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Criticality in the two-dimensional random-bond Ising model
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The two-dimensional~2D! random-bond Ising model has a novel multicritical point on the ferromagnetic to
paramagnetic phase boundary. This random phase transition is one of the simplest examples of a 2D critical
point occurring at both finite temperatures and disorder strength. We study the associated critical properties, by
mapping the random 2D Ising model onto a network model. The model closely resembles network models of
quantum Hall plateau transitions, but has different symmetries. Numerical transfer matrix calculations enable
us to obtain estimates for the critical exponents at the random Ising phase transition. The values are consistent
with recent estimates obtained from high-temperature series.@S0163-1829~97!00902-8#
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I. INTRODUCTION

Two-dimensional 2D models have played a special role
the theory of phase transitions.1 In 1944 Onsager’s exac
solution of the 2D Ising model gave critical exponents th
were simple rational numbers, although different than L
dau theory. In the 1970 renormalization group~RG! calcula-
tions revealed exponents varying continuously below an
per critical dimension, illustrating the breakdown of Land
theory. But it was unclear why the 2D Ising exponents a
those for other exactly soluble 2D models were rational nu
bers. This fact was explained by the remarkable developm
of conformal field theory in the 1980s. Under the assumpt
of conformal invariance at criticality, it was possible to an
lyze a large class of 2D critical points.1 Moreover, a first step
was made towards a full classification ofall allowed 2D
phase transitions.

Many physically important 2D phase transitions occur
systems with quenched disorder. An example of particu
experimental interest is the transition between plateaus in
integer quantum Hall effect~IQHE!.2 This transition has
been successfully studied numerically, but so far has elu
analytic treatments via either RG calculations, exact meth
or conformal field theory. Given the general power of co
formal field theory in 2D, it has been surprisingly unhelpf
in understanding such random phase transitions.

In this paper we analyze a nontrivial 2D random pha
transition which occurs in the simplest of all models: the
Ising model with random bonds. Our approach is numeri
and closely parallels earlier work on the IQHE transitio2

We first map the 2D random Ising model into a variant of t
Chalker-Coddington3 network model, which describes non
interacting chiral fermions. The random Ising transition c
responds to a fermion localization transition. We extr
critical exponents numerically by standard transfer ma
methods. The values are in reasonable agreement with t
recently obtained by Singh and Adler4 via high-temperature
series. Unfortunately, this random Ising transition has a
eluded any analytic treatment.
550163-1829/97/55~2!/1025~7!/$10.00
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To be more specific, consider the Ising model on a
square lattice,

HJ52(
^ i , j &

Ji j SiSj , ~1.1!

with nearest-neighbor interactionsJi j taken as random vari
ables with a distributionPJ(Ji j ). For the simple distribution
PJ(Ji j )5pd(Ji j1J)1(12p)d(Ji j2J), corresponding to a
fractionp of antiferromagnetic bonds, the phase diagram,
established by various methods,5,6 is shown schematically in
Fig. 1.

For smallp there is a phase boundary separating the
romagnetically ordered phase at low temperatures from
paramagnet. A largerp destroys the ferromagnetic phas
replacing it in high dimensions (d>3) by a spin glass phase
In this case a multicritical point is expected at the coex
ence point of all three phases. In 2D the spin glass phas
not present at TÞ0, being destroyed by therma

FIG. 1. Schematic phase diagram of the 2D6J random-bond
Ising model.
1025 © 1997 The American Physical Society
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1026 55SORA CHO AND MATTHEW P. A. FISHER
fluctuations.5 However, the multicritical point still exists on
the ferro-to-para phase boundary.7 The multicritical point is
unstable along the phase boundary, with RG flows as
picted in Fig. 1, consistent with the~marginal! irrelevance of
weak disorder at the pure 2D Ising critical point (p50).
LeDoussal and Harris8 have argued that the Nishimori line
along which the internal energy is analytic,9 passes through
the multicritical point and coincides with one of the two R
scaling axes. The other scaling axis is tangent to the fe
to-para phase boundary. Recently, Singh and Adler4 have
obtained estimates for the two associated critical expone
using a high-temperature series method. From a gen
point of view, this multicritical point is of interest, bein
probably the simplest 2D critical point which occurs at bo
finite temperature and finite disorder strength.

Our paper is organized as follows. In Secs. II and III, w
show that the random-bond 2D Ising model can be mapp
using a fermionic representation, to a variant of the Chalk
Coddington network model.3 This mapping reveals a clos
similarity between the random Ising transition and the IQH
plateau transition. However, due to a symmetry differen
the two transitions arenot in the same universality class. I
Sec. IV, we employ a transfer matrix approach to analyze
network model, and obtain estimates for the exponents a
random Ising multicritical point. Section V gives a brie
summary and conclusion.

II. FERMIONIC REPRESENTATION

It is well known that the critical properties of the pure 2
Ising transition are equivalent to a massless Majorana~real!
fermion field.1 In his studies of the bond-diluted Ising mode
Shankar10 constructed a model in terms of convention
~Dirac! fermions, by adjoining two identical copies. For th
random-bond Ising model, we show below that this pro
dure leads to a model of 2D chiral fermions, with a hoppi
matrix element of randomsign.

Following Shankar,10 we consider a spatially anisotrop
Ising model, retaining a lattice in one direction, but taki
the continuum limit in the other~the ‘‘imaginary time’’ di-
rection!. The partition function, when expressed in terms o
transfer matrix, can then be writtenZ5Tr exp(2bH1D),
whereH1D is a 1D quantum Hamiltonian andb is the system
size in the ‘‘time’’ direction. The appropriate 1D Hami
tonian for the pure Ising model is

H1D5(
n

@k1sn
x1k2sn

zsn11
z #, ~2.1!

wheren label sites of a 1D lattice andsa with a5x,y,z are
Pauli matrices. This model exhibits a phase transition w
k15k2, which is in the~pure! Ising universality class, as
verified below. The transition also follows from a duali
symmetry which exchanges high- and low-temperat
phases.1 With the definition sn

x[mn
zmn11

z and
sn
z[)m,nmm

x the Hamiltonian can be written in the form
~2.1! with sa→ma andk1↔k2.

The partition function is also invariant underk i→2k i

( i51,2), as seen by a spin rotation,sn
a→2sn

a , with
a5x,y for n odd anda5x,z for n even, which restores th
Hamiltonian to its original form. This transformation
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equivalent toJ→2J in Eq. ~1.1!, mapping from a ferromag-
netic to antiferromagnetic spin model. Thus randomness
the sign of the exchange interaction in Eq.~1.1! is equivalent
to randomness in thesign of k i . To describe the6J Ising
model, we thus consider interactions which are random fu
tions of bothn and imaginary timet, k i→k i(n,t), taking
either sign.

A fermionic representation can be obtained by introdu
ing the Majorana fields

h1~n![
1

A2 )
m,n

sm
x sn

y, h2~n![
1

A2 )
m,n

sm
x sn

z ,

~2.2!

which anticommute,$h i(n),h j (m)%5d i jdnm . The Hamil-
tonian is quadratic when expressed in terms of these
variables,

H1D5~22i !(
n

@k1h1~n!h2~n!2k2h1~n!h2~n11!#.

~2.3!

An identical copy of the system is constructed by intr
ducing a new set of Majorana fieldsj i . The Hamiltonian
obtained by summing the two, H̃[ 1/2 @H1D(h i)
1H1D(j i)#, can be expressed in terms of standard~Dirac!
Fermion operators

c i[
1

A2
~h i1 i j i !, c i

†[
1

A2
~h i2 i j i ! ~2.4!

as

H̃5(
n

~2 ik1!@c1
†~n!c2~n!2c2

†~n!c1~n!#1~ ik2!

3@c1
†~n!c2~n11!2c2

†~n11!c1~n!#. ~2.5!

Notice thatH̃ has a conserved U~1! charge:c1
†c11c2

†c2. At
the pure Ising transition, there are gapless excitations in
conserved charge. With disorder present, the transition
responds to a localization transition of these conserved
mions.

To complete the mapping, we express the partition fu
tion as a path integral over Grassmann fields,

Z5E DcDc̄exp~2S!, ~2.6!

whereS is the Euclidean action forH̃:

S5E
t
(
n

@c̄1~n!]tc1~n!1c̄2~n!]tc2~n!#1H̃~ c̄,c!.

~2.7!

Reinterpreting imaginary time as a spatial coordina
t→x, the actionS can be viewed as a 2D Hamiltonian o
chiral fermions, denotedH2D . To bring it into a canonical
form, we define new right- and left-moving fermion fields

cRn5~21!nc1~n!, cLn5~21!nc2~n!, ~2.8!

cRn
† 5 i ~21!nc̄1~n!, cLn

† 52 i ~21!nc̄2~n!. ~2.9!
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In terms of these the action becomes

H2D5E dx(
n

@cRn
† ~ i ]x!cRn1cLn

† ~2 i ]x!cLn

1k1~cRn
† cLn1cLn

† cRn!

1k2~cRn
† cLn111cLn11

† cRn!#. ~2.10!

This Hamiltonian has a simple pictorial representation
terms of 1D right- and left-moving fermion fields, couple
together by hopping strengthsk1 andk2, as depicted in Fig.
2. The model closely resembles an anisotropic version of
Chalker-Coddington network model.3 In the next section we
describe a lattice version, appropriate for numerical simu
tions.

In the absence of disorder, withk1 and k2 constant,
H2D can be easily diagonalized by transforming to mom
tum space. The energy eigenvalues satisfy

E25px
21k1

21k2
212k1k2cosp, ~2.11!

with px the x component of momentum andp a transverse
momentum in the range2p to p. The energy is a minimum
when p5p and px50, and given byuEumin56uDu, with
D5k12k2. The pure Ising critical point occurs whe
D50. ForDÞ0, there are no zero energy eigenvalues of
2D Hamiltonian. If a wave of energyE50 is incident in the
x direction, it will decay as exp(2uDux), sincepx5 iD is pure
imaginary. The decay lengthj;uDu21 corresponds to the
correlation length of the pure 2D Ising model. The critic
exponent isnpure51 as expected.

With disorder, the tunneling amplitudesk i become ran-
dom functions of positionn andx and momentum is not a
good quantum number. Nevertheless, at the Ising multic
cal point~see Fig. 1!, one expects theE50 states ofH2D to
be extended, corresponding to an infinite correlation lengt
Away from criticality, one anticipateslocalized electronic
states atE50, rather than a gap as in the pure case.

III. NETWORK MODEL

In pioneering work, Chalker and Coddington3 introduced
a network model to study numerically the transition betwe
IQHE plateaus. This model is essentially a lattice version
a chiral fermion Hamiltonian, similar Eq.~2.10!. The model
consists of links and nodes, as depicted in Fig. 3. On e
link there is a complex amplitude representing the ferm

FIG. 2. A pictorial representation of the chiral fermion Ham
tonian ~2.10!. Neighboring chiral modes, propagating in the dire
tion of the arrows, are coupled via tunneling matrix elementsk i .
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~electron! wave function. At the nodes, two incoming wav
functions scatter into two outgoing ones, conserving pr
ability. The nodes are specified by anSmatrix. In the origi-
nal network model,3 the complex amplitudes acquired a ra
dom phase factor upon propagating along a given li
corresponding physically to a~random! magnetic flux
through plaquettes.

On physical grounds, it is clear that a very similar ne
work model should suffice for describing the propagation
E50 waves of the Hamiltonian~2.10!. In the appropriate
network model, the tunneling amplitudesk i are replaced by
node parameters. Since we are interested inE50, there are
no phase factors associated with the links themselves.
network model is specified by a transfer matrixT, taken, say,
in the horizontal direction in Fig. 3. This matrix is decom
posed into a product of matricesM j , representing columns
of the network, withj running from 1 toN, the length of the
network. Each matrixM j is a product of two matrices
M j5Aj (u1)Bj (u2), representing two adjacent nodes in F
3. The two node parametersu1 andu2 correspond to the two
hopping coefficientsk1 andk2.

The matrix representing tunneling at a given node is c
structed to conserve the current or, equivalently, the U~1!
charge. Following Chalker and Coddington,3 the node in the
dotted box in Fig. 3 is written as

Swout

win
D 5S coshu1 sinhu1

sinhu1 coshu1
D S v invout

D .
By construction, this matrix conserves the curre
uwinu21uv inu25uwoutu21uvoutu2. Moreover, an incident wave
say, win , is backscattered intowout with probability
tanh2(u1). Since this tunneling probability is proportional t
k1
2 in the 2D Hamiltonian~2.10!, we make the identification

tanh~u i !↔k i . ~3.1!

FIG. 3. Representation of network model with widthL54 and
lengthN53. The arrows indicate the direction of wave propagati
along links. The parametersu i specify scattering at the nodes.

FIG. 4. A sign change in a node parameteru effectively changes
by p the flux penetrating the two neighboring plaquettes.
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1028 55SORA CHO AND MATTHEW P. A. FISHER
Although the Hamiltonian~2.10! is intrinsically anisotropic,
the network model can be made invariant3 under ap/2 spa-
tial rotation by choosing sinh(u1)sinh(u2)51, at successive
nodes.

It is instructive to briefly consider the pure netwo
model, with constant node parameters. In this case, the tr
fer matrix can be diagonalized in momentum space. Fo
ng
s
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network with lengthN and widthL, the total transfer matrix
is T5M0

N , with M0 an L3L matrix. Due to translationa
invariance, the eigenvalues ofM0, and henceT, can be la-
beled by a transverse momentump. We denote these a
l(p). For a given transverse momentump, these follow as
eigenvalues of a simple 232 matrix:
S coshu1coshu21sinhu1sinhu2e
ip sinhu1coshu21coshu1sinhu2e

ip

sinhu1coshu21coshu1sinhu2e
2 ip coshu1coshu21sinhu1sinhu2e

2 ipD .
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One finds

l6~p!5A6AA221, ~3.2!

with

A5cosh~u12u2!1sinh~u1!sinh~u2!@11cos~p!#.
~3.3!

As before, at the pure Ising critical point a nondecayi
mode is expected. Since the eigenvalues of the total tran
matrix arelN, this is only possible ifulu251. This requires
p5p andu15u2, the expected condition for Ising critica
ity. Specializing to p5p and the isotropic case, with
sinh(u1)sinh(u2)51, the eigenvalues take the simple form

l15
1

l2
5
11D

12D
, ~3.4!

with D measuring the ‘‘distance’’ to the critical point:

D5tanh~u1!2tanh~u2!. ~3.5!

These eigenvalues describe the slowest decay ofT;lN. The
Ising correlation length follows asj51/ln(l1), and as ex-
pected varies asj;1/uDu upon approaching the critica
point,D→0.

We now incorporate randomness. Due to the identificat
~3.1!, a change insignof the Ising exchange, corresponds
a sign change of a node parameteru i in the network model.
Thus the random-bond Ising model corresponds to a netw
model in which thesign of the node parameters is random
To be specific, we choose themagnitudeof the node param-
eters to be constantsu1 andu2, satisfying the isotropy con
dition sinh(u1)sinh(u2)51. Thesignof u at each node is cho
sen randomly, being negative with probabilityW and
positive with probability 12W. The random network mode
we consider is thus characterized by two parameters:D,
which measures the distance from criticality in the pu
model, andW the disorder strength.

This model differs in symmetry from the origina
Chalker-Coddington network model,3 in which random
fluxes were present through each plaquette, reflecting
breaking of time-reversal invariance by the magnetic field
the QHE. In the present case, there are no random p
factors. However, in the pure model with all node parame
positive, the fermion amplitude picks up a minus sign up
encircling any elementary plaquette, equivalent to a unifo
fer

n

rk

he
n
se
rs
n

flux p through each plaquette. Moreover, a sign change o
node parameter, changes the flux through two neighbo
plaquettes byp, as depicted in Fig. 4.

Under the Ising duality transformation,D→2D. Thus the
D50 line should correspond to the Ising ferromagnetic
paramagnetic phase boundary, depicted in Fig. 1. Increa
the randomnessW, with D50, corresponds to moving alon
this phase boundary away from the pure Ising critical po
Based on Fig. 1, we expect the Ising multicritical point
correspond to some critical disorder strengthWc . Numerical
simulations, described in the next section, indeed sup
this scenario. The scaling axis along the phase boundary
responds to varyingW with D50, whereas the Nishimor
line corresponds to the lineW5Wc .

ForW.Wc andD50, one expects the network model
remain critical, due to duality symmetry. However, it is u
clear what this regime corresponds to in the original latt
Ising model~1.1!. It is conceivable that increasingW beyond
Wc ~at D50) corresponds to moving along the low
temperature part of the phase boundary in Fig. 1, arriving
the T50 fixed point at the maximum disorder strengt
Wmax51/2. However, this interpretation is a bit problema
sinceW51/2 is ‘‘halfway’’ between the ferromagnet an
antiferromagnet, and naively corresponds top51/2 in Fig. 1.
Perhaps the time continuum limit taken in Eq.~2.1!, doesnot
give a faithful representation of the lattice Ising model~1.1!
for W.Wc .

IV. RESULTS

The transfer matrixT of the random network model ca
be computed numerically, following the work of Chalke3

and others.11–13We have studied strips of widthL ranging
from L516 up toL5128. Ensemble averaging is performe
by taking very long strips, with lengthN up to 105. Of the
L eigenvalues ofTN , denotedl i , L/2 are greater than 1
corresponding to exponentially growing solutions, and
others are less than 1, decaying to zero with increasingN.
Due to the~statistical! parity of the system, these come
pairs,l i5exp(6Ngi), wherei51,2, . . . ,L/2 and all theg i

s

are positive. Of interest is the smallest,gmin , corresponding
to the most slowly decaying mode. From this one extracts
correlation length as
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jL5
1

gmin
. ~4.1!

In order to extrapolate to the thermodynamic lim
L→`, it is convenient to consider the dimensionless rati

LL~D,W![
L

jL
, ~4.2!

which is a function of the two control parametersW and
D. Away from criticality (DÞ0), jL5` is finite, and so this
ratio should grow and diverge asL→`. Representative dat
are shown in Fig. 7, whereLL is plotted versusD for weak
randomnessW50.075, at various different system sizes.
the pure Ising critical pointD5W50, the ratioLL is found
to vanish identically even forfinite L, due to the propagating
mode with transverse momentump5p, described by Eq.
~3.2!. At a random critical point, one expects thatLL will
approach a finite constant in the thermodynamic limit,
flecting the infinite correlation length.

In Fig. 5 we show data forLL versus disorder strengt
W, along the phase boundary,D50, at four different system
widthsL. Although there is significant variation withL, par-
ticularly for the smaller sizes, there appear to be two disti
regimes separated by a peak. For the largest w
(L5128) the peak occurs at a disorder strengthWc'0.08.
For W,Wc the ratioLL drops rapidly towards zero, th
value at the pure Ising critical point. For strong disord
W.Wc the ratio appears to be settling down towards a c
stant of order 1/2 at largeL. This presumably corresponds
a strong disorder critical point. Right at the critical disord
strengthW5Wc , LL is increasing slowly withL, and pre-
sumably eventually saturates. We thus identify the po
(D50, W5Wc) with the random Ising multicritical poin
~see Fig. 1!.

This identification can be confirmed by extracting critic
exponents, and comparing with the values obtained by Si

FIG. 5. Dimensionless ratioLL vs disorder strengthW along the
phase boundaryD50 for four different system widths
L516(3), L532(n), L564(h), andL5128(s).
-

t
th

r
-

r

t

l
h

and Adler4 at the Ising multicritical point. Unfortunately
precise values are difficult to extract due to the rather sev
finite size effects, evident in Fig. 5. These are due~in part! to
the small value ofWc : With Wc'0.08, the typical neares
distance between two nodes with negative node parame
u i , is roughly 4 times the network lattice spacing.

Consider first the critical exponent corresponding to
scaling axis along the phase boundary, denotednp . A natural
finite-size scalingansatzfor LL takes the form

LL~D50,W!5 f @L1/np~W2Wc!#, ~4.3!

for large L andW→Wc . This form predicts that peaks in
LL(W) aroundWc should sharpen up with a width vanishin
as dW;L21/np. The data in Fig. 5 are consistent with th
trend, showing narrower peaks for largerL. To obtain a
rough estimate for the exponentnp , we fit the peaks to a
parabola. Denoting the curvatures of the parabolas asRL ,
scaling predictsRL;L2/np. In Fig. 6 we plot log(RL) versus
log(L) and extract the exponent 2/np as the slope of a fitted
straight line. Fitting all four points gives an estima
np;2.2. However, thex2 per data points decreases an ord
of magnitude if the smallest sizeL516 is excluded, which
gives ~dotted line in Fig. 6! np;2.45. Thus we estimate
np'2.4, with a large error bar60.3.

The critical exponent along the Nishimori line can be e
tracted by sitting atWc and tuningD away from zero. In this
case, finite-size scaling implies that

LL~D,W5Wc!5F@L1/nD#. ~4.4!

The raw data forLL(D,Wc) versusD are shown in Fig. 7.
As expected, away from the multicritical point atD50, the
ratio LL grows with L, indicative of a finite correlation
length. In Fig. 8 these data forD,1/2 are replotted, rescal
ing the horizontal axis byL1/n. Based on the quality of the
data collapse, we estimaten'4/3 with error bars60.1.

Our estimates for the exponents compare favorably w
those obtained by Singh and Adler4: n51.3260.08 and

FIG. 6. CurvaturesRL of parabolic fits to the peaks in Fig. 5, v
system widthL on a doubly logarithmic plot. From scaling, th
slope gives an estimate for the critical exponent 2/np .
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1030 55SORA CHO AND MATTHEW P. A. FISHER
np'(5/3)n'2.2. This agreement gives one confidence t
the peak in Fig. 5 does indeed correspond to the rand
Ising multicritical point.

In addition to the multicritical point, we have tried t
analyze the behavior at maximal disorder strengthW51/2.
As discussed earlier, it is unclear whether or not this po
corresponds to theT50 fixed point atp5pc in the random-
bond Ising model~Fig. 1!. Unfortunately, atW51/2 we are
even more severely plagued by finite-size effects asD is
varied. Specifically, the correlation length tends to rem
very long, even well away from criticality, withD→1. In
this limit, the fermions tend to become localized arou
plaquettes on one sublattice. But withW51/2, half of the
plaquettes have zero flux, and can support (E50) states cir-
cling around them. For 12D small, these states will be
weakly coupled via tunneling, and may tend to percolate
to rather long scales. At this stage, we cannot conclude a
thing definite about the critical behavior of the netwo
model at strong disorder.

V. CONCLUSION

To summarize, we have shown that the 2D random b
Ising model can be fruitfully mapped onto a network mod
for chiral fermions. The network model is similar to th
original Chalker-Coddington model3 used to study IQHE

FIG. 7. Dimensionless ratioLL5L/jL plotted vsD at disorder
strength W50.075 for four different system sizes
L516(3), L532(n), L564(h), andL5128 ~s!.
t
m

t

n

t
y-

d
l

plateau transitions, but with different symmetry. Specifical
the model has node parameters with random signs, ra
than random fluxes through plaquettes. The network mo
has been used to study the novel random multicritical po
which exists on the Ising ferromagnetic to paramagne
phase boundary. By implementing a numerical transfer m
trix approach, estimates for the associated critical expon
have been extracted, which are consistent with those
tained by Singh and Adler4 from high-temperature series
The critical exponents are quite different from those at
IQHE plateau transition, indicating different universali
classes, not surprising in view of the symmetry differenc
between the two models.

What are the prospects for an analytic treatment of
random Ising multicritical point? Being in two dimension
one might hope that powerful constraints from conform
invariance would be helpful. Analytic approaches to t
IQHE plateau transition have been impeded by the abse
of critical behavior in ensemble-averaged single-parti
Green’s functions. The situation might be simpler at t
Ising multicritical point, though, since critical properties a
probably present in average single-fermion correlators.
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