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Chiral Surface States in the Bulk Quantum Hall Effect
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In layered samples which exhibit a bulk quantum Hall effect (QHE), a two-dimensional (2D) su
“sheath” of gapless excitations is expected. These excitations comprise a novel 2D chiral qu
liquid which should dominate the low temperature transport along the field (z axis). For the integer
QHE, we show that localization effects are completely absent in the “sheath,” giving a metallicz-axis
conductivity. For fractional fillingn ­ 1y3, the sheath is a 2D non-Fermi-liquid, with incohere
z-axis transport andszz , T 3. Experimental implications for the Bechgaard salts are discussed.

PACS numbers: 73.40.Hm, 71.27.+a, 75.30.Fv
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Disorder has a profound effect on transport in tw
dimensional (2D) electron systems [1]. In the absen
of an applied magnetic field, all the electronic states
believed to be localized due to strong quantum interf
ence effects. With weak disorder, when the conductiv
s is larger thane2yh, there is a weak-localization regim
described by diffusive behavior with logarithmic temper
ture corrections. In the low temperature limit, however
crossover to strongly localized behavior withs ø e2yh
is always expected. In this regime the conductivity dro
rapidly with temperature and vanishes asT ! 0.

In the presence of a magnetic field, 2D localizati
can be circumvented by tuning to the center of Land
levels. At these isolated transitions between quantum H
plateaus, extended states and a temperature indepe
conductivity of ordere2yh are predicted, consistent wit
experiment [2]. There are also other 2D systems wh
exhibit such “metallic” behavior at isolated transition
for example, 2D films at the superconductor-insula
transition. But away from such transitions, when t
conductivity is well belowe2yh, it is invariably strongly
temperature dependent, and insulating at zero tempera

In this paper, we describe a novel class of anisotropic
electronic phases, which surprisingly can exhibit meta
conductivities much smaller thane2yh. These 2D phase
arise at thesurfaceof bulk three-dimensionalquantum Hall
samples. We consider layered samples which exhibit
dependent quantum Hall states in each layer when a l
perpendicular magnetic field is applied. This requires
interlayer tunneling amplitudet small compared to the 2D
quantum Hall gapEg [Eg ­ h̄vc in the conventional in-
tegral quantum Hall effect (QHE)]. In such materials, t
surface of the sample is enveloped by a sheath of curr
carrying states as depicted in Fig. 1. This chiral surfa
phase is the 2D analog of the 1D states at the edge
a single layer quantum Hall fluid. There are curren
two candidate experimental realizations of such syste
2D electron gas multilayers [3], and the Bechgaard sa
sTMTSFd2X (where TMTSF is tetramethyltetraselenafu
valene, andX ­ PF6, ClO4, or ReO4), which exhibit si-
multaneous field-induced spin density waves (SDWs)
QHE [4,5].
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Electronic transport parallel to the field direction is
powerful probe of these chiral surface phases. Our ana
sis reveals that for the integer quantum Hall effect (IQHE
the motion along thez direction is always diffusive, inde-
pendent of the impurity scattering strength. Localizati
effects—weak or otherwise—are completely absent. T
2D resistivity rzz is temperature independent asT ! 0,
with a value which can be muchlarger than hye2. But
perpendicular to the field, along thex axis, the transport is
ballistic and the resistivityrxx vanishes asT ! 0. Our
predictions for various experimental quantities whic
should be accessible in the Bechgaard salts, are give
detail at the end of the paper.

The surface sheath in the fractional quantum Hall effe
at filling n ­ 1y3 is evenmoreanisotropic. In this case,
we find that electron transport along thez axis is always
incoherent. At low temperatures insulating behavior
predicted with a resistivity diverging asrzz , 1yT3, even
in the absence of any impurity scattering. AtT ­ 0
interlayer transport is completely absent, and the electr
are “confined” to 1D. This chiral surface sheath forn ­
1y3 is a nice example of a 2D non-Fermi-liquid phase.

Consider first the IQHE. The electronic states at t
edge can be modeled simply as chiral fermions [6]. In t

FIG. 1. (a) Geometry of a 3D quantum Hall sample.z-axis
transport is included via the tunneling amplitudet, and impurity
scattering by the random potentialV . (b) Associated Fermi
surface for the sheath. It differs from that of a convention
open Fermi-surface metal by the absence of the left-mov
(dashed) half.
© 1996 The American Physical Society
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3D case of interest here, there is a single edge state
layer (x-y plane) per filled Landau level (see Fig. 1). W
focus on the casen ­ 1; higher integer filling fractions
behave similarly. Including a small interlayer matri
elementt leads to the noninteracting Hamiltonian

H ­
X

i

Z
dx c

y
i iy≠xci 2 tscy

i ci11 1 c
y
i11cid (1)

­
Z

p
sypx 2 2t cospzadcyspx , pzdcspx , pzd , (2)

where
R

p ;
R`

2`sdpxy2pd
Rp

2p dpzy2p and c
y
i is an

electron creation operator for the edge state in theith
layer. Here we have set the layer spacinga equal to 1.
Calculations for the field-induced SDW model show th
Eq. (2) also describes the edge modes in that case, w
a proper choice ofy and t [7]. Equation (2) shows that
interlayer hopping induces a small dispersion along t
layering direction, resulting in “half” of an open Ferm
surface [see Fig. 1(b)].

Before including impurity scattering, we reexamine th
validity of Fermi-liquid theory (FL) with electron-electron
interactions present. Despite the chiral nature of t
sheath, the phase-space restrictions which stabilize
FL for a conventional Fermi surface continue to app
here, in particular, the quasiparticle decay rate ImSsvd ,
v2 lnv, the dc conductivityszz , 1yT2, and the specific
heat C , Tyay. Long-range Coulomb interactions ar
screened in the static (v ! 0) limit.

To study dc transport at low temperatures, we mu
include impurity scattering at the surface, which w
include by adding to the Hamiltonian a term of the form

Himp ­
X

i

Z
dx V sx, iadcy

i ci . (3)

For simplicity, we assume the random potential to b
Gaussian and uncorrelated,V sx, zdVjsx0, z0d ­ Ddsx 2

x0ddz,z0 . In contrast to the results for the pure system
the chiral nature of the dirty sheath leads to drama
differences from ordinary dirty 2D metallic behavior. In
particular, localization along thex direction is precluded
a priori since the wave functionsF are necessarily de-
localized along thex direction. This follows from the
continuity equation≠xjFj2 ­ =z ? J, where Jsx, zd ­
s2tyyd ImfFpsx, zdFsx, z 1 adg, valid for arbitrary ran-
dom potentialV . To study possible localization effects
along thez axis, we consider the usual averaged produ
of advanced and retarded Green’s functions for nonint
acting electrons,

D sr; Vd ; G1s0, r; EdG2sr, 0; E 1 Vd . (4)

Here G6 ­ fiy≠x 2 t=2
z 2 E 7 ih 1 V srdg21, with

=2
z the discrete Laplacian, andh ­ 01. A standard

summation of ladder diagrams, which gives a diffusiv
er
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form for nonchiral fermions, yields the approximation

Dladderspx , pz; Vd ­
2pr

2isV 1 ypxd 1 Dp2
z 1 2h

,

(5)

where the density of statesr ­ 1y2pya andD ­ t2ta2,
with the relaxation timet ­ 2yyD. The anisotropic form
of the denominator in Eq. (5) reflects the difference
propagation alongx (ballistic) and z (diffusive). The
Einstein relationszz ­ e2rD can be verified by explicit
computation. The derivation of the diffusive transver
motion in Eq. (5) has neglected possibly important qu
tum interference corrections. Indeed, for isotropic 2D s
tems, such corrections invalidate diffusive behavior at l
temperatures, due to localization. To study possible in
ference effects here, we use theQ-matrix approach, which
allows a systematic treatment of corrections to Eq. (
Following McKane and Stone [8], the averaged corre
tion functions are obtained from the replicated partiti
functionZ ­

R
fdf̄g fdfg fdQg exps2Sd, where

S ­
X

i

Z
dx

Ω
if̄Lfiy≠x 2 t=2

' 2 E 2 DQgf

1
D

2
TrQ2 1 hf̄f

æ
. (6)

Here f is a 2n-component complex vector,Q is
a 2n by 2n Hermitian matrix, and L ­ 1 ≠ sz .
Equation (6) follows from introducingf6 fields to gen-
erate retarded and advanced Green’s functions, avera
the nth moment of the original generating functionZ0,
and decoupling the resulting quartic interaction using
Q matrix. Theh term infinitesimally breaks theUsn, nd
symmetry of the remaining action. Physical correlato
which are derived from the logarithm ofZ0 [lnZ0 ­
limn!0sZn

0 2 1dyn], must be computed in the limitn !

0. Writing Q ­

µ
Q11 Q12

Q21 Q22

∂
, the density of states is

e.g., r ­ s1ypd ImkQ11;aal, where no sum is implied
over the (arbitrary) replica index1 # a # n. Up to
nonsingular contact terms, the correlatorD sr; 0d ­
kQ12;aasrdQ21;aas0dl.

The ladder approximation is recovered as the lead
term in a saddle point expansion of the effective act
for Q, obtained by integrating out the bosonic fields.
the mean-field level,̄Q11 ­ 2Q̄22 ­ iy2ya, reflecting
the finite density of states.

Expanding Q ­ Q̄ 1 Q̃, the Q̃11 and Q̃22 fields
have only massive fluctuations around the saddle,
the Q12 and Q21 fields are massless Goldstone boso
for h ­ 0. Following the conventional nonlinear sigm
model approach, we ignore the massive fluctuations
focus on the Goldstone modes, staying within the sad
point manifold by eliminatingQ11 and Q22 via the
zero momentum, tree equations of motion. The result
theory may be expressed solely in terms of the o
diagonal submatrices of̃Q, and is governed by an actio
2783
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of the form

Seff ­
1

2pr

Z
p

s2iypx 1 Dp2
z d TrfQ12spdQ21s2pdg

1

4Y
i­1

Z
pi

Gspid TrfQ12Q21Q12Q21g , (7)

to OsQ4
67d. The interaction vertex Gspid ­

ds
P

pidfspid, with fspd , c1px 1 c2p2
z for small

momenta, and all higher vertices must have sim
momentum structure owing to the continuousUsn, nd
symmetry. Truncating at quadratic order leads to
ladder result forD , while retaining the anharmoni
corrections is analogous to the usual expansion of
appropriate nonlinear sigma model.

With this formulation, the stability of the “diffusive”
metal can be evaluated from simple power counting.
make the quadratic action dimensionless, we rescalez !

bz, x ! b2x, and Q ! b21y2Q (with b . 1 to focus
on long-wavelength behavior). Under this transformat
the quartic coupling amplitudeG0 ! G0yb, implying the
irrelevanceof anharmonic terms inQ12 and the stability
of the metallic phase. This is in contrast to the us
case of a nonchiral 2D dirty conductor, in which t
metallic fixed point is marginally unstable. Physical
the absence of localization effects may be attributed
the ballistic motion along thex axis, which suppresse
multiple scattering. Although it is possible that stro
enough disorder could induce some kind of transve
localization, we have been unable to find evidence of s
a phase, and suspect that metallic behavior persists fo
impurity concentrations.

In other 2D electron models which exhibit diffusion
T ­ 0, the delocalized wave functions typically exhib
multifractal scaling [2]. A classic example is the IQH
plateau transition, which manifests multifractal behav
via anomalous scaling ofD sp, Vd, in the limit Dp2 ø

V. But in the present caseD sp, Vd scales trivially
with V andpz, implying that the wave functions arenot
multifractal.

Having established the stability of the metallic phase
the noninteracting case, we turn to the combined influe
of interactions and disorder. As shown by Altschuler a
Aronov (see Ref. [1] and references therein), interac
effects are much enhanced by diffusive motion in conv
tional metals. For example, diffusive relaxation of dens
fluctuations leads to singularities in the tunneling den
of states. For our semiballistic metal, one expects this
fect to be absent, since any charge buildup is swept a
at the chiral Fermi velocity. Indeed, one can show that
diagrams responsible for the singularity yield only smo
contributions in the chiral case.

Thez-axis transport for the surface sheath in the IQ
behaves much as a conventional metal. Dramatically
ferent results are obtained for fractional filling factors,
we now describe. We focus on the odd-denominator fr
tional states, particularlyn ­ 1y3. The edge states ar
2784
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then chiral Luttinger liquids of chargen Laughlin quasi-
particles [9]. Because these quasiparticles have integ
only within a single quantum Hall plane, interlayer tran
port must involve the tunneling of physicalelectrons,or
equivalently1yn quasiparticles. The surface “sheath” ca
be described using the bosonized Euclidean action

S ­
X

i

Z `

2`

dx
Z b

0
dt

Ω
1

4pn
≠xfisi≠tfi 1 y≠xfid

2 t cosfsfi 2 fi11dyng
æ

, (8)

wheref is a boson field andb ­ 1yT . The charge den-
sity is nisxd ­ ≠xfiy2p, and the operatoreifsxd creates a
quasiparticle (2p soliton in f) at positionx. The cosine
term describes interlayer tunneling with amplitudet. In
the idealH k ẑ geometry, no flux penetrates between su
cessive edge modes; oscillatory phase factors are there
absent from this term. To study the effects of tunnelin
we employ standard renormalization group methods p
turbative int. After introducing a cutoffL in qx , one in-
tegrates out modes withLe2d, , jqxj , L. Upon rescal-
ing x ! ed,x and imaginary timet ! ed,t, the quadratic
action is brought back to its original form. The tunnelin
amplitude is, however, renormalized [10]

dt
d,

­ s2 2 1yndt , (9)

and is technically an irrelevant perturbation. Equation (
isunchanged even in the presence of long-range Coulo
interactions (not explicitly included) [7]. To extract th
z-axis conductivity imagine renormalizing until the
rescaled temperature is of order of the quantum Hall g
Eg, which implies a rescaling factore, ­ EgyT . From
scaling one then obtains an interlayer tunneling timetin ,
tffEgyts,dg2, with ts,d , tsTyEgd1yn22. Here tf ,
1yT is a thermal dephasing time. Sincets,d scales to
zero at low temperatures,tin ¿ tf and the interlayer
transport is incoherent. Thez-axis conductivity can
then be obtained from the diffusion constantD , a2ytin

and the Einstein relationszz ­ e2rD. This gives
szz , se2yhdayytin ­ const3 T2yn23, which vanishes
asT ! 0.

We now summarize our predictions for transport a
thermodynamic quantities. For temperatures well bel
the bulk QHE gap, the surface sheath dominates thez-axis
transport. In this regime, we expect a surface sheath fr
each full Landau level, each contributing a temperatu
independent (sheet) conductivity to give a totalszzsn ­
Nd ø Nse2t2tady2py. The n ­ 1y3 state, if present,
has a vanishingz-axis conductivity,szz , T3. In con-
trast to the quantized Hall plateaus, the “plateaus” inszz

are unquantized, and will probably exhibit small no
vanishing slopes even at the lowest temperatures.

The full behavior forszz as a function of field will de-
pend on the behavior in the regions connecting adjac
Hall states. There are several possible scenarios. In c



VOLUME 76, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 8 APRIL 1996

n
i

u
y

r
n

lk
a
t
ith
l

io
n
ll
ul
m

c
it
m

tio
in

c

th

-

,

t
e
ro

e

lso
the
s.

g a
area:

s
the
his

ag-
ed
e

ta

in-
ale,

s.
nce
R-

and

od.

nd

.

sTMTSFd2X, direct first order transitions between adjace
Hall states are possible, with the SDW period changing d
continuously. In this case, discontinuous jumps inszz are
expected. A second possibility is a direct but continuo
transition between plateaus, as in 2D quantum Hall s
tems. Indeed, model calculations for cleansTMTSFd2X
predict continuousT ­ 0 transitions for some paramete
values. A continuous plateau transition would reveal u
versal scaling features for the steplike features inszz (see
Fig. 2 and below). Recent data onsTMTSFd2ClO4 [11]
is roughly consistent with this scenario. Finally, a bu
3D metallic state may intervene between adjacent qu
tized Hall states. A noninteracting description leads na
rally to this latter behavior, as discussed in Ref. [12]. W
disorder, the transition from Hall state to bulk metal shou
be continuous, with a mobility edge. In this scenar
the metallic state would contribute a very large (exte
sive) contribution toszz , giving a large peak between Ha
states, as depicted in the Fig. 2. Data on 2D gas m
layers is roughly consistent with this, although lower te
perature data are necessary.

For the latter two scenarios, one expects universal s
ing properties near the continous transitions, albeit w
different exponents. Here we focus on contributions fro
the surface sheath. Upon approaching either transi
from within a quantized Hall state, one expects an (
plane) localization length which diverges asj , jdBj2n .
The z-axis localization length is assumed to vary asjz ,
jz (with z # 1 on physical grounds), whereas chara
teristic energy scales vanish asv , j2z with z a dy-
namical exponent. Following standard methods [13],
bulk conductivity scales assbulk

zz , jz 22JsTjzd. Near
the transition, the thicknessj of the surface sheath be
comes large, and we may estimate thez-axis sheet con-
ductivity asszz , sbulk

zz j. Using the bulk scaling results
this implies singular behavior atT ­ 0 for the “steps” in
szz : szz , jz 21 , jdBjs12z dn .

The SDW compounds provide a unique opportunity
study the specific heat of quantum Hall edge mod
in this case those of the whole sheath. In 2D elect

FIG. 2. Predicted behavior ofszz for an isolated transiton
(solid line) and with an intervening metallic phase (dash
curve). See text for details.
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gases, the edge contribution toC is masked by that of
the localized states in the interior. While this should a
be the case in multilayers, the SDW gap implies that
bulk contribution toC is activated at low temperature
The gapless surface modes then dominate, contributin
linear temperature dependence to the specific heat per
CA ­ Nspk2

BTy6h̄ayd. Since the ratioCyT is linear in
the numberN of full Landau levels, one expects step
in this quantity as well. Recent specific heat data in
ClO4 Bechgaard salt appear roughly consistent with t
variation [14].

Finally, we consider the effects of a transverse m
netic field (By fi 0) on the integer surface sheath, induc
(albeit nonuniformly) by tilting the sample. In the gaug
Ax ­ 2Byz, this field shifts the relative Fermi momen
between edge modes in adjacent layers bydkF ­ eaBy .
In the absence of impurities, momentum conserving
terlayer tunneling is not possible below an energy sc
DB , yeaBy . This leads to activatedz-axis transport,
szz , szz,0 exps2DByT d. With impurity scattering, a
finite conductivity will be restored atT ­ 0. But for a
relatively clean surface, apositive magneto resistancefor
z-axis transport is expected.

We are grateful to P. Chaikin for helpful conversation
This work has been supported by the National Scie
Foundation under Grants No. PHY94-07194, No. DM
9400142, and No. DMR-9528578.

Note added.—After this work was completed we
became aware of recent related results by Chalker
Dohmen [12].
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