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We study the dynamics of a heavy particle of massM moving in a one-dimensional repulsively interacting
Fermi gas. The Fermi gas is described using the Luttinger model and bosonization. By transforming to a frame
comoving with the heavy particle, we map the model onto a generalized ‘‘quantum impurity problem.’’ A
renormalization-group calculation reveals a crossover from strong to weak coupling upon scaling down in
temperature. Above the crossover temperature scaleT*5(m/M )EF , the particle’s mobilitym is found to be
~roughly! temperature independent and proportional to the dimensionless conductanceg, characterizing the
one-dimensional Luttinger liquid. Herem(!M ) is the fermion mass, andEF the Fermi energy. BelowT* , in
the weak-coupling regime, the mobility grows and diverges asm(T);T24 in theT→0 limit.

I. INTRODUCTION

The quantum dynamics of a heavy particle moving
through a fluid has been of longstanding interest. Most of the
effort has focused on three-dimensional quantum fluids, ei-
ther Fermi liquids such as3He or superfluids such as4He.1

Recently, there has been a resurgence of interest in non-
conventional quantum liquids. A paradigm is the Luttinger
model,2 which describes a one-dimensional interacting Fermi
gas.

In this paper we study in detail the dynamics of a single
heavy particle moving through a one-dimensional~1D! Lut-
tinger liquid. Of interest is the temperature dependence of
the heavy particle’s mobility. Our motivation is twofold.
Firstly, since the excitations in a 1D Luttinger liquid are
profoundly different from in a Fermi liquid, one might an-
ticipate that the dynamics of an immersed heavy particle
would likewise be qualitatively modified. Secondly, power-
ful non-perturbative methods in 1D, such as bosonization,
might be fruitfully employed to analyze the dynamics of a
strongly coupled heavy particle.

Our main results are as follows. After introducing the
model in Sec. II, we transform to a frame of reference co-
moving with the heavy particle in Sec. III. In this frame, the
heavy particle sits at the origin. In the limit thatM→` the
model then becomes equivalent to a Luttinger liquid scatter-
ing off a static localized impurity. This problem has been
analyzed in great detail recently, and is now well
understood.3 In the zero-temperature limit, the impurity ef-
fectively ‘‘breaks’’ the Luttinger liquid into two semi-infinite
decoupled pieces. Fermions incident on the impurity are
completely reflected. To analyze the case with finite mass
M , a natural starting point is thus a limit in which the am-
plitude t for incident fermions to tunnel through the heavy
particle is set to zero. Providedt50, the mobility can be
computed for arbitraryM , and one finds a temperature-
independent value,m5pg/(2\kF

2). At low temperatures,
though, this limit is unstable to nonzero tunneling,t. A

renormalization-group calculation reveals a crossover to a
regime where the fermions are transmitted readily through
the heavy particle. This leads to a decoupling between the
dynamics of the heavy particle and the Fermi sea. At zero
temperature, the only effect of the Fermi sea is to renormal-
ize the mass of the heavy particle—the mobility is infinite.

In Sec. IV we use a weak-coupling perturbative approach
to calculate the temperature dependence of the mobility in
the T→0 limit. The dominant scattering process involves
four fermions, absorbing and then reemitting a pair, one right
and one left moving. This process changes the momentum
and energy of the heavy particle, and is shown to lead to a
low-temperature mobility that diverges asm(T);T24.

II. THE MODEL

The Hamiltonian that describes the motion of a heavy
particle coupled to a 1D interacting Fermi gas can be written
asH5H01HLL1H int . HereH0 describes the free particle
of massM :

H05
P2

2M
, ~2.1!

with momentumP and positionX. HLL is the Hamiltonian
for N interacting fermions, which in first quantized notation
is

HLL5(
i51

N pi
2

2m
1(

i , j
V~xi2xj !, ~2.2!

where xi and pi denote coordinate and momentum of the
i th particle. The interaction between the heavy particle and
fermions is assumed to take the form

H int5(
i51

N

U~xi2X!. ~2.3!
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For simplicity we assume thatU(x) is repulsive and short
ranged.

It is useful also to have a second quantized formulation.
We denote asc(x) the fermionic field operator describing
the interacting Fermi gas. In the absence of interactions, the
ground state consists of a filled Fermi sea, with Fermi mo-
mentumkF . As usual, we decompose the field into a sum of
right and left movers:

c~x!5cR~x!eikFx1cL~x!e2 ikFx, ~2.4!

wherecR/L are supposed to be slowly varying. It will also be
useful to bosonize the interacting electron gas, by expressing

cR/L~x!5AkFeiAp~f6u!, ~2.5!

wheref and u are canonically conjugate fields satisfying
@u(x),]x8f(x8)#5 id(x2x8). The appropriate Luttinger liq-
uid Hamiltonian takes the from

HLL5
v
2ExF1g ~]xu!21g~]xf!2G . ~2.6!

Hereg is the dimensionless conductance, which is less than
one for a repulsively interacting Fermi gas, equals one for
free fermions, and is greater than one with attractive interac-
tions. The Fermi velocityv is also renormalized by interac-
tions, and will differ from the free fermion value,kF /m.

The right and left moving electron densities,NR5cR
†cR

andNL5cL
†cL , have simple bosonic representations,

NR1NL5~1/Ap!]xu ~2.7!

and

NR2NL5~1/Ap!]xf. ~2.8!

III. DESCRIPTION IN FRAME COMOVING
WITH PARTICLE

To transform the equations of motion into a frame comov-
ing with the heavy particle, one can use the unitary
transformation,4

U5ei( i51
N piX. ~3.1!

This transformation has been previously used5 in a similar
context, but in the special case whereM5m . Under this
transformation, the coordinates and momenta transform as

xi→xi1X,

pi→pi ,

X→X,

P→P2(
i51

N

pi . ~3.2!

The transformed Hamiltonian becomes

H→H5
1

2M FP2(
i51

N

pi G21H imp , ~3.3!

with

H imp5HLL1(
i51

N

U~xi !. ~3.4!

Notice thatP in ~3.3! is no longer the momentum of the
heavy particle, but rather is thetotal momentum of the sys-
tem, and is conserved (@H,P#50). However, the operator
X remains unchanged under the transformation and still rep-
resents the position of the heavy particle.

When M→` the full Hamiltonian reduces toH imp ,
which describes a Fermi gas interacting with a static poten-
tial U(x) centered at the origin. This quantum impurity prob-
lem has recently been analyzed in great detail.3 However,
whenM is finite the heavy particle can move, and exchange
energy with the Fermi sea. Notice that the heavy particle is
coupled to the fermions via a minimal coupling, where the
‘‘gauge’’ field is the total momentum in the Fermi sea.6–9

The transformed Hamiltonian can be expressed directly in
second quantization using the fermion field operators~2.4!.
These fields can then be bosonized. It is convenient to use a
path integral representation, since the Lagrangian is linear in
the ‘‘gauge’’ field. The Euclidean action for the free Lut-
tinger liquid that corresponds to~2.6! can be expressed as

SLL5
g

2vEx,t@v2~]xf!21~]tf!2#. ~3.5!

The total momentum of the fermions can also be easily
bosonized,

(
i51

N

pi→kFE
x
~NR2NL!5

kF

Ap
E
x
]xf. ~3.6!

which enables the total action for the heavy particle plus
Luttinger liquid to be written:

S5
M

2 Et
Ẋ2~t!1

ikF

Ap
E
x,t
Ẋ~t!]xf~x,t!1Simp . ~3.7!

To analyze the dynamics in the transformed frame, it is
convenient to first consider a strong-coupling limit
(U→`). In this limit, the fermions cannot pass through the
heavy particle, and the Luttinger liquid is divided into two
decoupled regions on either side of the particle. Perturbations
away from this limit can be included by allowing for tunnel-
ing of fermions from one side to the other, with a small
amplitudet. This process can be expressed in terms of the
bosonic fields as3

ST52tE
t
cosAp@f~01,t!2f~02,t!#. ~3.8!

As we shall see, in the limitt50 the heavy particle’s dy-
namics can be obtained exactly. A perturbative analysis for
small t is then possible.

To this end, we follow Ref. 3 and integrate out the
bosonic fieldf(x), except atx50—that is at the position of
the heavy particle. In terms of the phase difference across the
heavy particle,

F~t!5 1
2 @f~01,t!2f~02,t!#, ~3.9!
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the action becomesS5S01ST with

S05
1

b(
n

SMvn
2

2
uXnu21

2kFvn

Ap
XnF2n1guvnuuFnu2D ,

~3.10!

ST52tE
t
cos@2ApF~t!#. ~3.11!

In ~3.10! the summation is over Matsubara frequencies
vn52pn/b, with b the inverse temperature.

In the limit of zero tunneling (t50), the action is qua-
dratic. One can then integrate over the fieldF(t) to obtain a
simple action for the dynamics of the heavy particle:

SX5
1

b(
n

SMvn
2

2
1
kF
2 uvnu
pg D uXnu2. ~3.12!

This action is of the Caldeira-Leggett form, and describes a
particle undergoing Brownian motion in a viscous environ-
ment with friction coefficient,h52kF

2/pg.10,11 The parti-
cle’s mobility can be obtained from the Kubo formula,12

m~v!5
1

vn
P~vn!uvn→ iv1e , ~3.13!

P~vn!5E
t
e2 ivnt^Ẋ~t!Ẋ~0!&5

vn
2

b
^uXnu2&. ~3.14!

For the quadratic action~3.12! this gives a dc mobility,

m5
pg

2\kF
2 , ~3.15!

which is independent of temperature and proportional to the
Luttinger liquid conductanceg. In this limit (t50), the par-
ticle is heavily damped by the fermions, even at zero tem-
perature. The damping is heavy because the fermions cannot
pass through the heavy particle, so motion is only possible
by ‘‘pushing’’ the fermions out of the way.

It is worth emphasizing that the mobility in~3.15! is the
linear responsemobility. Within linear response, the applied
force is taken to zero before the frequency, so that the excur-
sions of the positionX of the heavy particle remain small. In
contrast, the dc nonlinear response corresponds to a uniform
force and steady-state velocity. In thet50 limit, we expect
that the nonlinear mobility might in fact be rather different
from ~3.15!, since in this case all of the fermions in the sea
will have to move at the same steady-state velocity. In any
event, thet50 limit is actually unstable at low temperatures,
as we shall now discuss.

Consider now perturbing about this limit, for small tun-
neling t. We first integrate overX(t) to obtain an action that
depends only on the bosonic fieldF:

SF5
1

b(
n

S 2kF2pM
1guvnu D uFnu21ST . ~3.16!

Notice that the phase mode has a mass term, due to the
motion of the heavy particle. In the static limit (M→`) this
mass term vanishes, and the action reduces to that for a Lut-
tinger liquid with impurity. Consider now a renormalization-

group ~RG! transformation that consists of integrating over
modesF(v), for frequencies betweenL/b andL, and then
rescalingv→v85v/b. Here L;EF is a high-frequency
cutoff, andb5edl is a rescaling factor. This transformation
leaves the coefficientg invariant, whereasM decreases as

dM

dl
52M . ~3.17!

The RG flows for t depend on whether the mass for the
phase mode is larger or smaller than the cutoffL. For
M@kF

2/L the lowest-order RG flow equation is

dt

dl
5S 12

1

gD t, ~3.18!

whereas forM!kF
2/L one has

dt

dl
5t. ~3.19!

At finite temperatures, these RG flows will be cut off at a
scaleb;L/T.

Since the cutoff energy scale is essentially the Fermi en-
ergy,L;kF

2/m, the crossover between the two flows occurs
when M ( l );m. If the ~bare! particle mass is very large,
M@m, the scaling oft will be determined by~3.18! over a
large range of temperatures, betweenEF and a crossover
scaleT*;(m/M )EF . In this temperature range, for a repul-
sively interacting Luttinger liquid (g,1), the tunneling rate
will scale towards zero. The mobility of the heavy particle
should then be roughly independent of temperature, given by
~3.15!. However, at temperatures belowT* , ~3.19! indicates
that the tunneling ratet starts increasing. AsT→0 the tun-
neling rate becomes large, and the perturbative expansion
breaks down.

Evidently, in the low-temperature limit the fermions can
tunnel easily through the heavy particle. One anticipates that
asT→0 the heavy particle becomes transparent, and its dy-
namics decouples from the fermions.

At very low temperatures whent grows large, fluctuations
in the phaseF are greatly suppressed by theST term in
~3.16!. In this limit it is a good approximation to expand the
cosine in~3.11! for small argument:

2tcos~2ApF!→2t12ptF2. ~3.20!

This explicitly breaks the 2p phase invariance of the action.
This symmetry breaking presumably occurs spontaneously at
T50, but would be restored at nonzeroT. This approxima-
tion is thus only expected to be strictly validat T50. Since
each 2p phase-slip process represents an event in which a
fermion backscatters off the heavy particle, these events are
completely suppressed atT50.

After expanding the cosine term the full action is qua-
dratic,

SF5
1

b(
n

S 2kF2pM
12pt1guvnu D uFnu2. ~3.21!
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The mobility can then be calculated using~3.14!. To this end
we introduce a source term,Ss5 i*dtẊ(t)J(t), which en-
ables us to expressP(vn) as a correlation function over the
phase field:

P~vn!5
1

M S 12
2kF

2

pM
^uFnu2& D . ~3.22!

This can be evaluated using~3.21! and one finds

P~vn!5
1

M S 2pt1guvnu
~2kF

2/pM !12pt1guvnu
D . ~3.23!

Whent!vn!(m/M )EF , this reduces to our previous result
~3.15!. However, in the low-frequency limit,
vn!t,(m/M )EF , it gives a diverging ac mobility:

m~v!5
1

ivMeff
, ~3.24!

Meff5M S 11
2~m/M !EF

p2t D . ~3.25!

This describes ballistic motion of the heavy particle with an
effective massMeff . This result is valid onlyat T50. At
nonzero but small temperatures,T!(m/M )EF , one expects
a finite mobility. As will be confirmed in Sec. IV, the dc
mobility indeed diverges asT→0.

Notice that the mass renormalization becomes large when
t decreases, which corresponds to an increase of the interac-
tion strength between the heavy particle and the Fermi sea.
This trend is consistent with that found by McGuire in an
exact treatment of a particular Hubbard model with 1 spin
down particle moving in a sea ofN21 spin up particles.13

Unfortunately, a quantitative comparison with McGuire’s re-
sult is not possible, since our parametert is phenomenologi-
cal, and cannot be readily related to the bare interaction po-
tential between the heavy particle and the Fermi sea.

The above results suggest a rich temperature dependence
for the mobility for g,1. Between the Fermi temperature
and a crossover temperature,T*;(m/M )EF , the mobility is
roughly temperature independent and given by~3.15!. Below
T* , the mobility starts increasing with cooling, and diverges
in the zero-temperature limit. Physically, belowT* the
heavy particle becomes ‘‘transparent’’ to the fermions. The
dynamics of the heavy particle decouples from the Fermi
sea. In the next section, we employ a weak-coupling pertur-
bative approach to calculate the functional form ofm(T) as
T→0.

IV. WEAK-COUPLING PERTURBATION THEORY

Since the heavy particle tends to decouple from the Fermi
sea asT→0, a weak-coupling approach should be appropri-
ate at low temperatures. In this section we use perturbation
theory in the coupling between particle and Fermi sea, to
extract the temperature dependence of the mobility as
T→0.

It is convenient to employ a second quantized description
for the heavy particle, denoting asc†(x) and c(x) the cre-

ation and destruction operators. Since we are only interested
in a singleparticle,*xc

†c51. The free Hamiltonian~2.1! is

H05(
k

ekck
†ck , ~4.1!

with dispersion ek5k2/2M . The interaction Hamiltonian
~2.3! becomes

H int5U0E dxc†~x!c~x!N~x!, ~4.2!

whereN(x)5c†(x)c(x) is the fermion density. Here we
have replaced the short-ranged interaction by ad function:
U(x)→U0d(x). It is important to distinguish between small
momentum transfer processes, and processes that scatter the
fermions by 2kF . Using the decomposition~2.4! one can
express,N5N01N2kF

, where

N0~x!5cR
†cR1cL

†cL5NR1NL ~4.3!

involves small momentum transfer, and

N2kF
~x!5cR

†cLe
i2kFx1H.c. ~4.4!

denotes the large momentum contributions. The two corre-
sponding terms generated from the interaction Hamiltonian
will be denotedH int,0 andH int,2kF

, respectively.
Consider first computing the scattering rate for the heavy

particle using Fermi’s golden rule, where the perturbing
Hamiltonian isH int,0 . Since the fermion density at small mo-
mentum transfer is simplyN05(1/Ap)]xu, the interaction
HamiltonianH int,0 takes the form of an ‘‘electron-phonon’’
interaction. It is thus useful to introduce ‘‘phonon’’ creation
and destruction operators, which create and destroy the har-
monic Luttinger liquid excitations. To this end, we expand
the boson field as

u~x!5
1

AL(k uke
ikx ~4.5!

and introduce boson operators:

bk5~1/A2guku!~ ukuuk1 igPk!, ~4.6!

wherePk denote Fourier modes of the conjugate momen-
tum, P(x)5]xf(x). The operatorsbk satisfy canonical
Bose commutation relations. The Luttinger liquid Hamil-
tonian can be expressed as

HLL5(
k

vkbk
†bk , ~4.7!

with dispersionvk5vuku. Finally, the small momentum in-
teraction takes the form:

H int,05
AqvU0

A2pL
(
k,q

~ iq/Avq!ck1q
† ck~bq1b2q

† !. ~4.8!

The rate to scatter the heavy particle from an initial state
with momentumk to a final statek85k1q, with absorption
or emission of a single phonon, can now be readily obtained
using Fermi’s golden rule. After summing over all possible
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phonon modes, assuming they are in equilibrium at tempera-
tureT, the rate is found to be

Gk→k1q5
qU0

2

2vL(6 vq~2nq1161!d~ek1q2ek6vq!.

~4.9!

Here nq5@exp(bvq)21#21 is the Bose distribution func-
tion.

These processes are severely restricted by energy and mo-
mentum conservation. For example, for zero initial momen-
tum, k50, the aboved functions vanish unlesseq5vq or
q52MvF . But at this momentum, the heavy particle has
energy eq52MkF

5(4M /m)EF . These processes will thus
freeze out exponentially fast for temperatures below this en-
ergy scale. If these were the only processes present, the mo-
bility would diverge exponentially in theT→0 limit. But
other processes will dominate at low temperatures, as we
now discuss.

Consider next the 2kF scattering contribution,

H int,2kF
5U0E

x
c†~x!c~x!@cR

†cLe
i2kFx1H.c.#. ~4.10!

Unfortunately, to leading order this interaction does not con-
tribute to the low-temperature scattering rate. To see this,
consider the scattering process that transfers 2kF momentum
but zero energy to the heavy particle. Energy and momentum
conservation requireek5ek8 andk2k852kF , wherek and
k8 are the initial and final particle momenta. Together, these
imply k52k85kF , which corresponds to a large particle
energy,ekF5(m/M )EF . At temperatures below this energy
scale, this process will freeze out.

However, higher-order processes that are generated by
H int,2kF

will contribute to the low-temperature scattering.
Specifically, consider the interaction term,

Heff5l̃E
x
c†~x!c~x!cR

†cRcL
†cL , ~4.11!

which will be generated byH int,2kF
at second order. The cou-

pling constant isl̃5U0
2/e2kF, where the denominatore2kF is

the energy of the heavy particle in the ‘‘intermediate state.’’
This interaction term can be readily bosonized using~2.7!
and ~2.8!, giving

Heff5lE
x
c†~x!c~x!@~]xu!22~]xf!2#, ~4.12!

with l5l̃/4p.
The scattering rate from the processHeff can be computed

using Fermi’s golden rule giving

Gk→k1q5ag@vq
22~De!2#nuvq1Deu/2@nuvq2Deu/211#,

~4.13!

with ag5(l2/8Lg2v3)(11g4) and De5ek1q2ek . As re-
quired, G satisfies a detailed balance condition,
f 0(k)Gk→p5 f 0(p)Gp→k , where f 0(k)5const3e2bek is the
equilibrium momentum distribution function for the heavy
particle at temperatureT. Notice that this rate has appre-
ciable weight at small energy and momentum transfer, van-

ishing as a power rather than exponentially. This leads to a
power-law dependence of the mobilitym(T) on temperature,
as we now demonstrate.

The mobility can be obtained by solving a Boltzmann
equation for the momentum distribution functionf (p,t) in
the presence of an applied electric fieldE:

] t f ~p,t !1E]pf ~p,t !5I ~p,t !. ~4.14!

As usual, the ‘‘collision integral’’ is expressed in terms of
the scattering rates,~4.13!, into and out of the statep:

I ~p!5(
k

@ f ~k,t !Gk→p2 f ~p,t !Gp→k#. ~4.15!

We seek a solution of the formf (k)5 f 0(k)G(k), and deter-
mineG(k). The collision term can be reexpressed as

I ~p!5(
q

Gp1q→pf 0~p1q!@G~p1q!2G~p!#.

~4.16!

Due to the Bose factors in~4.13!, the scattering rateG is a
sharply peaked function of the momentum transferq with
width q;T/v. At low temperatures it is then legitimate to
expand bothf 0(p1q) andG(p1q) for smallq. Moreover,
in the low-temperature limit,De in ~4.13! can be set to zero,
and the scattering rate simplifies:

Gk→k1q→Gq[agvq
2nvq/2

@nvq/2
11#. ~4.17!

This requires

De

T
;~vFq/T!~k/MvF!;AT/MvF

2!1, ~4.18!

where we have used the fact thatvFq/T;1 andk;AMT. In
this low-temperature regime, the collision integral can be
written as

I ~p!5A]pf 0]pG1 1
2Af0]p

2G, ~4.19!

where we have defined

A5(
q

q2Gq5const3T5, ~4.20!

and used the fact that(qqGq50.
With this form for the collision integral, the steady-state

Boltzmann equation reduces to a differential equation for
G(p):

A]pG2EG5
M

2bp
~A]p

2G22E]pG!. ~4.21!

We now specialize to the linear response limit, for small
electric fields. To linear order inE, the terms on the right
side can be dropped, and the equation readily integrated to
giveG(p)5const3eEp/A. The momentum distribution func-
tion f5 f 0G is then given by

f ~p!5 f 0S p2
EM

bA D . ~4.22!

The linear response mobility readily follows,
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m5
^v&
E

5
1

MEEpp f~p!5
1

bA
. ~4.23!

Since A;T5, we deduce a mobility which diverges as
m;T24. This result agrees with a strong-coupling analysis6

based on the Brownian motion of solitons and calculations of
the diffusion coefficient in real space.14

V. CONCLUSION

In this paper we have analyzed the dynamics of a heavy
particle moving in a 1D repulsively interacting Luttinger liq-
uid. The behavior of the particle’s mobility depends on
whether the temperature is larger or smaller than a crossover

scale,T*;(m/M )EF . Above T* the mobility is roughly
independent of temperature and proportional to the conduc-
tanceg of the Luttinger liquid. BelowT* the mobility grows
upon cooling, and diverges in the zero-temperature limit as
m(T);T24. At zero temperature, the heavy particle moves
ballistically, with a renormalized mass.
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