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We study the effect of an ac drive on the current-voltalg®) characteristics of a tunnel junction between
two fractional quantum Hall fluids at filling~* an odd integer. Within the chiral Luttinger-liquid model of
edge states, the point-contact dynamics is described by a driven damped quantum mechanical pendulum. In a
semiclassical limit which ignores electron tunneling, this model exhibits mode locking, which corresponds to
current plateaus in thieV curve at integer multiples df=ew/27, with o the ac drive angular frequency. By
analyzing the full quantum model at nonzerasing perturbative and exact methods, we study the effect of
quantum fluctuation on the mode-locked plateaus. et , quantum fluctuations smear completely the pla-
teaus, leaving no trace of the ac drive. 5916% smeared plateaus remain in th¥ curve, but are not centered
at the current$=new/27. For y<% rounded plateaus centered around the quantized current values are found.
The possibility of using mode locking in fractional quantum-Hall-effect point contacts as a current-to-
frequency standard is discuss¢80163-182606)06040-1

I. INTRODUCTION Josephson junction, the phase difference between the super-
conducting electrodes is behaving classically, whereas in the
Conductance through a tunnel junction is proportional toFQHE junction the classical variable is the transferred elec-
the electron density of states in two electrodes. For metallitron charge.
electrodes, which have a nonzero density of states at the One of the most striking manifestations of the ac Joseph-
Fermi energy, the tunnel junction current-voltage\) char-  son effect is the presence of quantized voltage si8papiro
acteristics are Ohmic at low bias. In marked contrast, recerdteps in an applied microwave fiefd The applied radiation
theoried? have predicted strongly non-Ohmic behavior for at angular frequency mode locks to the discrete phase slip
tunneling through a point contact separating two fractionakvents leading to plateaus at voltagés n(%/2e) w, for in-
quantum-Hall-effec(FQHE) fluids. Specifically, for the fill-  tegern. In the plateaus, the voltage is so accurately quan-
ing factor v=1/m, with odd integem, the tunnel current at tized that Shapiro steps serve as a voltage-to-frequency stan-
zero temperature is predicted to vary with voltage asdard.
| ~V2~1 At finite temperatures, Ohmic behavior is recov-  The duality between Josephson junctions and FQHE junc-
ered at small voltages, with a zero-bias differential conductions, suggests that the latter might also exhibit interesting
tance varying asll/dV~T?"~2 A temperature dependence behavior in the presence of an applied ac field. In this paper,
consistent with this has been seen in a recent experiment lwe study in detail the effect of an ac drive on a FQHE tunnel
Milliken, Webb, and Umbachfor the tunneling conductance junction, focusing on the structure induced in 1h¥ char-
between two FQHE fluids at filling= 3. acteristics. One anticipates the possibility of mode locking
The non-Ohmic tunneling conductance is due to thebetween the ac drive and the electron-tunneling events. This
strange properties of the edge states in the FQHE. FQHEould lead to steps in the juncti@murrent quantized at inte-
edge states are a beautiful realization of one-dimensionajer multiples ofl =ew/27—the analog of Shapiro steps.
Luttinger liquids? In contrast to metallic electrodes, the tun-  Quantized current plateaus for metallic tunnel junctions
neling density of states in a Luttinger liquidinishesat the  were proposed several years badBue to Coulomb block-
Fermi energy, which leads to the vanishing tunnel conducade effects, it was argued that normal metal tunnel junctions
tance between two FQHE fluids. Thus, in contrast to convenwith sufficiently high resistances would exhibit the phenom-
tional metallic tunnel junctions, a FQHE tunnel junction is ena of Bloch oscillations—an oscillatory voltage in the pres-
aninsulator. ence of a dc current—the dual of the ac Josephson effect.
An insulating point-contact junction is, in many respects, Moreover, it was suggested that an applied ac drive would
the dual of a superconducting point contact—namely, a Jomode lock to these oscillations, resulting in current plateaus.
sephson junction. In a Josephson junction khé curve is A more favorable geometry for current plateaus, consists of
also strongly non-Ohmic, with voltage vanishing rapidly for multiple-tunnel junctions in series, which can be separately
currents below the critical currert. Moreover, the zero- tweaked by an ac drive, thereby transferring the electrons
bias resistance is expected to vanish exponentially-as one-by-one through the circuit. Such an electron “turnstile”
dV/dl~exp(—E;/kgT), with energy barrieE;= ¢1;. Under  was realized experimentally, by a number of groups, both
exchange of current with voltage, the behavior is similar toin metallic systenfs® and in semiconductor hetero-
the vanishing conductance in the FQHE point contact. In atructures.!Due to the multiple-junction geometry the tun-
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stiles only work well at rather low frequencies, below tens of m
MHz. At higher frequencies the electrons take too long to @
pass across the junctions, and do not “keep up” with the ac

drive.
In a Josephson junction, Shapiro steps are very robust,
and do not need complicated multiple-junction geometries.

Moreover, Shapiro steps are observed up to frequencies com- Source Drain

parable to the superconducting gap. The reason for this is —/

that the junction phase difference is a classical field, so that =/ N

phase-slip processes are classical events which readily lock

to an ac drive. In “insulating” FQHE point contacts the  FIG. 1. Schematic representation of a point contact in a FQHE
electron charge is a good quantum number, which suggestid. The lines with arrows represent edge states which can scatter
that mode locking might also be possible in a single-junctionat the point contact. The voltage drop between source and drain is
configuration. However, quantum fluctuations in the electrordenotedV,.

charge transfer are expected to be more important than quan-

tum phase-slip processes in the Josephson junction, as re- Equation(1.1), which is also consistent with our exact
flected in the power-law voltage and temperature depensolutions, gives a simple explanation as to why all plateaus
dences in thé-V curves of the FQHE junctior{Because the are wiped out ab=1. Forv=1 the edge states are describ-
phase of the superconducting wave function exhibits tru@ble in terms of noninteracting electroff@ermi liquid). Un-
long-ranged order, low-frequency quantum phase slips arder the assumption of an energy independent transmission
expected to be completely absenthis paper is devoted to probability through the junction, the deV curves are linear
studying the effect of such quantum fluctuations in washingOhmig). Since the transmission is independent of energy,
out mode-locked steps. the ac drive hasio effect on thel-V curves, which remain

The organization and central results of the paper are asompletely linear.
follows. In Sec. Il we introduce the edge-state model for a For »<1 the dcl-V curves are non-linear, and plateau-
FQHE tunnel junction at fillingyv=1/m, in the presence of like features show up with an ac drive. Recently, Fendley,
both a dc source-to-drain voltaygyand an ac drive voltage, Ludwig, and Saledr obtained exact solutions for the die
V¢ sinwt. While the model is only appropriate for FQHE V curve at arbitrary integes 1. These curves, together with
edges wherw™ ! is an odd integer, it is well defined for conjecture(1.1), enable us to construd¢tV curves with ac
generalv. drive present for the experimentally relevant cases of;

In Sec. Il we consider a semiclassical limit, which ig- and . For these cases, in the limit of weak pinchoff at the
nores quantum tunneling of the electron. In this limit, thepoint contact, thd-V curves exhibit smeared current pla-
model reduces to the classical dynamics of a periodicallfeaus centered at integer multipleslef ew/27r. Section VI
driven overdamped pendulum, with the phase of the pendus devoted to a discussion of the experimental consequences.
lum representing the charge transferred across the junction.

This classical model is equivalent to the resistively-shunted ||. MODEL FOR POINT CONTACT WITH ac DRIVE

junction (RSJ model of Josephson-junction dynamiés* _ » _

Not surprisingly, robust mode-locked current plateaus are Consider a FQHE state at filling™* an odd integer. For
found in this semiclassical limit. this class of Hall fluids only a single-edge mode is expetted.

In Sec. IV we study the full quantum model, and derive FOr the IQHE atv=1, a free-fermion description of the edge
exact solutions for thd-V curves at two special values Mode is possibléS but more generally the edge mode is
»=1 and . At v=1, appropriate for the integer quantum expected to be g(cf_ural) Luttinger liquid, describable in
Hall effect, quantum fluctuations are so strong thiof the ~ terms of a bosonic field. o _
mode-locked structure in tHeV curves is completely wiped L€t pr @ndp, denote the electron densities in the right-
out. Forv=1, the solution reveals the remaining structure,and left-moving edge modes, on the top and bottom of the
but the smeared current plateaus ace centered at integer sample, as shown schematically in Fig. 1. These densities are

multiples of | =ew/27. written as gradients of bosonic fields,
In Sec. V we compute thé-V curves in a perturbative 1
approach, which leads us to conjecture the following general PRIL= iﬂaﬂﬁm , 2.1

form for thel-V curves at arbitrary:
which satisfy the Kac-Moody commutation relatidns
— 2 pdc . ,
| (Vs Vad =2 [enf? 19(0Vsgtno). (LD [ bR (), Oxbru (X)]=Fi2avs(x—x"). (2.2

Here x is a one-dimensional position coordinate, running
along the edge. The appropriate Hamiltonian density describ-
ejng the propagation of edge mode&°i%

Here 195(V)=1(V,0) is the tunnel current in the absence of
the ac drive, and|c,|?=|J,(¥Va/®)|?, with J.(X)
nth-order Bessel functions. These coefficients satisfy th
sum ruleX,|c,|?=1. This form has a simple physical inter- Ve

pretation: Charge’ quasiparticles absonb quanta from the Ho=4—[(&X¢R)2+((9X¢L)Z]. (2.3
ac field with probability|c,|?, and are transmitted through m

the point contact with total energyV/q4+ nw. Herev is the velocity of edge propagation.
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At the point contact, the right- and left-moving edge provided the densities are defined as= d,¢;i/27. Upon
modes are brought into close proximity, and tunneling be-using the continuity equationgp;+vgdyp;=0, valid away
tween them becomes possible. In the limit of weak tunnelingfrom the point contact ak=0, the backscattering current
the dominant backscattering process at low temperatures @perator can be reexpressed as
of fractionally charged @=ev) Laughlin quasiparticley’
The appropriate tunneling term is lg= _(UF/Z)f AX (1= pa) = (vel2)(py P2)|X o

Hi=vd(x)[e' PR U+ H.c], (2.9 (2.13

wherev is the local tunneling amplitude, at the point contact,Here we have used the fact that the only backscattering is at
x=0. the originx=0.

In the presence of an applied source-to-drain voltage, the It is worth emphasizing that the above model is only ap-
incoming edge modes will be at different chemical poten-Propriate for a FQHE point contact at filling facter *
tials. Interedge tunneling processes will thus change the erfdd integer. For FQHE states at other filling factors, multlple
ergy. Denoting the applied voltage a4t), the energy €dge modes are expected. Nevertheless, it will prove useful

change can be written below to study the above model for arbitrary
The current voltage characteristics of the point contact
Hy=(pr—pL) IV(1). (2.5) follow upon computing the backscattering curréatl3. Be-

fore attempting this, we consider briefly a semiclassical limit
In addition to a dc source-to-drain voltalygy, we will con-  of the model which describes an overdamped driven classical
sider an applied ac field, arising from electromagnetic radiapendulum. Under exchange of current with voltage, this is
tion illuminating the point contact. The total voltage drop identical to the standard RSJ model of Josephson-junction

between edges is written dynamicst?~** This classical model has been studied inten-
_ sively, both because of its relevance to Josephson junctions
V(1) =Vggt VasSinwt. (2.6)  and as a simple example of a classical dynamical system

which exhibits mode locking and a devil's staircdse.
For later convenience it will be useful to introduce a gauge

field A(t), defined viaV(t) = d;A(t). A useful identity is
I1l. SEMICLASSICAL LIMIT

[

i VA — g Vsd 2 c.e ot 2.7 | To take the semiclassical limit we firs} review the equiva-
ns o ence between the quantum Hall point contact and the
Caldeira-Leggett mod# for the quantum mechanics of a
wherec,=(—i)"Jn(¥Vac/ w), with J,(X) Bessel functions.  damped pendulum. To this end, it is first useful to perform a
The full Hamiltonian density i§1="Ho+H;+Hy . gauge transformation to eliminaté, in Eq. (2.5). Since the
In the absence of backscattering at the point contact, thequations of motion fox#0 take the form
total source-to-drain curremt=vg(pr—pL), Upon averaging
over time, is appropriately quantizéd)= vV {27. Back- v
scattering will reduce this current tc?( > (1 vrdx) dri =5 V(D) (3.9)

this can be achieved via the transformation
<|>— VVsd (Is), (2.8
14
+_
wherelg is the backscattering current operator. An expres- PrIL= PR+ 5 AD). 32

sion for I 5 follows upon functional differentiation, . I
B P After the gauge transformation, the full Hamiltonian reads

SH 1
5= a3 towp0) B9 e (0 (3,607 +0S(0COS b= L+ VA,
For later convenience it will be useful to define additional 33
boson fields which propagate in the same direction, Since the interaction term only depends on the difference,
dr— ¢, it is useful to define additional fields
$1(X)=PRr(X),  PaAX)=(—X). (2.10
p=Prt P, O=dr— L. (3.4
The commutators become
Since the transformed Hamiltonian is quadraticginit can
[ i(X),dx0j(X")]=—i8;2mvé(x—x").  (2.1D be integrated out, giving, for the Euclidean Lagrangian,
The Hamiltonian density has the same form as before, 1
LE=%(§M0)2+05(X)COS( 0+ vA). (3.5

_UF 2 (61— ¢2)
H= g (axpi)"+vd(x)[e117 "2+ H.c] Here we have sety=1 in the first term. Finally, upon inte-

grating outd(x) for x#0, we arrive at an effective Euclid-
+(p1—p2)3V(1), (2.12  ean action in terms of(x=0,7):
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1 do ) 1 ~ 2 .
E:mf > |o||6(w)] +J’ dr v coq 6+ vA). S=3 | dwag(w)|f(w)|*—i | dt
(3.9 1
This action can be recognized as a Caldeira-Leggett model of X0 5 —0—v sin(+vA)], (.13

a damped driven quantum pendul@frt should be empha-
sized that the Ohmic damping that characterizes thavhich can be recognized as the Martin-Siggia-Rose action
Caldeira-Leggett model can be traced to the one-dimension&0r a classical stochastic differential equatférpon intro-
(1D) Luttinger-liquid behavior of the edge modes. Although ducing a stochastic noise teré(t), the action can be reex-
this model has been used to describe quantum dynamics pressed as

Josephson junctions, it is unclear that it describes the appro-

priate low-frequency dynamics. In particular, the phase of Sz%f dew 1 1&(w)|?

the Cooper pair field has long-ranged order in the bulk su- ar(w)
perconducting electrodes, in contrast to the power-law corre- 1
lations described by the 1D edge modes in Egs3). _ij dte [_g_v Sin( 0+ vA)— &(1) |
Since we are interested in the nonequilibrium current- 27y
voltage characteristics, we need a real-time formulation, such (3.14

as Keldystt! In the Keldysh approach a generating func- _ _ - _ _ _
tional is introduced as a path-integral sum over two pathd he integration ovep then gives & function, enforcing the

propagating forward and backward in time, (t): classical equation of motion
Z:f D[6,]D[6_] e S=), (3.7 %9=v sin(6+ vA) + &(t) (3.1
In terms of additional fields, with stochastic noise
o(H)=3[60.(D+6_(D], B1=6.()—6_(1) (3.9 <|§(w)|2>=%cotk(%,8w). (3.16

the appropriate real-time action 8= Sy+S;, with . . . _
A final gauge transformatioA— 68— vA brings the equation

_1f q ~ - i f a4t 5% 3.9 into the familiar form,
SO_E wag(w)|6(w)] Fy— tee, (3.9 L )
Eaz vu Sin(0)+ %V(t)+ vé(t). (3.1

S=>, fdt(iiv)cos(a:iT%yA). (3.10
e ? Under exchange of current and voltage, E§.17) be-
. _ 1 comes equivalent to the equation which describes Josephson
Here we have definedrg(w)=(w/2mv)cothGBw). The oiynctions,lz‘14 except for the colored stochastic noise term

above gives a general quantum-mechanical formulation which is non-vanishing even at zero temperature. However
the model. To complete the description we must identify the 9 P : '

source-to-drain current operator. From E8.4) we see that | W& fake the semiclassical limit—0, with vv and »V(t)
0(x=0)=27[° _ podx Where. o= p "+p Thus held fixed, the noise term drops out. In this classical limit,
=0)= ~oPtotdX, tot— PRT PL -

0(x=0)/27r can be identified as the tot_al charge to the left ofg:)?],lzgr? dE s?r? c':ﬁ dcog)zﬁict;citls s?é:iilgtrlyrgggiatolo?:lgiﬂzeng: J;T_C
thg point contact. Thg source-to-drain current through th%hange of current and voltage. Solutions of E2117) in the
point contact is thus simply noiseless limit are well knowf?~2°For a Josephson junction
| =6,6(x=03)/27. (3.11) they give mode-lockgd voltage plateaus at integer multiples
of V=(#/2e) w. Physically, there is a mode locking between
An instanton inf(t) of magnitude 2r corresponds to the the discrete phase S|ip events and the ac drive. For the FQHE
transfer of one electron through the point contact. In thePoint contact, the mode-locked plateaus are in the current, at
classical limit these charge-transfer processes occur over thgteger multiples ofl =e27w. The discrete process is an
barrier, rather than by quantum-mechanical tunneling. In th&lectron tunneling through the point contact.
Keldysh formulation, quantum tunneling processes corre- After rescaling the time in Eq3.17) viat— t, itis clear
spond to instantons iA(t)—in which only the forward path that thel-V curves are characterized by two independent
tunnels, say. Thus the semiclassical limit can be obtained bffimensionless parameterr2v/w and vV,:/w. Representa-
forbidding such processes. This can be implemented by extive current-voltage characteristics computed numerically

panding the cosines in E3.10 for small 8, and retaining from (3.17) in the noiseless Iim!t are shown in Fig. 2. As
only the leading term expected, thel-V curves exhibit plateaus in the current

which are “flat” and quantized at integer multiples of

- ~ | =ew/27. Subharmonic plateaus are absent for model
31=ivf dt 6 sin(6+ vA)+0(6°). (312  (3.17, but would be present if the periodic function gij(
_ included higher harmonic conteff.
This expansion destroys the periodicity én The full action With inclusion of stochastic noise, one anticipates that

can now be written these plateaus will be rounded slightly, as shown inlthé
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whenv =0: #*~ v In(w,/T), with cutoff frequencyw,. This
suggests that the semiclassical expansion in(E42 might
become exact in the— 0 limit. In the absence of an ac drive
this is in fact the case. Recently, Fendley, Ludwig, and
3 Saleur obtained exattV curves, with no ac drive, for arbi-
trary odd integerv~ 1. One can analyze the$eV curves in
the limit v— 0, with vv and vV held fixed. In this limit, the
2t |-V curves become equivalent to those which follow from
the classical equation of motig8.17), with white noise re-
placing the stochastic colored noise.

However, with an ac drive present, it is unlikely that the
v—0 limit is equivalent to the semiclassical limi8.17).

4 - 2nl/o

vV/® With ac drive present there are two parallel processes which
allow charge to be transported across the junction. In addi-
0 3 ) 3 . tion to electron tunneling “under the barrier,” the electron

can absorb quanta of energy from the ac drive field. Once the

FIG. 2. Current voltage characteristic within the semiclassical€/€ctron energy is high enough, it can pass over the wash-
approximation, obtained from Eq3.17 with no stochastic noise. board barrier. In the classical limit, both of these processes
Both the current and voltage are plotted in units of the ac drivedre modified: Electron tunneling is suppressed completely,
frequency. The backscattering amplitude has been chosen to td energy is not absorbed from the ac drive in discrete
27vv=wl4 and the ac drive amplitude i8V,.=1.6w. Notice the ~ quanta. However, in the—O0 limit, while the electron tun-
current plateaus at integer multiples bfew/27, indicating a  neling is also completely suppress@incel ~V2*~1—0 as
mode locking to the ac drive. v—0), energy is still absorbed in discrete quanta from the ac

drive. Thus, once the ac drive is present, one anticipates that
curves in Fig. 3, obtained by numerically integrating Eqg.mode-locking features obtained from the semiclassical limit
(3.17 with colored noise. When the noise is weak, the(3.17) will not serve as a good guide for the full quantum
rounding is most visible at the edges of the plateaus. Fomodel, even for very smalb. This will be confirmed by
large enough noise the plateaus become completely smeargtbre detailed analysis in Sec. V below.
out. The effects of colored noise are qualitatively similar to
stochastic white noise, which has been studied extensively in IV. EXACT SOLUTIONS FOR »=1, 3
the past. . . .

Itpis worth commenting here on the validity of the semi- N this section we study the full quantum dynamics for
classical approximation to the full quantum dynamics. AstWO Special values of, for which simple exact solutions are
evident from Eq(3.12, the semiclassical approximation in- possllblel.e Forr=1 the edge mode is equivalent to a free
volves discarding all electron-tunneling events, in whith f(ra]rrr:u\)/n. Whep the a%ldrlv\:/;]s priaslentf, an ;axac.t solution for
changes by 2. One can argue from the quadratic action "€ 1-V curve is possible. Whem=3; a free-fermion repre-

. . . . sentation is also possibté.Although the theory is not di-
(3.9 that the typical variance df is proportional tov, even rectly applicable to the FQHE edge states fier &, the exact

solution is nevertheless illuminating, revealing plateaulike
. 2l structure in thd -V curve, in contrast tozzl_(see. below
Moreover, the general structure of the solutions in these two
soluble cases, leads to a natural conjecture for more general
v, discussed in Sec. VI.

A. v=1 solution

For v=1 the edge modes have a free-fermion description,
simpler than the general bosonized representation of Sec. .
Upon defining fermion fields for the two modes,

1 (o)l
V= =— .| 4.1
vV/® o] Ja, €2 @
0 - . - | with a, a short-length-scale cutoff, the full bosonized Hamil-
0 1 2 3 4 tonian can be expressed as a quadratic fermion theory

FIG. 3. An -V curve in the semiclassical approximation, ob- _ trs N v N
tained from Eq.(3.17) with stochastic colored noise. As in Fig. 2, H=—=WTid+3V(t)o ]V + w—é(x)\lf V. (4.2
we choose Zvv=w/4 and vV ,,=1.6w. The colored noise has ¢
strengthy=0.1 and the cutoff frequency for generating the noise isHere, we have put the Fermi velocity-=1, and the cutoff
w.=600. Notice that the current plateaus are rounded, due to thérequencyw.~ 1/ay. The backscattered curre(2.13 takes
presence of the stochastic noise. the simple form
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cal potential. This field is assumed to be incident with an

_ 1yt x=0"
le=2W 0¥, o 4.3 ordinary Fermi distribution function,

The equation of motion which follows from the fermion ~ ~ ,
Hamilton(i]‘an is (Gi(E)'ys(E"))=2mwS(E~E")f(E), (4.10

wheref(E) = (exp(BE)+1) ! and\‘lvf(E) denotes the Fourier
v I, _
V=—i—8x)o, V. (4.4  transform of¥(x=0", t).

W The distribution function for the original incident Fermion
Thel-V curve can be obtained by solving this equation, with Y ~(1) can_now be obtained by relating the transform
appropriate boundary conditions, and extracting the back¥ -(E) to W(E) using Eq.(4.9 and the expansiofi2.7).
scattered currerit.. This gives

Our solution proceeds in two steps. Away from the point
contact ax=_0, the equation describes free propagation with P AE)=2, anz,l AE—nw+iVy, (4.11)
a uniform time-dependent potenti(t). This can be elimi- ’ n '
nated by defining a gauge-transformed fermion field, Wh'cmvhere c, is defined in Eq.(2.7). The distribution function

is assumed to be incident upon the point contact with e . —t e
Fermi-Dirac distribution. Upon transforming back to theefi):z,)t?g((E;)r'g:gﬁltalf::mgns'ié]‘éile (fEanfJ (E'))=2m5(E
j )

original Fermion field, the Fermi distribution function is
modified, involving a sum over processes involving absorp-

tion and emission of the ac field. We refer to this distribution %= [calf(E-nw*3Vyy, (4.12

as an “excited Fermi function.” At the point contact n

(x=0), backscattering takes place, which is characterized by “excited Fermi function.” Notice that the dc voltage
reflection and transmission coefficier{fem S matrix) which V4 Simply causes a shift in the energy of the incident elec-
are independent of the incident distribution function. Theyon. The ac drive shifts the energy by, corresponding to
total backscattered currehg is an appropriate convolution absorption or emission af quanta, with probabilityc,|2.

of the S matrixwith the “excited Fermi” distribution func- Finally we can obtain the backscattered current from Eq.

tion. . _ _ (4.3, which can be reexpressed using E4.5 solely in
Consider first scattering at the point contact. B®atrix  arms of the incident fields dg=— Sy 2\1,102\1,7 _ After

relates the incoming fiel@ _ to the outgoing fieldV , via Fourier transforming to energy, this becomes

i
O+ dy— EV('{)O'Z

v,=S¥_, (4.5
. . : <IB>=—f e T EV S 2V (E) 0, ¥ _(E)).
whereW . (t) =¥ (x=07,t). Integrating the equation of mo- E.E’
tion (4.4) through the originx=0, gives (4.13
In addition to a time-independent piece, the backscattered
’\;[}+(t)_1lr_(t):_iia-x\l[(o,t), (4.6) current will have oscillatory contributions at multiple fre-
(O guencies ofw, as is apparent from E¢4.13. We focus only

whereWw (0,t)= W, (1) +¥_(1)]. on the time-independent piece, which is finally given by

From this one readily obtains tl&matrix 1
<|B>timezﬂf dE [Spl?[fS(E)—fF(E)]. (4.19

1—(v/2w,)?
Su= 822_l+(v/2a)c)7' (4.7 This result takes a familiar form, involving an energy inte-
gral of the reflection probability, weighted by energy distri-
—ivlwg bution functions. Due to the ac drive, however, these are not
S12= Szfm- (4.8 simply Fermi functions, but rather the “excited Fermi func-

tions” given in Eq.(4.12.
The probability for the incoming field to be scattered from  Since the reflection probability is energy independent, the
one edge to the other iS;,?, whereasS;,|? is the prob-  backscattered current can be seen to be completely indepen-
ability to be transmitted without scattering. Probability con-dent of the ac drive. This follows by inserting the distribution
servation dictates a unita§ matrix, S'S=1, which is satis-  function (4.12, and shifting the energy of integration to
fied here. Notice that th& matrix is independent of the eliminate the drive frequenay. SinceX,|c,|?=1, the back-
energy of the incident carriers, a consequence of the assumedattered current is then exactly equal to the result without

S-function point scatterer. any ac drive present. At zero temperature this gives
Outside the scattering region, the right side of B4  (Ig)ime=(1/27)|S;14?Vsq, OF for the total transmitted cur-
vanishes. Transforming to another fermion field rent[using Eqg.(2.8)] upon restoring units
W(x,t)=elPAOTA (x 1), (4.9 e?
I= F|511| Veg. (4.19

with V(t) = d;A(t) as before, then eliminates the time depen-
dence. This field satisfies the simple wave equationThel-V curve is linear, with conductance given by the trans-
(0 + dx)¥=0, which describes free fermions at zero chemi-mission probability, just as without any ac drive. The quan-
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tum fluctuations have completely washed out the current plaSince the Hamiltoniari4.21) is quadratic, it can be readily
teaus seen in the semiclassical limit of Sec. Ill. The absencsolved, and the current computed, as we now show.

of structure in thel-V curve can be traced to the energy- To this end, consider first the equations of motion for the
independent transmission probability. The ac drive changefermion fields which follow from the Hamiltonian. The local
the energy of the incident electron, via absorption or emisfermion satisfies

sion of quanta, but since the transmission probability is en-

ergy independent, this has no effect on the net transmitted

.U
current. d(ata’)=2i \/——[lﬂ(o) —¢'(0)], (4.23
It is worth mentioning that the total transmitted current @e
can be cast into the suggestive form with $(0)= ((x=0") + (x=0"))/2, whereasy(x,t) sat-
isfies

|(Veg, Vad =2 [Col21%(0Veg—nw),  (4.16

> s(x)(a+al). (4.29

i v
wherel9(V)=1(V,0) is the current in the absence of an ac It ox _V(t)} y=i-=

Voo
drive. As we shall now show, this form also holds when ¢

v=1/2, even though in that casé%V) shows non-Ohmic We now proceed by direct analogy with the=1 case.
structure. Moreover, as discussed in Sec. V, this form is alsaway from the point contact, the right side of E(#.24)
valid perturbatively in the weak backscattering limit, for gen-yanishes, and the time-dependent potenti4t) can be

eral v. eliminated by gauge transforming to another field. At the
point contact, we compute th® matrix, which relates the
B. »=3 solution amplitude of the incoming fermiorx&07) to the outgoing
N - T : fermion x=07).
ow consider mode(2.12 with v=3. In this case one

can show using the commutation relatiof&11), that the To compute theS matrix, first integrate Eq.(4.24
operator expd;— ), which enters into the Hamiltonian, through the 05'9'”.*20)’ and then eliminate the local ferm-
satisfies Fermi statistics. In order to fermionize this operator'fon terma+a’ using Eq.(4.23. This gives the local equa-

it is convenient to define additional boson fieftf€ ion
_ _ 2
P =[Ea1)= Sox D), @17 o) = o Wl d — ), (429
(X, 1) =[P1(X,1) + (X, 1)]. (4.18

where we have defined incoming and outgoing fields
. (t)=¢(x=0%,1). This can be converted to an algebraic
‘equation by Fourier transformation

When the Hamiltoniaii2.12) is reexpressed in terms of these
fields, the field® decouples and can be ignored. The remain
ing Hamiltonian becomes

U2

He= 2 (0, +0 a4+ Hel+ 3V(D (), #+(B) - (B)= g Lo (B)+ 9-(B)

(4.19 -yl (-B) -y (-B)]. 4.26

where we have set= 1. . _ . L . .
Sincee'® has Fermi statistics, we can fermionize the re-Upon combining this equation with its Hermitian conjugate,

maining boson field, viak = (1/ag)e®, with lattice cutoff W€ can eliminatey!.(~E), and express the outgoing field
a,. The first term describes a free chiral fermion, and the’ﬁ;(E) in terms of the incoming fieldsy_(E) and
third term is also quadratic ifV'; however, the tunneling y-(—E),

term islinear in W. To convert this term into a quadratic

_ t

form, we introduce a local fermion field as U (E)=S,  (E)¢ (E)+S, (E)¢y_(—E). (427
W (x)=(a+a)p(x) (4.20 Here the energy-depende®tmatrix elements are given by

where botha and ¢(x) satisfy fermion anticommutation re- ag i

lations. The full Hamiltonian then becomes Si+(E)= oy S, (B)= oy (4.28

with  ag=Ew/2v2. As required by current conservation,
the S matrix satisfies |S, . (k)|?+]|S, _(k)|?=1

(4.20) To obtain the distribution function for the incident ferm-
ion, we follow the procedure used far=1, and define a

Here we have setvg=1, and the cutoff frequency fermion field which eliminates the time-dependent potential
w:~1lay. To complete the fermionization, we reexpress thejn Eq. (4.24:

backscattering current from E¢(R.13 in terms of the ferm-
ion fields lp(x,t):e(i/Z)A(t);’Z(X,t), (4.29

H= " (a3 + 2V(1)) gt % s)[w'(at+ah+H.cl.

We

lg=3y"yl3207. (422 with V=9,A. After Fourier transformation this becomes
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. (4.30 L5 @mv)dl/idv

¥ (E)=>, an(E—an?S“

Since the new fieldy, satisfies the free wave equation,
(di+dy) =0, for x<0, we assume again that it is incident
upon the point contact with a Fermi distribution function 10 |
f(E)=(exp(BE)+1)"1. The distribution function for the
original fermion, (¢! (E)y_(E'))=278(E—E')fE), is
thus given again by the “excited Fermi function”

Ve 05t
fXE)=D, |cn|2f(k—nw+75 . (4.3))
n
vV
Finally, the backscattered current averaged over time fol-
1 1 0.0 Il Il
lows from Eq.(4.22) as ” " - 5 .
dE . . . . 1
Ia)s :;f — (u(E E)— s (E)r_(E)). FIG. 4. Differential conductance with no ac drive at 5. We
< B>t|me 2 2 <lr//+( )1/’+( ) lﬁ ( )‘/’ ( )> chooseVTle in this pIOt.

(4.32

After reexpressing outgoing waves in terms of incoming, us_backscatt_ering energy or tempe_rature scale. Foll_owing Fend-
ing the S matrix (4.28, the averages over the incident distri- 1€y, Ludwig, and Saleur, we define a backscattering tempera-

bution can be performed, giving ture Tg=g(») w(v/ wc) ¥, where the functiorgy(x) is
(Ig) de S (B)?G—fE)). (433 F( - )
B/time™ | 5= [9+- 27 . : 4 1 128\ 2 —ox
2m g(x)= £X1/(22x)<_ 1| ———. (4.39
The total transmitted curref2.8) can once again be cast into X X F( )
the form 2—2x

In the v—0 limit, one hasTg=2mv, which is the appropri-
|(Vea:Vad = 2 [Cal?1 %2Vt Nw), (4.349  ate backscattering energy scale entering in the semiclassical

" equations of motiori3.17). For v=3, Tg=4v?/ w,, which is

with »=31. Here the current in the absence of ac drive,the energy scale that enters in £4.28. Thel-V curves at
19V =1(Ves0), is given by T=0 are then characterized by two dimensionless param-

etersvV,= vV /o andvTg=1vTg/w.
195V o) = 4ivsd_ f g_El S+7(E)|2(%—f(E+ Ved). In Fig. §We plot the differen.tial cgnd_uctance vgsgslvolt-

™ ™ age, obtained from Eq4.34 with »V,=1.6 andvTg=3.

(4.39 Notice the minima, which correspond to smeared plateaus in

. . . he |-V rves. Th ifferential n n he nth
Notice that in contrast to the case=1, theS matrix here the curves e differential conductance at the nt

depends on the energy of the incident fermion. As a result,
the |-V curve is non-Ohmic. The differential conductance at 2n/vydl/dv
zero temperature as obtained from E4,35 in the absence LS -
of the ac drive is plotted in Fig. 4. At small bias, the current
vanishes with the cube of the source-drain voltage. This is
consistent with the general resuit- V™1, obtained from

perturbation theory in the strong backscattering limit. For 10}

large bias thel-V curve is linear with an offset voltage.
Again, this is consistent with the general perturbative result
for small backscatteringl( v/2m)Ve—1)~v2VZ ™1 Notice

that for all v<3, the -V curve at large voltage is thus ex-

pected to asymptote tio=(v/27)V4q, With no offset. 03
With the ac drive present, tHeV curve can be obtained
by summing in Eg. (4.349, with weighting vV/®
|cal? = J3(Vad20). Since thd -V curve with no ac drive is
non-Ohmic at small bias, this will give features in the full %9 . 5 3 .
[-V curve which resemble smeared current plateaus. These
plateaus can be more readily revealed by plottingV ver- FIG. 5. Differential conductance with ac drive & 3 obtained
SusVgyy. from Eq. (4.34), plotted versus voltage. We have putz=w/4,

Anticipating the analysis of the-V curves for general  andvV,= 1.6w. The minima correspond to smeared plateaus in the
in Sec. V, it is convenient at this stage to define an effective-V curve, centered arouneV = no.
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rection appears at order’. This correction can be readily
obtained from the Keldysh action discussed in Sec. lll. The
backscattered current operator follows from E8.6) upon
functional differentiation with respect to the gauge field
A(t),

( A |
T 1= v Sin(0+ vA). (5.1

Within the Keldysh approach, the average over this operator
can be performed by putting it into the forward path, so that

Qriv)dUdv
15 1

1.0

1.0

(Ig)=(Sin(0..(t) + vA)), (5.2

where the average is taken with respect to the generating
functional (3.7). Upon expanding the exponential ex{;)

05 0 " 5 3 4 to second order i, one obtains

2nl/m

. . . . [

FIG. 6. Differential conductance with ac drive a& 3 at two lg=— —vvzf dt’
different backscattering strengths. In the lower part of the figure, we 2
plot the same differential conductance as in Fig. 5 but vs current. As . _ , _ ,
one can see that the smeared plateaus rase centered at X(sin{0..() = 0(t") + »(A() —A(t"))])o,
I=new/27 due to the finite offset. In the upper part, we put (5.3
vTg= w/100 andvV = 1.6w. In this weak backscattering limit, the

“plateaus” are centered at the quantized valliesn ew/27 where the subscript 0 denotes an average with respect to the

guadratic actiorS, in Eq. (3.9). Keeping only the constant
time-independent piece, it is then straightforward to show

hat
minima is 1— Jﬁ(VaJZw). The widths of the minima depend a

primarily on the backscattering energy scalg, becoming ) g

narrower asTg decreases. In contrast to the semiclassical (Ig)ime= 2 |Cal? 15(»Vsgtnw), (5.4
approximation(3.17), the “plateaus” here have a nonvanish- "

ing differential conductance everywhere—they are nolwherelgc is the backscattered current to or@érwithout the
“flat.” Moreover, thel-V curve is analytic everywhere, even ac drive. Since the total currentliss vV 4— I g, the sum rule

at the “plateau” centers, since thieV curve without ac 3 ,|c,|?=1 can be used to verify the general conjecture
drive is analytic even at zero bias. Evidently, quantum fluc{1.1). A similar expression for the current under ac drive in
tuations are quite effective at smearing the semiclassical cusmall backscattering regime was obtained before by Wen.
rent plateaus, even far=3. The general conjecture has a very simple and physical

It is also instructive to plot the differential conductance, interpretation. In the absence of an ac drive, Laughlin quasi-
dl/dV, versus the current, as shown in Fig. 6. This showsarticles with fractional charge lose an energyV¢y when
clearly that the smeared “plateaus™ are not centered at théhey backscatter from one edge to the other. With ac drive,
quantized current valuds=new/27. This is due in part to the quasiparticles absorb or emit quanta of endrgyfrom
the finite offset voltage at large bias, mentioned above. Howthe ac drive, and jump into different energy levels
ever, if we choose a smaller backscattering strengthyV s+ nw, with probability |c,|2. They are then backscat-
Tg—0", these “plateaus” become centered at the quantizedered by the point contact, with a reflection coefficient given
current values)] =new/27r, as shown in Fig. 6. We next by the energy-dependeBtmatrix. This contributes a back-
consider thd -V curve for generab. scattered current®(vV 4+ nw). The total backscattering
follows by summing over the number of absorbed quanta
n, weighted with the probabilityc,|?.

In the absence of an ac drive, thé/ curve can be ex-

In Sec. IV we showed that for both=1 andv=3, the tracted from the exact solution of Fendley, Ludwig, and
I-V curve with ac drive, could be related to th&/ curve in  Saleur. We can then use the general conjecture to evaluate
the absence of any ac drive, as a weighted sum over absorpxplicitly thel-V curve with ac drive for the Laughlin FQHE
tion and emission of quanta, see K4.34). Here we make states. It is interesting to compare the results in the0
the conjecture that this relation holds in general, for arbitrarfimit with a semiclassical model in Sec. lll. Using the exact
v. If correct, this conjecture allows us to use the recent resolutions of Fendley, Ludwig, and Saleur, it is possible to
sults of Fendley, Ludwig, and Salétito extractl-V curves take thev—0 limit. If we keep vV, Vg, andvTg fixed
with ac drive forarbitrary integerv 1. Before doing so, we asv—0, then thel-V curve (with no ac drive, reduces to
show that the conjecture does hold for generah the limit  that obtained from the classical equation of moti@nl7?).
of weak backscattering. This solution is shown in Fig. 7. With ac drive present, the

To this end, consider calculating theV curve with ac |-V curves in thev—0 limit can be extracted from our con-
drive present, as a perturbation expansion in powers of thgcture, and are shown in Fig. 8. Notice that thedécurves
backscattering amplitude. The leading nonvanishing cor- do notcoincide with the solutions of the classical equation of

V. GENERAL »
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VI. DISCUSSION AND CONCLUSIONS

2n/v)dl/dv
30 - Electron turnstile devices which transfer electrons one by
one have been made both in metals and in
a5l semiconductors:*! These devices consist of multiple-tunnel
junctions in series. By selectively controlling the junction
ol barrier heights, a single electron at a time can be transported
’ through the device. By applying an ac drive field to the bar-
riers, with an appropriate phase relationship between succes-
LSt sive junctions, it is possible to transport one electron through
the device for each period of the ac drive. This leads to a
10} plateau in the current-voltage characteristics at the quantized
value | =ew/27, with « the ac drive angular frequency.
05 These devices work well only at relatively low frequencies
vV (MHz). At higher frequencies, the electrons do not “keep
, , o , , up” with the ac drive.
-4 -2 ) 2 4 A key feature of the turnstile devices appears to be the

multiple-junction geometry. The electron being transported
FIG. 7. Differential conductance with no ac drive present in thethrough the device presumably suffers numerous inelastic

v—0 limit with »Tg=1 fixed, as obtained from the exact solution scattering events while on the islands between junctions.
of Fendley, Ludwig, and Saleur. ThisV curve is identical to that  These phase-breaking events destroy the electron coherence,
obtained from the classical equation of motig17. Below a  gffectively making the electron dynamics classical and sup-
threshold voltage there iso electron tunneling. pressing leakage from quantum tunneling. In this way quan-

tum fluctuations do not destroy the mode locking to the ex-

ternal ac drive.
motion (3.17), plotted in Fig. 2. Specifically, they doot In this paper, we considered a point-contact tunnel junc-
exhibit flat mode-locked plateaus, in contrast to Fig. 2. Astion between two quantum Hall fluids. In contrast to the turn-
discussed at the end of Sec. Ill, the reason for this can bstile devices, the junction has only one barrier. The electron
attributed to the presence of two parallel quantum processé§ assumed to tunnel coherently through the barrier, suffering
which facilitate electron transfer: tunneling under the barri-Only inelastic collisions in the “contactsfi.e., in the edge
ers, and over the barrier motion after quantized energy abstateg on either side of the barrier. Moreover, we assume the
sorption from the ac field. In the—0 limit, only the first ~transmission amplitude through the barrier to be independent
process is suppressed. However, in the classical ([Bndt?), of energy. Within a sem|clas§|cal approximation tO.thIS
both quantum processes are absent. The second quantL'iPr?del’ there are robust quantized current plateaus in the

process is evidently responsible for smearing the current pldgr_esencg of an ac drive _f|e|d, _5|m|Iar to that seen in the turn-
teaus, and spoiling the precise quantization. stile devices. However, inclusion of quantum fluctuation ef-

fects tends to smear these plateaus. Specifically, for the
IQHE at filling »=1, where the edge state is a free-fermion
gas, thel-V curve with ac drive is strictly Ohmic and fea-
: tureless. Mode-locked plateaus in the current are completely
Q2r/v)dl/av destroyed by guantum fluctuations.
Ls In the FQHE the edge states are Luttinger liquids. In this
case, even though the bare tunneling amplitude through the
point contact is energy independent, interaction effects in the
edge-state “leads” give an energy dependence to the total
tunneling rate(The tunneling rate vanishes as a power law
10 - of energy, for energies close to the Fermi enerdy.this
case, with an ac drive present, the/ curves do exhibit
features, which can be identified as mode-locked current pla-
teaus rounded by quantum fluctuations. However, the “pla-
05 L teaus” are not completely flat—the current varies upon
sweeping the voltage. In the limit of weak backscattering at
the point contact, the rounded plateaus are centered at cur-

vVio rents given by integer multiples ¢f=ew/27, as shown in
Fig. 6.
005 ) 5 3 7 What are the prospects for using FQHE tunnel junctions

as a current to frequency standard? The prediction of
FIG. 8. Differential conductance with ac drive present obtainedrounded current plateaus induced by the ac drive—centered
from the conjecturg1.1), in the v—0 limit with »Tg=w/4 and  at quantized valueb=new/27 for weak backscattering—is
V= 1.6w held fixed, plotted vs voltage. In contrast to the classi-encouraging. However, since the “plateaus” aret com-
cal solution from Eq.(3.17) shown in Fig. 2, the above-current pletely flat, the degree of current quantization will necessar-
“plateaus” are rounded by quantum fluctuations. ily be limited. Whether this fundamental limitation renders
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the device useless is difficult to assess. In a practical device, ACKNOWLEDGMENTS
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