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Criticality in the two-dimensional random-bond Ising model
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The two-dimensional2D) random-bond Ising model has a novel multicritical point on the ferromagnetic to
paramagnetic phase boundary. This random phase transition is one of the simplest examples of a 2D critical
point occurring at both finite temperatures and disorder strength. We study the associated critical properties, by
mapping the random 2D Ising model onto a network model. The model closely resembles network models of
guantum Hall plateau transitions, but has different symmetries. Numerical transfer matrix calculations enable
us to obtain estimates for the critical exponents at the random Ising phase transition. The values are consistent
with recent estimates obtained from high-temperature s¢&:.63-182@07)00902-9

I. INTRODUCTION To be more specific, consider the Ising model on a 2D
square lattice,

Two-dimensional 2D models have played a special role in
the theory of phase transitiohsn 1944 Onsager’s exact H _—E J.SS 11
solution of the 2D Ising model gave critical exponents that o IEEE (.0
were simple rational numbers, although different than Lan- ) ) _ )
dau theory. In the 1970 renormalization gro@®G) calcula- ~ With nearest-neighbor interactiodg taken as random vari-
tions revealed exponents varying continuously below an upables with a distributiorP;(J;;). For the simple distribution
per critical dimension, illustrating the breakdown of LandauP3(Jij) =p4&(Ji;+J) +(1—p) 8(J;;—J), corresponding to a
theory. But it was unclear why the 2D Ising exponents andtactionp of antiferromagnetic bonds, the phase diagram, as
those for other exactly soluble 2D models were rational numestablished by various methoti&js shown schematically in
bers. This fact was explained by the remarkable developmertid. 1.
of conformal field theory in the 1980s. Under the assumption For smallp there is a phase boundary separating the fer-
of conformal invariance at criticality, it was possible to ana-romagnetically ordered phase at low temperatures from the
lyze a large class of 2D critical pointVloreover, a first step paramagnet. A largep destroys the ferromagnetic phase,
was made towards a full classification efi allowed 2D  replacing itin high dimensiongie3) by a spin glass phase.
phase transitions. In this case a multicritical point is expected at the coexist-

Many physically important 2D phase transitions occur in€nce point of all three phases. In 2D the spin glass phase is
systems with quenched disorder. An example of particulapot present at T#0, being destroyed by thermal
experimental interest is the transition between plateaus in the
integer quantum Hall effecflQHE).? This transition has
been successfully studied numerically, but so far has eluded A
analytic treatments via either RG calculations, exact methods T
or conformal field theory. Given the general power of con-
formal field theory in 2D, it has been surprisingly unhelpful Para- . Nishimori's
: : . ! Line
in understanding such random phase transitions. '

In this paper we analyze a nontrivial 2D random phase
transition which occurs in the simplest of all models: the 2D
Ising model with random bonds. Our approach is numerical,
and closely parallels earlier work on the IQHE transitfon.
We first map the 2D random Ising model into a variant of the
Chalker-Coddingtohnetwork model, which describes non-
interacting chiral fermions. The random lIsing transition cor-
responds to a fermion localization transition. We extract
critical exponents numerically by standard transfer matrix
methods. The values are in reasonable agreement with those
recently obtained by Singh and Adferia high-temperature
series. Unfortunately, this random Ising transition has also FIG. 1. Schematic phase diagram of the 203 random-bond
eluded any analytic treatment. Ising model.
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fluctuations> However, the multicritical point still exists on equivalent ta]— —J in Eq. (1.1), mapping from a ferromag-
the ferro-to-para phase bounddryhe multicritical point is  netic to antiferromagnetic spin model. Thus randomness in
unstable along the phase boundary, with RG flows as dethe sign of the exchange interaction in Ef}.1) is equivalent
picted in Fig. 1, consistent with tHenargina) irrelevance of to randomness in thsign of ;. To describe the+J Ising
weak disorder at the pure 2D lIsing critical poimt=€0).  model, we thus consider interactions which are random func-
LeDoussal and Harfishave argued that the Nishimori line, tions of bothn and imaginary timer, x;— «;(n,7), taking
along which the internal energy is analylipasses through either sign.
the multicritical point and coincides with one of the two RG A fermionic representation can be obtained by introduc-
scaling axes. The other scaling axis is tangent to the ferrong the Majorana fields
to-para phase boundary. Recently, Singh and Adteve
obtained estimates for the two associated critical exponents, 1 Xy 1 < 7
using a high-temperature series method. From a general 71( )=ﬁ nl;[n OmOh» 772(”)=En1_<[n Om0n
point of view, this multicritical point is of interest, being 2.2
probably the simplest 2D critical point which occurs at both
finite temperature and finite disorder strength. which anticommute{7;(n), 7;(m)} = &; 6ym. The Hamil-

Our paper is organized as follows. In Secs. Il and IIl, wetonian is quadratic when expressed in terms of these new
show that the random-bond 2D Ising model can be mapped/ariables,
using a fermionic representation, to a variant of the Chalker-
Coddington network modél.This_mapping_ reveals a close = (—2i)> [ky71(n) 72(N) = kom1(N) po(n+1)].
similarity between the random Ising transition and the IQHE n
plateau transition. However, due to a symmetry difference, 2.3
the two transitions areot in the same universality class. In An identical f th . d by intro-
Sec. IV, we employ a transfer matrix approach to analyze the, \n identical copy of the system s constructed by intro
network model, and obtain estimates for the exponents at th%ucmg a new set of Majorana fields. The Hamiltonian
random Ising multicritical point. Section V gives a brief Obtained by summing the two, H= 1/2[Hp(7)
summary and conclusion. +H1[_)(§i)], can be expressed in terms of standébiac)

Fermion operators

Il. FERMIONIC REPRESENTATION 1 . 1
It is well known that the critical properties of the pure 2D = \/5(77‘+|§i)’ P \/E(ni 1§) 24
Ising transition are equivalent to a massless Major@eal)

fermion field? In his studies of the bond-diluted Ising model, &S

Shankal® constructed a model in terms of conventional

(Dirac) fermions, by adjoining two identical copies. For the ﬁ:Z (_iKl)w’{(nwz(n)_ ¢;(n)¢1(n)]+(i,(2)
random-bond Ising model, we show below that this proce- n

dure leads to a model of 2D chiral fermions, with a hopping + ot
matrix element of randorsign XLa(n)ya(nt 1) =go(n+1) g (n)]. 29

Following Shankar? we cpnsilder a spatial_ly anisotropic Notice thatH has a conserved (W) charge:zﬂwl%— 4/;}1#2. At
Ising model, retaining a lattice in one direction, but takingthe pure Ising transition, there are gapless excitations in this
the continuum limit in the othefthe “imaginary time” di-  conserved charge. With disorder present, the transition cor-
rection. The partition function, when expressed in terms of aresponds to a localization transition of these conserved fer-
transfer matrix, can then be writted=Tr exp(—BH1ip),  mions.
whereHp is a 1D quantum Hamiltonian anglis the system To complete the mapping, we express the partition func-

SiZ(.? in the “time” di.reCtion. The appropriate 1D Hamil- tion as a path integra| over Grassmann fie|dS,
tonian for the pure Ising model is

z=f DyDpexp—9), (2.6
H1D=E [Klo'ﬁ-i- Kzaﬁa'ﬁJrl], (2.1

n whereS is the Euclidean action fa:

wheren label sites of a 1D lattice and® with a=x,y,z are L . o

Pauli matrices. This model exhibits a phase transition when S= [ D [1(n)d.41(N)+ ¥o(N)d,¢(n)]+H (i, ).

k1= K5, Which is in the(pure Ising universality class, as Tn

verified below. The transition also follows from a duality 27
symmetry which exchanges high- and low-temperatureReinterpreting imaginary time as a spatial coordinate,
phases. With the definition on=uiui,; and 7—x, the actionS can be viewed as a 2D Hamiltonian of
ot=I -, the Hamiltonian can be written in the form chiral fermions, denotedi,;. To bring it into a canonical

(2.2) with 0*— u® and k1< k5. form, we define new right- and left-moving fermion fields
The partition function is also invariant undef — — k; . |
(i=1,2), as seen by a spin rotatiomt— —o&, with Yro=(=D)"1(n),  Ya=(=1)"p(n), (2.9

a=Xx,y for n odd anda=x,z for n even, which restores the _ — . —
Hamiltonian to its original form. This transformation is Yro=i(=1)"1(n), Y= —1(=1)"(n). (2.9
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n+1
lie L?

FIG. 2. A pictorial representation of the chiral fermion Hamil- ~ FIG. 3. Representation of network model with widtk=4 and
tonian (2.10. Neighboring chiral modes, propagating in the direc- lengthN=3. The arrows indicate the direction of wave propagation
tion of the arrows, are coupled via tunneling matrix elements ~ along links. The parameter; specify scattering at the nodes.

In terms of these the action becomes (e|ectr0l’) wave function. At the nOdes, two incoming wave
functions scatter into two outgoing ones, conserving prob-

_ Fo T . ability. The nodes are specified by &matrix. In the origi-
Hap= f dx; [¥Rn(19x) ¥Rt dia(—10x) ¥in nal network modef,the complex amplitudes acquired a ran-
dom phase factor upon propagating along a given link,
+ k(P thint ¥ R corresponding physically to arandom) magnetic flux
+ + through plaquettes.
+Ko(Pretbins 1T Yine1¥ro) ] (2.10 On physical grounds, it is clear that a very similar net-

work model should suffice for describing the propagation of
This Hamiltonian has a simple pictorial representation inE=0 waves of the Hamiltoniari2.10. In the appropriate
terms of 1D right- and left-moving fermion fields, coupled network model, the tunneling amplitudes are replaced by
together by hopping strengtlag and k., as depicted in Fig. node parameters. Since we are interesteB=#0, there are
2. The model closely resembles an anisotropic version of theo phase factors associated with the links themselves. The
Chalker-Coddington network mod&In the next section we network model is specified by a transfer maffixtaken, say,
describe a lattice version, appropriate for numerical simulain the horizontal direction in Fig. 3. This matrix is decom-
tions. posed into a product of matricéd;, representing columns
In the absence of disorder, witk; and x, constant, of the network, withj running from 1 toN, the length of the
H,p can be easily diagonalized by transforming to momennetwork. Each matrixM; is a product of two matrices
tum space. The energy eigenvalues satisfy M;=A;(61)B(6,), representing two adjacent nodes in Fig.
3. The two node parametefs and 6, correspond to the two
hopping coefficientsc; and «».
E?=pi+ K+ K5+ 2k k,C09P, (211 The matrix representing tunneling at a given node is con-
structed to conserve the current or, equivalently, th&)U
with p, the x component of momentum argl a transverse charge. Following Chalker and Coddingtdthe node in the
momentum in the range 7 to . The energy is a minimum dotted box in Fig. 3 is written as
when p=7 and p,=0, and given by|E| .= *|A[, with
A=k,—k,. The pure Ising critical point occurs when .
A=0. ForA+#0, there are no zero energy eigenvalues of the (Wout) _ ( costy, S'nh‘gl) ( ”i“)
2D Hamiltonian. If a wave of energf =0 is incident in the Wip, sinhd; coshy; |
x direction, it will decay as expf|A|X), sincep,=iA is pure
imaginary. The decay lengthi~|A|~* corresponds to the By construction, this matrix conserves the current,
correlation length of the pure 2D Ising model. The critical |w, |2+ |v;y|2= |Woul >+ |vou 2. Moreover, an incident wave,
exponent isvy =1 as expected. say, Wij,, is backscattered intow,, with probability
With disorder, the tunneling amplitudes become ran-  tani?(6,). Since this tunneling probability is proportional to

dom functions of positiom andx and momentum is not a ,2 jn the 2D Hamiltonian(2.10), we make the identification
good quantum number. Nevertheless, at the Ising multicriti-

Uout

cal point(see Fig. 1, one expects the=0 states oH,p to tanh( 8,) < «; . (3.
be extendedcorresponding to an infinite correlation length.
Away from criticality, one anticipate$ocalized electronic /\/\
states aE=0, rather than a gap as in the pure case. T ¢ n
5
I1l. NETWORK MODEL l

In pioneering work, Chalker and Coddingfointroduced /\/\

a network model to study numerically the transition between
IQHE plateaus. This model is essentially a lattice version of !

a chiral fermion Hamiltonian, similar E¢2.10. The model

consists of links and nodes, as depicted in Fig. 3. On each FIG. 4. A sign change in a node paramefieffectively changes
link there is a complex amplitude representing the fermiorby = the flux penetrating the two neighboring plaquettes.
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Although the Hamiltoniar(2.10 is intrinsically anisotropic, network with lengthN and widthL, the total transfer matrix
the network model can be made invarfanhder an/2 spa- is T=MN, with Mo an L XL matrix. Due to translational
tial rotation by choosing sint#)sinh(6;) =1, at successive invariance, the eigenvalues d,, and henceT, can be la-
nodes. beled by a transverse momentum We denote these as

It is instructive to briefly consider the' pure network M(p). For a given transverse momentymthese follow as
model, with constant node parameters. In this case, the tra”éigenvalues of a simple>22 matrix:

fer matrix can be diagonalized in momentum space. For a

coshy,coshy,+ sinhg;sinhd,e®  sinhd,costy,+ coshy;sinhd,e'P
sinhg,coshy, + coshy;sinhd,e P coshy,cosh,+ sinhd;sinhd,e P |

One finds flux o through each plaquette. Moreover, a sign change of a
node parameter, changes the flux through two neighboring
Ao(p)=AX VA -1, (32 plaguettes byr, as depicted in Fig. 4.
with Under the Ising duality transformatiod,— — A. Thus the
_ _ A=0 line should correspond to the Ising ferromagnetic to
A=cosh 8;— 6,) + sinh(6,)sinh(6,)[ 1+ cog p)]. paramagnetic phase boundary, depicted in Fig. 1. Increasing

(3.3 the randomnes#/, with A=0, corresponds to moving along
As before, at the pure Ising critical point a nondecayingthis phase boundary away from the pure Ising critical point.
mode is expected. Since the eigenvalues of the total transf@ased on Fig. 1, we expect the Ising multicritical point to
matrix are\™, this is only possible if\|2=1. This requires correspond to some critical disorder strength. Numerical
p= and 6,= 6,, the expected condition for Ising critical- simulations, described in the next section, indeed support
ity. Specializing to p=7 and the isotropic case, with this scenario. The scaling axis along the phase boundary cor-
sinh(@)sinh(@,)=1, the eigenvalues take the simple form  responds to varyingV with A=0, whereas the Nishimori
1 144 line corresponds to the ling/=W.,.

Ny=— =", (3.4) ForW>W, andA=0, one expects the network model to
Ao 1-A remain critical, due to duality symmetry. However, it is un-
with A measuring the “distance” to the critical point: clgar what this regime corr.esponds tq in the.onglnal lattice
Ising model(1.1). It is conceivable that increasiny beyond
A=tanh(#;)—tanh 6,). (3.5 W, (at A=0) corresponds to moving along the low-

temperature part of the phase boundary in Fig. 1, arriving at
the T=0 fixed point at the maximum disorder strength,

pected varies as~1/A| upon approaching the critical Whhax= 1/2. However, this interpretation is a bit problematic
point, A—0. since W=1/2 is “halfway” between the ferromagnet and

We now incorporate randomness. Due to the identificatiorf"tiferromagnet, and naively correspondgpte1/2 in Fig. 1.
(3.1), a change irsign of the Ising exchange, corresponds to P_erhaps _the time continuum limit taken_m EQ_-l), doesnot
a sign change of a node paramefeiin the network model. 9ive a faithful representation of the lattice Ising modell)
Thus the random-bond Ising model corresponds to a networfer W>W.
model in which thesign of the node parameters is random.
To be specific, we choose timeagnitudeof the node param-
eters to be constan®, and 6,, satisfying the isotropy con- IV. RESULTS
dition sinh(@;)sinh(¢,)=1. Thesignof # at each node is cho- .
sen randomly, being negative with probabiliy¢ and The transfer matrl_xT of the ran_dom network model can
positive with probability - W. The random network model P€ computclaijlgnumencally, following the work of Ch_al%er
we consider is thus characterized by two parametars: and others!~**We have studied strips of width ranging
which measures the distance from criticality in the pureffomL=16 up toL=128. Ensemble averaging is performed
model, andW the disorder strength. by taking very long strips, with lengtN up to 16. Of the
This model differs in symmetry from the original L eigenvalues offy, denoted\;, L/2 are greater than 1,
Chalker-Coddington network mod@lin which random corresponding to exponentially growing solutions, and the
fluxes were present through each plaquette, reflecting thethers are less than 1, decaying to zero with increabing
breaking of time-reversal invariance by the magnetic field inDue to the(statistical parity of the system, these come in
the QHE. In the present case, there are no random phageirs,\;=exp(=Ny), wherei=1,2,...L/2 and all they]
factors. However, in the pure model with all node parametersire positive. Of interest is the smallest,;,, corresponding
positive, the fermion amplitude picks up a minus sign uponto the most slowly decaying mode. From this one extracts the
encircling any elementary plaquette, equivalent to a uniforncorrelation length as

These eigenvalues describe the slowest decay-afN. The
Ising correlation length follows ag§=1/n(\ ), and as ex-
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1
fl="—. (4.0 85 [T
- Ymin i ]
In order to extrapolate to the thermodynamic limit, 5:— ﬁ
L—oo, it is convenient to consider the dimensionless ratio, r
L 45 _
AL(A W)=, 4.2 o |
LAW)= < |

which is a function of the two control parametéi¢ and
A. Away from criticality (A+#0), &, —.. is finite, and so this r
ratio should grow and diverge &s—«~. Representative data 35
are shown in Fig. 7, wherd is plotted versud for weak

randomnes®V=0.075, at various different system sizes. At

the pure Ising critical poinA =W=0, the ratioA, is found 25 3 85 4 45 5

to vanish identically even fdinite L, due to the propagating InL

mode with transverse momentup 7, described by Eqg.

(3.2). At a random critical point, one expects that will FIG. 6. Curvature®, of parabolic fits to the peaks in Fig. 5, vs
approach a finite constant in the thermodynamic limit, re-system widthL on a doubly logarithmic plot. From scaling, the
flecting the infinite correlation length. slope gives an estimate for the critical exponent,2/

In Fig. 5 we show data foA; versus disorder strength
W, along the phase boundaty=0, at four different system and Adlef at the Ising multicritical point. Unfortunately,
widthsL. Although there is significant variation with, par-  precise values are difficult to extract due to the rather severe
ticularly for the smaller sizes, there appear to be two distincfinite size effects, evident in Fig. 5. These are dnepard to
regimes separated by a peak. For the largest widtlthe small value oMV, : With W,~0.08, the typical nearest
(L=128) the peak occurs at a disorder strengtl~0.08.  distance between two nodes with negative node parameters,
For W<W, the ratio A| drops rapidly towards zero, the ¢,, is roughly 4 times the network lattice spacing.
value at the pure Ising critical point. For strong disorder Consider first the critical exponent corresponding to the
W=>W, the ratio appears to be settling down towards a conscaling axis along the phase boundary, denetedA natural
stant of order 1/2 at large. This presumably corresponds to finite-size scalingansatzfor A, takes the form
a strong disorder critical point. Right at the critical disorder
strengthW=W,, A, is increasing slowly with_, and pre- AL(A=0W) = f[LY"p(W—W,)] 4.3
sumably eventually saturates. We thus identify the point ’ o

(A=0, W=Wc) with the random Ising multicritical point ¢, 1arge | and W—W, . This form predicts that peaks in

(see Fig. L A g 2 RS

. 9 e . . . L (W) aroundW, should sharpen up with a width vanishing

This identification can be confirmed by extracting critical ﬁs SW~L -, The data in Fig. 5 are consistent with this
end,

exponents, and comparing with the values obtained by Sing showing narrower peaks for larger To obtain a

rough estimate for the exponenf,, we fit the peaks to a
parabola. Denoting the curvatures of the parabola®as
scaling predictdR, ~L?*». In Fig. 6 we plot logR ) versus
log(L) and extract the exponentig/as the slope of a fitted
straight line. Fitting all four points gives an estimate
vp~2.2. However, the? per data points decreases an order
of magnitude if the smallest side=16 is excluded, which
gives (dotted line in Fig. § v,~2.45. Thus we estimate
vp~2.4, with a large error bat-0.3.

The critical exponent along the Nishimori line can be ex-
tracted by sitting aW, and tuningA away from zero. In this
case, finite-size scaling implies that

1.5 T

AL(A,W=W,)=F[LY"A]. (4.4

The raw data forA | (A,W,) versusA are shown in Fig. 7.
L As expected, away from the multicritical point At=0, the

00 0.1 0.2 03 04 05 ratio A, grows with L, indicative of a finite correlation

W length. In Fig. 8 these data fdr<<1/2 are replotted, rescal-

ing the horizontal axis by."”. Based on the quality of the

FIG. 5. Dimensionless ratit, vs disorder strengti along the ~ data collapse, we estimate~4/3 with error barst0.1.
phase boundaryA=0 for four different system widths: Our estimates for the exponents compare favorably with

L=16(X), L=32(A), L=64(1), andL=1280). those obtained by Singh and Adlerr=1.32+0.08 and
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FIG. 8. Scaling collapse of the data from Fig. 7 witk< 1/2 for
FIG. 7. Dimensionless ratifA,_= L/fL p|0ttEd vsA at disorder four different exponent values'=1.1, 1.2,4/3, and1.5.
strength W=0.075 for four different system sizes:
L=16(x), L=32(A), L=64(0), andL=128(O). plateau transitions, but with different symmetry. Specifically,
the model has node parameters with random signs, rather
than random fluxes through plaquettes. The network model

the peak in Fig. 5 does indeed correspond to the randoyhich exists on the Ising ferromagnetic to paramagnetic
Ising multicritical point. phase boundary. By implementing a numerical transfer ma-

In addition to the multicritical point, we have tried to trix approach, estimates for the associated critical exponents
analyze the behavior at maximal disoraer strength 1/2 have been extracted, which are consistent with those ob-

As discussed earlier, it is unclear whether or not this poin ained _by Singh and Adlérfro_m h?gh-temperature series.
corresponds to th&=0 fixed point atp=p in the random- he critical exponents are quite different from those at the
bond Ising modelFig. 1). Unfortunately ecll\N=1/2 we are IQHE plateau transition, indicating different universality
even more severely plagued by finite-size effectsAass clat?;es, ?r?t ?urprlsw(]jglm view of the symmetry differences
varied. Specifically, the correlation length tends to remainbev\/ﬁ(;1 arg t\rlmveo pr)r;gsSeSc;ts for an analytic treatment of the
very long, even well away from criticality, witih—1. In . . o i . .
this limit, the fermions tend to become localized aroundrandon.1 Ising multicritical point? Being In two dimensions,
plaguettes on one sublattice. But wiki=1/2, half of the one mlght hope that powerful constraints from conformal
laquettes have zero flux. and can su Er-t@) states cir-  nvariance would be helpful. Analytic approaches to the
glin?; around them. For ,1A small tﬂgse states will be IQHE plateau transition have been impeded by the absence
L . ’ f critical behavior in ensemble-averaged single-particle
weakly coupled via t“””e'"."gv and may tend to percolate Oug%reen’s functions. The situation might gbe simgler pat the
to rather long scales. At this stage, we cannot conclude any- :

thing definite about the critical behavior of the network ing multicritical point, though, since cri_tical properties are
model at strong disorder probably present in average single-fermion correlators.
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