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In this paper we describe how a quantum system consisting of a single extended coordinate ¢ in a
double-well potential ¥(q), which interacts with a dissipative environment, may be systematically
reduced (“truncated”) to an equivalent two-state system interacting with a modified environment.
Although we concentrate on Ohmic dissipation, the method which we present is also applicable to
other types of environmental spectral densities. The truncation scheme is applicable if there exists a
wide separation of energy scales in the problem; we discuss the specific conditions which the system
and environment must satisfy before such a scheme can be implemented. Our method proceeds by
calculating the effects of the high-frequency environmental modes on the bare tunneling matrix ele-
ment for transitions between the two wells. We are left with an equivalent two-state system with a
renormalized tunneling matrix element, interacting with the remaining low-frequency environmental
modes. The renormalized tunneling matrix element is calculated using path-integral techniques in a
semiclassical approximation. Explicit results are given for a quartic double-well potential in the un-

derdamped and overdamped regimes.

I. INTRODUCTION

The topic of quantum-mechanical tunneling in the pres-
ence of a dissipative environment is of current theoretical
and experimental interest.! In particular, the case in
which a quantum-mechanical particle (the “system”) tun-
nels in a double-well potential, while interacting with a
heat bath composed of harmonic oscillators (the “environ-
ment”) is relevant to the discussion of macroscopic quan-
tum coherence (MQC)."? There has been little progress in
treating the dynamics of such a system, even at zero tem-
perature. However, we will show that at sufficiently low
temperatures and for small well asymmetry it is possible
to simplify the problem by restricting the Hilbert space of
the system to the ground and first excited states in the
double well. One may then work with an equivalent two-
level system coupled to a bath of bosons (the spin-boson
Hamiltonian). The dynamics of such a system has recent-
ly been studied by Chakravarty and Leggett® and others*
(for the case of Ohmic dissipation).

It is the purpose of this paper to present a procedure for
reducing the double-well problem to an equivalent two-
state problem. Such a procedure has been studied by Seth-
na’ in the context of tunneling centers in solids. In the
tunneling-center problem the dissipation is furnished
through a coupling of the defect to the long-wavelength
phonons in the solid, and Sethna argues that the spectral
density J(w) of the phonons (to be defined below) at low
frequencies behaves as J(w)xw®. Such behavior makes
the reduction procedure straightforward in principle, al-
though in practice rigorous numerical results are difficult
to obtain. The case of Ohmic dissipation, where J(®) < @
as ®—0, is much more subtle from even a conceptual
point of view, due to the infrared divergences which
plague the theory. For these reasons we believe that a
careful discussion of the reduction procedure for Ohmic
dissipation is needed. The general “philosophy” of such a
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procedure is discussed further in Ref. 6.’

In Sec. II of this paper we will outline our procedure
and examine when we expect such a truncation approxi-
mation to be valid. Section III will discuss a method for
calculating the parameters which appear in the two-state
Hamiltonian in terms of the physically accessible double-
well parameters. Finally, in Sec. IV we use the results of
Sec. III to obtain explicit results in the limits of large and
small damping.

II. THE REDUCTION SCHEME

We consider a double-well potential for the system
coordinate g, which is coupled linearly to a bath of har-
monic oscillators with coordinates x,. The Hamiltonian
is given by
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with V"(q=tq0/2)=Mw(2, (see Fig. 1.8 The spectral

density is defined by
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J(,(w)sg— S ——8w—wg) , @)

myw,

where Jo(w)=nw for Ohmic dissipation.’

In the absence of the dissipative coupling (7=0) the en-
ergy levels are shown schematically in Fig. 1. The bare
tunneling splitting A, may be calculated in the limit
Vo >>fiwg using standard WKB techniques which give

A0~C&)0€Xp( —AVo/hwo) ’

where A and C are constants which depend upon the
shape of the potential. We consider only the limit
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FIG. 1. Double-well potential V' (g) with a bare (undamped)
tunnel splitting A, between the ground and first excited state.

Vo >>fiwg so that Ay << wy.

First, consider coupling the system coordinate to only
high-frequency oscillators with frequencies o > ., with
. chosen to satisfy w, >>Ap. One expects that these os-
cillators will be able to follow the coordinate g during the
tunneling process and will thus have the effect of adiabat-
ically renormalizing the bare tunneling splitting A,. A
crude calculation (see Leggett? for details) gives

2
90 f“’b J(w)
— —d

A=Ajexp iy >—do |, (3)

(o2 @

where the term in large parentheses is often referred to as
the Franck-Condon factor and w, is the classical oscilla-
tion frequency in a single well, which for Ohmic dissipa-
tion is given by

wp=wy, N—0,
wy=Mat/1, N1— o .

For Jy(w) ~o® (w—0) with s> 1 the integral in (3) is well
behaved; we may take w.—0 and absorb all of the oscilla-
tors into an effective splitting. However, for Jy(w)=n0,
we see that the integral is logarithmically divergent when
®.—0. Thus for Ohmic dissipation the oscillators with
®>w, must be treated separately from the oscillators
with v < w,.

We will implement our reduction procedure in two
stages. First, we couple the system to only high-frequency
oscillators with w>w.. The cutoff frequency w, is
chosen such that the resulting energy spectrum of the sys-
tem coupled to the high-frequency oscillators consists of
two discrete low-lying states, with a renormalized level
splitting A=A(7,w,), which are well separated in energy
from the continuum of excited states. Since the continu-
um of excited states have energies >#iw, we require that
Alw,) <<w.. Now if we only consider temperatures T
such that KpT <<#iw,, the excited states will not be ap-
preciably populated and can be ignored. In addition, if we
were to consider a biased double well with bias energy €
between the well minima we must require that € <<fiw,.
The second stage of the reduction scheme consists of cou-
pling the remaining low-frequency oscillators with o <,
to the modified system. These oscillators will mediate
transitions between the two low-lying states, and will also

couple the low-lying states to the continuum of excited
states. However, the latter coupling can be shown to be of
order w,/w;.6 Thus, if the parameters are such that w,
can be chosen to simultaneously satisfy A(w,) <<, and
6T <<w. <<wy, we may ignore the continuum of states
and replace the double-well Hamiltonian (1) by an effec-
tive two-state Hamiltonian with tunneling splitting
A(7,w,), coupled to the low-frequency oscillators. In the
usual spin representation the Hamiltonian takes the form
il

H=— — Oxt %6} + 3 F(PL/my+mawixl)
a

+ %qO&z 2 Caxa ’ 4)
a

where the &;’s are Pauli spin matrices and the sum over
the oscillators now includes only those with frequencies
less than w,.

If our procedure is correct then the unphysical cutoff
frequency ., must cancel in our subsequent calculations
of physical quantities using (4). We now demonstrate that
that is indeed the case. First, we define a dimensionless
damping parameter a=17g3/2m#% and a dimensionless
“barrier height” v=Muwjg3/#iw, where v>>1 in the
WKB limit discussed in this work. We will show in Sec.
III that to lowest order in w./w;, and Alw,)/w,, A takes
the form (for Ohmic dissipation)

Ao, /wg,a,v)=g (a,v)(@, /wg)*Ay(v) . (5)

The precise functional form of g(a,v) depends on the
shape of the potential barrier. To demonstrate explicitly
the cancellation of ., we consider the following quanti-
ties which were calculated using (4):>*

A2 (20T 17 cosh(Bes2) . 2
'= 20, | 7ia, T2a) |T(a+iBe/2m) | %,

(©)
A, =A(A /0, )/ 1= )

Here I is the relaxation rate from the upper well to the
lower well (for a > 1, or for T,e >>Ar with a <1) and A,
is a fully renormalized tunnel splitting (for a < 1) which
describes the typical frequency of coherent oscillations be-
tween the wells, which is expected to occur for a< 7.
Since A and w, enter in (6) and (7) only in the combina-
tion A(w.)/w?, it is clear that upon insertion of (5) w,
cancels out of the resulting expression. It is important to
emphasize that this cancellation occurs only to leading or-
der in €/w., T /0., and @, /w,. This demonstrates expli-
citly that the reduction procedure is not valid beyond
leading order in these small quantities, as anticipated.

III. CALCULATION OF A

In this section we will outline the calculation which
leads to Eq. (5), one of our central results. For e=0 and
1=0, Ag may be calculated in a straightforward manner
using instanton techniques.!® The partition function for
the system is written in terms of a path integral over the
variable g. In the limit that the temperature T—0, this
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partition function will yield the tunnel splitting. To
evaluate the path integral, one considers instanton paths
for which the system moves from —gy/2 to g¢/2 in the
inverted potential — ¥(q). Summing contributions from
paths with an arbitrary number of noninteracting instan-
tons gives the result Ag=4A (v)exp{—S[q,]/%}, where
S[qq] is the Euclidean action evaluated for a single in-
stanton and A (v) is a prefactor which is obtained by con-
sidering Gaussian fluctuations about the classical path
and proper normalization of the “zero mode.”

Our technique is a generalization of the above to the
case where the system coordinate is coupled to the high-
frequency oscillators. We closely follow the work of Cal-
deira and Leggett,! to which we refer the reader for de-
tails. Although this calculation is performed for e=0, it
can be shown® that €40 only contributes corrections of
relative order €/w, to the €=0 result. Thus, our results
are also applicable to the biased double-well potential as
long as we only consider € <<w,.. The oscillators are di-
vided into high and low frequencies by writing
Jolw)=J(0)+J'(w), where J(w) [J'(®)] corresponds to
the low- (high-) frequency oscillators. This is accom-
plished via the cutoff function f(w;w,), such that f—0

for o>w, and f—1 for w—0 [for instance,
floso.)=e “"“¢]. Then
J(o)=nof(w;w,) , (8a)
J'(@)=no[l—-f(o;0.)] . (8b)

The reduced equilibrium density matrix for the system
(after the high-frequency oscillators have been integrated
out) is given by

K (g1,45:8)=Ko(B) f 0= Y Dg(r) exp{ —S'arlq (D1 /A1) ,

(9a)
where
Bh .
Swlgl= [, dr{zMi*+V(q)
+1 [ dratr—mlg(n—q())})
(9b)
with
' ’ 1 * ’ —_— | T—
a(r—r)=>— [ doJ(@e=!"71 . (90)

Within the ‘“dilute-instanton” approximation, the level
splitting is given by®!°

Ala,w, /wg,v)=A (a,0. /ogV) exp{ —Su[ga]/%}  (10a)
with
~ 172
detD
A=2B 2R | 0 | (10b)
det'Dl
50q(7)= —d—2+w(2) q(7)
dr?
2 ® ’ J ’ ’
+H f_wa(“r—f)[q(f)—q(r)]d‘r , (10c)
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Dyg(n)= |- dT2 +-—V”(qc1) (1)
2 * 4 4 ’ ’
Y f_wa(T-‘r)[q(r)~q(r )ldr,  (10d)
B=[" drg}. (10e)

Here g4(7) is the solution of 8S.;/8¢=0 (with B= ),
satisfying the boundary condition g(* 0 )=*¢qy/2, and
the prime on the determinant in (10b) denotes the omis-
sion of the zero eigenvalue.

We emphasize that the dilute-instanton approximation
is valid only when the typical instanton separation is
much greater than the characteristic time of the
instanton-instanton interaction. The interaction would be
long ranged in the absence of the lower cutoff w,., but
fl(w;w.) cuts off the interaction at times of order w; .
The typical instanton separation is A~!, so the dilute in-
stanton approximation requires that A(w.)<<w.. For
a> 1, we see from Eq. (5) that this condition will always
be fulfilled provided that w./wy is taken sufficiently
small. For a <1, we must have Ay/w, << (wg/w,)%.

Let us now focus on the general structure of the action
(9b). Putting g (7)=goz(7)/2 into the second term of (9b)
and changing variables, x = o, gives

ASilgal/im s [ do T3 (11a)
where
Glo=+ f_:dx f_:dx e~ 1x—x|
X[z(x/w)—z(x'/2)]*.  (11b)

Due to the boundary conditions, z(+ w)=*1, G(w)~1
for w <<wy. Since the integrals in (11b) will be cut off at
high frequencies by the finite instanton width, G (w)—0
for w>>w, [generally, we have G(w)~(w,/w)* for
o >>wp]. At low frequencies, J'(w) cuts off the integral
(11a) at w,.

We thus see that our result (11a) and (11b) reproduces
our naive expectation (3), that [using (10) and (11)]

q(z) @p J()(w)
2mh Yo, (,)2

A~Agexp |— @

For Ohmic dissipation, Jy(w)=nw, and A ~Ay(w./wy)%.
We see that the upper cutoff on the integral emerges
naturally as a consequence of the finite instanton width.
The above result gives the leading behavior of AS . /7 for
w./wp—0. In addition, we will have some function
f’(a,v) which depends upon the potential and the way in
which the high- and low-frequency oscillators are separat-
ed. Since we have extracted the singular contribution in
. /wp—0, we expect, in general, that

ASys /A= —aln(w, /op)+f(a,0) + 0w, /ap) . (12)

We will drop the terms of order o, /w, from now on, in
accordance with the limit o, <<wp. The frequency w, is
equal to wq times some function of a and v, which we ab-
sorb into f'(a,v), writing
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AS /B~ —aln(w, /wg)+f'(a,v) .

There will also be a contribution to S¢[g. ] from the ki-
netic and potential energy terms, which is finite in the
limit @, /wp —0. These results may be combined to give

Settlgal _ So

P P +aln

+fla,v)+0 (0. /wp) ,

@
c

(13)

where S, is the action for a single instanton in the un-
damped (a=0) case. It is straightforward to show that
the prefactor in (10a) can be written

Ala,v,0./0y)=A4(a,v)+0 (o, /o) .

Using Ag=A4(a=0,v)e ~So# (the bare tunnel splitting)

and collecting the results (10a) and (13) gives us the
desired result (5) for the renormalized level splitting, with
the function g (a,v) given by

Ala,v)

—fla,v)
Ala=0,)°¢ : (14)

gla,v)=

IV. CALCULATION OF f(a,v)

In this section we will provide explicit results for the
function f(a,v) for a—0 and a— «. Let us first consid-
er a—0, specializing to the quartic double-well potential

M w(z,q(z) 2 2
32

-9

Vig)=
(g) )

(15)

Define the following dimensionless variables:
A=ow. /0y z=q(1)/(qy/2),
u=wor, ofz]=Se(q]/(Mawwgs/8) .

The dimensionless action from (9b) is then

2
olzl= [ gz 1| gy

du du

a ® ® , 1420 |u—u'|
+— d d
v f‘“’ uf—‘” “ —u Y (1+A|u—u'|)

X[z(u)—z(u")]?, (16)

[~

where we have taken f(w:w,)=e 7@ The correspond-

ing equation of motion, 8S/8¢=0, is

2
2 4% 21y
du

4da > 142A |u —u'|
+— d
v f—m u (

u—u)1+A|u—u'|)

X[z(u)—z(u")]=0, (17

which is subject to the boundary conditions z(u
=t ow)==1. If a is small, we may expand the instanton
solution
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zc,(u)=zo(u)+%zl(u)+"' ,

with zg(u)=tanh(u /2). Substituting this back into the
action (16), we obtain, to lowest order in a,

0[ zcl]

_ a [« © o, 14+2A |u—u’|
=05+ ” f_wdu f_wdu (

u—u ) (1+A|u—u'|?)

X [zo(u)—2zo(u")]?* . (18)

Note that z; does not contribute to O (a), since oy is an
extremum. The double integral in (18) may be evaluated
asymptotically as A—0. Putting the dimensions back in,
we find

Sutlgal/B=So/fi—alnle, /0y +f(a) ,
with
fla)=[2+y—In(2m)]a+0(a?)=0.2392a+ 0 (a?) ,
(19)

where y=0.5772. .. is Euler’s constant. We have not ob-
tained any explicit results for the prefactor in (14), but for
a—0 we expect

A(a,v)/A(a=0,v)=14+0(a/v) .

Since we are working in the WKB limit, v
= Mw}q? /#fiwy>>1, the contribution to A due to the pre-
factor may be ignored when compared to the exponential
factor exp[ — f(a)]. Combining (19) and (14) and (5), we
obtain the exact result for the quartic double-well poten-
tial (in the WKB limit) to leading order in a—0:

A, /w0,a,0) =(w, /©y)% ~O2A(v) .

In the @— « limit we may use a variational calculation
to determine f(a,v). In the overdamped regime the
relevant single-well frequency is w, =M. co(z)/n, so that our
small parameter is ./w,=w.n1/Mo}; ie., Aa/v—O0.
For simplicity we chose as our variational function
z,(u)=tanh(u /2a) where a is a variational parameter
which controls the width of the instanton. By substitut-
ing z,(u) into (16) and minimizing o[z,] with respect to
a, we find

Setflgal/fi= —aln(w, /wo) —alna+a lnv
—ca+0(In(a/v)), (20)
so that
fla,v)~ —alna+alnw —ca .

The constant c¢ is given by ¢ =1n(241r)~%——-y= 1.24. . ..
This result is an upper bound on the actual action. Note
that the alna and alnv terms in f(a,v) are independent
of the actual shape of the double-well potential and the
form of the cutoff. These terms arise because the instan-
ton width in the a— o limit is proportional to
wp ' ~(a/v)wg! rather than wg !, and it is this width
which provides the high-frequency cutoff as described in
Sec. II. In analogy with the cubic potential,! we expect
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that in the large-a limit the prefactor in (14) will behave
as

Al(a,v)/A(a=0,v)~(a/v)",

where v is a constant greater than zero. In the a— oo
limit this is small compared to the O(a) term in the ex-
ponent.

In conclusion, we have presented a systematic frame-
work for reducing a double-well problem to an equivalent
two-level problem, for the important case of Ohmic dissi-
pation. We have also pointed out the range of parameters
for which such a truncation approximation is possible.
Explicit results have been obtained for the quartic double
well in the underdamped and overdamped regimes. While

we have developed this technique with particular applica-
tions to superconducting quantum interference devices in
mind, it may also prove useful in studies of tunneling phe-
nomena in solids.
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