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Dynamics of a heavy particle in a Luttinger liquid
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We study the dynamics of a heavy particle of miksnoving in a one-dimensional repulsively interacting
Fermi gas. The Fermi gas is described using the Luttinger model and bosonization. By transforming to a frame
comoving with the heavy particle, we map the model onto a generalized “quantum impurity problem.” A
renormalization-group calculation reveals a crossover from strong to weak coupling upon scaling down in
temperature. Above the crossover temperature state(m/M)Eg, the particle’s mobilityu is found to be
(roughly) temperature independent and proportional to the dimensionless condugtankaracterizing the
one-dimensional Luttinger liquid. Hera(<M) is the fermion mass, aridl: the Fermi energy. Below*, in
the weak-coupling regime, the mobility grows and divergeg.6E)~T * in the T—0 limit.

I. INTRODUCTION renormalization-group calculation reveals a crossover to a
regime where the fermions are transmitted readily through
The quantum dynamics of a heavy particle movingthe heavy particle. This leads to a decoupling between the
through a fluid has been of longstanding interest. Most of thelynamics of the heavy particle and the Fermi sea. At zero
effort has focused on three-dimensional quantum fluids, eitemperature, the only effect of the Fermi sea is to renormal-
ther Fermi liquids such agHe or superfluids such aHe! ize the mass of the heavy particle—the mobility is infinite.
Recently, there has been a resurgence of interest in non- In Sec. IV we use a weak-coupling perturbative approach
conventional quantum liquids. A paradigm is the Luttingerto calculate the temperature dependence of the mobility in
model? which describes a one-dimensional interacting Fermthe T—0 limit. The dominant scattering process involves
gas. four fermions, absorbing and then reemitting a pair, one right
In this paper we study in detail the dynamics of a singleand one left moving. This process changes the momentum
heavy particle moving through a one-dimensio(idD) Lut-  and energy of the heavy particle, and is shown to lead to a
tinger liquid. Of interest is the temperature dependence ofow-temperature mobility that diverges a$T)~T 4.
the heavy particle’s mobility. Our motivation is twofold.
Firstly, since the excitations in a 1D Luttinger liquid are Il. THE MODEL
profoundly different from in a Fermi liquid, one might an-
ticipate that the dynamics of an immersed heavy particle The Hamiltonian that describes the motion of a heavy
would likewise be qualitatively modified. Secondly, power- particle coupled to a 1D interacting Fermi gas can be written
ful non-perturbative methods in 1D, such as bosonizationasH=Hq+H  +H;,. HereH, describes the free particle
might be fruitfully employed to analyze the dynamics of aof massM:
strongly coupled heavy particle.

Our main results are as follows. After introducing the P2
model in Sec. I, we transform to a frame of reference co- H0=m, (2.3)
moving with the heavy particle in Sec. lll. In this frame, the

heavy particle sits at the origin. In the limit thet—o the  with momentumP and positionX. H,, is the Hamiltonian
model then becomes equivalent to a Luttinger liquid scatterfor N interacting fermions, which in first quantized notation
ing off a static localized impurity. This problem has beenijs

analyzed in great detail recently, and is now well

understood. In the zero-temperature limit, the impurity ef- N p?

fectively “breaks” the Luttinger liquid into two semi-infinite Ho=2 ——+ 2 V(x—X), (2.2
decoupled pieces. Fermions incident on the impurity are =12m 1]

completely reflected. To analyze the case with finite mass . ox ando: denote coordinate and momentum of the
M, a natural starting point is thus a limit in which the am- ! Pi

plitude t for incident fermions to tunnel through the heavy ith p_artlcl_e. The interaction between the heavy particle and
o : e fermions is assumed to take the form

particle is set to zero. Provided=0, the mobility can be

computed for arbitraryM, and one finds a temperature- N

independent value;Lzrrg/(thﬁ). At low temperatures, H. :E U(x—X). 2.3

though, this limit is unstable to nonzero tunnelirig, A =
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For simplicity we assume thafl(x) is repulsive and short with

ranged. N
It is useful also to have a second quantized formulation.
We denote as/(x) the fermionic field operator describing HimP:HLLJr;l U(x)). (3.4

the interacting Fermi gas. In the absence of interactions, the ] )
ground state consists of a filled Fermi sea, with Fermi moNotice thatP in (3.3 is no longer the momentum of the
mentumke . As usual, we decompose the field into a sum ofh€avy particle, but rather is thtetal momentum of the sys-

right and left movers: tem, aqd is conserved ii,P]=0). However, 'the operator
' ' X remains unchanged under the transformation and still rep-
P(X) = hp(x)eMF*+ i (x)e™ kX, (2.4  resents the position of the heavy particle.

When M—c the full Hamiltonian reduces tdnyy,
which describes a Fermi gas interacting with a static poten-
G U(x) centered at the origin. This quantum impurity prob-
eyl (X) = \/k_Fei VA($0) (2.5) lem has recently been analyzed in great détalowever,

whereyg, are supposed to be slowly varying. It will also be
useful to bosonize the interacting electron gas, by expressi

1
§(0x9)2+ 9(3x)?|. (2.6

whenM is finite the heavy particle can move, and exchange
where ¢ and 6 are canonically conjugate fields satisfying energy with the Fermi sea. Notice that the heavy particle is
uid Hamiltonian takes the from “gauge” field is the total momentum in the Fermi s&&.
The transformed Hamiltonian can be expressed directly in
v
HLL:EL These fields can then be bosonized. It is convenient to use a
path integral representation, since the Lagrangian is linear in
one for a repulsively interacting Fermi gas, equals one foinger liquid that corresponds 1@.6) can be expressed as
free fermions, and is greater than one with attractive interac-
— 9 2 2 2
tions, and will differ from the free fermion valu&g/m. SLL_ZL T[U (9x$)"+(9,¢)7]. (3.5
The right and left moving electron densitid$g= ¢/¢r

[0(X),dy d(X')]=16(x—X"). The appropriate Luttinger lig- coupled to the fermions via a minimal coupling, where the
second quantization using the fermion field operat@rd).

Hereg is the dimensionless conductance, which is less thafhe “gauge” field. The Euclidean action for the free Lut-

tions. The Fermi velocity is also renormalized by interac-

andN = lﬁIIﬁL, have simple bosonic representations,

The total momentum of the fermions can also be easily

bosonized,
Ng+ N, = (1\/7) 350 (2.7) N ’
F
and 3, pke | (NeNO= T[40 @9
Ng—N_= (1) .. (2.8 which enables the total action for the heavy particle plus

Luttinger liquid to be written:

IIl. DESCRIPTION IN FRAME COMOVING

WITH PARTICLE M. ike :
s=?fx2(7)+—f X(7)dx$(X,7) +Spmp. (3.7

To transform the equations of motion into a frame comov- T VaJwr
ing with the heavy particle, one can use the unitary

transformatiorf, To analyze the dynamics in the transformed frame, it is

convenient to first consider a strong-coupling limit
S = X (3.0 (U—o0)., In this limit, the fermions cannot pass thrpugh the
a : ' heavy particle, and the Luttinger liquid is divided into two
This transformation has been previously useda similar ~ decoupled regions on either side of the particle. Perturbations
context, but in the special case whave=m . Under this away from this limit can be included by allowing for tunnel-

transformation, the coordinates and momenta transform asing of fermions from one side to the other, with a small
amplitudet. This process can be expressed in terms of the

Xi—X;+ X, bosonic fields as
PP ST=—tf cos/a[$(0*,7)=$(07,7)]. (3.8
X=X, ) o )
As we shall see, in the limit=0 the heavy particle’s dy-
N namics can be obtained exactly. A perturbative analysis for
P-P—> p;. (3.2  smallt is then possible.
=1

To this end, we follow Ref. 3 and integrate out the
bosonic fieldp(x), except ak=0—that is at the position of
the heavy particle. In terms of the phase difference across the
2 heavy particle,

Hios 33 o )
Himp 33 B() =[S0, 1)~ B0, 7], (3.9

The transformed Hamiltonian becomes

HoH= o
N7 oM

N
P—El P;
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the action becomeS=S,+ S; with group (RG) transformation that consists of integrating over
modes® (w), for frequencies betweef/b andA, and then
1 Mwﬁl , 2Kpoy ) rescalingow— o' =w/b. Here A~E¢ is a high-frequency
SO:,EEn: > | Xal“+ In Xo® _n+glog|[®|*], cutoff, andb=e is a rescaling factor. This transformation
(3.10 leaves the coefficierg invariant, wherea$/ decreases as
dm
S;= —tf cog 2\/7d(7)]. (3.11) =M (3.17)

In (3.10 the summation is over Matsubara frequenciesrhe RG flows fort depend on whether the mass for the

w,=2mn/B, with B the inverse temperature. , phase mode is larger or smaller than the cutaff For
Iq the limit of zero tunneling {=0), t_he action is qua- M>kEIA the lowest-order RG flow equation is
dratic. One can then integrate over the fidl{i7) to obtain a

simple action for the dynamics of the heavy particle:

(o), o
1g (Me] Flnl 2 di g (3.18
" whereas foM <k2/A one has
This action is of the Caldeira—Leggett form, and describes a
particle undergoing Brownian motion in a viscous environ- dt
ment with friction coefficient,=2k2/7g.1%!! The parti- gt (3.19

cle’s mobility can be obtained from the Kubo formdfa,
1 At finite temperatures, these RG flows will be cut off at a
w@)=—P(on)]o, iwe (313  scaleb~A/T.
@n " Since the cutoff energy scale is essentially the Fermi en-
W2 ergy,A~k§/ m, the crossover between the two flows occurs
_ | a—ioprs y _='n 2 when M(1)~m. If the (bare particle mass is very large,
P(en) Le (X(mX(©0)) B (Xl (314 M>m, the scaling oft will be determined by3.18 over a
large range of temperatures, betwelep and a crossover
scaleT* ~(m/M)Eg. In this temperature range, for a repul-
g sively interacting Luttinger liquidg<1), the tunneling rate
W= (3.159  will scale towards zero. The mobility of the heavy particle
F should then be roughly independent of temperature, given by
which is independent of temperature and proportional to thé3.15. However, at temperatures beld#, (3.19 indicates
Luttinger liquid conductancg. In this limit (t=0), the par-  that the tunneling rate starts increasing. A$—0 the tun-
ticle is heavily damped by the fermions, even at zero temheling rate becomes large, and the perturbative expansion
perature. The damping is heavy because the fermions cannbteaks down.
pass through the heavy particle, so motion is only possible Evidently, in the low-temperature limit the fermions can
by “pushing” the fermions out of the way. tunnel easily through the heavy particle. One anticipates that
It is worth emphasizing that the mobility i(8.15 is the ~asT—0 the heavy particle becomes transparent, and its dy-
linear responseamobility. Within linear response, the applied namics decouples from the fermions.
force is taken to zero before the frequency, so that the excur- At very low temperatures wheingrows large, fluctuations
sions of the positioiX of the heavy particle remain small. In in the phased are greatly suppressed by ti$ term in
contrast, the dc nonlinear response corresponds to a uniforfd.16). In this limit it is a good approximation to expand the
force and steady-state velocity. In the 0 limit, we expect cosine in(3.11) for small argument:
that the nonlinear mobility might in fact be rather different
from (3.15), since in this case all of the fermions in the sea —tcog 27 d)— —t+ 27t D2, (3.20
will have to move at the same steady-state velocity. In any
event, thet=0 limit is actually unstable at low temperatures, This explicitly breaks the 2 phase invariance of the action.
as we shall now discuss. This symmetry breaking presumably occurs spontaneously at
Consider now perturbing about this limit, for small tun- T=0, but would be restored at nonzeFo This approxima-
nelingt. We first integrate oveX() to obtain an action that tjon is thus only expected to be strictly vakd T=0. Since
depends only on the bosonic fiedl: each 27 phase-slip process represents an event in which a
fermion backscatters off the heavy particle, these events are
_ T 2 completely suppressed at=0.
B Z ( +g|w”|)|¢”| S (3.16 After expanding the cosine term the full action is qua-
atic,

For the quadratic actio(8.12) this gives a dc mobility,

dr
Notice that the phase mode has a mass term, due to the
motion of the heavy particle. In the static limitf(— =) this
mass term vanishes, and the action reduces to that for a Lut- —

1 2k2
nass term vanishes, a : for So=52 | o t2mtrgled [[@42 (320
tinger liquid with impurity. Consider now a renormalization- Bn
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The mobility can then be calculated usif®14). To this end  ation and destruction operators. Since we are only interested
we introduce a source terr§,=idrX(7)J(7), which en- in asingleparticle, f,c'c=1. The free Hamiltoniari2.1) is
ables us to expres€®3(w,) as a correlation function over the

phase field: Ho=>, ecick, 4.1
k

1 2k2
P(w,) = M( 1- _I\;<|q)”|2>)' (3.22  with dispersion e,=k?%2M. The interaction Hamiltonian
77 (2.3 becomes
This can be evaluated usir{g.21) and one finds

1 2mt+g| oy Hint:Uof dxc'(x)c(x)N(x), 4.2

Plwn)= M((zkéle)+2wt+g|wn|

). (3.23

where N(x) = ¢ (x) () is the fermion density. Here we
have replaced the short-ranged interaction b§ function:
U(X)—Uqd8(x). Itis important to distinguish between small
momentum transfer processes, and processes that scatter the
fermions by Xg. Using the decompositiof2.4) one can
expressN=No+ Ny, where

Whent<w,<(m/M)Eg, this reduces to our previous result
(3.159. However, in the low-frequency limit,
w,<t,(M/M)Eg, it gives a diverging ac mobility:

@)=, (3.24 T T
" No(X) = rpr+ ¢ b =Ng+N_ (4.3
2(m/M)Eg involves small momentum transfer, and
Mer=M| 1+ ——5—|. (3.29
Nai (X) = i €24+ H.c. (4.9

This describes ballistic motion of the heavy particle with an o
effective massM ;. This result is valid onlyat T=0. At  denotes the large momentum contributions. The two corre-

nonzero but small temperatur@s=<(m/M)Eg, one expects sr_)onding terms generated from the intgraction Hamiltonian
a finite mobility. As will be confirmed in Sec. IV, the dc Will be denotedH;y o andHin; 2., respectively.
mobility indeed diverges a§— 0. Consider first computing the scattering rate for the heavy

Notice that the mass renormalization becomes large wheparticle using Fermi’s golden rule, where the perturbing
t decreases, which corresponds to an increase of the interadamiltonian isH;.; o. Since the fermion density at small mo-
tion strength between the heavy particle and the Fermi seaentum transfer is simply\IO:(l/\/;) dy0, the interaction
This trend is consistent with that found by McGuire in an HamiltonianH,; o takes the form of an “electron-phonon”
exact treatment of a particular Hubbard model with 1 spininteraction. It is thus useful to introduce “phonon” creation
down particle moving in a sea ™ —1 spin up particle$®>  and destruction operators, which create and destroy the har-
Unfortunately, a quantitative comparison with McGuire’s re-monic Luttinger liquid excitations. To this end, we expand
sult is not possible, since our parametés phenomenologi- the boson field as
cal, and cannot be readily related to the bare interaction po-
tential between the heavy particle and the Fermi sea. 1 i

The above results suggest a rich temperature dependence 0(x)= ﬁzk: e (4.9
for the mobility for g<1. Between the Fermi temperature
and a crossover temperatulle,~(m/M)Eg, the mobility is  and introduce boson operators:
roughly temperature independent and giver(®y5. Below
T*, the mobility starts increasing with cooling, and diverges b= (1/v2glk|)(|k| 6 +iglly), (4.6)
in the zerp—temperature“ limit. Phys!f:ally, beIoW_‘ the whereIl, denote Fourier modes of the conjugate momen-
heavy particle becomes “transparent” to the fermions. Thetum, T1(X)=d,(x). The operatorsb, satisfy canonical

dynamics of the hegvy particle decouples from Fhe I:ermlBose commutation relations. The Luttinger liquid Hamil-
sea. In the next section, we employ a weak-coupling pertur.

. . fonian can be expressed as
bative approach to calculate the functional formudfT) as ! Xp
T—0. :
HLL=; wblby, 4.7

with dispersionw,=v|k|. Finally, the small momentum in-

IV. WEAK-COUPLING PERTURBATION THEORY teraction takes the form:

Since the heavy particle tends to decouple from the Fermi
sea asl—0, a weak-coupling approach should be appropri- o _Ma UOE (iq/\/w—)cT cu(bg+bl ). (4.8
ate at low temperatures. In this section we use perturbation o™ ol a/FhrgHkdFa T Emgle T

theory in the coupling between particle and Fermi sea, to
extract the temperature dependence of the mobility as The rate to scatter the heavy particle from an initial state
T—0. with momentunk to a final statek’ =k+ q, with absorption

It is convenient to employ a second quantized descriptioror emission of a single phonon, can now be readily obtained
for the heavy particle, denoting @d(x) andc(x) the cre- using Fermi’s golden rule. After summing over all possible
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phonon modes, assuming they are in equilibrium at temperashing as a power rather than exponentially. This leads to a
ture T, the rate is found to be power-law dependence of the mobilji(T) on temperature,
as we now demonstrate.

ch2> The mobility can be obtained by solving a Boltzmann
1ﬂk—*'<+q_2v_|_§ 0g(2Ng+1£1) Sl €r ™ ™ @q)- equation for the momentum distribution functidgp,t) in
(4.9  the presence of an applied electric fi&ld
Here nq=[exp(ﬂwq)—1]‘1 is the Bose distribution func- af(p,t) +Edf(p,t)=1(p,t). (4.14

tion. . Y .

These processes are severely restricted by energy and mfdS Usual, the “collision integral” is expressed In terms of
mentum conservation. For example, for zero initial momen{he scattering rate¢4.13), into and out of the statp:
tum, k=0, the aboves functions vanish unlesg,= wq or
g=2Muvg. But at this momentum, the heavy part_icle has l(p)=>, [k, p— (P, O] (4.19
energy eqzszF=(4M/m)EF. These processes will thus k

freeze out exponentially fast for temperatures below this enwe seek a solution of the forri(k) = fo(k) G(k), and deter-
ergy scale. If these were the only processes present, the mgine G(k). The collision term can be reexpressed as
bility would diverge exponentially in th&—0 limit. But

other processes will dominate at low temperatures, as we

o dhaotss. P [(P)=2 Tpiqpfo(P+AG(P+a)~G(p)].

Consider next the 2= scattering contribution, (4.16

3 " + ok Due to the Bose factors i.13, the scattering rat€' is a
Hint,2kF_U0f c'()e(X)[grip €T +H.c]. (410  sharply peaked function of the momentum trangfewith
g width g~T/v. At low temperatures it is then legitimate to
Unfortunately, to leading order this interaction does not conexpand botH (p+q) andG(p+q) for smallq. Moreover,
tribute to the low-temperature scattering rate. To see thisn the low-temperature limitA € in (4.13 can be set to zero,
consider the scattering process that transfégsrBomentum  and the scattering rate simplifies:
but zero energy to the heavy particle. Energy and momentum
conservation require,= €, andk—k’=2kg, wherek and Fkﬂk+q—>FqEagwﬁan/z[an/fr 1]. (4.17
k' are the initial and final particle momenta. Together, these _
imply k=—k’=kg, which corresponds to a large particle 1S requires
energy,ekF=(m/M)E,:. At temperatures below this energy c
scale, this process will freeze out. 7~(qu/T)(k/MvF)~ JTIMu2<1, (418
However, higher-order processes that are generated by
H int, 2k will contribute to the low-temperature scattering. where we have used the fact thain/T~1 andk~ \/W In
Specifically, consider the interaction term, this low-temperature regime, the collision integral can be
written as

Heﬁ:XJ‘XCT(X)C(X)lﬂElﬂR‘ﬂ[lﬂLa (4.1 1(p)=Ad,fod,G + 3ATd2G, (4.19

which will be generated bi; z_ at second order. The cou- where we have defined
pling constant iS= Ug/fsz, where the denominatag_ is

— 2r — 5
the energy of the heavy particle in the “intermediate state.” A_% q°I'q=cons& T°, (4.20
This interaction term can be readily bosonized usiBg)
and(2.8), giving and used the fact that,qI’4=0.

With this form for the collision integral, the steady-state
Boltzmann equation reduces to a differential equation for

Heﬁ="fch<x)c(x>[(axe)Z—(ax¢>2]’ 12 6(p):

with \ = N4, Mo
The scattering rate from the procddg; can be computed AdpG—EG= 28p (AdG—2Ed,G). (4.2
using Fermi’s golden rule giving o ] o
We now specialize to the linear response limit, for small
I‘kﬁk+q=ag[w§—(Ae)z]n|wq+AE|,2[n‘wq_AE|,2+ 1], electric fields. To linear order ik, the terms on the right
(4.13 side can be dropped, and the equation readily integrated to
give G(p) =consx eEPA. The momentum distribution func-

quired, T' satisfies a detailed balance condition,
fo(K) 'k p=TFo(P) p_k, Wherefy(k)=consix e Peis the EM

equilibrium momentum distribution function for the heavy f(p):fo(p— ,B_A) (4.22
particle at temperaturd@. Notice that this rate has appre-

ciable weight at small energy and momentum transfer, vanThe linear response mobility readily follows,
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scale, T* ~(m/M)Eg. Above T* the mobility is roughly
independent of temperature and proportional to the conduc-
tanceg of the Luttinger liquid. BelowT* the mobility grows
Since A~T°, we deduce a mobility which diverges as upon cooling, and diverges in the zero-temperature limit as

w~T~ % This result agrees with a strong-coupling anafysis ;,(T)~T 4. At zero temperature, the heavy particle moves
based on the Brownian motion of solitons and calculations opallistically, with a renormalized mass.
the diffusion coefficient in real spacé.

(v) _

r="E =ME ppf(p)ZB—A- (4.23
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