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We study the effect of an ac drive on the current-voltage (I -V) characteristics of a tunnel junction between
two fractional quantum Hall fluids at fillingn21 an odd integer. Within the chiral Luttinger-liquid model of
edge states, the point-contact dynamics is described by a driven damped quantum mechanical pendulum. In a
semiclassical limit which ignores electron tunneling, this model exhibits mode locking, which corresponds to
current plateaus in theI -V curve at integer multiples ofI5ev/2p, with v the ac drive angular frequency. By
analyzing the full quantum model at nonzeron using perturbative and exact methods, we study the effect of
quantum fluctuation on the mode-locked plateaus. Forn51, quantum fluctuations smear completely the pla-
teaus, leaving no trace of the ac drive. Forn> 1

2 smeared plateaus remain in theI -V curve, but are not centered
at the currentsI5nev/2p. Forn,

1
2 rounded plateaus centered around the quantized current values are found.

The possibility of using mode locking in fractional quantum-Hall-effect point contacts as a current-to-
frequency standard is discussed.@S0163-1829~96!06040-7#

I. INTRODUCTION

Conductance through a tunnel junction is proportional to
the electron density of states in two electrodes. For metallic
electrodes, which have a nonzero density of states at the
Fermi energy, the tunnel junction current-voltage (I -V) char-
acteristics are Ohmic at low bias. In marked contrast, recent
theories1,2 have predicted strongly non-Ohmic behavior for
tunneling through a point contact separating two fractional
quantum-Hall-effect~FQHE! fluids. Specifically, for the fill-
ing factorn51/m, with odd integerm, the tunnel current at
zero temperature is predicted to vary with voltage as
I;V2/n21. At finite temperatures, Ohmic behavior is recov-
ered at small voltages, with a zero-bias differential conduc-
tance varying asdI/dV;T2/n22. A temperature dependence
consistent with this has been seen in a recent experiment by
Milliken, Webb, and Umbach3 for the tunneling conductance
between two FQHE fluids at fillingn5 1

3.
The non-Ohmic tunneling conductance is due to the

strange properties of the edge states in the FQHE. FQHE
edge states are a beautiful realization of one-dimensional
Luttinger liquids.1 In contrast to metallic electrodes, the tun-
neling density of states in a Luttinger liquidvanishesat the
Fermi energy, which leads to the vanishing tunnel conduc-
tance between two FQHE fluids. Thus, in contrast to conven-
tional metallic tunnel junctions, a FQHE tunnel junction is
an insulator.

An insulatingpoint-contact junction is, in many respects,
the dual of a superconducting point contact—namely, a Jo-
sephson junction. In a Josephson junction theI -V curve is
also strongly non-Ohmic, with voltage vanishing rapidly for
currents below the critical currentI J . Moreover, the zero-
bias resistance is expected to vanish exponentially asT→,
dV/dI;exp(2EJ /kBT), with energy barrierEJ5fI J . Under
exchange of current with voltage, the behavior is similar to
the vanishing conductance in the FQHE point contact. In a

Josephson junction, the phase difference between the super-
conducting electrodes is behaving classically, whereas in the
FQHE junction the classical variable is the transferred elec-
tron charge.

One of the most striking manifestations of the ac Joseph-
son effect is the presence of quantized voltage steps~Shapiro
steps! in an applied microwave field4. The applied radiation
at angular frequencyv mode locks to the discrete phase slip
events leading to plateaus at voltagesV5n(\/2e)v, for in-
tegern. In the plateaus, the voltage is so accurately quan-
tized that Shapiro steps serve as a voltage-to-frequency stan-
dard.

The duality between Josephson junctions and FQHE junc-
tions, suggests that the latter might also exhibit interesting
behavior in the presence of an applied ac field. In this paper,
we study in detail the effect of an ac drive on a FQHE tunnel
junction, focusing on the structure induced in theI -V char-
acteristics. One anticipates the possibility of mode locking
between the ac drive and the electron-tunneling events. This
could lead to steps in the junctioncurrent, quantized at inte-
ger multiples ofI5ev/2p—the analog of Shapiro steps.

Quantized current plateaus for metallic tunnel junctions
were proposed several years back.5 Due to Coulomb block-
ade effects, it was argued that normal metal tunnel junctions
with sufficiently high resistances would exhibit the phenom-
ena of Bloch oscillations—an oscillatory voltage in the pres-
ence of a dc current—the dual of the ac Josephson effect.
Moreover, it was suggested that an applied ac drive would
mode lock to these oscillations, resulting in current plateaus.
A more favorable geometry for current plateaus, consists of
multiple-tunnel junctions in series, which can be separately
tweaked by an ac drive, thereby transferring the electrons
one-by-one through the circuit. Such an electron ‘‘turnstile’’
was realized experimentally, by a number of groups, both
in metallic systems6–8 and in semiconductor hetero-
structures.9–11Due to the multiple-junction geometry the tun-
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stiles only work well at rather low frequencies, below tens of
MHz. At higher frequencies the electrons take too long to
pass across the junctions, and do not ‘‘keep up’’ with the ac
drive.

In a Josephson junction, Shapiro steps are very robust,
and do not need complicated multiple-junction geometries.
Moreover, Shapiro steps are observed up to frequencies com-
parable to the superconducting gap. The reason for this is
that the junction phase difference is a classical field, so that
phase-slip processes are classical events which readily lock
to an ac drive. In ‘‘insulating’’ FQHE point contacts the
electron charge is a good quantum number, which suggests
that mode locking might also be possible in a single-junction
configuration. However, quantum fluctuations in the electron
charge transfer are expected to be more important than quan-
tum phase-slip processes in the Josephson junction, as re-
flected in the power-law voltage and temperature depen-
dences in theI -V curves of the FQHE junction.~Because the
phase of the superconducting wave function exhibits true
long-ranged order, low-frequency quantum phase slips are
expected to be completely absent.! This paper is devoted to
studying the effect of such quantum fluctuations in washing
out mode-locked steps.

The organization and central results of the paper are as
follows. In Sec. II we introduce the edge-state model for a
FQHE tunnel junction at fillingn51/m, in the presence of
both a dc source-to-drain voltageVsdand an ac drive voltage,
Vac sinvt. While the model is only appropriate for FQHE
edges whenn21 is an odd integer, it is well defined for
generaln.

In Sec. III we consider a semiclassical limit, which ig-
nores quantum tunneling of the electron. In this limit, the
model reduces to the classical dynamics of a periodically
driven overdamped pendulum, with the phase of the pendu-
lum representing the charge transferred across the junction.
This classical model is equivalent to the resistively-shunted
junction ~RSJ! model of Josephson-junction dynamics.12–14

Not surprisingly, robust mode-locked current plateaus are
found in this semiclassical limit.

In Sec. IV we study the full quantum model, and derive
exact solutions for theI -V curves at two special values
n51 and 1

2. At n51, appropriate for the integer quantum
Hall effect, quantum fluctuations are so strong thatall of the
mode-locked structure in theI -V curves is completely wiped
out. Forn5 1

2, the solution reveals the remaining structure,
but the smeared current plateaus arenot centered at integer
multiples of I5ev/2p.

In Sec. V we compute theI -V curves in a perturbative
approach, which leads us to conjecture the following general
form for the I -V curves at arbitraryn:

I ~Vsd,Vac!5(
n

ucnu2 I dc~nVsd1nv!. ~1.1!

Here I dc(V)[I (V,0) is the tunnel current in the absence of
the ac drive, and ucnu25uJn(nVac/v)u2, with Jn(X)
nth-order Bessel functions. These coefficients satisfy the
sum rule(nucnu251. This form has a simple physical inter-
pretation: Chargen quasiparticles absorbn quanta from the
ac field with probabilityucnu2, and are transmitted through
the point contact with total energynVsd1nv.

Equation ~1.1!, which is also consistent with our exact
solutions, gives a simple explanation as to why all plateaus
are wiped out atn51. Forn51 the edge states are describ-
able in terms of noninteracting electrons~Fermi liquid!. Un-
der the assumption of an energy independent transmission
probability through the junction, the dcI -V curves are linear
~Ohmic!. Since the transmission is independent of energy,
the ac drive hasno effect on theI -V curves, which remain
completely linear.

For n,1 the dcI -V curves are non-linear, and plateau-
like features show up with an ac drive. Recently, Fendley,
Ludwig, and Saleur15 obtained exact solutions for the dcI -
V curve at arbitrary integern21. These curves, together with
conjecture~1.1!, enable us to constructI -V curves with ac
drive present for the experimentally relevant cases ofn5 1

3

and 1
5. For these cases, in the limit of weak pinchoff at the

point contact, theI -V curves exhibit smeared current pla-
teaus centered at integer multiples ofI5ev/2p. Section VI
is devoted to a discussion of the experimental consequences.

II. MODEL FOR POINT CONTACT WITH ac DRIVE

Consider a FQHE state at fillingn21 an odd integer. For
this class of Hall fluids only a single-edge mode is expected.1

For the IQHE atn51, a free-fermion description of the edge
mode is possible,16 but more generally the edge mode is
expected to be a~chiral! Luttinger liquid, describable in
terms of a bosonic field.

Let rR andrL denote the electron densities in the right-
and left-moving edge modes, on the top and bottom of the
sample, as shown schematically in Fig. 1. These densities are
written as gradients of bosonic fields,

rR/L56
1

2p
]xfR/L , ~2.1!

which satisfy the Kac-Moody commutation relations1

@fR/L~x!,]xfR/L~x8!#57 i2pnd~x2x8!. ~2.2!

Here x is a one-dimensional position coordinate, running
along the edge. The appropriate Hamiltonian density describ-
ing the propagation of edge modes is16,2

H05
vF
4pn

@~]xfR!21~]xfL!2#. ~2.3!

HerevF is the velocity of edge propagation.

FIG. 1. Schematic representation of a point contact in a FQHE
fluid. The lines with arrows represent edge states which can scatter
at the point contact. The voltage drop between source and drain is
denotedVsd.
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At the point contact, the right- and left-moving edge
modes are brought into close proximity, and tunneling be-
tween them becomes possible. In the limit of weak tunneling,
the dominant backscattering process at low temperatures is
of fractionally charged (Q5en) Laughlin quasiparticles.17

The appropriate tunneling term is

H15vd~x!@ei ~fR2fL!1H.c.#, ~2.4!

wherev is the local tunneling amplitude, at the point contact,
x50.

In the presence of an applied source-to-drain voltage, the
incoming edge modes will be at different chemical poten-
tials. Interedge tunneling processes will thus change the en-
ergy. Denoting the applied voltage asV(t), the energy
change can be written

HV5~rR2rL! 12V~ t !. ~2.5!

In addition to a dc source-to-drain voltageVsd, we will con-
sider an applied ac field, arising from electromagnetic radia-
tion illuminating the point contact. The total voltage drop
between edges is written

V~ t !5Vsd1Vacsinvt. ~2.6!

For later convenience it will be useful to introduce a gauge
field A(t), defined viaV(t)5] tA(t). A useful identity is

einA~ t !5einVsdt (
n52`

`

cne
2 invt, ~2.7!

wherecn5(2 i )nJn(nVac/v), with Jn(X) Bessel functions.
The full Hamiltonian density isH5H01H11HV .

In the absence of backscattering at the point contact, the
total source-to-drain currentI5vF(rR2rL), upon averaging
over time, is appropriately quantized̂I &5nVsd/2p. Back-
scattering will reduce this current to

^I &5
1

2p
nVsd2^I B&, ~2.8!

where I B is the backscattering current operator. An expres-
sion for I B follows upon functional differentiation,

I B[2
dH

dA
5] t

1

2E dx~rR2rL!. ~2.9!

For later convenience it will be useful to define additional
boson fields which propagate in the same direction,

f1~x![fR~x!, f2~x![fL~2x!. ~2.10!

The commutators become

@f i~x!,]xf j~x8!#52 id i j2pnd~x2x8!. ~2.11!

The Hamiltonian density has the same form as before,

H5
vF
4pn

~]xf i !
21vd~x!@ei ~f12f2!1H.c.#

1~r12r2!
1
2V~ t !, ~2.12!

provided the densities are defined as,r i5]xf i /2p. Upon
using the continuity equations] tr i1vF]xr i50, valid away
from the point contact atx50, the backscattering current
operator can be reexpressed as

I B52~vF/2!E dx]x~r12r2!5~vF/2!~r12r2!ux502
x501

.

~2.13!

Here we have used the fact that the only backscattering is at
the originx50.

It is worth emphasizing that the above model is only ap-
propriate for a FQHE point contact at filling factorn21 an
odd integer. For FQHE states at other filling factors, multiple
edge modes are expected. Nevertheless, it will prove useful
below to study the above model for arbitraryn.

The current voltage characteristics of the point contact
follow upon computing the backscattering current~2.13!. Be-
fore attempting this, we consider briefly a semiclassical limit
of the model which describes an overdamped driven classical
pendulum. Under exchange of current with voltage, this is
identical to the standard RSJ model of Josephson-junction
dynamics.12–14 This classical model has been studied inten-
sively, both because of its relevance to Josephson junctions
and as a simple example of a classical dynamical system
which exhibits mode locking and a devil’s staircase.19

III. SEMICLASSICAL LIMIT

To take the semiclassical limit we first review the equiva-
lence between the quantum Hall point contact and the
Caldeira-Leggett model20 for the quantum mechanics of a
damped pendulum. To this end, it is first useful to perform a
gauge transformation to eliminateHV in Eq. ~2.5!. Since the
equations of motion forxÞ0 take the form

~] t6vF]x!fR/L56
n

2
V~ t !, ~3.1!

this can be achieved via the transformation

fR/L→fR/L6
n

2
A~ t !. ~3.2!

After the gauge transformation, the full Hamiltonian reads

H5
vF
4pn

@~]xfR!21~]xfL!2#1vd~x!cos~fR2fL1nA!.

~3.3!

Since the interaction term only depends on the difference,
fR2fL , it is useful to define additional fields

w5fR1fL , u5fR2fL . ~3.4!

Since the transformed Hamiltonian is quadratic inw, it can
be integrated out, giving, for the Euclidean Lagrangian,

LE5
1

8pn
~]mu!21vd~x!cos~u1nA!. ~3.5!

Here we have setvF51 in the first term. Finally, upon inte-
grating outu(x) for xÞ0, we arrive at an effective Euclid-
ean action in terms ofu(x50,t):
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SE5
1

4pnE dv

2p
uvuuu~v!u21E dt v cos~u1nA!.

~3.6!

This action can be recognized as a Caldeira-Leggett model of
a damped driven quantum pendulum.20 It should be empha-
sized that the Ohmic damping that characterizes the
Caldeira-Leggett model can be traced to the one-dimensional
~1D! Luttinger-liquid behavior of the edge modes. Although
this model has been used to describe quantum dynamics in
Josephson junctions, it is unclear that it describes the appro-
priate low-frequency dynamics. In particular, the phase of
the Cooper pair field has long-ranged order in the bulk su-
perconducting electrodes, in contrast to the power-law corre-
lations described by the 1D edge modes in Eqs.~2.3!.

Since we are interested in the nonequilibrium current-
voltage characteristics, we need a real-time formulation, such
as Keldysh.21 In the Keldysh approach a generating func-
tional is introduced as a path-integral sum over two paths
propagating forward and backward in time,u6(t):

Z5E D@u1#D@u2# e2S~u6!. ~3.7!

In terms of additional fields,

u~ t !5 1
2 @u1~ t !1u2~ t !#, ũ~ t !5u1~ t !2u2~ t ! ~3.8!

the appropriate real-time action isS5S01S1, with

S05
1

2E dvaR~v!uũ~v!u22
i

2pnE dt u̇ ũ, ~3.9!

S15(
6

E dt~6 iv !cos~u7 1
2 ũ1nA!. ~3.10!

Here we have definedaR(v)5(v/2pn)coth(12bv). The
above gives a general quantum-mechanical formulation of
the model. To complete the description we must identify the
source-to-drain current operator. From Eq.~3.4! we see that
u(x50)52p*2`

0 r totdx, where r tot5rR1rL . Thus
u(x50)/2p can be identified as the total charge to the left of
the point contact. The source-to-drain current through the
point contact is thus simply

I5] tu~x50,t !/2p. ~3.11!

An instanton inu(t) of magnitude 2p corresponds to the
transfer of one electron through the point contact. In the
classical limit these charge-transfer processes occur over the
barrier, rather than by quantum-mechanical tunneling. In the
Keldysh formulation, quantum tunneling processes corre-
spond to instantons inũ(t)—in which only the forward path
tunnels, say. Thus the semiclassical limit can be obtained by
forbidding such processes. This can be implemented by ex-
panding the cosines in Eq.~3.10! for small ũ, and retaining
only the leading term

S15 ivE dt ũ sin~u1nA!1O~ ũ3!. ~3.12!

This expansion destroys the periodicity inũ. The full action
can now be written

S5 1
2 E dv aR~v!uũ~v!u22 i E dt

3 ũF 1

2pn
u̇2v sin~u1nA!G , ~3.13!

which can be recognized as the Martin-Siggia-Rose action
for a classical stochastic differential equation.22 Upon intro-
ducing a stochastic noise termj(t), the action can be reex-
pressed as

S5 1
2 E dv

1

aR~v!
uj~v!u2

2 i E dt ũ F 1

2pn
u̇2v sin~u1nA!2j~ t !G .

~3.14!

The integration overũ then gives ad function, enforcing the
classical equation of motion

1

2pn
u̇5v sin~u1nA!1j~ t ! ~3.15!

with stochastic noise

^uj~v!u2&5
v

2pn
coth~ 1

2bv!. ~3.16!

A final gauge transformationu→u2nA brings the equation
into the familiar form,

1

2p
u̇5nv sin~u!1

n

2p
V~ t !1nj~ t !. ~3.17!

Under exchange of current and voltage, Eq.~3.17! be-
comes equivalent to the equation which describes Josephson
junctions,12–14 except for the colored stochastic noise term
which is non-vanishing even at zero temperature. However,
if we take the semiclassical limitn→0, with nv andnV(t)
held fixed, the noise term drops out. In this classical limit,
the FQHE point contact is exactly dual to a Josephson junc-
tion, and should exhibit similar mode locking under ex-
change of current and voltage. Solutions of Eq.~3.17! in the
noiseless limit are well known.23–25For a Josephson junction
they give mode-locked voltage plateaus at integer multiples
of V5(\/2e)v. Physically, there is a mode locking between
the discrete phase slip events and the ac drive. For the FQHE
point contact, the mode-locked plateaus are in the current, at
integer multiples ofI5e2pv. The discrete process is an
electron tunneling through the point contact.

After rescaling the time in Eq.~3.17! via t→vt, it is clear
that the I -V curves are characterized by two independent
dimensionless parameter 2pnv/v andnVac/v. Representa-
tive current-voltage characteristics computed numerically
from ~3.17! in the noiseless limit are shown in Fig. 2. As
expected, theI -V curves exhibit plateaus in the current
which are ‘‘flat’’ and quantized at integer multiples of
I5ev/2p. Subharmonic plateaus are absent for model
~3.17!, but would be present if the periodic function sin(u)
included higher harmonic content.26

With inclusion of stochastic noise, one anticipates that
these plateaus will be rounded slightly, as shown in theI -V
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curves in Fig. 3, obtained by numerically integrating Eq.
~3.17! with colored noise. When the noise is weak, the
rounding is most visible at the edges of the plateaus. For
large enough noise the plateaus become completely smeared
out. The effects of colored noise are qualitatively similar to
stochastic white noise, which has been studied extensively in
the past.

It is worth commenting here on the validity of the semi-
classical approximation to the full quantum dynamics. As
evident from Eq.~3.12!, the semiclassical approximation in-
volves discarding all electron-tunneling events, in whichũ
changes by 2p. One can argue from the quadratic action
~3.9! that the typical variance ofũ is proportional ton, even

whenv50: ũ2;n ln(vc /T), with cutoff frequencyvc . This
suggests that the semiclassical expansion in Eq.~3.12! might
become exact in then→0 limit. In the absence of an ac drive
this is in fact the case. Recently, Fendley, Ludwig, and
Saleur obtained exactI -V curves, with no ac drive, for arbi-
trary odd integern21. One can analyze theseI -V curves in
the limit n→0, with nv andnV held fixed. In this limit, the
I -V curves become equivalent to those which follow from
the classical equation of motion~3.17!, with white noise re-
placing the stochastic colored noise.

However, with an ac drive present, it is unlikely that the
n→0 limit is equivalent to the semiclassical limit~3.17!.
With ac drive present there are two parallel processes which
allow charge to be transported across the junction. In addi-
tion to electron tunneling ‘‘under the barrier,’’ the electron
can absorb quanta of energy from the ac drive field. Once the
electron energy is high enough, it can pass over the wash-
board barrier. In the classical limit, both of these processes
are modified: Electron tunneling is suppressed completely,
and energy is not absorbed from the ac drive in discrete
quanta. However, in then→0 limit, while the electron tun-
neling is also completely suppressed~sinceI;V2/n21→0 as
n→0), energy is still absorbed in discrete quanta from the ac
drive. Thus, once the ac drive is present, one anticipates that
mode-locking features obtained from the semiclassical limit
~3.17! will not serve as a good guide for the full quantum
model, even for very smalln. This will be confirmed by
more detailed analysis in Sec. V below.

IV. EXACT SOLUTIONS FOR n51, 1
2

In this section we study the full quantum dynamics for
two special values ofn, for which simple exact solutions are
possible. Forn51 the edge mode is equivalent to a free
fermion.16When the ac drive is present, an exact solution for
the I -V curve is possible. Whenn5 1

2 a free-fermion repre-
sentation is also possible.18 Although the theory is not di-
rectly applicable to the FQHE edge states forn5 1

2, the exact
solution is nevertheless illuminating, revealing plateaulike
structure in theI -V curve, in contrast ton51 ~see below!.
Moreover, the general structure of the solutions in these two
soluble cases, leads to a natural conjecture for more general
n, discussed in Sec. VI.

A. n51 solution

For n51 the edge modes have a free-fermion description,
simpler than the general bosonized representation of Sec. II.
Upon defining fermion fields for the two modes,

C5S c1

c2
D 5

1

Aa0
S eif1

eif2
D , ~4.1!

with a0 a short-length-scale cutoff, the full bosonized Hamil-
tonian can be expressed as a quadratic fermion theory

H52C†@ i ]x1
1
2V~ t !sz#C1

v
vc

d~x!C†sxC. ~4.2!

Here, we have put the Fermi velocityvF51, and the cutoff
frequencyvc;1/a0. The backscattered current~2.13! takes
the simple form

FIG. 2. Current voltage characteristic within the semiclassical
approximation, obtained from Eq.~3.17! with no stochastic noise.
Both the current and voltage are plotted in units of the ac drive
frequency. The backscattering amplitude has been chosen to be
2pnv5v/4 and the ac drive amplitude isnVac51.6v. Notice the
current plateaus at integer multiples ofI5ev/2p, indicating a
mode locking to the ac drive.

FIG. 3. An I -V curve in the semiclassical approximation, ob-
tained from Eq.~3.17! with stochastic colored noise. As in Fig. 2,
we choose 2pnv5v/4 andnVmac51.6v. The colored noise has
strengthn50.1 and the cutoff frequency for generating the noise is
vc560v. Notice that the current plateaus are rounded, due to the
presence of the stochastic noise.
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I B5 1
2C†szCux502

x501

. ~4.3!

The equation of motion which follows from the fermion
Hamiltonian is

F] t1]x2
i

2
V~ t !szGC52 i

v
vc

d~x!sxC. ~4.4!

The I -V curve can be obtained by solving this equation, with
appropriate boundary conditions, and extracting the back-
scattered currentI B .

Our solution proceeds in two steps. Away from the point
contact atx50, the equation describes free propagation with
a uniform time-dependent potentialV(t). This can be elimi-
nated by defining a gauge-transformed fermion field, which
is assumed to be incident upon the point contact with a
Fermi-Dirac distribution. Upon transforming back to the
original Fermion field, the Fermi distribution function is
modified, involving a sum over processes involving absorp-
tion and emission of the ac field. We refer to this distribution
as an ‘‘excited Fermi function.’’ At the point contact
(x50), backscattering takes place, which is characterized by
reflection and transmission coefficients~anS matrix! which
are independent of the incident distribution function. The
total backscattered currentI B is an appropriate convolution
of theS matrixwith the ‘‘excited Fermi’’ distribution func-
tion.

Consider first scattering at the point contact. TheSmatrix
relates the incoming fieldC2 to the outgoing fieldC1 via

C15SC2 , ~4.5!

whereC6(t)5C(x506,t). Integrating the equation of mo-
tion ~4.4! through the origin,x50, gives

C1~ t !2C2~ t !52 i
v
vc

sxC~0, t !, ~4.6!

whereC(0, t)5 1
2@C1(t)1C2(t)#.

From this one readily obtains theSmatrix

S115S225
12~v/2vc!

2

11~v/2vc!
2 , ~4.7!

S125S215
2 iv/vc

11~v/2vc!
2 . ~4.8!

The probability for the incoming field to be scattered from
one edge to the other isuS12u2, whereasuS11u2 is the prob-
ability to be transmitted without scattering. Probability con-
servation dictates a unitarySmatrix,S†S51, which is satis-
fied here. Notice that theS matrix is independent of the
energy of the incident carriers, a consequence of the assumed
d-function point scatterer.

Outside the scattering region, the right side of Eq.~4.4!
vanishes. Transforming to another fermion field

C~x,t !5e~ i /2!A~ t !szC̃~x,t !, ~4.9!

with V(t)5] tA(t) as before, then eliminates the time depen-
dence. This field satisfies the simple wave equation
(] t1]x)C̃50, which describes free fermions at zero chemi-

cal potential. This field is assumed to be incident with an
ordinary Fermi distribution function,

^c̃ i~E!†c̃ i~E8!&52pd~E2E8! f ~E!, ~4.10!

wheref (E)5„exp(bE)11…21 andC̃(E) denotes the Fourier
transform ofC̃(x502, t).

The distribution function for the original incident Fermion
C2(t) can now be obtained by relating the transform
C2(E) to C̃(E) using Eq.~4.9! and the expansion~2.7!.
This gives

c1,2
2 ~E!5(

n
cnc̃1,2~E2nv6 1

2Vsd!, ~4.11!

wherecn is defined in Eq.~2.7!. The distribution function
for the original Fermion, ^c j

2†(E)c j
2(E8)&52pd(E

2E8) f j
ex(E), then takes the simple form

f 1,2
ex5(

n
ucnu2f ~E2nv6 1

2Vsd!, ~4.12!

an ‘‘excited Fermi function.’’ Notice that the dc voltage
Vsd simply causes a shift in the energy of the incident elec-
tron. The ac drive shifts the energy bynv, corresponding to
absorption or emission ofn quanta, with probabilityucnu2.

Finally we can obtain the backscattered current from Eq.
~4.3!, which can be reexpressed using Eq.~4.5! solely in
terms of the incident fields asI B52uS12u2C2

† szC2 . After
Fourier transforming to energy, this becomes

^I B&52E
E,E8

e2 i ~E2E8!tuS12u2^C2
† ~E8!szC2~E!&.

~4.13!

In addition to a time-independent piece, the backscattered
current will have oscillatory contributions at multiple fre-
quencies ofv, as is apparent from Eq.~4.13!. We focus only
on the time-independent piece, which is finally given by

^I B& time5
1

2pE dE uS12u2@ f 2
ex~E!2 f 1

ex~E!#. ~4.14!

This result takes a familiar form, involving an energy inte-
gral of the reflection probability, weighted by energy distri-
bution functions. Due to the ac drive, however, these are not
simply Fermi functions, but rather the ‘‘excited Fermi func-
tions’’ given in Eq.~4.12!.

Since the reflection probability is energy independent, the
backscattered current can be seen to be completely indepen-
dent of the ac drive. This follows by inserting the distribution
function ~4.12!, and shifting the energy of integration to
eliminate the drive frequencyv. Since(nucnu251, the back-
scattered current is then exactly equal to the result without
any ac drive present. At zero temperature this gives
^I B& time5(1/2p)uS12u2Vsd, or for the total transmitted cur-
rent @using Eq.~2.8!# upon restoring units

I5
e2

h
uS11u2Vsd. ~4.15!

The I -V curve is linear, with conductance given by the trans-
mission probability, just as without any ac drive. The quan-
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tum fluctuations have completely washed out the current pla-
teaus seen in the semiclassical limit of Sec. III. The absence
of structure in theI -V curve can be traced to the energy-
independent transmission probability. The ac drive changes
the energy of the incident electron, via absorption or emis-
sion of quanta, but since the transmission probability is en-
ergy independent, this has no effect on the net transmitted
current.

It is worth mentioning that the total transmitted current
can be cast into the suggestive form

I ~Vsd,Vac!5(
n

ucnu2I dc~nVsd2nv!, ~4.16!

whereI dc(V)[I (V,0) is the current in the absence of an ac
drive. As we shall now show, this form also holds when
n51/2, even though in that caseI dc(V) shows non-Ohmic
structure. Moreover, as discussed in Sec. V, this form is also
valid perturbatively in the weak backscattering limit, for gen-
eral n.

B. n5 1
2 solution

Now consider model~2.12! with n5 1
2. In this case one

can show using the commutation relations~2.11!, that the
operator exp(f12f2), which enters into the Hamiltonian,
satisfies Fermi statistics. In order to fermionize this operator,
it is convenient to define additional boson fields15,18

f~x,t !5@f1~x,t !2f2~x,t !#, ~4.17!

F~x,t !5@f1~x,t !1f2~x,t !#. ~4.18!

When the Hamiltonian~2.12! is reexpressed in terms of these
fields, the fieldF decouples and can be ignored. The remain-
ing Hamiltonian becomes

H5
vF
4p

~]xf!21vd~x!@eif1H.c.#1 1
2V~ t !~]xf!,

~4.19!

where we have setn5 1
2.

Sinceeif has Fermi statistics, we can fermionize the re-
maining boson field, viaC5(1/Aa0)eif, with lattice cutoff
a0. The first term describes a free chiral fermion, and the
third term is also quadratic inC; however, the tunneling
term is linear in C. To convert this term into a quadratic
form, we introduce a local fermion fielda as

C~x!5~a1a†!c~x!, ~4.20!

where botha andc(x) satisfy fermion anticommutation re-
lations. The full Hamiltonian then becomes

H5c†
„i ]x1

1
2V~ t !…c1

v

Avc

d~x!@c†~a1a†!1H.c.#.

~4.21!

Here we have setvF51, and the cutoff frequency
vc;1/a0. To complete the fermionization, we reexpress the
backscattering current from Eq.~2.13! in terms of the ferm-
ion fields

I B5 1
2c†cux502

x501. ~4.22!

Since the Hamiltonian~4.21! is quadratic, it can be readily
solved, and the current computed, as we now show.

To this end, consider first the equations of motion for the
fermion fields which follow from the Hamiltonian. The local
fermion satisfies

] t~a1a†!52i
v

Avc

@c~0!2c†~0!#, ~4.23!

with c(0)5„c(x501)1c(x502)…/2, whereasc(x,t) sat-
isfies

F] t1]x2
i

2
V~ t !Gc5 i

v

Avc

d~x!~a1a†!. ~4.24!

We now proceed by direct analogy with then51 case.
Away from the point contact, the right side of Eq.~4.24!
vanishes, and the time-dependent potentialV(t) can be
eliminated by gauge transforming to another field. At the
point contact, we compute theS matrix, which relates the
amplitude of the incoming fermion (x502) to the outgoing
fermion (x501).

To compute theS matrix, first integrate Eq.~4.24!
through the origin (x50), and then eliminate the local ferm-
ion terma1a† using Eq.~4.23!. This gives the local equa-
tion

] t~c12c2!5
v2

vc
@c1

† 1c2
† 2c12c2#, ~4.25!

where we have defined incoming and outgoing fields
c6(t)5c(x506,t). This can be converted to an algebraic
equation by Fourier transformation

c1~E!2c2~E!5
v2

iEvc
@c1~E!1c2~E!

2c1
† ~2E!2c2

† ~2E!#. ~4.26!

Upon combining this equation with its Hermitian conjugate,
we can eliminatec1

† (2E), and express the outgoing field
c1(E) in terms of the incoming fieldsc2(E) and
c2
† (2E),

c1~E!5S11~E!c2~E!1S12~E!c2
† ~2E!. ~4.27!

Here the energy-dependentS-matrix elements are given by

S11~E!5
aE

aE1 i
, S12~E!5

i

aE1 i
, ~4.28!

with aE[Evc/2v
2. As required by current conservation,

theSmatrix satisfies uS11(k)u21uS12(k)u251 .
To obtain the distribution function for the incident ferm-

ion, we follow the procedure used forn51, and define a
fermion field which eliminates the time-dependent potential
in Eq. ~4.24!:

c~x,t !5e~ i /2!A~ t !c̃~x,t !, ~4.29!

with V5] tA. After Fourier transformation this becomes
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c2~E!5(
n

cnc̃2SE2nv1
Vsd

2 D . ~4.30!

Since the new field,c̃, satisfies the free wave equation,
(] t1]x)c̃50, for x,0, we assume again that it is incident
upon the point contact with a Fermi distribution function
f (E)5„exp(bE)11…21. The distribution function for the
original fermion,^c2

† (E)c2(E8)&52pd(E2E8) f ex(E), is
thus given again by the ‘‘excited Fermi function’’

f ex~E!5(
n

ucnu2f S k2nv1
Vsd

2 D . ~4.31!

Finally, the backscattered current averaged over time fol-
lows from Eq.~4.22! as

^I B& time5
1
2 E dE

2p
^c1

† ~E!c1~E!2c2
† ~E!c2~E!&.

~4.32!

After reexpressing outgoing waves in terms of incoming, us-
ing theSmatrix ~4.28!, the averages over the incident distri-
bution can be performed, giving

^I B& time5E dE

2p
uS12~E!u2„122 f ex~E!…. ~4.33!

The total transmitted current~2.8! can once again be cast into
the form

I ~Vsd,Vac!5(
n

ucnu2I dc~nVsd1nv!, ~4.34!

with n5 1
2. Here the current in the absence of ac drive,

I dc(Vsd)[I (Vsd,0), is given by

I dc~Vsd!5
1

4p
Vsd2E dE

2p
uS12~E!u2„122 f ~E1 1

2Vsd!….

~4.35!

Notice that in contrast to the casen51, theSmatrix here
depends on the energy of the incident fermion. As a result,
the I -V curve is non-Ohmic. The differential conductance at
zero temperature as obtained from Eq.~4.35! in the absence
of the ac drive is plotted in Fig. 4. At small bias, the current
vanishes with the cube of the source-drain voltage. This is
consistent with the general resultI;Vsd

2/n21 , obtained from
perturbation theory in the strong backscattering limit. For
large bias theI -V curve is linear with an offset voltage.
Again, this is consistent with the general perturbative result
for small backscattering;„(n/2p)Vsd2I …;v2Vsd

2n21 Notice
that for all n, 1

2, the I -V curve at large voltage is thus ex-
pected to asymptote toI5(n/2p)Vsd, with no offset.

With the ac drive present, theI -V curve can be obtained
by summing in Eq. ~4.34!, with weighting
ucnu2 5 Jn

2(Vac/2v). Since theI -V curve with no ac drive is
non-Ohmic at small bias, this will give features in the full
I -V curve which resemble smeared current plateaus. These
plateaus can be more readily revealed by plottingdI/dV ver-
susVsd.

Anticipating the analysis of theI -V curves for generaln
in Sec. V, it is convenient at this stage to define an effective

backscattering energy or temperature scale. Following Fend-
ley, Ludwig, and Saleur, we define a backscattering tempera-
tureTB5g(n)vc(v/vc)

1/(12n), where the functiong(x) is

g~x!5
4Ap

x
x1/~222x!S 1x21D 1/2GS 1

222xD
GS x

222xD
. ~4.36!

In then→0 limit, one hasTB52pv, which is the appropri-
ate backscattering energy scale entering in the semiclassical
equations of motion~3.17!. Forn5 1

2, TB54v2/vc , which is
the energy scale that enters in Eq.~4.28!. The I -V curves at
T50 are then characterized by two dimensionless param-
etersnṼac5nVac/v andnT̃B5nTB /v.

In Fig. 5 we plot the differential conductance versus volt-
age, obtained from Eq.~4.34! with nṼac51.6 andnT̃B5 1

4.
Notice the minima, which correspond to smeared plateaus in
the I -V curves. The differential conductance at the nth

FIG. 4. Differential conductance with no ac drive atn5
1
2. We

choosenTB51 in this plot.

FIG. 5. Differential conductance with ac drive atn5
1
2 obtained

from Eq. ~4.34!, plotted versus voltage. We have putnTB5v/4,
andnVac51.6v. The minima correspond to smeared plateaus in the
I -V curve, centered aroundnVsd5nv.
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minima is 12Jn
2(Vac/2v). The widths of the minima depend

primarily on the backscattering energy scaleTB , becoming
narrower asTB decreases. In contrast to the semiclassical
approximation~3.17!, the ‘‘plateaus’’ here have a nonvanish-
ing differential conductance everywhere—they are not
‘‘flat.’’ Moreover, the I -V curve is analytic everywhere, even
at the ‘‘plateau’’ centers, since theI -V curve without ac
drive is analytic even at zero bias. Evidently, quantum fluc-
tuations are quite effective at smearing the semiclassical cur-
rent plateaus, even forn5 1

2.
It is also instructive to plot the differential conductance,

dI/dV, versus the current, as shown in Fig. 6. This shows
clearly that the smeared ‘‘plateaus’’ are not centered at the
quantized current valuesI5nev/2p. This is due in part to
the finite offset voltage at large bias, mentioned above. How-
ever, if we choose a smaller backscattering strength,
TB→01, these ‘‘plateaus’’ become centered at the quantized
current values,I5nev/2p, as shown in Fig. 6. We next
consider theI -V curve for generaln.

V. GENERAL n

In Sec. IV we showed that for bothn51 andn5 1
2, the

I -V curve with ac drive, could be related to theI -V curve in
the absence of any ac drive, as a weighted sum over absorp-
tion and emission of quanta, see Eq.~4.34!. Here we make
the conjecture that this relation holds in general, for arbitrary
n. If correct, this conjecture allows us to use the recent re-
sults of Fendley, Ludwig, and Saleur15 to extractI -V curves
with ac drive forarbitrary integern21. Before doing so, we
show that the conjecture does hold for generaln in the limit
of weak backscattering.

To this end, consider calculating theI -V curve with ac
drive present, as a perturbation expansion in powers of the
backscattering amplitudev. The leading nonvanishing cor-

rection appears at orderv2. This correction can be readily
obtained from the Keldysh action discussed in Sec. III. The
backscattered current operator follows from Eq.~3.6! upon
functional differentiation with respect to the gauge field
A(t),

Î B5nv sin~u1nA!. ~5.1!

Within the Keldysh approach, the average over this operator
can be performed by putting it into the forward path, so that

^I B&5^sin~u1~ t !1nA!&, ~5.2!

where the average is taken with respect to the generating
functional ~3.7!. Upon expanding the exponential exp(2S1)
to second order inv, one obtains

I B52
i

2
nv2E dt8

3^sin@u1~ t !2u2~ t8!1n„A~ t !2A~ t8!…#&0 ,

~5.3!

where the subscript 0 denotes an average with respect to the
quadratic actionS0 in Eq. ~3.9!. Keeping only the constant
time-independent piece, it is then straightforward to show
that

^I B& time5(
n

ucnu2 I B
dc~nVsd1nv!, ~5.4!

whereI B
dc is the backscattered current to orderv2 without the

ac drive. Since the total current isI5nVsd2I B , the sum rule
(nucnu251 can be used to verify the general conjecture
~1.1!. A similar expression for the current under ac drive in
small backscattering regime was obtained before by Wen.1

The general conjecture has a very simple and physical
interpretation. In the absence of an ac drive, Laughlin quasi-
particles with fractional chargen lose an energynVsd when
they backscatter from one edge to the other. With ac drive,
the quasiparticles absorb or emit quanta of energy\v from
the ac drive, and jump into different energy levels
nVsd6nv, with probability ucnu2. They are then backscat-
tered by the point contact, with a reflection coefficient given
by the energy-dependentS matrix. This contributes a back-
scattered currentI dc(nVsd6nv). The total backscattering
follows by summing over the number of absorbed quanta
n, weighted with the probabilityucnu2.

In the absence of an ac drive, theI -V curve can be ex-
tracted from the exact solution of Fendley, Ludwig, and
Saleur. We can then use the general conjecture to evaluate
explicitly the I -V curve with ac drive for the Laughlin FQHE
states. It is interesting to compare the results in then→0
limit with a semiclassical model in Sec. III. Using the exact
solutions of Fendley, Ludwig, and Saleur, it is possible to
take then→0 limit. If we keepnVac, nVsd, andnTB fixed
as n→0, then theI -V curve ~with no ac drive!, reduces to
that obtained from the classical equation of motion~3.17!.
This solution is shown in Fig. 7. With ac drive present, the
I -V curves in then→0 limit can be extracted from our con-
jecture, and are shown in Fig. 8. Notice that theseI -V curves
donotcoincide with the solutions of the classical equation of

FIG. 6. Differential conductance with ac drive atn5
1
2 at two

different backscattering strengths. In the lower part of the figure, we
plot the same differential conductance as in Fig. 5 but vs current. As
one can see that the smeared plateaus arenot centered at
I5nev/2p due to the finite offset. In the upper part, we put
nTB5v/100 andnVac51.6v. In this weak backscattering limit, the
‘‘plateaus’’ are centered at the quantized valuesI5nev/2p.

54 10 601MODE LOCKING IN QUANTUM-HALL-EFFECT POINT . . .



motion ~3.17!, plotted in Fig. 2. Specifically, they donot
exhibit flat mode-locked plateaus, in contrast to Fig. 2. As
discussed at the end of Sec. III, the reason for this can be
attributed to the presence of two parallel quantum processes
which facilitate electron transfer: tunneling under the barri-
ers, and over the barrier motion after quantized energy ab-
sorption from the ac field. In then→0 limit, only the first
process is suppressed. However, in the classical limit~3.17!,
both quantum processes are absent. The second quantum
process is evidently responsible for smearing the current pla-
teaus, and spoiling the precise quantization.

VI. DISCUSSION AND CONCLUSIONS

Electron turnstile devices which transfer electrons one by
one have been made both in metals6–8 and in
semiconductors.9–11These devices consist of multiple-tunnel
junctions in series. By selectively controlling the junction
barrier heights, a single electron at a time can be transported
through the device. By applying an ac drive field to the bar-
riers, with an appropriate phase relationship between succes-
sive junctions, it is possible to transport one electron through
the device for each period of the ac drive. This leads to a
plateau in the current-voltage characteristics at the quantized
value I5ev/2p, with v the ac drive angular frequency.
These devices work well only at relatively low frequencies
~MHz!. At higher frequencies, the electrons do not ‘‘keep
up’’ with the ac drive.

A key feature of the turnstile devices appears to be the
multiple-junction geometry. The electron being transported
through the device presumably suffers numerous inelastic
scattering events while on the islands between junctions.
These phase-breaking events destroy the electron coherence,
effectively making the electron dynamics classical and sup-
pressing leakage from quantum tunneling. In this way quan-
tum fluctuations do not destroy the mode locking to the ex-
ternal ac drive.

In this paper, we considered a point-contact tunnel junc-
tion between two quantum Hall fluids. In contrast to the turn-
stile devices, the junction has only one barrier. The electron
is assumed to tunnel coherently through the barrier, suffering
only inelastic collisions in the ‘‘contacts’’~i.e., in the edge
states! on either side of the barrier. Moreover, we assume the
transmission amplitude through the barrier to be independent
of energy. Within a semiclassical approximation to this
model, there are robust quantized current plateaus in the
presence of an ac drive field, similar to that seen in the turn-
stile devices. However, inclusion of quantum fluctuation ef-
fects tends to smear these plateaus. Specifically, for the
IQHE at filling n51, where the edge state is a free-fermion
gas, theI -V curve with ac drive is strictly Ohmic and fea-
tureless. Mode-locked plateaus in the current are completely
destroyed by quantum fluctuations.

In the FQHE the edge states are Luttinger liquids. In this
case, even though the bare tunneling amplitude through the
point contact is energy independent, interaction effects in the
edge-state ‘‘leads’’ give an energy dependence to the total
tunneling rate.~The tunneling rate vanishes as a power law
of energy, for energies close to the Fermi energy.! In this
case, with an ac drive present, theI -V curves do exhibit
features, which can be identified as mode-locked current pla-
teaus rounded by quantum fluctuations. However, the ‘‘pla-
teaus’’ are not completely flat—the current varies upon
sweeping the voltage. In the limit of weak backscattering at
the point contact, the rounded plateaus are centered at cur-
rents given by integer multiples ofI5ev/2p, as shown in
Fig. 6.

What are the prospects for using FQHE tunnel junctions
as a current to frequency standard? The prediction of
rounded current plateaus induced by the ac drive—centered
at quantized valuesI5nev/2p for weak backscattering—is
encouraging. However, since the ‘‘plateaus’’ arenot com-
pletely flat, the degree of current quantization will necessar-
ily be limited. Whether this fundamental limitation renders

FIG. 7. Differential conductance with no ac drive present in the
n→0 limit with nTB51 fixed, as obtained from the exact solution
of Fendley, Ludwig, and Saleur. ThisI -V curve is identical to that
obtained from the classical equation of motion~3.17!. Below a
threshold voltage there isno electron tunneling.

FIG. 8. Differential conductance with ac drive present obtained
from the conjecture~1.1!, in the n→0 limit with nTB5v/4 and
nVac51.6v held fixed, plotted vs voltage. In contrast to the classi-
cal solution from Eq.~3.17! shown in Fig. 2, the above-current
‘‘plateaus’’ are rounded by quantum fluctuations.
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the device useless is difficult to assess. In a practical device,
the quantization could presumably be improved upon, by
making multiple FQHE junctions, similar to the semiconduc-
tor turnstiles. In any event, it would be fascinating to explore
experimentally the effects of an ac drive on quantum Hall
point contacts.
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