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We have studied numerically the dynamics of sliding charge-density waves~CDW’s! in the presence of
impurities ind51,2. The model considered exhibits a first-order dynamical transition at a critical driving force
Fc between ‘‘rough’’ ~disorder dominated! (F,Fc) and ‘‘flat’’ ( F.Fc) sliding phases where disorder is
washed out by the external drive. The effective model for the sliding CDW’s in the presence of impurities can
be mapped onto that of a magnetic flux line pinned by columnar defects and tilted by an applied field. The
dynamical transition of sliding CDW’s corresponds to the transverse Meissner effect of the tilted flux line.
@S0163-1829~96!02841-X#

I. INTRODUCTION

The study of the dynamics of an ordered medium driven
by an external force through quenched impurities is relevant
to many physical systems. Examples include charge-density
waves~CDW’s! in anisotropic metals1 and flux-line lattices
~FLL’s! in the mixed state of type-II superconductors.2 It has
been argued that in both these systems impurities destroy the
equilibrium long-range translational order~LRTO! and pin
the medium. A driving forceF, originating from an electric
field or a current, can overcome the constraining forces from
the impurities and cause the medium to slide. AtT50, clas-
sical CDW’s exhibit a depinning transition at a critical driv-
ing forceFT from a pinned (F,FT) to a sliding (F.FT)
state. This transition has been described as a dynamic critical
phenomenon. The nonlinear dynamics of the system near the
critical point has been studied extensively both by numerical
simulation3 and by 42e expansions4 and is fairly well un-
derstood.

In contrast, the dynamics of driven disordered media at
large driving force, well above the depinning transition, has
only recently begun to receive some attention. In the sliding
state the pinning by impurities is less effective and it has
been suggested that the medium may recover LRTO at suf-
ficiently large velocity. Recent experiments in Y-Ba-Cu-O as
well as simulations of two-dimensional flux lattices have in-
deed shown that the flux array orders at large drives. Ko-
shelev and Vinokur5 have described this phenomenon as a
true phase transition from a flowing liquid to a moving solid.
Whether the ordering of driven flux lattices is a true dynami-
cal phase transition or a crossover is still an open question.

Some of us recently addressed this class of questions by
focusing on a model of driven CDW’s in the presence of
disorder and thermal noise.6 The model considered in Ref. 6
allows for disorder-induced phase slips of the CDW. In three
dimensions it yields a dynamical phase transition of the slid-
ing CDW from a disordered phase with plastic flow to a
temporally periodic ‘‘moving solid’’ phase with quasi-long-

range translational order. In two dimensions the moving
solid phase is unstable due to the proliferation of phase slips.

In the present paper we focus on a related model of the
dynamics of sliding CDW’s that incorporates a nonequilib-
rium nonlinear term of the Kardar-Parisi-Zhang~KPZ!
form,9 which was neglected in Ref. 6. To render the analysis
tractable with this addition, we have, however, neglected
phase slips and, for most of what follows, thermal fluctua-
tions. While the neglect of thermal noise has very little effect
upon our results, the omission of phase slips appears to be
more severe. Indeed, the model considered here is by defini-
tion an elastic continuum at all driving forces and a ‘‘liquid
phase’’ with dislocations cannot occur. We expect that at
sufficiently low temperature and large driving force the omit-
ted defects will make only minor changes to our results, at
least on experimentally observable time scales. The true~in-
finite time! asymptotics is, however, likely to be affected by
this omission.

Interestingly, despite its strong topological constraints,
our model nevertheless exhibits a phase transition at a criti-
cal driving forceFc from an isotropic rough~disorder domi-
nated! flowing phase at small driving forces, to an aniso-
tropic smooth flowing phase where nonlinearities are washed
out by the external drive. The average CDW velocity
changes sharply at the transition, which is argued to be first
order. The two phases are characterized by different values
of the roughening exponent governing the growth of spatial
fluctuations of the CDW phase with the sizeLx of the system
in the direction of the external drive (x direction!. In the
rough phase the phase fluctuations grow linearly withLx ,
w(Lx ,L');Lx , indicating that the elastic model breaks
down. This suggests that in a corresponding model that al-
lows for phase slips, this phase would be a flowing liquid.
AboveFc the disorder is washed out in the direction of mo-
tion. Fluctuations are strongly suppressed in this direction
andw(Lx ,L');Lx

1/2 for Lx
z@L' , with z'0.8560.05.

Our results have two implications for CDW experiments
at high velocities, provided phase slip effects are sufficiently
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suppressed at low temperatures. First, above the critical force
(F.Fc), translational correlations are expected to be highly
anisotropic, decaying much more rapidly transverse to the
motion than along it. This implies a substantial increase in
the ratio of widths of Bragg scattering peaks,

d

dF S Dk'

Dki
D.0, ~1.1!

whereDk' andDki are peak widths perpendicular and par-
allel to the CDW wave vector, respectively. Secondly, within
our model, the nonequilibrium ordering transition is charac-
terized by a jump discontinuity in the differential conduc-
tanceGdiff[dI/dV. As discussed in further detail in the next
section, we are able to predict only the singular behavior of
Gdiff , and not the full nonlinear form of theI (V) curve.

We expect these two results to survive in varying degrees
in models including phase slips~and hence experiments!.
The strong anisotropy of the translational correlations in the
high-velocity phase should remain at low temperatures. The
resistance singularity is expected to be more sensitive to
phase slips~as, indeed, is the entire smallF phase!. Their
effects are expected to round the step inGdiff very near to
Fc .

II. EFFECTIVE MODEL FOR SLIDING CDW’s

Charge-density waves are coupled electron-phonon exci-
tations which exist in a class of anisotropic metals consisting
of weakly coupled chains. In these materials the electronic
density is sinusoidally modulated along the chain (x) direc-
tion,

r~r !5r01r1cos@2kFx1f~r ,t !#, ~2.1!

wherekF is the in-chain Fermi wave vector andr1 the am-
plitude of the charge modulation. At low temperature, due to
the gap in the dispersion relation for the amplitude, ampli-
tude fluctuations are strongly suppressed and the dynamics
can be described in terms of the phasef only. The Hamil-
tonianH for a CDW in ad-dimensional metal can be written
as1

H5
K

2E dr @~¹f!2#1E drV~r !r1cos@2kFx1f~r ,t !#,

~2.2!

where we have rescaled coordinates to obtain an isotropic
elastic term. The coefficientK is a stiffness constant. The
effect of impurities is described via a Gaussian random po-
tentialV(r ) with zero mean,̂V(r )&50, and short-range cor-
relations, ^V(r )V(0)&5V0

2D(ur u/j0), with j0 a short-
wavelength cutoff. The overdamped equation of motion for
the CDW phase variablef is given by10

] tf52
D

K

dH
df

1v0

5D¹2f1v01Ṽ~r !sin@2kFx1f~r ,t !#,

~2.3!

whereD5(m/m* )tvF
2 has the dimension of a diffusion con-

stant (l 2t21) . Heret is the relaxation time of a thermally
excited phonon, whilem andm* are the electronic mass and
effective mass, respectively. We have also let

Ṽ(r )5(D/K)V(r ). The second term on the right-hand side
of Eq. ~2.3! arises from an electric fieldE applied along the
x direction, with v05Ee(t/m* )2kF , and can be shifted
away byf→f1v0t. The ‘‘force’’ v0 has dimensions of
frequency (t21) and actually represents the ‘‘washboard fre-
quency’’ v052kFv of a freely sliding CDW~with velocity
v) driven by an external electric fieldE, in the absence of
quenched disorder. Equation~2.3! is the conventional
Fukuyama-Lee-Rice~FLR! model of CDW dynamics,10

which has been studied extensively both analytically and nu-
merically, particularly near the depinning transition. The
FLR model exhibits a depinning transition at a threshold
field ET , corresponding to a threshold force
sT5ETe(t/m* ).

As discussed in Ref. 6, the FLR equation is incomplete in
the strongly driven regime. It is essentially a near-
equilibrium description, in which only the most relevant per-
turbation ~the driving field! has been added to the equilib-
rium relaxational dynamics. Several additional effects
become important in the sliding state.

The most important such effect is that ofconvection. In
particular, in a CDW moving with velocityv, the partial time
derivative] t in Eq. ~2.3! must be replaced by the total con-
vective derivativeDt5] t1v]x . More generally, the linear
derivative (]xf) term arises because the electric field breaks
the reflection symmetryx→2x. Note that the coefficient of
this term is small for small velocities, which is why it is
neglected in the usual equilibrium and near-static~i.e., CDW
depinning! contexts.

A second term ordinarily omitted from the FLR equation
in equilibrium arises from coupling to the underlying peri-
odic lattice. This intrinsic pinning in the direction of motion
can be incorporated in Eq.~2.3! by the replacement
V(r )→V(r )1W(x), whereW(x) is a periodic potential,
W(x)5W0cos(Qx), and Q is in general incommensurate
with 2kF . While in other contexts such an incommensurate
periodic potential can be safely neglected, we will see that it
gives rise to important effects for the asymptotic behavior in
the strongly driven limit.

Including both these effects, we arrive at a suitable gen-
eralization of the FLR equation,

] tf5D¹2f1v02s]xf1@Ṽ~r !1W̃~x!#

3sin@2kFx1f~r ,t !#, ~2.4!

where again a numerical factor has been absorbed into the
periodic potentialW̃(x). We have allowed for renormaliza-
tions of the convective term by keeping the coefficients
general, but we expects;v. Equation~2.4! is capable of
describing the behavior of the CDW~up to the aforemen-
tioned caveats respecting phase slips and thermal fluctua-
tions! in the full range of applied fields from well below to
far above the nominal threshold field.

In fact, Eq.~2.4! is so general that it is a rather inappro-
priate point from which to study the moving state. This is
made evident by making the transformationf5v0t1f̃, in
order to focus on the fluctuationsf̃ around the uniformly
sliding CDW. The resulting equation of motion forf̃ con-
tains force terms which oscillate rapidly in time. To deter-
mine their effect at time scales longer than 2p/v0, one must

54 12 799DYNAMICAL TRANSITION IN SLIDING CHARGE- . . .



develop instead aneffectiveequation of motion for a coarse-

grained~temporally and spatially averaged! phasef̃̄. In what
follows we will drop the overbar and denote the coarse-
grained phase variations simply byf̃.

The coarse-graining procedure may be explicitly per-
formed in two different ways. The simplest method is a vari-
ant of the high-velocity expansion about the sliding state,7

obtained by iterating a formulation of Eq.~2.4! as an integral
equation. A more complicated, but conceptually more clear
approach is to coarse grain using renormalization group
~RG! methods, in which short-wavelength and high-
frequency components off̃ are explicitly integrated out in a
field-theoretic formulation. A similar calculation was carried
out recently in a different context by Rost and Spohn.12 Both
approaches are straightforward but tedious, and we simply
quote the results in what follows.8

Several simplifications are obtained in this effective
coarse-grained description. The most important is the modi-
fication of the random potential termṼ(r )sin(2kFx1f),
which, as mentioned before, becomes oscillatory. A careful
treatment reveals, however, that this term does not strictly
average to zero in the coarse-grained model. Instead, as dis-
cussed in Refs. 11 and 6, it generates an effective spatially
varying drag forceFp(r ). To leading order in 1/v0, its cor-
relations arêFp(r )Fp(0)&5F0

2d(r ) with F05Ṽ0
2/4v0. This

may be understood physically as simply reflecting variations
of the impurity density in different regions of the sample,
which then exert a spatially random drag force on the CDW.

An important difference between this term and the origi-
nal sine-Gordon-type term is that it does not prefer any par-
ticular value of the phase variationf̃. This is in fact an exact
result in the moving phase, reflecting the nontrivial transfor-
mation property f̃→f̃1v0t under a time translation
t→t1t. In general terms, the equilibrium-ordered phase of
the CDW is described as a state of spontaneously broken
spatial translation symmetry. This state is highly susceptible
to disorder, because randomness explicitly breaks precisely
this symmetry—i.e., it acts as a random field. By contrast,
the sliding CDW breakstime-translation symmetry, which is
anexactinvariance of the system, even withṼÞ0.

A second simplification occurs in the intrinsic pinning
term. Like the random potential, this term also becomes os-
cillatory in time, but generates a nontrivial correction upon
coarse graining. To second order in a gradient expansion, the
correction has the form of an additional drag force
dFW;(2W0

2/2v0)@12c1u¹'f̃u22c2u]xf̃u2#, where c1
;c2;1/(2kF)

2 are constants. Physically, the gradient cor-
rections arise because the drag force from intrinsic pinning
becomes less effective as the CDW wave vector~whose local
shift is proportional to¹f̃) becomes less commensurate
with the underlying lattice. For simplicity, we will focus on
the isotropic casec15c2, which is expected to be approxi-
mately correct for CDW’s whose density profile is well ap-
proximated by the single Fourier harmonic form of Eq.~2.1!
and which is not too far from commensurability. The result-
ing gradient-squared correction is a realization of the Kardar-
Parisi-Zhang~KPZ! nonlinearity in the CDW system.

The final coarse-grained equation of motion is

] tf̃5D¹2f̃2s]xf̃1Fp~r !1
l0

2
~¹f̃!2, ~2.5!

where l0;W0
2/(8v0kF

2). This coefficient is positive, be-
cause a misoriented CDW~with ¹f̃Þ0) is less slowed
down than an aligned one~with ¹f̃50).

Equation~2.5! is the basis for our study of the moving
state. We caution, however, that some information is lost in
this approach, and various nonuniversal high-energy features
of the CDW behavior are no longer easily calculable. An
important example is the full form of theI -V curve. As can
be explicitly seen in the coarse-graining procedure, the CDW
frequency] tf as a function ofE or v0 has nontrivial con-
tributions from the short-wavelength degrees of freedom not
contained in Eq.~2.5!. An additional difficulty is that the
drag forcesF0 and l0 are strongly force dependent. Our
long-wavelength descriptiondoes, however, capture thesin-
gular part of the CDW velocity. We define

dvsing5^] tf̃&, ~2.6!

where the overbar denotes a spatial average and the brackets
denote the disorder average. The quantitydvsing is actually a
frequency shift. Note that, because this includes only the
singular part of thev(v0) relation, there is no particular
preferred sign forddvsing/dv0.

The spatial fluctuations of the phase can be characterized
by their growth with the system size. A useful measure of
such fluctuations employed in the study of interface dynam-
ics is the ‘‘interface width’’ in the long-time saturated re-
gime, given by

w~Lx ,L'![^@f~r ,t !2f~r ,t !#2&1/2, ~2.7!

in a d-dimensional system of sizeLxL'
d21 .

If the KPZ term is neglected in Eq.~2.5!, the equation is
linear and can be solved exactly by Fourier transformation,
as discussed in Ref. 6. The CDW response is linear and
^] tf&5v0; i.e., dvsing50. The random mobility yields a
static distortion of the CDW,

f̃~q,v!5
Fp~q!

Dq21 isqx
2pd~v!. ~2.8!

The corresponding correlation function iŝuf̃(q,v)u2&
5S(q)2pd(v), with S(q)5F0

2/@(Dq2)21s2qx
2# the static

structure function. Thes]xf term in Eq.~2.5! is crucial in
determining the decay of spatial correlation in the moving
state. If this term is absent, fluctuations are isotropic, with
S(q);q24, so thatw(L);L (42d)/2, for Lx5L'5L. In par-
ticular, in d51, w(L);L3/2, and the system will develop a
‘‘groove’’ instability of the type discussed in Ref. 13. The
cased52 is marginal withw(L);L. Thes]xf term sup-
presses the growth of fluctuations in thex direction. When
this term is present, in the limit whereLx@L' ands@1, the
CDW is ‘‘riding over’’ the static disorder and
w(Lx ,L');Lx

1/2.

III. TILTED MAGNETIC FLUX LINE ANALOGY

When the KPZ couplingl0 is nonzero, Eq.~2.5! can be
mapped into the problem of a directed path in a random
potential via the well-known Cole-Hopf transformation.14 By
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lettingC(r ,t)5e(l0/2D)f̃ (r ,t), a linear equation of motion for
C(r ,t) is obtained,

] tC5Fs]x1D¹21
l0

2D
Fp~r !GC. ~3.1!

The solution of Eq.~3.1! can be written as a path integral,

C~r ,t !5E
~0,0!

~r ,t !
D@r #expS 21

2D E
0

t

dt8F12 ~dr /dt8!22s x̂

2l0Fp~r !G D . ~3.2!

Equation~3.2! can also be interpreted as the partition func-
tion of a tilted magnetic flux line in the presence of columnar
pinning centers. A single magnetic flux line in a
(d11)-dimensional sample of thicknessL in the direction of
the applied fieldH, chosen as thez direction (H5H0ẑ), is
parametrized by its trajectoryr (z) as it traverses the sample
along the field direction. The sample contains columnar pin-
ning centers aligned with thez direction that can pin the flux
line over its entire length. An additional magnetic fieldH'

applied perpendicular to thez direction tilts the flux line
away from the direction of the columnar pins. The flux line
free energy is then given by

G5E
0

L

dzH ẽ1
2 Fdrdz2

h

ẽ1
G 21U„r ~z!…J , ~3.3!

whereẽ15(f0/4plab)
2ln(k) is the tilt modulus~we assume

for simplicity an isotropic superconductor!, h5H'f0/4p,
andU(r ) is the random pinning potential generated by the
columnar defects. The pinning potential is correlated along
the direction and has short-range correlations in the plane,
with ^U(r )U(r 8)&5Dd(r2r 8). The partition function of a
vortex line with fixed end pointsr (0)50 and r (L)5r' is
obtained by summing the Boltzmann factore2G/kBT over all
paths connecting the end points and it is given by

Z5E
~0,0!

~r ,t !
D@r #expF2

1

TE0
L

dzH ẽ 1

2 S drdz2
h

ẽ 1
D 2

1U„r ~z!…J G . ~3.4!

The dynamics of ad-dimensional driven CDW atT50 can
therefore be mapped onto the tilt response of a magnetic flux
line in a (d11)-dimensional superconductor with columnar
pins, at finite temperature. In this mapping the time argument
of the CDW corresponds to the flux line coordinatez along
the field direction, the diffusion constantD plays the role of
temperature, according toD→T/2ẽ1, and the driving force
s corresponds to a tilt fieldh5hx̂ with s→h/ ẽ1. The cor-
respondence between the various CDW and flux line quanti-
ties is summarized in Table I.

Equations ~3.4! and ~3.2! differ by a constant term
h2L/2ẽ1 in the flux line free energy which represents the
field energy associated with the tilt fieldH' . In the absence
of a tilt field, the flux line is localized on the strongest co-
lumnar defect. At low temperature the localization length,
defined as the radius of the tube to which the flux line is
confined, is of the order of the range of the pinning potential.

Thermal fluctuations increase the localization length, but are
not sufficient to depin the flux line ind51,2. A sufficiently
strong perpendicular fieldH' will, however, depin the flux
line. The response of the flux line to the field is measured by
the average induction in the directionB' of the transverse
field. We define a dimensionless inductionb'5B' /n0f0.
This is also the mean slope of the tilted flux line. The induc-
tion can be written as b'5(h/ ẽ1)14pm' , where
m'52]g/]h is the~dimensionless! total magnetization and
g(h) is the Gibbs free energy per unit length of the tilted flux
line. It has been argued that a flux line array pinned by co-
lumnar defects exhibits a transverse Meissner effect, with
b'50 for tilt field below a critical valuehc andb'Þ0 for
h.hc . The tilt response of asingleflux line pinned byone
columnar defect in (111) dimensions can be evaluated ana-
lytically ~see the Appendix and Ref. 16!. One finds that in
the limit Lx→` there is a transverse Meissner effect for
h,hc . For ad-function pin withU(r )52U0d(r ), we find
hc5(U0 /T)4pẽ1 /f0. In the pinned configuration for
h,hc the flux line free energy per unit length is
g5(h22hc

2)/2ẽ1, so that m'52h/ ẽ1 and b'50. For
h>hc the line is depinned andg50. This givesm'50 and
b'5h' / ẽ1. The transition from a pinned to a depinned con-
figuration of a$a single% magnetic flux line is associated with
a jump discontinuity in the induction or tilt slopeb' at hc
and can therefore be classified as afirst-order phase transi-
tion. For a general pinning potential we estimatehc as the
field required to depin the flux line,hc

2/2ẽ1;AD, or
hc;(2ẽ1AD)1/2. Similar conclusions were reached by
Balents and Simon15 for the tilt response of a single flux line
in a random distribution of columnar pins in 111 dimen-
sions. Also Hatano and Nelson16 very recently related the
depinning of a flux line from columnar defects by a trans-
verse field to the localization transition of a quantum particle
in a constant imaginary vector potential. By exploiting this
mapping they showed that the transverse Meissner effect per-
sists in bothd51,2. It should, however, be stressed that the
tranverse induction of an array of tilted$a interacting% flux
lines is expected to change continuously at the transition, at
least atd52.16,17 The transverse Meissner effect in a bulk
superconductor is therefore a continuous transition, with no
latent heat.

The transverse Meissner effect for the vortex line trans-
lates into afirst-orderdynamical phase transition of the slid-
ing CDW. We recall that the CDW driving forces corre-
sponds to the tilt fieldh and dvsing;g. There is then a
transition at a characteristicsc from a state withdvsingÞ0
for s,sc to a state where the external drive dominates and
washes out the effect of disorder in the direction of the drive,

TABLE I. The correspondence between the various CDW and
flux line quantities, according to the mapping from Eqs.~3.1!–~3.4!.

CDW Flux line

D T/2ẽ1
s h/ ẽ1
l0F0 AD/ ẽ1
2l0dvsing g/ ẽ1

l0

ddvsing
ds

m'

54 12 801DYNAMICAL TRANSITION IN SLIDING CHARGE- . . .



yielding dvsing50 for s,sc . The driving forcesc where
the transition occurs can be estimated from the flux line anal-
ogy using Table I and the estimatedhc'(2ẽ1AD)1/2 as
sc'A2l0F0. The sliding phase withdvsingÞ0 at small driv-
ing forces corresponds to the situation where the flux line is
pinned on the strongest columnar defects and exhibits a
transverse Meissner effect. As we will show in the next sec-
tion, this is a disorder-dominated regime for the sliding
CDW with a ‘‘rough’’ spatial profile of the phasef(r ,t).
We will refer to this phase as a rough sliding phase. For
s>sc the CDW is in a sliding phase withdvsing50, corre-
sponding to a flux line depinned by the tilt field and ‘‘riding
over’’ the columnar pins. As shown below, this phase is
characterized by anisotropic spatial fluctuations of the phase.
Fluctuations are suppressed in the direction of the driving
force and we will refer to this phase as a ‘‘flat’’ phase.

IV. NUMERICAL RESULTS

We have integrated numerically Eq.~2.5! in both d51,2
by discretizing the spatial coordinates, with lattice spacing
equal to the rangeRp of the pinning potential, chosen as our
unit of length. We assume an initially flat configuration
f(r ,t50)50 and follow the dynamics until the system re-
laxes to a steady state. The relaxation time scales as
Lx
2L'

2d22 . The average CDW properties in the saturated slid-
ing state are evaluated by performing both a time average
and an average over many realizations of the disorder.

Figure 1 shows the frequency shiftdvsing of the CDW
defined in Eq.~2.6! as a function of the driving forces for
d52. A similar behavior is obtained ind51. As the system
size Lx is increased one observes a transition between two
sliding phases. For the parameter values used here the esti-
mated critical force issc5A2, a value that agrees quite well

with our numerical results. At large driving forces disorder is
washed out by the external drive anddvsing approaches zero
asLx→`. For small driving forces both impurities and in-
trinsic pinning are important and yield a largedvsing. While
the drop ofdvsing above a critical force does become sharper
asLx increases, the approach to the sharp transition expected
in the limit Lx ,L'→` is rather slow. This can be understood
by examining the dependence on the system sizeLx of the
free energy of a single flux line pinned by a single columnar
defect evaluated in the Appendix. As discussed in the previ-
ous section, this simple model exhibits a first-order depin-
ning transition in the limitLx→`. On the other hand, the
finite-size corrections to the flux line free energy are large in
the regionh.hc , as shown in Fig. 5. Forh,hc the flux line
is localized on the columnar pin and does not ‘‘see’’ the rest
of the system. As a result, in this region the finite-size cor-
rections to the free energy vanish exponentially with system
size. Forh.hc the flux line is delocalized and samples the
entire system. In this region the free energy is quite sensitive
to the finite system size, withg(Lx)2g(`);1/Lx . The scal-
ing of dvsing(Lx ,L') in our driven CDW problem—which
maps onto a tilted flux line pinned by a random distribution
of manycolumnar defects—is even slower than obtained in
the single pin model, withdvsing;Lx

1/2 approximately. This
slow approach to the asymptotic limit can, however, be un-
derstood by the same physical argument.

To better display the change ofdvsing at the transition we
show in Fig. 2 the evolution of the curvedvsing/ds versus
s with system sizeLx for d52. In the limit Lx→` the
derivative will exhibit a jump discontinuity at the transition.
As the driving forces is proportional to the applied voltage
~electric field! anddvsing is proportional to the currentI , this
corresponds to a jump discontinuity in the differential con-
ductanceGdiff5dI/dV. Our model only allows us to predict
the singular shiftdvsing and therefore the singular behavior

FIG. 1. The singular partdvsing of the CDW velocity as a func-
tion of applied forces for various system sizes. The critical force
sc is estimated to besc;A2l0F05A2 for the set of parameters
used in the figure.

FIG. 2. The derivative of the CDW velocitŷ] tf̃& with respect
to the applied forcess. This figure can also be interpreted as the
transverse magnetizationm ~measured in units off0/4p) versus
transverse magnetic fieldHx for a flux line in columnar defects.

12 802 54CHEN, BALENTS, FISHER, AND MARCHETTI



of Gdiff , but not the full nonlinear form of theI (V) curve.
The magnitude of the jump discontinuity indvsing/ds is,
however, proportional to the jump discontinuity inGdiff . The
precise relation and the possibility of observing this effect
will be discussed in the next section. From Table I we see
thatdvsing/ds corresponds to the magnetization of the tilted
flux line. Figure 2 displays then the transverse Meissner ef-
fect discussed earlier.

By translating the results obtained in the Appendix for the
flux line, we find that if the random forceFp(r ) of Eq. ~3.1!
is replaced by a singled-function pin, the frequencydvsing is
given by

dvsing5
sc
22s2

2l0
. ~4.1!

This form is shown as a dashed line in Fig. 1 and fits very
well our data fors,sc . This is easily understood because
in the regions,sc the flux line is localized onto the stron-
gest pin and its free energy is basically unaffected by the
presence of the other defects.

The two sliding states of the driven CDW differ qualita-
tively in the behavior of the spatial fluctuations of the
coarsed-grained phasef(r ,t). Fors,sc pinning dominates
the dynamics. The sliding state is rough with large spatial
fluctuations of the phase both in the directions parallel and
perpendicular to the external drives. For s.sc the term
s]xf washes out the effect of pinning in thex direction,
damping out phase fluctuations in this direction. In this case,
the spatial fluctuations of the phase are anisotropic and are
suppressed in the direction of the external drive. This behav-
ior is shown qualitatively in Fig. 3 that displays contour plots
of the CDW phase for increasing values ofs.

To quantify the behavior of phase fluctuations in the two
sliding states, we have examined the interface width
w(Lx ,L') defined in Eq.~2.7!. In the isotropic disorder-
dominated phase fors,sc we expectw;Lx;L' . To un-
derstand this, we recall that whens50 the path-integral
solution~3.2! of the CDW problem can also be interpreted as
the transfer matrix solution of the Schro¨dinger equation for a
quantum particle in a random potential ind spatial dimen-
sions and imaginary time.16 The width w(Lx ,L') corre-
sponds to the fluctuations in the energy of the quantum par-
ticle as a function of system size. Ford51 the quantum
particle is always localized. The states are exponentially lo-
calized and one can show17 that the energy fluctuations scale
as the system size; i.e.,w(Lx);Lx . A similar behavior is
expected ford52. In the large-s phase, we postulate an
anisotropic scaling ansatz for the interface width,

w~Lx ,L'!5Lx
x f ~L' /Lx

z!, ~4.2!

wherex andz are two new exponents. ForLx
z@L' the sys-

tem looks one dimensional, extended along thex direction.
An approximate equation of motion in this regime is ob-
tained from Eq.~2.5! with ¹→]x . For larges both pinning
by impurities and intrinsic pinning which yields the KPZ
nonlinearity are negligible compared to thes]xf term and
one can obtain an approximate solution of the equation,
which yieldsw(Lx ,L');Lx

1/2. The scaling functionf (s) in
Eq. ~4.2! must therefore obeyf (s);s(x21/2)/z for s!1. This
result is easily understood by exploiting the mapping of

FIG. 3. Two-dimensional CDW phase configurations
f(x,y;t)2f(x,y;t) for various driving forcess at long time for
l051.0 andF051.0. The estimatedsc is sc5A2. The contour
plots are~a! s50.1,~b! s51.4, and~c! s510.0. The relative value
of the CDW phasef is given by the grey scale intensity, with the
brightest spots corresponding to the highestf and the darkest spots
the lowestf.
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driven CDW dynamics onto the problem of the tilted mag-
netic flux line. Fors@sc (h@hc) the flux line is delocalized
and ‘‘rides over’’ many columnar defects. The interface
width w(Lx ,L') corresponds the fluctuations of the flux line
free energy, which in this limit is determined by a sum of
independent random energies, yielding aw(Lx ,L');Lx

1/2

scaling forLx
z@L' . In the opposite limit,L'@Lx

z , the sys-
tem looks one dimensional along they direction for d52.
Thes]xf term has no effect and fluctuations are dominated
by disorder, with the resultw(Lx ,L');L' . This follows
again from the exponential localization of states of a one-
dimensional quantum particle in a random potential.
The scaling function obeysf (s);s for s@1 and
w(Lx ,L');Lx

x2zL' for L'@Lx
z in d52. A scaling collapse

of our numerical results for the interface width ind52 is
shown in Fig. 4. The best collapse is achieved with
x50.560.05 andz50.8560.05. These results agree well
with the asymptotic values discussed earlier.

V. CONCLUSION

We have studied the dynamics of driven CDW’s moving
through a random medium at zero temperature, at driving
forces well above the threshold force where the depinning
transition occurs. The CDW model considered incorporates
new nonequilibrium terms which are important in the
strongly driven regime and are generally not included in the
FLR model. We have found that ind51,2 the driven CDW
exhibits a first-order phase transition at a critical driving
forcesc;A2l0F0. Fors,sc disorder controls the dynam-
ics yielding a rough sliding phase with spatial fluctuations of
the phase that grow linearly withLx , indicating that the
phase-only model breaks down. Fors.sc , the driving
force washes out the effect of disorder in the direction of
motion. The CDW slides uniformly withdvsing50. This

moving phase is highly anisotropic as the external drive sup-
presses the spatial fluctuations of the phase in this direction.
The CDW remains ‘‘rough’’ in the direction transverse to the
external drive. By using the Cole-Hopf transformation, the
problem of CDW dynamics at large driving force can be
mapped onto the problem of the tilt response of a magnetic
flux-line pinned by columnar defects. The dynamical transi-
tion of the sliding CDW corresponds to the transverse Meiss-
ner effect of the tilted flux line.

Our coarsed-grained model of phase dynamics given in
Eq. ~2.5! only applies in the strongly driven phase, well
above theT50 threshold field,ET . In the weak pinning
limit, one can relateET to the Lee-Rice lengthL0 that rep-
resents the typical domain size in a pinned CDW. The pin-
ning lengthL0 is the length where the elastic strains induced
by disorder are of order 1 and is given by

L05F\vFp

V0
S j0

d/2

cd21D G2/~42d!

.

Herec is the average spacing between the CDW chains and
j0 is the range of the disorder potential. We expectj0;c.
The threshold field is then estimated by balancing the total
force on a domain of sizeL0 to the elastic force acting on the
same domain, with the result,

ET5
\vFkF
2ecd'

L0
d22 .

This corresponds to a threshold forcesT5ETe(t/m* ). The
first-order transition is predicted to occur at a critical force

sc;A2l0F0, ~5.1!

where to leading order in 1/s, l0;W0
2/8kF

3s and
F0;V0

2/4kFs. Recalling thats5Eet/m* , we can solve Eq.
~5.1! self-consistently for a critical fieldEc , with the result

Ec5S e t

m* D
21

sc5S pr1
e DAW0V0. ~5.2!

The first order transition will only be observable ifEc
@ET . We find

Ec /ET;
2p2r1
kF

AW0

V0
S j0
L0

D
for d52. The first-order phase transition atEc may therefore
be observable in a dirty material (L0'c) with appreciable
intrinsic pinning (W0@V0). Using the results of our calcu-
lation of the tilt response of a flux line pinned by a single
defect ~Appendix!, we estimate the magnitude of the jump
discontinuity in dvsing at sc as udvsing/dsu'sc /l0

5A2F0 /l0. This corresponds to a jump discontinuity in
Gdiff that can be expressed in terms of microscopic CDW
parameters as

DGdiff5S kFpcD S L'

Lx
D2e2tm* S V0

W0
D

for d52. The discontinuity inGdiff is very small when the
conditionW0@V0 of observibility of transition is satisfied.
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APPENDIX: SINGLE FLUX LINE
AND ONE COLUMNAR DEFECT

In order to gain some understanding of the dependence of
our results on the sizeLx of the system in the direction of the
external driving force~or tilt field for the magnetic flux line!,
it is instructive to consider the action of a transverse tilt field
on a flux line pinned by asingleattractive columnar defect.
The partition function is given by Eq.~3.4!, with U(r ) the
pinning potential due to the single impurity, chosen for sim-
plicity as an attractived function,

U~r !52U0d~r !. ~A1!

Following Ref. 18, Eq.~3.4! can be thought of as a path
integral in imaginary time and the partition function can be
rewritten as a quantum mechanical matrix element,

Z~r' ,0;L !5^r'ue2LH/Tu0&, ~A2!

whereu0& and ^r'u are initial and final states localized at0
and r' , respectively, and the ‘‘Hamiltonian’’H is the op-
erator,

H52
1

2ẽ1
~T“2h!21U~r !. ~A3!

The operatorH is non-Hermitian asH†(h)5H(2h). To
find its spectrum we need to solve both the right and left
eigenvalue problems, defined by

HunR5Enun
R ~A4!

and

H†un
L5Enun

L , ~A5!

whereun
R(x) andun

L(x) are the right and left eigenfunctions,
respectively, normalized according to*0

Ldxun
L(x)un

R(x)51,
andEn are the corresponding eigenvalues. The path integral
~3.4! can then be expressed in terms of the eigenvalues and
eigenfunctions of the fictitious quantum problem, as

Z~r' ,0;L !5(
n

un
R~r'!un

L~0!e2EnL/T. ~A6!

This is also equivalent to writing the path integral in terms of
the eigenvalues of a corresponding transfer matrix. In the
limit L→` the smallest eigenvalue dominates and the free
energy per unit lengthg(h) of the flux line is determined by
the real part of the ground-state energyE0 of the quantum
problem, according tog(h)5E01h2/2ẽ1. For localized
states, the ground-state wave functionu0(r ) determines the
localization length of the flux line.18

For simplicity we begin by considering a flux line in
111 dimensions, withx the direction of the applied tilt field.
The vortex free energy is given by the ground state of the
non-Hermitian ‘‘Schro¨dinger equation,’’ given by19

F2
1

2ẽ1
S T d

dx
2hD 22U0d~x!Gu~x!5Eu~x!, ~A7!

to be solved with periodic boundary conditions
u(0)5u(Lx). We are considering here the right eigenvalue

problem and dropping for simplicity of notation the labels on
the eigenfunction. The solutions of Eq.~A7! for xÞ0 are
given byu6(x)5e6kxehx/T, with k5A22ẽ1E/T

2. The gen-
eral solution of Eq.~A7! can then be written as

u~x!5Ae~h/T1k!x1Be~h/T2k!x, ~A8!

whereA andB are constants to be determined by the peri-
odic boundary condition and the condition that the wave
function have a slope discontinuity determined by thed
function,

S dudxD
Lx

2S dudxD
0

5
2ẽ1U0

T2
u~0!.

The condition for a nontrivial solution to exist yields the
eigenvalue equation, given by

cosh~hLx /T!2cosh~kLx!1
ẽ1U0

T2k
sinh~kLx!. ~A9!

In the limit Lx→`, there is one localized ground state for
h,hc , with hc5 ẽ1U0 /T. Forh>hc all states are extended.
The ground-state energy is given by

E0
`52

hc
2

2ẽ1
, h,hc ,E0

`52
h2

2ẽ1
, h>hc . ~A10!

The ground-state wave function is given by

u0
R~x!5AT

hc
e2~hc2h!x/T, h,hc ,

u0
R~x!5

1

ALx
, h>hc . ~A11!

It is exponentially localized forh,hc , with localization
length j;T/(hc2h). If the system is infinitely long in the
field (z) direction (L→`), the flux line free energy per unit
length is simplyg(h)5E01h2/2ẽ1. The free energy per unit
length is shown in Fig. 5 as a function ofh ~thick line!.
Clearly the magnetizationm' is m'52h/ ẽ1 below hc and
cancels the applied field, yieldingb'50, as required for
transverse Meissner effect. Forh>hc , b'5h/ ẽ1, which is
the value in the absence of disorder. The induction has a
jump discontinuity athc .

We now discuss the corrections to the above results due to
a finite system sizeLx . This will be useful for understanding
our numerical results for the driven CDW. One can study
analytically the finite-size corrections in the limitLxh@1.
Keeping the leading finite-size correction, the real part of the
ground-state energy is given by

E0~Lx!'2
hc
2

2ẽ1
@112e2Lx~hc2h!/T#, h,hc ,

E0~Lx!'2
h2

2ẽ1
1

1

Lx
S hTẽ1 D lnS 12

hc
h D

'2
h2

2ẽ1
2

Thc
Lxẽ1

, h>hc , ~A12!

where we have assumedh@hc . In the regionh,hc , where
the flux line is pinned on the defect, the finite-size correc-
tions vanish exponentially asLx /j, with j the localization
length. Forh.hc the flux line is depinned and samples the
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whole sample. In this region the asymptotic (h@hc) correc-
tion to the ground-state energy of an infinite system vanishes
only as 1/Lx . The free energyg(h,Lx) is shown in Fig. 5 for
a few values of system sizeLx .

The CDW frequency shiftdvsing is simply proportional to
the negative ofg(h) ~see Table I!. The similarity in the
finite-size dependence of Figs. 1 and 5 is apparent. Finally,
Fig. 6 shows the dependence of the normalized probability
density in the ground stateP(x)5uR(x)uL(x) on system
sizeLx . The tilt induces a mismatch of ordere

2(hc2h)Lx /T in
the wave function at the system boundaries. Forh!hc this

mismatch is exponentially small and the periodic boundary
conditions are easily accommodated. Forh;hc the boundary
conditions force a large negative gradient in the wave func-
tion, as apparent from Fig. 6. Physically this corresponds to
the fact that forh;hc and finiteLx long sections of the flux
line are still pinned on a strong columnar pin, yielding large
finite-size effects in the region above the depinning transi-
tion.
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FIG. 5. The free energy per unit lengthg(h) of a tilted flux line
pinned by a single defect as a function ofh/ ẽ1. Both the result in
the thermodynamic limitLx→` ~thick line! and the finite-size re-
sults are shown.

FIG. 6. Probability densityP(x)5uR(x)uL(x) for various sys-
tem sizes at~a! h50.8hc and ~b! h51.2hc . In ~a! the probability
density decays exponentially to zero over a lengthx;j;5 in the
limit Lx→`. The finite-size corrections are determined by the value
of P(x) in the central flat region. They are therefore rather small
even for not too large a value ofLx . In ~b! P(x)51/Lx in the limit
Lx→`. This value is shown as an horizontal line for eachLx .
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