length scales. The flow equation&MsLO(g
for this system in the absence of were first obtained in

Ref. 14 using conventional diagrammatic methods. The ful
set of RG equations is more directly obtained using current
algebra, described in more detail in Appendix A. Away from

half-filling, they are
) 3
gl,,:ﬁ( g5+ Egif) —agi,,

: 3
gZp: a( gt2p+ 1_69t20') - ngu !

. 3
Oxp= — gt2p+ 1_6gt20') ’

: B

J1s=— agir_ Egtzrr—’_ 2Bgtpgtrr )
: 2 _ %2

O26= — :8920'_ Egta+ Zagtpgta )

] , 1, | 3
Oxe™ ~ Oxe ™ Egta'_ zgtpgt(r 1gtp: gOpgtp+ 1_6900'gt0 )

gt(r: gO(rgtp+ (909_ g00/2_ ngu)gt(r '

91u= —2@01,91u>

920= — 292,920 3.0

where Gi=m(vi1+v,)0i, a=(vi+vy)/(2vy), B=(vy
+02)/(202)1 gOp:aglp_I—BgZp_ngp! and Jos= @014

3)]in the RG flow equations. A5l—0, the res-
caling parameter™* —«, so we need only analyze the as-
p/mptotic large/” behavior of Eq.(3.1).

To do so, we make the ansatg(/)=kgo/(1—k/),
where 1K is the scale at which the couplings diverge. Equa-
tions (3.1) then reduce to a set of coupled quadratic equa-
tions for the{g;o}. The search for appropriate solutions is
considerably aided by the numerical integration of the flow
equations. After locating a divergenéehich fixesk), we
plot (1—-k/)g; versus/, from whichg;q is extracted from
the intercept with the line”= 1/k.

Applying this procedure for generic fillings with Hubbard
initial values, we found three distinct phad@s the regime
with both bands partially filled fotJ=0). For «=4.8, the
flows are stable, with fixed-point values
0 =0x,=01,=0;,=0. When 4.3 a<4.8, the system is
singly unstable, witlg,, o= —1/8, and all otheig;q=0. For
more comparable Fermi velocitiessly=<4.3, all the opera-
tors exceptgy,o=0 diverge, but in such a way that
@Q1,0= BY2,0<0 andg,o= — 1/4g;,0>0. The behavior for
1/2<a<1 is obtained by interchanging band indices in all
gquantities.

The physics of these phases is elucidated through the use
of Abelian bosonizatioh?'® With the conventionyg .
xexp(v4mdriLia), dual canonical Bose fields may be de-
fined asd)ia: ¢Ria+ ¢Liuz and aia: ¢Ria_ ¢Lia . They sat-
isfy [&(x),0(y)]=—i sgnk—y)/2. A further canonical
transformation to §,6);,=[(¢,0)i;+(#,6);,1/\2 and
(¢>,6)i,,=[(¢,«9)m—(¢,0)u]/\/§ yields the spin-charge-
separated Euclidean action

So=2

iv Jx 1

Uj .
E[(&Xd)l v)2+(axaiv)2]+ I &Xei vaf(;biv i
(3.2
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wherev=p,o. Using the scheme discussed in the Introduc-shown in Fig. 1. Fot, <t, we must consider interband cou-
tion, the noninteracting system with both bands occupiegling via Egs.(3.1). For almost all ratios of the velocities, we
[Eq. (3.2)] is classified as C2S2. The large phase found find that a charge gap develops in band 2, simultaneously
above is also of C2S2-type, though it contains the additionasuppressing the other potential instabilities, leading to a
(margina) couplings gi,, Ox,» Nips AxpiNig, and Ay, C1S2 phase. Surprisingly, over the narrow range
which makes the behavior highly nonuniversal. 0.6<=B=0.85, g,, renormalizes to zero, yielding instead the
In the intermediate state (4&2x=<4.8), g,, becomes C1S0 statdsee Fig. 1 The behavior at half-filling is more
large and negative. Using bosonization, this interactimet  difficult to obtain, because it requires the inclusion of the
glecting unimportant gradient termis Oxu» w1, andg,,, operators in Eq(2.7). The RG equations
in this case are given in Appendix A. Their analysis indicates
a completely gappedC0SQ phase, as suggested by a large
U picture of coupled antiferromagnetic Heisenberg ch&ins.
The final remaining special point occurs when the Fermi
level lies precisely at the bottom of band 1. It is outside the
where the coefficienM is cutoff dependent. In the scaling scope of conventional RG'’s, because the dispersion in band
limit, it is appropriate to expand the cosine and obtain a truei is quadratic, with the Hamiltonian
massM for 6,,. The resulting phase is therefore C2S1. For
a=<4.3, an analogous cosine appears in tleeskctor, and
the asymptotic divergence @, and g;, is such that the 1 ..
interband hopping terms sum to Hi=— Lzme 9% s (3.6)

SZ(J'OC'QZU'J'

X

M2cog 87 6,,), (3.3

where e=1 for the quadratic band, but must be taken as a

~ o 5= 5= small parameter to control the perturbative treatment. The
Stocgtpfmcos{ AT ) COLN2015)COS V2T O, ), allowed couplings arg,,, 9,,, A2, , and the four interband
(3.4 terms

where ¢. ,=(¢,* ¢2p)/\/§. It is natural to assign masses
to 6,, and 6,,, after which Eq. (3.4 acts to fix ~

~ ~ v
b_,= a2 (up to gapped fluctuatiomssince"gtp>0. Note — 1 2= Up(IratI12)d1+ U (Jrot I 2) - I — EJ%
that y4w¢_, appears as the phase difference between pair-
ing operators in the bonding and antibonding bands, so that —Ut(¢;2a¢[zﬁ¢lﬁzpla+ H.c), (3.7

this value ofe_ , leads to{ ¢, 1) (2;42) ") <0. A natural

definition of “d-wave” in this context is just whereJ;= lﬂIalﬂla and J;= ¢Iaaaﬁ¢m/2. The RG equa-
(e*7¢-p)<0. The resulting state has only a single un-tions in this case must be derived via conventional diagram-
gapped charge modwith dual fieldsé., ,,¢ . ,), and will be matic techniquegsee, e.g., Ref. 24 since current algebra
labeled C1S0. It may be characterized by a single dimensiormethods rely on having a linear spectrum at the Fermi en-
less stiffnes«K | , and a velocity , ,, such that the effective €rgy. They are

action forg, , is

gZp:ut2/21 O20= —095—2u?, Up=7m“ut2,
_K+p

5052 [ oo, @9

l'JU=—'yui, b=ev—2v2—ut2,
with a similar dual K+p—>KI;1>) form for ¢, ,. Equation
(3.5 interpolates smoothly between a CDWt largeK , )
and a superconductortat small K, ,). The pairing U= (e/2—2v—4yu,—3g,/4+g,)u,, (3.9
exponent k=K, /2, while the CDW-like correlator peEe d
(n?(x)n?(0))~ cog2(ke; +ke)X)xK+», plus power laws
(1/x?) atk=0. We are unable to determite, , andv , , in
a controlled way, because they depend on the entire cross- y
over from the noninteracting state to the C1S0 fixed (gee

Appendix B. However, heuristic calculations suggest that Clsg,czsl C1s2 cy)so

. : N o . c2s1
superconducting fluctuation&(. ;) increase with increasing V I ’/T Y |
v1—v,. Interestingly, the usual power-law term akg2is 151 J c2s2 €150 €150 €180
missing from the density-density correlation function in the kpp =0 1 KM /2 n=l  n
C1S0 phase, as noted by Nagdosaa similar model, due to
strong fluctuations of th@_, and ¢;,, fields. FIG. 3. Cut through the phase diagram at constantNote that

It remains to discuss the behavior at several “special”two of the lines in Fig. 1 associated with special fillings have broad-
points in the phase diagram. Whkp,= 7/2, umklapp pro-  ened into fans for finitd). The vertical line an=1 (half-filling)
cesses implyg,,#0. Fort, >t, this occurs with band 1 does notbroaden, because it corresponds to the exact point of
empty, and one gets the usual COS1 spin-density wave, aerticle-hole symmetry of the original Hubbard Hamiltonian.
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where m=2m¢, y=1/(1+m ), u=m,, v=m/ We note, however, that the assignment of a particular
(4m), (gz,u)pvgz(ﬁz ,Tj)p'(,/(Zwvz) (we have taken a mo- phase to a particlar set of Hubbard parameters based on the
mentum cutoff of 1). Because of the relative simplicity of PS fixed points isncorrect Indeed, a detailed comparison
Egs.(3.8), we have been able to analytically show an insta-with our results shows a disagreement in the location of the
bility for Hubbard initial conditions?® Analysis of the flow phase boundaries, and, more seriously, the complete absence
asymptotics indicates that at this special point, fluctuationof the C2S1 phase. In addition, using the full PS equations at
induced attractive interactions<O in band 1 populate it largeU, Fabrizio finds two extra phasédenoted Il and II).
with spinless bound pairs. Simultaneously, <0 creates a As we have emphasized, however, these fixed pdjpes-
spin gap in band 2, ang, Josephson couples the two bands,ticularly strong-coupling ongshave no particular physical
gapping the out of phase charge mode to leave a C1S0 phassignificance, and the existence of additional strong-coupling
This RG analysis holds fdd <e<1, but we expect the ten- phases is questionable.
dency to pairing toincreasewith e, due to the increased  Our approach does not make use of these unphysical fixed
density of states for interband scattering. Physically, thepoints, and relies only on the small-coupling results of the
presence of the C1S0 phaseat=0 can be attributed to the RG. Instead, we havenatchedthe asymptotic form of the
Van Hove singularity at the band edge. Note that this Varweak-coupling instabilities to the possiliieherently strong-
Hove mechanism also leads tal‘wave”-like pairing, inthe ~ coupling phases which are characterized by various gaps.
sense that the interband pair hopping interactigi (emains ~ The nature of the RG instabilities are entirely contained in
repulsive, encouraging ¢11'//1¢(¢2T‘//21)T><0, as in the the one—lopp RG equations, and_because t_he two-loop correc-
other C1S0 phase. tions obtained by PS are small in this regime, they need not
The above results at special fillings are valid only at iso-be included in the calculatiofsee the discussion in Sec.)lll
lated points for infinitesimal. For finite U, the RG sug-
gests that the regions of attraction of these phases widen into ACKNOWLEDGMENTS
fans of width 6t, ~exp(—ct/U), wherec is a constant. The
nonuniformity of Eqs.(3.8) allows for additional structure
within the fan. In particular, because the instability is driven
by theg,, term, we expect a narrow intermediate wedge of

g o ; .~ PHY89-04035 and No. DMR-9400142.
C2S1, as shown in Fig. 3. In the future, it will be interesting ; o0 .
to generalize these calculations to three-chain systems Note added in proofRecent work with Lif” has discov-

= . . . ered avery weak instabilityof the asymptotics leading to
§\|N 3), to help clarify which features are particular to even.. 130 phase. This implies that, in teremeweak cou-

pling limit, U/t<107°, the C2S1 phase expands to fill the
majority of the C1S0 region in Fig. 1. In this limit, the C1S0
IV. COMPARISON WITH PREVIOUS WORK phase persists only in a narrow sliver near half-filling. For
_ . _ _small but noninfinitestimal coupling, T6<U/t<1, how-
Problems of coupled Luttinger liquids have been investi-gyer. the asymptotic analysis leading to the phase diagram in

gated previously by many authors. Indeed, our RG equationgig 1 s correct, and the main conclusions of the text are
for generic fillings were calculated by Varma and Zawad-\nchanged.

owski in Ref. 14. These authors noted the existence of an
instability in a large range of parameters. Using purely RG
methods, without the benefit of the organization of a current
algebra description or the interpretation allowed by Current algebra methods allow, among other things, an
bosonization, they did not identify the nature of the C1SOalgebraiccalculation of the one-loop RG equations. It is dis-
phase. Other authors have also noted the enhancement @issed in some depth in Ref. 17. Here we give a very terse
pair tunneling processég. description of the method, stressing the new points of our
Some years later, Penc andigon'® (P9 calculated the calculation. All the currents are defined in terms of the ferm-
two-loop (cubic-ordey RG equations, which exhibit fixed ion fields¢r) 2, (2=1,2), which obey the operator products
points instead of instabilities. Because these fixed points oc-
cur at values of the coupling constants of order one, how-
ever, the calculation of properties from these fixed point val- 1 Sablap
ues isuncontrolled Indeed, experience with bosonization ‘/’RM(X'TWRbﬁ(O’O)” 27z,
leads us to believe that the instabilities at the one-loop level
signal the development of various gaps, which cannot be
captured within such a description. + OabOap
An approach much closer to our own was taken by PLaa(X, 7) (0,0~ o +0(1), (A1)
Fabriziol® who employed bosonization to rewrite the effec- a
tive Hamiltonian of the putative fixed points of PS. Thesewherez,=v,7—ix. The operators products should be under-
fixed point forms contain the same cosine terms found abovstood to hold when two pointx(7) and (0,0) are brought
[Egs. (3.39—(3.4)], which allowed Fabrizio to postulate an close together, as replacements within correlation functions.
appropriate set of gaps for the phases he found. Three of tHequations(1.1) allow a simple calculation of the operator
phases in his phase diagrdRig. 9 of Ref. 10 correspond to  products of the currents defined in Eg.4). As an example,
ours: LL1, which is our C1S1; LL2, our C2S2 state; and I, consider the produclik,Jk,. Performing all possible con-
our C1S0 phase. tractions gives

We are grateful to A. Ludwig and especially D. Scalapino
for innumerable fruitful discussions. This work has been sup-
ported by the National Science Foundation under Grants No.

APPENDIX A: CURRENT ALGEBRA

+0(1),
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1r(21)JR(0,0~

-1 1 S
27T21 27721 ae 'By

1/2
(27z,)? 27z

Note that the structure arises as a result of extending the
normal-ordering (:) symbol to the full product. To perform
relation
8 +i€lkaX. Computation of the full set of operator
products is equally simpléhough tedious The ones needed

the final used the

ool=

simplification, we
away from 1/2 filling are

JarJbr™ W%b,
a.

b | oy 8+ ikl 6
aRYbR (27TZa)2 27TZa aR|Yab:
J J
t 1R 2R
~ + —
LRLR (277)22122 27T22 27TZ:|_ '
ij : k k
o200 T | e dae
RER - (2m)2z12, 2 27z, 27z,
1 .(3 J
+_(91( 1R _ﬂ>,
2’7722 2’7721
i
iyt _
LRLR 2’7T22 27T21’

Lo (~ 15 L,

LEdar~(—1)2%1 LE,

21z,

- (—1)?

22a R

R~ a+1 it
(=1 ZWZaLR '

i a 1 i
LR‘]aRN(_l) R

27z,
|T a+1 it
LrJar~(—1) 27TZaLR'
ik al i
Lk 5y S+ (—1)2S oL,

Yiral(Z1) Y1Ra(21): ilflRy(O)l//lRe(O)

lﬂlRa’/fle

ij 1 ijk 1k
ot g€t O(L).

(Ad)

(A5)
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(A8)

(A9)

(A10)

(A11)

(A12)

(A13)

(Al14)

(A15)
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(A2)
1 - i
'/’1R5'/f1Ry +: ¢1Ra'/f1Rﬁ'r/f1Ry¢’1Re 000 ye
(A3)
[
itq] ijky kt al ijp t
LRJaRNH Ee‘ LR —(—1) 25 LR y (A16)
1 J
fo_ - YaR
MaRMbR (27Tza)2 27Tza 5ab' (A17)
264p
aR‘]bR 2772 MaRi (A18)
260+
aR‘JbRN_ 7TZ MaR* (A19)

where the coordinates of the two operators on each left-hand
side are consecutivelyx(7) and (0,0). The operator prod-
ucts M,gLg and M L are also nonvanishing, but do not
enter in the one-loop RG away from half-fillingput see
below). Similar forms hold for the left-moving currents, but
with z,—z5 .

The renormalization-group equations are obtained very
simply from Egs.(A4)—(A19). We use the functional inte-
gral formulation, in which the terms of E@2.5 appear as
interactions in an Euclidean actio8z= [dxdr.7Z, and

Z= J [dy][dyle . (A20)
To perform the RG, the exponential is expanded to quadratic
order in.7;, . A typical term takes the form

% f (IR(DIL (DI I (W), (A2D)
where[,,, denotes a four-dimensional integral over the two
complex planeg andw. As in any RG, we wish to integrate
out the short-scale degrees of freedom to derive the effective
theory at long wavelengths and low energies. Here this is
accomplished by considering the contributions to &R1)
when the two pointz andw are close togethefnear the
cutoff scale. It is then appropriate to employ the operator
product expansion, which gives

=2
J1s 1 1
IGIJKIEIIIJ
2 z

Jk.J!
w2m(zy—Wy) 2m(zF —wi) TR

(A22)
At this stage, it is necessary to more carefully specify the
cutoff prescription. We will choose a short-distance cutoff

a in space, but none in imaginary time. For a rescaling factor
b, we must then perform the integral
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|—f dfxd : _Inb NE, oL L Y M3
7 acpra et (2mP0iP R 20, Rep=R™ " gz s 2R
(A23)
y
over thg relative coordinatex,(r). Using Eq.(A23) in Eq. Ngaplr~ — L M R,
(A22) gives 27z 2
=2
glo’ t 1 (O'YO')O(’B T
_ 27TvllnbLJlR.JlL, (A24) N 5> "7 M,
which, when re-exponentiated, renormalizgs,, and for 1 (o0Y)
b=e% gives the first term in the flow equation fay;, NRaﬁLEN—MMlR,
in Eqg. (3.1). Similar calculations for the remaining terms 27z 2
result in the denominatordz,—w,|?, |z,—w,|?, and
(zs—w1)(Z5 —w%), which yield the factors 1/(2v,), NE LT~ 1 (70)up
1/(2mvy), and 1fw(vi+v,)], respectively, and thereby Rap™R 2@z 2 2R
lead to thea and B factors in Egs.(3.1). All other forms
appearing in the integrals over the relative coordinates give Uﬁﬁ
zero contribution, reflecting causality of the ballistic fermion M rLr~ ENR(,B,

propagators.

For the special case of half-filing, additional operator
products are required. To simplify the analysis, we note,
however, that at half-filling, the two velocities are equal,
vi=v,=v. It is therefore not necessary in this case to dif-
ferentiate betweer;=2z,=z. Making this assumption, the o
new relations are MarLE~ 2—;’;NRC¢;.

y
MmT LT~ ZaB \t
1RERT 5 NRap

5&75136 B 56!75/36

ro~ y
NRragNgye +(27TZ)2 Az (JirTJ2r) (A25) ML ohp "
2RER™ 5> NRap
_m[aaszR.aeﬁ+5ﬁEJlR.aya], 1 (0Y0)ap
Mirbr~5— = Nrag.
NRaﬁ‘]aR~mNRaﬁv . 1 (O-O-y)aﬁ )
Mirbr™ =57 72 NRap:
NL sdar~— =—NE .,
RapYaR 27z Rap : 1 (a-yo-)aﬁ
. MZRLRN_ETNRM%
Nrapdir~ 53— —5~Nrys.
B 2wz 2 A . 1 (00Y)as :
o MZRLRNZ_WZT Raf»
Nrapd2r~ 35— —5~ Nray
B 27wz 2 RV ' !
t 1 lous, v, 1 y
1 o MlRNRaﬁN_m 2 LR+LR(O- O.)Qﬁ!
1 ya . /
Nragdir™ = 5— 5 Nrys. _
y
MI-N N_i ML —Lg (00Y)
T 1 Oy + 1R'"YRapB 2772- 2 R R aﬂ_a
NRaﬁ‘]ZRN_mT Ray 1
T 1 [0l
v MzRNRag“_z_ﬂ_Z 2 LR_LR'(UyU)aB!
NRaﬁLRN_mgaﬁMZRv - :
1 [oY
t T | @Byt gt y
NaaﬂLRN_Z_ﬂ.ZO'iﬁMIRv M2rNRag 2mz| 2 LrtLg (o0 )aﬁ_-

With these operator products, a full set of RG equations can
be derived at half-filling, using the previously described pro-

NR LT"“ - _(Ty M 1R .
*B=R 2wz P ' cedure. After some lengthy algebra, one finds
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3 where we have assumed, as dictated by chain-interchange
2 2 _ 2 _ 42 .
91,=0¢p T 169tc ™ Jtur ™ GtuaBtuz ™ Gtz symmetry, thaig,,=g,, andg;,=0J,,, and that, as is the
case for generit, , g;,=0,,=0.

N 2 3 2 2 2 2
9%~ 79~ 769t Guur™ GuiBuz™ Gz Gxu APPENDIX B: STIFFNESS OF THE C1S0 PHASE
In this appendix, we attempt to compute the stiffness
. 1, 2 2 K, inthe C1S0 phase, by following the RG flows and usual
9107 20t0to ™ 5 9to ™ 4Gtu1~ 4Gw18w2 " 91, standard “matching” procedures. We find, however, that for
v1#v,, the value ofK, , depends on the details of this
crossover, and hence is not accessible by the present method.
Oxoe=— 201,010 %gfo_4gtulgw2_4gt2u2_gia, Ou_r strategy is to in_tegrate Eg8.1) gntil the_diverg_ing
couplings are order 1 in the renormalized action. It is then
justified to assign gaps to the appropriate fields and simply
3 integrate out the massive modes. In the C1S0 phase, we need
0tp= 90,01, 169009t~ Oxu(Gtur— Gtu2) only consider the charge sector: both spin modes are gapped,
and may be integrated out without affecting the long-
wavelength properties of the charge modes. From the asymp-

_ 1 totic analysis of Sec. Ill, we know that the remaining
Ote=90069tp1 | Yop— Egog— ZQX(,) Oto [O(1)] interactions take the form
+ 4gxu(gtu1+ gtuz):
3 Hint= _F[B\]lRJlL"' aJordaL —J1rd2L —J2rd1L
gXU:_(Zng_ Egta> Gtu1 —gcog /477925—;))]1 (B1)
120+ Egt”)gt“2_4gXngu’ wheref>~0 andg>0 areO(1) constants. It is crucial to
note thatl” is not precisely known. It depends upon the point
(2 P at which one stops integrating the perturbative flow equa-
Gru1= ~ (20t~ 9to/2) 9xu~ Gru2010 tions. This reflects the fact that what one really wishes to do
1 3 is calculate crossover properties from the unstable fixed
—gm( 20y,— EgXUJr 29,,+ Egl") , point atU=0 to the final C1S0 fixed line. Some such cross-

over properties may require a knowledge of the RG flows
along the entire trajectory between these fixed spaces. We
Jw2= ~ Gru19xo+ (201, Gto/2) Oxu will see that this is the case fét, ,.
From Eq.(2.1), we may easily derive the bosonized rep-
resentation of the charge sector of the action. Following the

3 1
_g‘”2< 205 5 O+ 201~ Egl")’ (A26) [ otation introduced in the text, one finds

sp%f dx dT[ ;ﬁ ([U_—F(a+ﬁ—ZV)](&XHVP)Z-F[FFF(a-i—B—ZV)](ﬁXd)Vp)Z) +[A—2T(B—a)]9x0- 0,0,

+[A+20(B—a)]0xp s poxp— p+210,0. ,0xbs ,+2i0,0_ 05, +4mT'g cod m(pp)] , (B2)

wherev=(v,+v,)/2, A=v,—v,, and'=I/(27). In the 1
renormalized theory witH'g of order 1, it is legitimate to S+p:§f dx dr
expand the cosine around its minimum value:
b_,= Jm@/2+ . Integrating out ther field effectively re-
moves all terms containing _, in Eq. (2.2) (only irrelevant
Laplacian-squared-type couplings are genepatétie 6,
field is isolated by integrating out th , and ¢, , fields to
yield Comparison with Eq(3.5 gives

1[A-2I(B-a)]?
4 v-T(a+pB+2)

v+l (2—a—pB)-

(0')70+p)2] . (BS)

X (904 )%+ !
() ST 2= amp)
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5 . 1 [A_zr(/g_a)]2 Note thatK . , depends o', as promised. We note, how-
Kip={v—T(atp=2)- 4 v—T(a+pB+2) ever, a trend: assuming is roughly constant as; anduv,
1 are varied, SC correlations are enhanced., K, , is re-
X T (2=—a=pB) (B4 duced for increasingy;—v>.
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