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Dynamical transition in sliding charge-density waves with quenched disorder
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We have studied numerically the dynamics of sliding charge-density w@@8gV's) in the presence of
impurities ind= 1,2. The model considered exhibits a first-order dynamical transition at a critical driving force
F. between “rough” (disorder dominated(F<F.) and “flat” (F>F.) sliding phases where disorder is
washed out by the external drive. The effective model for the sliding CDW's in the presence of impurities can
be mapped onto that of a magnetic flux line pinned by columnar defects and tilted by an applied field. The
dynamical transition of sliding CDW’s corresponds to the transverse Meissner effect of the tilted flux line.
[S0163-18296)02841-X

[. INTRODUCTION range translational order. In two dimensions the moving
solid phase is unstable due to the proliferation of phase slips.
The study of the dynamics of an ordered medium driven In the present paper we focus on a related model of the
by an external force through quenched impurities is relevantlynamics of sliding CDW's that incorporates a nonequilib-
to many physical systems. Examples include charge-densitjum nonlinear term of the Kardar-Parisi-Zhang{PZz)
waves(CDW'’s) in anisotropic metafsand flux-line lattices form. which was neglected in Ref. 6. To render the analysis
(FLL’s) in the mixed state of type-Il superconductéishas tractable with this addition, we have, however, neglected
been argued that in both these systems impurities destroy th@ase slips and, for most of what follows, thermal fluctua-
equilibrium long-range translational orddtRTO) and pin  tions. While the neglect of thermal noise has very little effect
the medium. A driving force®, originating from an electric upon our results, the omission of phase slips appears to be
field or a current, can overcome the constraining forces fronfnore severe. Indeed, the model considered here is by defini-
the impurities and cause the medium to slideTAtO, clas-  tion an elastic continuum at all driving forces and a “liquid
sical CDW'’s exhibit a depinning transition at a critical driv- phase” with dislocations cannot occur. We expect that at
ing force F; from a pinned F<F+) to a sliding E>F+) sufficiently low temperature and large driving force the omit-
state. This transition has been described as a dynamic critici#d defects will make only minor changes to our results, at
phenomenon. The nonlinear dynamics of the system near tHeast on experimentally observable time scales. The(tnie
critical point has been studied extensively both by numericafinite time) asymptotics is, however, likely to be affected by

simulatiorf and by 4- e expansiorsand is fairly well un-  this omission. o _ _
derstood. Interestingly, despite its strong topological constraints,

In contrast, the dynamics of driven disordered media aPur model nevertheless exhibits a phase transition at a criti-
large driving force, well above the depinning transition, hascal driving forceF from an isotropic rougltdisorder domi-
only recently begun to receive some attention. In the slidingated flowing phase at small driving forces, to an aniso-
state the pinning by impurities is less effective and it hagropic smooth flowing phase where nonlinearities are washed
been suggested that the medium may recover LRTO at suput by the external drive. The average CDW velocity
ficiently large velocity. Recent experiments in Y-Ba-Cu-O aschanges sharply at the transition, which is argued to be first
well as simulations of two-dimensional flux lattices have in-order. The two phases are characterized by different values
deed shown that the flux array orders at large drives. KoOf the roughening exponent governing the growth of spatial
shelev and Vinokurhave described this phenomenon as afluctuations of the CDW phase with the sizgof the system
true phase transition from a flowing liquid to a moving solid. in the direction of the external drivex(direction. In the
Whether the ordering of driven flux lattices is a true dynami-rough phase the phase fluctuations grow linearly Wih
cal phase transition or a crossover is still an open questionw(Ly,L,;)~Ly, indicating that the elastic model breaks

Some of us recently addressed this class of questions Bjown. This suggests that in a corresponding model that al-
focusing on a model of driven CDW's in the presence oflows for phase slips, this phase would be a flowing liquid.
disorder and thermal noi$eThe model considered in Ref. 6 Above F, the disorder is washed out in the direction of mo-
allows for disorder-induced phase slips of the CDW. In thredion. Fluctuations are strongly suppressed in this direction
dimensions it yields a dynamical phase transition of the slid<';1ndW(LX,LL)~L§’2 for LZ>L, , with z~0.85+0.05.
ing CDW from a disordered phase with plastic flow to a  Our results have two implications for CDW experiments
temporally periodic “moving solid” phase with quasi-long- at high velocities, provided phase slip effects are sufficiently
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suppressed at low temperatures. First, above the critical foroﬁé(r):(D/K)V(r)_ The second term on the right-hand side
(F>F,), translational correlations are expected to be highlyyy Eq. (2.3 arises from an electric fielf applied along the
anisotropic, decaying much more rapidly transverse to thg direction, with wy=Ee(r/m*)2ke, and can be shifted
motion than along it. This implies a substantial increase irhway by ¢— ¢+ wot. The “force” w, has dimensions of
the ratio of widths of Bragg scattering peaks, frequency { 1) and actually represents the “washboard fre-
d [Ak, quency” wo=2krv of a freely sliding CDW(with velocity
dF A_k" >0, (1.9 v) driven by an external electric field, in the absence of
guenched disorder. Equatiof2.3) is the conventional
whereAk, and Ak are peak widths p_erpendicular and par- Fukuyama-Lee-Rice(FLR) model of CDW dynamicé‘,’
allel to the CDW wave vector, respectively. Secondly, withinwhich has been studied extensively both analytically and nu
our model, the nonequilibrium ordering transition is Charac'merically, particularly near the depinning transition. The

terized by a jump discontinuity in the differential conduc- | R model exhibits a depinning transition at a threshold
tanceGdiffEdI/dV. As discussed in furthel’ deta” in the next field ET! Corresponding to a threshold force

section, we are able to predict only the singular behavior of;_— g e(7/m*).

Gyt » and not the full nonlinear form of th(V) curve. As discussed in Ref. 6, the FLR equation is incomplete in
~ We expect these two results to survive in varying degreegne strongly driven regime. It is essentially a near-
in models including phase slip@nd hence experiments equilibrium description, in which only the most relevant per-
The strong anisotropy of the translational correlations in theyrpation (the driving field has been added to the equilib-

high-velocity phase should remain at low temperatures. Theiym relaxational dynamics. Several additional effects
resistance singularity is expected to be more sensitive tBecome important in the sliding state.

phase slipgas, indeed, is the entire smal phasg. Their The most important such effect is that cénvection In
effects are expected to round the stepGRy very near to  particular, in a CDW moving with velocity, the partial time
Fe. derivative g, in Eq. (2.3 must be replaced by the total con-
vective derivativeD;=d;+vdy. More generally, the linear
[l. EFFECTIVE MODEL FOR SLIDING CDW'’s derivative (@,¢) term arises because the electric field breaks

. the reflection symmetry— —x. Note that the coefficient of
Charge-density waves are coupled electron-phonon excl;

tations which exist in a class of anisotropic metals consistin%h;sléi:ren d Iii tsr:T;aLljlsL(;rl zmue}llilb\r/iilricgfds’ng;rl-csr:altzzwgé\;\t/ IS
of weakly coupled chains. In these materials the electronic 9 q '

o . N depinning contexts.
cjensny is sinusoidally modulated along the chah direc- pA secgnd term ordinarily omitted from the FLR equation
tion,

in equilibrium arises from coupling to the underlying peri-
p(r)=po+ p1€04 2Kex+ &(r,1) ], (2.1)  odic lattice. This intrinsic pinning in the direction of motion

whereke is the in-chain Fermi wave vector apd the am-  €a@n be incorporated in Eq(2.3) by the replacement
plitude of the charge modulation. At low temperature, due to¥ (1) —V(r) +W(x), where W(x) is a periodic potential,
the gap in the dispersion relation for the amplitude, ampli-V(X) =WocosQx), and Q is in general incommensurate
tude fluctuations are strongly suppressed and the dynami®éth 2Kg . While in other contexts such an incommensurate

can be described in terms of the phasenly. The Hamil- periodic potential can be safely neglected, we will see that it
tonian{ for a CDW in ad-dimensional metal can be written 9iVes rise to important effects for the asymptotic behavior in
ad the strongly driven limit.
K Including both these effects, we arrive at a suitable gen-
H= Ef dr[(V¢)2]+f drV(r)p,cod 2kex+ & (r, 1)1, eralization of the FLR equation,
(2.2 G =DV p+ wo— 09+ V(1) + W(x)]
where we have rescaled coordinates to obtain an isotropic X sin 2Kex+ ¢(r,t)], (2.9

elastic term. The coefficier{ is a stiffness constant. The

effect of impurities is described via a Gaussian random powhere again a numerical factor has been absorbed into the
tential V(r) with zero mean(V(r))=0, and short-range cor- periodic potentiaW(x). We have allowed for renormaliza-
relations, (V(r)V(0))=V3A(|r|/&), with & a short- tions of the convective term by keeping the coefficient
wavelength cutoff. The overdamped equation of motion forgeneral, but we expeet~v. Equation(2.4) is capable of

the CDW phase variable is given by° describing the behavior of the CDWip to the aforemen-
tioned caveats respecting phase slips and thermal fluctua-
o= — K 5—¢+w0 tiong) in the full range of applied fields from well below to
far above the nominal threshold field.
- DV2¢+w0+V(r)sir[2kFx+ S(r,0)], In fact, Eq.(2.4) is so general that it is a rather inappro-

priate point from which to study the moving state. This is
2.3 made evident by making the transformatign- w0t+5, in
whereDz(m/m*)TUE has the dimension of a diffusion con- order to focus on the fluctuationg around the uniformly
stant (’t~1) . Here 7 is the relaxation time of a thermally sliding CDW. The resulting equation of motion fgr con-
excited phonon, whilen andm* are the electronic mass and tains force terms which oscillate rapidly in time. To deter-
effective mass, respectively. We have also letmine their effect at time scales longer than/2,, one must
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develop instead aeffectiveequation of motion for a coarse- - o~ - Ao, _~,
= dp=DV?dp—adp+Fy(r)+—= (V) 2.
grained(temporally and spatially averagephaseg. In what ¢ ¢ 0dbtFp(n) 2 (Vo) 25

follows we will drop the overbar and denote the coarse
grained phase variations simply lay

The coarse-graining procedure may be explicitly per-
formed in two different ways. The simplest method is a vari-

ant of the high-velocity expansion about the sliding sfate, state. We caution, however, that some information is lost in

obtam_ed by iterating a fo_rmulatlon of E@.4) as an integral this approach, and various nonuniversal high-energy features
equation. A more complicated, but conceptually more cleag o cpw behavior are no longer easily calculable. An
approach is to coarse grain using renormalization groUgynortant example is the full form of theV curve. As can
(RG) methods, in which short-wavelength and high- he expiicitly seen in the coarse-graining procedure, the CDW
frequency components @f are explicitly integrated outin a frequencyd, ¢ as a function ofE or w, has nontrivial con-
field-theoretic formulation. A similar calculation was carried tributions from the short-wavelength degrees of freedom not
out recently in a different context by Rost and SpohBoth  contained in Eq(2.5). An additional difficulty is that the
approaches are straightforward but tedious, and we simplgrag forcesF, and A, are strongly force dependent. Our
quote the results in what follows. long-wavelength descriptiodoes however, capture thsin-
Several simplifications are obtained in this effectivegular part of the CDW velocity. We define
coarse-grained description. The most important is the modi- o
. . oy . 5Using_<(7t¢>v (2.6
fication of the random potential ternV(r)sin(XKex+ ),
which, as mentioned before, becomes oscillatory. A carefufvhere the overbar denotes a spatial average and the brackets
treatment reveals, however, that this term does not strictlflénote the disorder average. The quandityiygis actually a
average to zero in the coarse-grained model. Instead, as digeduency shift. Note that, because this includes only the
cussed in Refs. 11 and 6, it generates an effective spatialfingular part of thev(wo) relation, there is no particular

varying drag force,(r). To leading order in 1, its cor pre;igesdpzigal? ;Ogt&:tipg:\g%?the phase can be characterized
; _r2 : _\/2 . I uctuati 1z
relations are{Fp(r)Fp(O».—FO&(r) with Fo=Vg/4w,. This by their growth with the system size. A useful measure of

. : R d Such fluctuations employed in the study of interface dynam-
of the impurity density in different regions of the sample, ;< is the “interface width” in the long-time saturated re-
which then exert a spatially random drag force on the CDngme given by

An important difference between this term and the origi-
nal sine-Gordon-type term is that it does not prefer any par- W(Ly, L )=([(r,t)—p(r,H)]?)*, (2.7
ticular value of the phase variatigh This is in fact an exact , 5 g-dimensional system of sizledefl'
result in the moving phase, reflecting the nontrivial transfor- |t ihe kKPZ term is neglected in EL(QZ.S) the equation is
mation property ¢—¢+wor under a time translation Jinear and can be solved exactly by Fourier transformation,
t—t+ 7. In general terms, the equilibrium-ordered phase ofas discussed in Ref. 6. The CDW response is linear and

the CDW is described as a state of spontaneously broke@?);wo; i.e., Sugng=0. The random mobility yields a
spatial translation symmetry. This state is highly susceptibl&tatic distortion of the CDW,

‘where )\O~W§/(8wok§). This coefficient is positive, be-
cause a misoriented CDWwith V¢+#0) is less slowed

down than an aligned ongvith V¢$=0).
Equation(2.5) is the basis for our study of the moving

to disorder, because randomness explicitly breaks precisely _ F.(q)

this symmetry—i.e., it acts as a random field. By contrast, d(q,w)= sz—.Zﬂ'(S(w). (2.9
the sliding CDW breakéme-translation symmetry, which is Q" +lo0x

an exactinvariance of the system, even with# 0. The corresponding correlation function i§¢(q,)|?)

A second simplification occurs in the intrinsic pinning =3(q)278(w), with S(q)zFS/[(Dq2)2+02q§] the static
term. Like the random potential, this term also becomes 0sgtrycture function. Therd,é term in Eq.(2.5) is crucial in
cillatory in time, but generates a _nontnwa! correctlon_upondetermining the decay of spatial correlation in the moving
coarse graining. To second order in a gradient expansion, th§ate. |f this term is absent, fluctuations are isotropic, with
correction 2has the form 32 an ag_d;tlonal drag forces.(q)wq_—{ so thatw(L)~L@ 972 for L, = LL=_L. In par-
SFw~ (—Wo/2w0)[1—C1|V, ¢ —C,|dxp|?], where c¢1  ticular, ind=1, w(L)~L%2 and the system will develop a
~c,~1/(2kg)? are constants. Physically, the gradient cor-“groove” instability of the type discussed in Ref. 13. The
rections arise because the drag force from intrinsic pinningased=2 is marginal withw(L)~L. The o-dy¢ term sup-
becomes less effective as the CDW wave vegidrose local  presses the growth of fluctuations in tkedirection. When
shift is proportional toV¢) becomes less commensurate this term is present, in the limit whetg>L , ando>1, the
with the underlying lattice. For simplicity, we will focus on CDW is ‘riding over” the static disorder and
the isotropic case,=c,, which is expected to be approxi- w(L,,L,)~L2
mately correct for CDW’s whose density profile is well ap-
proximated by the single Fourier harmonic form of E2.1) IIl. TILTED MAGNETIC FLUX LINE ANALOGY
and which is not too far from commensurability. The result-
ing gradient-squared correction is a realization of the Kardar- When the KPZ coupling\, is nonzero, Eq(2.5 can be
Parisi-Zhang KPZ) nonlinearity in the CDW system. mapped into the problem of a directed path in a random

The final coarse-grained equation of motion is potential via the well-known Cole-Hopf transformatithBy
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TABLE I. The correspondence between the various CDW and

: — A(/2DYB(EY) A [ : :
letting W (r, t) = &' , alinear equation of motion for flux line quantities, according to the mapping from E@1)—(3.4).

W (r,t) is obtained,

g 5 +DV2+ No F.)|w (3.0 CDW Flux line
= 0' g r . .
t g 2D P D TIZ%,
The solution of Eq(3.1) can be written as a path integral, g h/e,
0 it 1 NoFo VA/E,
W(r,t =J " Dlrlex —J dt’'| = (dr/dt")2—ox ~X0sing o/e
(r.t) (0,0 [r] '{ZD 0 2( )y -eo d&}sing m,
)\O—
do
—NoFp(r) ) (3.2

Thermal fluctuations increase the localization length, but are
Equation(3.2) can also be interpreted as the partition func-not sufficient to depin the flux line id=1,2. A sufficiently
tion of a tilted magnetic flux line in the presence of columnarstrong perpendicular fielth, will, however, depin the flux
pinning centers. A single magnetic flux line in a line. The response of the flux line to the field is measured by
(d+1)-dimensional sample of thickneksn the direction of  the average induction in the directid@ of the transverse
the applied fieldH, chosen as the direction H=Hgz), is  field. We define a dimensionless inductibn=B, /ny¢,.
parametrized by its trajectomy(z) as it traverses the sample This is also the mean slope of the tilted flux line. The induc-
along the field direction. The sample contains columnar pintion can be written asb, =(h/€;)+47m,, where
ning centers aligned with thedirection that can pin the flux m, = —gg/¢h is the (dimensionlesstotal magnetization and
line over its entire length. An additional magnetic fighd ~ g(h) is the Gibbs free energy per unit length of the tilted flux
applied perpendicular to the direction tilts the flux line line. It has been argued that a flux line array pinned by co-
away from the direction of the columnar pins. The flux line lumnar defects exhibits a transverse Meissner effect, with
free energy is then given by b, =0 for tilt field below a critical valueh, andb, #0 for

L (% dr 2 h>h,. The tilt response of gingleflux line pinned byone

G= jo dZ{ ? -

——— +U(r(2)¢, (3.3 columnar defect in (*+ 1) dimensions can be evaluated ana-
dz =, lytically (see the Appendix and Ref. 180ne finds that in
wheree; = (/4 ) 2In(x) is the tilt modulusiwe assume the limit L,—o there is-a transverse Meissner effept for
for simplicity an isotropic superconduciorh=H, ¢o/dm, N<Nc. Forad-function pin withU(r)=—Uy4(r), we find
andU(r) is the random pinning potential generated by thele=(Uo/T)4m€1/co. In the pinned configuration for
columnar defects. The pinning potential is correlated alongsKhC2 the2 flux line free energy per unit length is
the direction and has short-range correlations in the pland]=(n*—hc)/Ze;, so thatm, =—h/e;, and b, =0. For
with (U(r)U(r'))=A8(r—r’). The partition function of a N=hc the line is depinned ang=0. This givesm, =0 and
vortex line with fixed end points(0)=0 andr(L)=r, is D.=h. /€. The transition from a pinned to a depinned con-
obtained by summing the Boltzmann facer®s™ over all ~ figuration of afa singlg magnetic flux line is associated with
paths connecting the end points and it is given by a jump discontinuity in the induction or tilt sloge, at h
~ 2 and can therefore be classified a§irat-order phase transi-
7— (r'UD[r]ex B Edez €fdr h tion. For a general pinning potential we estimateas the
(0.0) TJo 2\dz 7, field required to depin the flux lineh/Ze;~ A, or
he~(2€;/A)Y2  Similar conclusions were reached by
Balents and Simdr for the tilt response of a single flux line
+U(r(z))”. 3.4 in a random distribution of columnar pins in+11 dimen-
sions. Also Hatano and Nelsthvery recently related the
The dynamics of al-dimensional driven CDW af=0 can depinning of a flux line from columnar defects by a trans-
therefore be mapped onto the tilt response of a magnetic fluxerse field to the localization transition of a quantum particle
line in a (d+1)-dimensional superconductor with columnar in a constant imaginary vector potential. By exploiting this
pins, at finite temperature. In this mapping the time argumentnapping they showed that the transverse Meissner effect per-
of the CDW corresponds to the flux line coordinatalong  sists in bothd=1,2. It should, however, be stressed that the
the field direction, the diffusion constabt plays the role of tranverse induction of an array of tilted interacting flux
temperature, according © —T/Ze;, and the driving force lines is expected to change continuously at the transition, at
o corresponds to a tilt fielth=hX with o—h/e,. The cor- least atd=2.2%" The transverse Meissner effect in a bulk
respondence between the various CDW and flux line quantisuperconductor is therefore a continuous transition, with no
ties is summarized in Table I. latent heat.

Equations (3.4 and (3.2 differ by a constant term The transverse Meissner effect for the vortex line trans-
h2L/Z¢, in the flux line free energy which represents thelates into &irst-orderdynamical phase transition of the slid-
field energy associated with the tilt fiekdl, . In the absence ing CDW. We recall that the CDW driving force corre-
of a tilt field, the flux line is localized on the strongest co- sponds to the tilt fieloh and dvg,g~g. There is then a
lumnar defect. At low temperature the localization length,transition at a characteristie. from a state withév gj,q# 0
defined as the radius of the tube to which the flux line isfor o<o to a state where the external drive dominates and
confined, is of the order of the range of the pinning potentialwashes out the effect of disorder in the direction of the drive,
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FIG. 1. The singular patéu 5, of the CDW velocity as a func- FIG. 2. The derivative of the CDW velocityp,¢) with respect

tion of applied forceo for various system sizes. The critical force to the applied forcesr. This figure can also be interpreted as the

o is estimated to ber,~\2\,Fo= /2 for the set of parameters transverse magnetizatiam (measured in units ofbo/4m) versus
used in the figure. transverse magnetic field, for a flux line in columnar defects.

with our numerical results. At large driving forces disorder is
yielding dvsjng=0 for o<o. The driving forceo, where  \ashed out by the external drive adg;,, approaches zero
the transition occurs can be estimated from the flux line analyg L,—. For small driving forces both impurities and in-
ogy using Table | and the estimatdd~(2¢;VA)*® as  trinsic pinning are important and yield a large gng. While
0 ¢~ V2\oFo. The sliding phase witldv 5ing# 0 at small driv-  the drop ofév g,y above a critical force does become sharper
ing forces Corresponds to the situation where the flux line i%sLx increases, the approach to the Sharp transition expected
pinned on the strongest columnar defects and exhibits @ the limitL,,L, — is rather slow. This can be understood
transverse Meissner effect. As we will show in the next sechy examining the dependence on the system kizef the
tion, this is a disorder-dominated regime for the slidingfree energy of a single flux line pinned by a single columnar
CDW with a “rough” spatial profile of the phase(r,t).  defect evaluated in the Appendix. As discussed in the previ-
We will refer to this phase as a rough sliding phase. Folpus section, this simple model exhibits a first-order depin-
o=o the CDW is in a sliding phase withvsj,g=0, corre-  ning transition in the limitL,—. On the other hand, the
sponding to a flux line depinned by the tilt field and “riding finite-size corrections to the flux line free energy are large in
over” the columnar pins. As shown below, this phase isthe regionh>h,, as shown in Fig. 5. Fdi<h, the flux line
characterized by anisotropic spatial fluctuations of the phasgs |ocalized on the columnar pin and does not “see” the rest
Fluctuations are suppressed in the direction of the drivingf the system. As a result, in this region the finite-size cor-

force and we will refer to this phase as a “flat” phase. rections to the free energy vanish exponentially with system
size. Forh>h, the flux line is delocalized and samples the
IV. NUMERICAL RESULTS entire system. In this region the free energy is quite sensitive

to the finite system size, witlp(L,) —g(e)~1/L,. The scal-

We have integrated numerically E@.5) in bothd=1,2  ing of dvgngLx,L,) in our driven CDW problem—which
by discretizing the spatial coordinates, with lattice spacingmaps onto a tilted flux line pinned by a random distribution
equal to the rang®,, of the pinning potential, chosen as our of manycolumnar defects—is even slower than obtained in
unit of length. We assume an initially flat configuration the single pin model, withSv gjng~ L2 approximately. This
¢(r,t=0)=0 and follow the dynamics until the system re- slow approach to the asymptotic limit can, however, be un-
laxes to a steady state. The relaxation time scales agerstood by the same physical argument.
L7L?972. The average CDW properties in the saturated slid- To better display the change 66,4 at the transition we
ing state are evaluated by performing both a time averagshow in Fig. 2 the evolution of the cunay gny/do versus
and an average over many realizations of the disorder. o with system sizel, for d=2. In the limit L,—% the

Figure 1 shows the frequency shifvg,y of the CDW  derivative will exhibit a jump discontinuity at the transition.
defined in Eq(2.6) as a function of the driving force for  As the driving forceo is proportional to the applied voltage
d=2. A similar behavior is obtained id=1. As the system (electric field and 6v g is proportional to the currerit this
size L is increased one observes a transition between tweorresponds to a jump discontinuity in the differential con-
sliding phases. For the parameter values used here the esfiuctanceG iz =dI/dV. Our model only allows us to predict
mated critical force isr.= 2, a value that agrees quite well the singular shiftov sing and therefore the singular behavior
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of Ggifr, but not the full nonlinear form of thé(V) curve.
The magnitude of the jump discontinuity i g,g/do is,
however, proportional to the jump discontinuity@y; . The 0=0.10 A=1.00 Fp=1.00
precise relation and the possibility of observing this effect q
will be discussed in the next section. From Table | we see
thatdvng/do corresponds to the magnetization of the tilted

flux line. Figure 2 displays then the transverse Meissner ef-
fect discussed earlier.

By translating the results obtained in the Appendix for the
flux line, we find that if the random forcé,(r) of Eq. (3.1)
is replaced by a singlé-function pin, the frequencyu gj,g is
given by

0'(2:— 0'2
This form is shown as a dashed line in Fig. 1 and fits very
well our data foroc<o. This is easily understood because
in the regiono <o, the flux line is localized onto the stron- Y
gest pin and its free energy is basically unaffected by the
presence of the other defects.

The two sliding states of the driven CDW differ qualita-
tively in the behavior of the spatial fluctuations of the
coarsed-grained phaggr,t). For o <o, pinning dominates
the dynamics. The sliding state is rough with large spatial
fluctuations of the phase both in the directions parallel and
perpendicular to the external drive. For o> o the term
odyd washes out the effect of pinning in thedirection,
damping out phase fluctuations in this direction. In this case,
the spatial fluctuations of the phase are anisotropic and are
suppressed in the direction of the external drive. This behav-
ior is shown qualitatively in Fig. 3 that displays contour plots
of the CDW phase for increasing values @f

To quantify the behavior of phase fluctuations in the two
sliding states, we have examined the interface width
w(Ly,L,) defined in Eq.(2.7). In the isotropic disorder- v
dominated phase far<o. we expectw~L,~L, . To un-
derstand this, we recall that when=0 the path-integral _ B _
solution(3.2) of the CDW problem can also be interpreted as F?;l 9'(1 ﬁ;&oﬁ Fp1 ,....-w"
the transfer matrix solution of the Scliinger equation for a
guantum particle in a random potential dhspatial dimen-
sions and imaginary tim¥. The width w(L,,L,) corre-
sponds to the fluctuations in the energy of the quantum par-
ticle as a function of system size. Fde=1 the quantum
particle is always localized. The states are exponentially lo-
calized and one can shdthat the energy fluctuations scale
as the system size; i.ew(L,)~L,. A similar behavior is
expected ford=2. In the larges phase, we postulate an
anisotropic scaling ansatz for the interface width,

W(LX1LL):L§f(LL/L)Z()1 (42)

ov sing: (4 1)

X(drive)

X(drive)

X(drive)
where y andz are two new exponents. Fog>L | the sys-

tem looks one dimensional, extended along xhéirection.

An approximate equation of motion in this regime is ob-

tained from Eq(2.5 with V—d,. For largeo both pinning FIG. 3. Two-dimensional CDW phase configurations
by impurities and intrinsic pinning which yields the KPZ B(X,y:t)— b(x.y:1) for various driving forcesr at long time for
nonlinearity are negligible compared to the,¢ term and No=1.0 andF,=1.0. The estimated, is o.= 2. The contour
one can obtain an approximate solution of the equationg|ots are(a) ¢=0.1,(b) o=1.4, and(c) o= 10.0. The relative value
which yieldsw(L,,L,)~ |—>1</2- The scaling functiorf(s) in of the CDW phasep is given by the grey scale intensity, with the
Eq. (4.2) must therefore obef/(s) ~sX~ Y2 for s<1. This brightest spots corresponding to the highg¢sind the darkest spots
result is easily understood by exploiting the mapping ofthe lowest.
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100 g r—e—er——rm——m—g. IMOVING phase is highly anisotropic as the external drive sup-
2 1 presses the spatial fluctuations of the phase in this direction.
The CDW remains “rough” in the direction transverse to the
ok De05 A10 F =10 | external drive. By using the Cole-Hopf transformation, the
: 205 \,=1.0 F,=1. A 3 . O
: X=0.5+0.05 z=0 850 05 A 1 problem of CDW dynamics at large driving force can be
i A 1 mapped onto the problem of the tilt response of a magnetic
L £ ) 4 flux-line pinned by columnar defects. The dynamical transi-
: 2 J/ i  tion of the sliding CDW corresponds to the transverse Meiss-
a8 , 1 ner effect of the tilted flux line.
x| A 7/ ] Our coarsed-grained model of phase dynamics given in
3 ME £ / S i Eq. (2.5 only applies in the strongly driven phase, well
i £ / s 1 above theT=0 threshold field,E;. In the weak pinning
s S & 1 limit, one can relaté€e; to the Lee-Rice lengtih that rep-
001 E R @g@ , 1 resents the typical domain size in a pinned CDW. The pin-
i & o / 1 ning lengthL, is the length where the elastic strains induced
J 1 by disorder are of order 1 and is given by

di2 \ 120(4—d
€o ” “=d

L, 22~212
Ly 21~28 N

T
~
|

0.001 §
3 hvem

Vo
0.0001 PRI B RTTY] RS AT RS AR T TTT R S AR 1T SN AR TTTT BRI B ARSI S| . . .
00001 0001 o010 ] 10 00 1000 Herec is the average spacing between the CDW chains and

L,/1z & is the range of the disorder potential. We expégt-c.
The threshold field is then estimated by balancing the total

FIG. 4. The figure shows the scaling collapse of the interfaceforce on a domain of size, to the elastic force acting on the
widthw(L,,L, ) according to the ansat#.2) for d=2. The param-  same domain, with the result,
eter values are indicated ad=50.0.

0=

Cafl

:ﬁUFkF d—2

T
driven CDW dynamics onto the problem of the tilted mag- 2ect O

netic flux line. Foro> o (h>h,) the flux line is delocalized  Thjs corresponds to a threshold foreg=Ee(7/m*). The

aﬂg h“rides over” many ((310|Urf:mﬁr defects. ';hﬁ i][;terﬁacefirst—order transition is predicted to occur at a critical force
width w(L,,L,) corresponds the fluctuations of the flux line o~ \2NoFe. 5.

free energy, which in this limit is determined by a sum of
independent random energies, yieIdingvvz(xLX,LL)~L)1(’2 where to leading order in &) )\O~W§/8k§a and

scaling forLZ>L, . In the opposite limitL, >LZ, the sys- F0~V(2)/4kFa. Recalling thator=Eer/m*, we can solve Eq.
tem looks one dimensional along tiyedirection ford=2.  (5.1) self-consistently for a critical fiel&., with the result

The od,¢ term has no effect and fluctuations are dominated " P,
by disorder, with the resulv(L,,L,)~L, . This follows EC=(eF> UC:(T) VWV (5.2
again from the exponential localization of states of a one-

dimensional quantum particle in a random potential.The first order transition will only be observable E,
The scaling function obeysf(s)~s for s>1 and >E;. We find

w(Ly,L )~L¥ %L, forL,>L%in d=2. A scaling collapse 2m2p,  Wol &

of our numerical results for the interface width éh=2 is EC/ET~k—\/V—( L_)
shown in Fig. 4. The best collapse is achieved with F 01=0
x=0.5+0.05 andz=0.85+0.05. These results agree well for d=2. The first-order phase transitionE&t may therefore

with the asymptotic values discussed earlier. be observable in a dirty material {=~c) with appreciable
intrinsic pinning Wy>V,). Using the results of our calcu-
V. CONCLUSION lation of the tilt response of a flux line pinned by a single

_ _ . ~ defect(Appendiy, we estimate the magnitude of the jump
We have studied the _dynamlcs of driven CDW's movingdiscontinuity in dvgng at o, as |dvsing/dg|%ac/)\O
through a random medium at zero temperature, at driving-\/2F /x,. This corresponds to a jump discontinuity in

transition occurs. The CDW model considered incorporategarameters as

new nonequilibrium terms which are important in the ke (L. \ 2627/ V
strongly driven regime and are generally not included in the AGdiff:(_F) <_i) (_0)
FLR model. We have found that ih= 1,2 the driven CDW mC)\ Ly m* { W
exhibits a first-order phase transition at a critical drivingfoy g=2. The discontinuity inGg is very small when the

force o~ y2\oFo. For o <o disorder controls the dynam-  conditionW,>V, of observibility of transition is satisfied.
ics yielding a rough sliding phase with spatial fluctuations of

the phase that grow linearly with,, indicating that the
phase-only model breaks down. Fer>o., the driving
force washes out the effect of disorder in the direction of We are grateful to the National Science Foundation for
motion. The CDW slides uniformly withSvg,g=0. This ~ supporting the work at Syracuse University through Grant
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APPENDIX: SINGLE FLUX LINE
AND ONE COLUMNAR DEFECT where A andB are constants to be determined by the peri-

odic boundary condition and the condition that the wave

In order to gain some understanding of the dependence @finction have a slope discontinuity determined by the
our results on the size, of the system in the direction of the fynction,

external driving forcdor tilt field for the magnetic flux ling (du

it is instructive to consider the action of a transverse tilt field o
X

on a flux line pinned by &ingle attractive columnar defect.
The partition function is given by Eq3.4), with U(r) the . . ) ) i
pinning potential due to the single impurity, chosen for sim-The condition for a nontrivial solution to exist yields the
plicity as an attractived function, eigenvalue equation, given by

U(r)=—Uyd(r). (A1)

Following Ref. 18, Eq.(3.4) can be thought of as a path
integral in imaginary time and the partition function can beln the limit L,—, there is one localized ground state for

du) 2€,U,
=\ 5% =5z u(0).
L (dx o T

€U
coshhL,/T)—coshkL,)+ %SH’H’(KLX). (A9)

rewritten as a quantum mechanical matrix element, h<h,, with h.="€,;U,/T. Forh=h, all states are extended.
Z(r, ,0;L)=(r e "T|0), (A2)  The ground-state energy is given by
2 2
where|0) and(r | are initial and final states localized @t E*— _ h_~c h<h. E*= — hT h=h,. (AL0)
andr, , respectively, and the “Hamiltonian’/ is the op- 0 2¢;’ €0 2¢;’ €
erator,

The ground-state wave function is given by

1
H=— —(TV—h)2+U(r). A3 T
261( ) (r) (A3) uB(x) = \/h:e(hch)x/T, h<h,,
C

The operatorH is non-Hermitian asH'(h)="H(—h). To

find its spectrum we need to solve both the right and left Ro. 1
eigenvalue problems, defined by Uo(X) = \/Tx h=h,. (ALD)
HUR=Eul (Ad) . . . . o
It is exponentially localized foh<h., with localization
and length £~T/(h.—h). If the system is infinitely long in the
Hlub=Equb, (A5)  field (z) direction (L— ), the flux line free energy per unit

R L ) ) ) length is simplyg(h) =E,+ h?/Z¢,. The free energy per unit
whereu;(x) andu,(x) are the right and left eigenfunctions, length is shown in Fig. 5 as a function of (thick line).
respectively, normalized according fgdxu,(x)uf(X)=1,  Clearly the magnetizatiom, is m, =—h/€, below h, and
andE, are the corresponding eigenvalues. The path integradancels the applied field, yielding, =0, as required for
(3.4) can then be expressed in terms of the eigenvalues angansverse Meissner effect. Fbeh., b, =h/e;, which is

eigenfunctions of the fictitious quantum problem, as the value in the absence of disorder. The induction has a
_ jump discontinuity ath,.
N R L E L/T : .
Z(r, ,0;L)= En: un(r.)us(0)e : (AB) We now discuss the corrections to the above results due to

a finite system sizé, . This will be useful for understanding
This is also equivalent to writing the path integral in terms ofour numerical results for the driven CDW. One can study
t_h? eigenvalues of a corr_esponding trapsfer matrix. In thenalytically the finite-size corrections in the lirith>1.
limit L—< the smallest eigenvalue dominates and the fre&eeping the leading finite-size correction, the real part of the
energy per unit lengtg(h) of the flux line is determined by ground-state energy is given by

the real part of the ground-state enefgy of the quantum h2
problem, according tog(h)=Ey+h?Ze,. For localized Eo(Ly)~— =~[1+2e x"e=W/T] - h<h,
states, the ground-state wave functiag(r) determines the Ze;
localization length of the flux lin® h2 1 /(hT he
For simplicity we begin by considering a flux line in EO(LX)~—27+L— ~—>In(1—F)
1+ 1 dimensions, withx the direction of the applied tilt field. €1 bxl €
The vortex free energy is given by the ground state of the h?  Th,
non-Hermitian “Schrdinger equation,” given bt D S T h=hc, (A12)
1 €1 x€1

72 u(x)=Eu(x), (A7)  where we have assuméd>h.. In the regionh<h,, where
1

the flux line is pinned on the defect, the finite-size correc-
to be solved with periodic boundary conditions tions vanish exponentially ds,/&, with ¢ the localization
u(0)=u(L,). We are considering here the right eigenvaluelength. Forh>h, the flux line is depinned and samples the

d 2
T&—h) —Upd(x)
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2
(h/h,) (/L)

FIG. 6. Probability density?(x)=uR(x)u‘(x) for various sys-
tem sizes ata) h=0.8h. and(b) h=1.2h.. In (a) the probability
density decays exponentially to zero over a lengthé~5 in the
limit L,— 0. The finite-size corrections are determined by the value
of P(x) in the central flat region. They are therefore rather small
even for not too large a value &f . In (b) P(x)=1/L, in the limit
whole sample. In this region the asymptotitsth.) correc- L,—~. This value is shown as an horizontal line for edgh
tion to the ground-state energy of an infinite system vanishes
only as 1L, . The free energg(h,L,) is shown in Fig. 5 for mismatch is exponentially small and the periodic boundary
a few values of system side, . conditions are easily accommodated. Rerh, the boundary

The CDW frequency shifbv g is simply proportional to  conditions force a large negative gradient in the wave func-
the negative ofg(h) (see Table )l The similarity in the tjon, as apparent from Fig. 6. Physically this corresponds to
finite-size dependence of Figs. 1 and 5 is apparent. Finalltne fact that foth~ h, and finiteL, long sections of the flux
Fig. 6 shows the dependence of ”gee no[mallzed probabilityine are still pinned on a strong columnar pin, yielding large
density in the ground stat®(x)=u"(x)u(x) on System finjte_size effects in the region above the depinning transi-

FIG. 5. The free energy per unit lengtiih) of a tilted flux line
pinned by a single defect as a functiontofe;. Both the result in
the thermodynamic limit.,—oo (thick line) and the finite-size re-
sults are shown.

sizeL,. The tilt induces a mismatch of order ("e=Mtx/T jn

tion.
the wave function at the system boundaries. keath, this
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