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Chiral Surface States in the Bulk Quantum Hall Effect
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In layered samples which exhibit a bulk quantum Hall effect (QHE), a two-dimensional (2D) surface
“sheath” of gapless excitations is expected. These excitations comprise a novel 2D chiral quantum
liquid which should dominate the low temperature transport along the fiekki§). For the integer
QHE, we show that localization effects are completely absent in the “sheath,” giving a metalis
conductivity. For fractional fillingy = 1/3, the sheath is a 2D non-Fermi-liquid, with incoherent
z-axis transport and,, ~ T>. Experimental implications for the Bechgaard salts are discussed.

PACS numbers: 73.40.Hm, 71.27.+a, 75.30.Fv

Disorder has a profound effect on transport in two- Electronic transport parallel to the field direction is a
dimensional (2D) electron systems [1]. In the absencgowerful probe of these chiral surface phases. Our analy-
of an applied magnetic field, all the electronic states aresis reveals that for the integer quantum Hall effect (IQHE),
believed to be localized due to strong quantum interferthe motion along the direction is always diffusive, inde-
ence effects. With weak disorder, when the conductivitypendent of the impurity scattering strength. Localization
o is larger thare?/h, there is a weak-localization regime effects—weak or otherwise—are completely absent. The
described by diffusive behavior with logarithmic tempera-2D resistivity p,, is temperature independent &s— 0,
ture corrections. In the low temperature limit, however, awith a value which can be mudarger than/e>. But
crossover to strongly localized behavior with<< ¢?/h  perpendicular to the field, along theaxis, the transport is
is always expected. In this regime the conductivity dropdallistic and the resistivity,, vanishes ag” — 0. Our
rapidly with temperature and vanishes7as- 0. predictions for various experimental quantities which

In the presence of a magnetic field, 2D localizationshould be accessible in the Bechgaard salts, are given in
can be circumvented by tuning to the center of Landawetail at the end of the paper.
levels. Atthese isolated transitions between quantum Hall The surface sheath in the fractional quantum Hall effect
plateaus, extended states and a temperature independanfilling » = 1/3 is evenmoreanisotropic. In this case,
conductivity of ordere?/h are predicted, consistent with we find that electron transport along theaxis is always
experiment [2]. There are also other 2D systems whiclincoherent. At low temperatures insulating behavior is
exhibit such “metallic’ behavior at isolated transitions, predicted with a resistivity diverging as. ~ 1/T3, even
for example, 2D films at the superconductor-insulatorin the absence of any impurity scattering. &At= 0
transition. But away from such transitions, when theinterlayer transport is completely absent, and the electrons
conductivity is well belowe?/h, it is invariably strongly —are “confined” to 1D. This chiral surface sheath for=
temperature dependent, and insulating at zero temperaturi/3 is a nice example of a 2D non-Fermi-liquid phase.

In this paper, we describe a novel class of anisotropic 2D Consider first the IQHE. The electronic states at the
electronic phases, which surprisingly can exhibit metallicedge can be modeled simply as chiral fermions [6]. In the
conductivities much smaller thast/h. These 2D phases
arise at theurfaceof bulk three-dimensionajuantum Hall
samples. We consider layered samples which exhibit in-
dependent quantum Hall states in each layer when a larg
perpendicular magnetic field is applied. This requires an

%

interlayer tunneling amplitudesmall compared to the 2D 7/ TH .
—
J/

quantum Hall gag, [E, = hw. in the conventional in- — ) U U

tegral guantum Hall effect (QHE)]. In such materials, the ' ) 2 kx
surface of the sample is enveloped by a sheath of current
carrying states as depicted in Fig. 1. This chiral surface
phase is the 2D analog of the 1D states at the edges c
a single layer quantum Hall fluid. There are currently @ o)
two candidate experimental realizations of such systems:

2D electron gas multilayers [3], and the Bechgaard saltg;IG. 1. (a) Geometry of a 3D quantum Hall sample-axis

(TMTSF),X (where TMTSF is tetramethyltetraselenaful- transport is included via the tunneling amplitudend impurity

o : S scattering by the random potenti&l. (b) Associated Fermi
valene, and¥ = PF;, CIO,, or ReQ), which exhibit si- surface for the sheath. It differs from that of a conventional

multaneous field-induced spin density waves (SDWs) andpen Fermi-surface metal by the absence of the left-moving
QHE [4,5]. (dashed) half.
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3D case of interest here, there is a single edge state p&arm for nonchiral fermions, yields the approximation

layer (x-y plane) per filled Landau level (see Fig. 1). We ’
L . L . TP

focus on the case = 1; higher integer filling fractions Diadder (P> P23 Q) = — 5 ,

behave similarly. Including a small interlayer matrix —i(Q + vpy) + Dp? + 27

element: leads to the noninteracting Hamiltonian (5)

where the density of statgs= 1/27va andD = t*1a?,

H = Zf dx livaay, — 1@l + i) (1) With the relaxation time- = 2v/A. The anisotropic form
i of the denominator in Eq. (5) reflects the difference in

propagation alonge (ballistic) andz (diffusive). The
= f(vpx — 2tcop.a) (px. p)(ps.p:).  (2)  Einstein relationo,. = e>pD can be verified by explicit
P computation. The derivation of the diffusive transverse

where fp = [7.(dp./2m) [T _dp./27 and d/;r is an motipn in Eq. (5) has n(_eglected possibly_import_ant guan-
electron creation operator for the edge state in ane tum interference corrections. Indeed, for isotropic 2D sys-
layer. Here we have set the layer spacingqual to 1. t€ms, such corrections invalidate diffusive behavior at low
Calculations for the field-induced SDW model show thattémperatures, due to localization. To study possible inter-
Eq. (2) also describes the edge modes in that case, wif§reénce effects here, we use @ematrix approach, which
a proper choice ob and [7]. Equation (2) shows that allows a systematic treatment of corrections to Eg. (5).
interlayer hopping induces a small dispersion along thé0llowing McKane and Stone [8], the averaged correla-
layering direction, resulting in “half’ of an open Fermi tion functions are obtained from the replicated partition
surface [see Fig. 1(b)]. functionZ = [[d$1[dp]1[dQ]exp(—S), where

Before including impurity scattering, we reexamine the B
validity of Fermi-liquid theory (FL) with electron-electron S = Zf dx{i(l)/\[ivax —1V2 — E — AQlé
interactions present. Despite the chiral nature of the i
sheath, the phase-space restrictions which stabilize the
FL for a conventional Fermi surface continue to apply
here, in particular, the quasiparticle decay rat&(m) ~ . )
w?Inw, the dc conductivityr,. ~ 1/72, and the specific Heré ¢ is a 2n-component complex vectorQ is
heatC ~ T/av. Long-range Coulomb interactions are @ 27 by 2n Hermitian matrix, and A =1 ® o-.
screened in the staties(— 0) limit. Equation (6) follows from introducingb-. fields to gen-

To study dc transport at low temperatures, we mus€rate retarded and advanced Green’s functions, averaging
include impurity scattering at the surface, which weth€ nth moment of the original generating functich,

include by adding to the Hamiltonian a term of the form and decoupling the resulting quartic interaction using the
Q matrix. Thex term infinitesimally breaks th& (n, n)

+ %TrQ2 + 77<?>¢}~ (6)

ot symmetry of the remaining action. Physical correlators,
Himp = Zf dx V(x,ia); g . (3)  which are derived from the logarithm o, [InZ, =
! lim,—o(Zy — 1)/n], must be computed in the limit —
For simplicity, we assume _the random potential to bey \riting 0 = Qir Q4 , the density of states is,

Gaussian and uncorrelated,(x,z)V;(x/,z/) = Ad(x —

x)8,. In contrast to the results for the pure syste
the chiral nature of the dirty sheath leads to dramati
differences from ordinary dirty 2D metallic behavior. In

particular, localization along the direction is precluded <Q+*W(r)Q*+;W(0)>f L .
a priori since the wave function® are necessarily de- The ladder approximation is recovered as the leading

localized along thex direction. This follows from the ;erm n t?t S.adgli p.O',?t ex?ansm?tﬂf tge effgc}!v?dactl,g{l
continuity equationd,|®2 = V. - J, where J(x,z) = or Q, obtained by integrating out the bosonic fields.

(2¢/v) Im[®*(x, z)®(x,z + a)], valid for arbitrary ran- mg %?taenégenlgitle\é?g;;e: —Q-- = i/2va, reflecting
dom potentialvV. To study possible localization effects £ di y_ 5 + e the & 40 field
along thez axis, we consider the usual averaged producl}~I xpanding Q = Q + Q, the Q. and 0 Telds

of advanced and retarded Green's functions for noninter?2V€ Only massive fluctuations around the saddie, but
acting electrons the O+ and Q_ fields are massless Goldstone bosons

for n = 0. Following the conventional nonlinear sigma
model approach, we ignore the massive fluctuations and
D(r:Q) = G+(0.r; E)G-(r,0:E + Q). (4)  focus on the Goldstone modes, staying within the saddle
point manifold by eliminatingQ.;+ and Q__ via the
Here G+ = [ivd, — tV2 — E ¥ in + V(r)]"!, with  zero momentum, tree equations of motion. The resulting
V2 the discrete Laplacian, angg = 0*. A standard theory may be expressed solely in terms of the off-
summation of ladder diagrams, which gives a diffusivediagonal submatrices @, and is governed by an action
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m&9g.p = (1/77.)Im<Q++;a_a>, \_Nhere no sum is implied
’Cover the (arbitrary) replica indeXt = a =n. Up to
nonsingular contact terms, the correlatd (r;0) =
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of the form then chiral Luttinger liquids of charge Laughlin quasi-
particles [9]. Because these quasiparticles have integrity
Sefp = ZL f (—ivp, + Dp)THO+—(p)Q-+(—p)] only Within.a single quantum Hall plane,' interlayer trans-
TP Jp port must involve the tunneling of physicalectrons,or
4 equivalentlyl /v quasiparticles. The surface “sheath” can
+ 1_11 ) F(p) THQ+-0-+0+-0-+], (7)  be described using the bosonized Euclidean action

to  O(Qi;). The interaction vertex I'(p) = § = Zf dxjﬁdr{L A pi(idr i + v, i)
S p)f(p:), with f(p) ~ cipx + cop? for small r e Jooo 4wy
momenta, and all higher vertices must have similar
momentum structure owing to the continuol&n, n) — 1cog(¢d; — d’iﬂ)/”]}’ 8
symmetry. Truncating at quadratic order leads to the
ladder result forD, while retaining the anharmonic where¢ is a boson field an@ = 1/7. The charge den-
corrections is analogous to the usual expansion of theity isn;(x) = dx¢;/2m, and the operatar’¢™ creates a
appropriate nonlinear sigma model. quasiparticle Z7 soliton in ¢) at positionx. The cosine
With this formulation, the stability of the “diffusive” term describes interlayer tunneling with amplitude In
metal can be evaluated from simple power counting. Tdhe idealH || z geometry, no flux penetrates between suc-
make the quadratic action dimensionless, we rescale  cessive edge modes; oscillatory phase factors are therefore
bz, x — b%x, and Q — b~ '/2Q (with b > 1 to focus absent from this term. To study the effects of tunneling,
on long-wavelength behavior). Under this transformatiorive employ standard renormalization group methods per-
the quartic coupling amplitud€, — I'y/b, implying the  turbative inz. After introducing a cutoffA in ¢,, one in-
irrelevanceof anharmonic terms i@, _ and the stability tegrates out modes withe ~4¢ < |g,| < A. Uponrescal-
of the metallic phase. This is in contrast to the usuaingx — e?‘x and imaginary time- — ‘7, the quadratic
case of a nonchiral 2D dirty conductor, in which the action is brought back to its original form. The tunneling
metallic fixed point is marginally unstable. Physically, amplitude is, however, renormalized [10]
the absence of localization effects may be attributed to dt
the ballistic motion along the axis, which suppresses 70 =2 - 1/v)t, (9)
multiple scattering. Although it is possible that strong
enough disorder could induce some kind of transversand is technically an irrelevant perturbation. Equation (9)
localization, we have been unable to find evidence of sucisunchanged even in the presence of long-range Coulomb
a phase, and suspect that metallic behavior persists for aliteractions (not explicitly included) [7]. To extract the
impurity concentrations. z-axis conductivity imagine renormalizing until the
In other 2D electron models which exhibit diffusion at rescaled temperature is of order of the quantum Hall gap
T = 0, the delocalized wave functions typically exhibit E,, which implies a rescaling factar* = E,/T. From
multifractal scaling [2]. A classic example is the IQHE scaling one then obtains an interlayer tunneling tipe~
plateau transition, which manifests multifractal behaviorr4[E, /t(€)]?, with () ~ t(T/Eg)l/H. Here 74 ~
via anomalous scaling aD (p, Q), in the limit Dp> < 1/T is a thermal dephasing time. Sinc&) scales to
Q. But in the present casé® (p,()) scales trivially zero at low temperatures;, > 74 and the interlayer
with ) and p,, implying that the wave functions aret  transport is incoherent. The-axis conductivity can
multifractal. then be obtained from the diffusion constdnt~ a?/7i,
Having established the stability of the metallic phase inand the Einstein relations.. = ¢?pD. This gives
the noninteracting case, we turn to the combined influence-,, ~ (¢2/h)a/vrin = constX T?/*=3  which vanishes
of interactions and disorder. As shown by Altschuler andas7T — 0.
Aronov (see Ref. [1] and references therein), interaction We now summarize our predictions for transport and
effects are much enhanced by diffusive motion in conventhermodynamic quantities. For temperatures well below
tional metals. For example, diffusive relaxation of densitythe bulk QHE gap, the surface sheath dominates s
fluctuations leads to singularities in the tunneling densitytransport. In this regime, we expect a surface sheath from
of states. For our semiballistic metal, one expects this efeach full Landau level, each contributing a temperature
fect to be absent, since any charge buildup is swept awapdependent (sheet) conductivity to give a taal (v =
at the chiral Fermi velocity. Indeed, one can show that theV) =~ N(e’*t’>7a)/2mv. The v = 1/3 state, if present,
diagrams responsible for the singularity yield only smoothhas a vanishing-axis conductivity,o.. ~ T3. In con-
contributions in the chiral case. trast to the quantized Hall plateaus, the “plateauséin
The z-axis transport for the surface sheath in the IQHEare unquantized, and will probably exhibit small non-
behaves much as a conventional metal. Dramatically difvanishing slopes even at the lowest temperatures.
ferent results are obtained for fractional filling factors, as The full behavior foro,, as a function of field will de-
we now describe. We focus on the odd-denominator fraceend on the behavior in the regions connecting adjacent
tional states, particularly = 1/3. The edge states are Hall states. There are several possible scenarios. In clean
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(TMTSF), X, direct first order transitions between adjacentgases, the edge contribution & is masked by that of
Hall states are possible, with the SDW period changing disthe localized states in the interior. While this should also
continuously. In this case, discontinuous jumpsginare be the case in multilayers, the SDW gap implies that the
expected. A second possibility is a direct but continuousulk contribution toC is activated at low temperatures.
transition between plateaus, as in 2D quantum Hall systhe gapless surface modes then dominate, contributing a
tems. Indeed, model calculations for cledMTSF),X linear temperature dependence to the specific heat per area:
predict continuoug” = 0 transitions for some parameter C, = N(7k3T/6liav). Since the ratiaC/T is linear in
values. A continuous plateau transition would reveal unithe numberN of full Landau levels, one expects steps
versal scaling features for the steplike featuregjn(see in this quantity as well. Recent specific heat data in the
Fig. 2 and below). Recent data §hMTSF),CIO, [11]  CIlO4 Bechgaard salt appear roughly consistent with this
is roughly consistent with this scenario. Finally, a bulk variation [14].
3D metallic state may intervene between adjacent quan- Finally, we consider the effects of a transverse mag-
tized Hall states. A noninteracting description leads natunetic field 8, # 0) on the integer surface sheath, induced
rally to this latter behavior, as discussed in Ref. [12]. With(albeit nonuniformly) by tilting the sample. In the gauge
disorder, the transition from Hall state to bulk metal shouldA, = —B, z, this field shifts the relative Fermi momenta
be continuous, with a mobility edge. In this scenario,between edge modes in adjacent layerssty = eaB,.
the metallic state would contribute a very large (extendn the absence of impurities, momentum conserving in-
sive) contribution tar,,, giving a large peak between Hall terlayer tunneling is not possible below an energy scale,
states, as depicted in the Fig. 2. Data on 2D gas multiAz ~ veaB,. This leads to activated-axis transport,
layers is roughly consistent with this, although lower tem-o,, ~ o, oexp(—Ap/T). With impurity scattering, a
perature data are necessary. finite conductivity will be restored a = 0. But for a

For the latter two scenarios, one expects universal scatelatively clean surface, jpositive magneto resistander
ing properties near the continous transitions, albeit withz-axis transport is expected.
different exponents. Here we focus on contributions from We are grateful to P. Chaikin for helpful conversations.
the surface sheath. Upon approaching either transitioifhis work has been supported by the National Science
from within a quantized Hall state, one expects an (infoundation under Grants No. PHY94-07194, No. DMR-
plane) localization length which diverges &s~ |8B|™”. 9400142, and No. DMR-9528578.
The z-axis localization length is assumed to varyéas~ Note added—After this work was completed we
&9 (with £ = 1 on physical grounds), whereas charac-became aware of recent related results by Chalker and
teristic energy scales vanish as~ £7¢ with z a dy- Dohmen [12].
namical exponent. Following standard methods [13], the
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