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Conductance fluctuations at the integer quantum Hall plateau transition
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We study numerically conductance fluctuations near the integer quantum Hall effect plateau transition. The
system is presumed to be in a mesoscopic regime, with phase coherence length comparable to the system size.
We focus on a two-terminal conductanceG for square samples, considering both periodic and open boundary
conditions transverse to the current. At the plateau transition,G is broadly distributed, with a distribution
function close to uniform on the interval between zero and one in units ofe2/h. Our results are consistent with
a recent experiment by Cobden and Kogan on a mesoscopic quantum Hall effect sample.
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I. INTRODUCTION

One of the early surprises of the burgeoning field of m
soscopic physics some ten years ago was the observatio
large conductance fluctuations in small metallic sample1,2

Metals with phase coherence lengths exceeding their
were found to exhibit sample~or field! specific fluctuations
in their conductance. The magnitude of the fluctuations —
ordere2/h — was essentially independent of the mean c
ductance, leading to the name ‘‘universal conductance fl
tuations.’’ Theoretical explanations are based on models
diffusing electrons, in which localization effects can
ignored.3 Generally, this requires that the mean conducta
is much larger thane2/h, a condition fulfilled in the experi-
ments.

One of the striking features of the plateau transitions
the quantum Hall effect,4,5 is that the magnitude of the mac
roscopic longitudinal conductivitysxx is both metallic —
independent of temperature asT→0 — and of ordere2/h.
Conventional localization effects are inoperative due to
strong applied magnetic field. For the transition from insu
tor to the first filled Landau level, the experimental value6

for the conductivity tensor are consistent with

sxx5sxy5
1

2

e2

h
. ~1.1!

These macroscopic conductivities are self-averaged, s
the sample sizes are much bigger than the phase cohe
length. Several authors have given theoretical argumen
support of these values,5,7–9 although it is unclear that the
averaging process is appropriate to the experiment.

Recently Cobden and Kogan have measured the con
tance of a small quantum Hall effect sample, in the me
scopic regime.10 They find large fluctuations in a two
terminal conductance near the plateau transitions, as
vary the carrier density with a gate voltage. Specifically,
conductance seems to be almost uniformly distributed on
interval between zero and one in units ofe2/h. In striking
550163-1829/97/55~3!/1637~5!/$10.00
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contrast to conventional metallic samples, the magnitude
the conductance fluctuations is comparable to the mean
ductance,Ḡ'(1/2)e2/h.

In this paper we compute the conductance fluctuati
employing a simple network model of the integer quantu
Hall effect~IQHE! plateau transition.11,12We extract a meso-
scopic two-terminal conductance and its sample~and field!
specific fluctuations. Our results are entirely consistent w
the Cobden and Kogan experiment. Right at the transit
the conductance distribution function is essentially unifo
on the interval from zero to one in units ofe2/h.

Our paper is organized as follows. In Sec. II we brie
review the network model, specifying the appropriate geo
etry and boundary conditions. The results for the cond
tance and its distribution are presented in Sec. III. Section
is devoted to a brief discussion.

II. THE NETWORK MODEL

To model the IQHE plateau transition, we emplo
Chalker and Coddington’s network model.12 In this model
the interactions between the electrons are ignored. In t
original formulation, the impurity potential was assumed
be slowly varying on the scale of the magnetic length. T
semiclassical trajectories moving along equipotentials w
modeled via ballistic chiral propagation along the links o
network. Quantum tunneling at saddle points between nea
equipotentials was incorporated via tunneling at node par
eters, connecting two incoming and two outgoing links. F
simplicity, the nodes and links were placed on a regu
~square! lattice. Randomness was incorporated via phase
tors for propagation along the links, that were assumed to
independent and uniformly distributed between 0 and 2p.

In this paper we focus on the behavior near the plat
transition. Being a continuous~second-order! phase transi-
tion, we expect that universal critical properties~including
conductance fluctuations! should not depend on details of th
model. Thus, for example, the results obtained should a
apply to systems for which the potential isnot varying
1637 © 1997 The American Physical Society
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slowly on the scale of the magnetic length. Extensive
merical simulations that have extracted the critical expon
n for the diverging localization length support th
supposition.5 For example, Lee, Wang, and Kivelson13 have
shown that inclusion of random scattering at the nodes g
the same value forn as in Chalker’s original random-phas
model.12 Moreover, consistent estimates forn have also been
obtained from other numerical approaches, such as Thou
number studies of lowest Landau level Hamiltonians.5,12 A
more serious concern is the legitimacy of ignoring Coulo
interactions between the electrons. It is conceivable
interactions—particularly long-ranged Coulomb forces
might be a ‘‘relevant’’ perturbation at the noninteractin
phase transition~fixed point!, leading to new critical
properties.14,15 However, experimental measurements ofn
seem to coincide with the noninteracting value. Being pr
tical, we ignore Coulomb interactions, and adopt Chal
and Coddington’s network model.12

To be specific, we study a square lattice network of no
and links, as depicted in Fig. 1. The network is connected
two leads — to the right and left. The distance between
leads, measured in units of the network lattice spacing
denoted byLx . Of interest is the two-terminal conductanc
between these two leads. The sample has a width, den
Ly , in the transverse direction. We consider two bound
conditions in the transverse direction:~i! periodic boundary
conditions and~ii ! open boundary conditions. The case
open boundary conditions corresponds closely to the exp
mental geometry of Cobden and Kogan.10 In this case, edge
states dominate the transport in the IQHE plateau.

Quantum tunneling at each node is represented by a 2 by
2 matrix,

Swout

win
D 5S coshu sinhu

sinhu coshu D S v invout
D ,

wherev andw represent complex amplitudes for incomin
and outgoing electron waves to the right and left, resp
tively, of a given node~see Fig. 1!. By construction, this
matrix conserves the current,uwinu21uv inu25uwoutu2
1uvoutu2. The node parameteru determines the degree o
backscattering at the node. So, for example, an incid
wave, saywin , is backscattered intowout with probability
tanh2(u). To make the model invariant under ap/2 spatial
rotation, the node parameters take two values,u1 andu2, in

FIG. 1. Schematic representation of the network model fo
square sample with sizeLx5Ly54. The arrows indicate the direc
tion of wave propagation along the links, andu1 and u2 specify
scattering at the nodes. The two-terminal conductanceG is mea-
sured between the right and left leads.
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alternating columns, and are chosen to satisfy the condi
sinh(u1)sinh(u2)51. Randomness is incorporated via rando
phase factors along links.

From symmetry, the plateau transition occurs wh
tanh(u1)5tanh(u2), or u5uc5 ln(11A2). It is thus conve-
nient to define a variableD, which measures the ‘‘distance’
to the transition

D5tanh~u1!2tanh~u2!. ~2.1!

This parameter lies in the range21<D<1, and vanishes
right at the plateau transition.

For open boundary conditions in the transverse (y) direc-
tion, the nodes on the top and bottom edges are modifie
be

Swout

win
D 5S 1 0

0 1D S v invout
D

so thatwout5v in andwin5vout. In this case, the boundar
breaks ~lowest Landau level! particle-hole symmetry,
D→2D, just as the edges do in a real physical system
the Hall plateau phase,D.0, extended edge states confin
to the top and bottom boundaries of the sample are expec
In the localized insulator, corresponding toD,0, all states
are localized, even near a boundary. In real systems,
presence of an edge state accounts naturally for the quan
Hall conductivity.

With transverse periodic boundary conditions, all nod
~in each column! are identical. In this case, there are
course no edge states. The two-terminal conductance is
sensitive to extended bulk states, present at the plateau
sition. The finite system is particle-hole symmetr
(D→2D), as will be clear from the numerical results.

We compute numerically the total transfer matrixT in the
x direction, for a network of widthLy and lengthLx . This
Ly by Ly matrix relates the incoming and outgoing amp
tudes in one lead — thev ’s to the amplitudes in the othe
lead — the w’s, and can be written schematically a
W5TV, whereW andV are vectors withLy elements. To
extract the two-terminal conductanceG, it is useful to write
T in the form

SWout

Win
D 5S A B

C DD S Vin

Vout
D ,

whereVin denotes anLy/2 column vector of the incoming
amplitudes in the right lead,Vout the outgoing, and similarly
for the other lead. This can be inverted to obtain theSmatrix
relating all the incoming to outgoing modes, as

SWout

Vout
D 5SBD21 A2BD21C

D21 2D21C D SWin

Vin
D .

The two-terminal conductance can be expressed in term
the Ly/2 by Ly/2 transmission matrixt, which relates the
incoming amplitudes of one lead to the outgoing amplitud
in the other lead:Vout5tWin . Thus we havet5D21. The
two-terminal conductance follows readily fromt as16

G5
e2

h
tr@ tt1#. ~2.2!
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55 1639CONDUCTANCE FLUCTUATIONS AT THE INTEGER . . .
Below we focus on the two-terminal conductance fo
square samples of sizeL5Lx5Ly54, 8, 16, and 24. The
distribution function is obtained by evaluatingG for many
different samples. We typically take 53104 samples.

III. RESULTS

The mean conductance, denotedḠ, is obtained by aver-
agingG over a large number of samples. In Fig. 2~a!, Ḡ is
plotted versus the control parameterD, for four different
sample sizes, all with periodic boundary conditions in th
transverse direction.~In this and later figures,G is plotted in
units e2/h.! As expected the mean conductance is largest
the plateau transition,D50, reflecting transport via bulk de-
localized states, and falls off towards zero away from th
transition. For the larger system sizes, the peak inḠ narrows.
With open boundary conditions, the mean conductance ri
from zero to one, as shown in Fig. 2~b!. As the sample size
increases, the ‘‘step’’ becomes less and less rounded.
gether, the two sets of data forḠ resemble experimental
plots of the macroscopic conductivities,sxx andsxy , when
plotted versus electron density. However, a direct compa
son with macroscopic conductivities is delicate, since t
ensemble averaging procedure that we are using maynot be
appropriate to the thermal averaging taking place in mac
scopic experimental samples.

From scaling arguments, one expects that the mean c
ductances,Ḡ(L,D), should be only a function of the single
scaling parameter5 L1/nD for large enoughL and small
enoughD. Heren is the localization length critical exponent
which has a valuen'7/3. In Fig. 3, the the data forḠ in Fig.
2 are replotted versus the scaling variableL1/nD, with
n57/3. Although the smaller sizes show marked finite-siz
scaling corrections, the data collapse is satisfactory at
larger sizes.

It is amusing that with periodic boundary conditions,Ḡ at
the plateau transitionD50, is very close to 1/2 for the larg-
est sizes, the same value as the experimentally measu
macroscopicsxx . But this is probably coincidental, since
our averaging procedure is not appropriate for macrosco
samples. With open boundary conditions, the mean cond
tance is not invariant underD→2D, due to the breaking of
particle-hole symmetry by the boundaries. At the plate

FIG. 2. The mean conductanceḠ plotted vsD for square sys-
tems of four different sizesL54(3), L58(n), L516(h), and
L524(s) with ~a! periodic and~b! open boundary conditions.
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transition,Ḡ is slightly larger than 1/2, roughly 0.65 for the
larger sizes. The increase ofḠ(D50) when changing the
boundary conditions from periodic to open can presuma
be attributed to an additional contribution coming from ed
currents.

To characterize the conductance fluctuations first consi
the root-mean-square conductance, defined as

dG5A G22Ḡ2, ~3.1!

where the overbar denotes an ensemble average over di
ent samples. In Fig. 4, we plotdG versusD for four different
sample sizes, with periodic boundary conditions in~a! and
open in ~b!. For both boundary conditions, there are larg
fluctuations near the plateau transition, withdG(D50)
'0.3. Away from the transition, the fluctuations drop o
rapidly with increasing system size, as expected. In bo
cases, the peaks sharpen with increasingL, as expected from
finite-size scaling. The physical origin of the slight doubl
peaked structure in Fig. 4~a! is unclear. In contrast to the
mean conductance itself, the root-mean-square conducta
is relatively insensitive to finite-size effects at the transitio

More informative than the root-mean-square conductan
is the full conductance distribution function, denotedP(G).
To obtain this, we simply make a histogram plot of the num
ber of samples with conductanceG, for a very large en-
semble. In Fig. 5, we plot the conductance distribution fun
tion at the plateau transition (D50), for the largest system

FIG. 3. Scaling collapse of the mean conductance from Fig.
plotted vs the parameterDL1/n with n57/3, for ~a! periodic and~b!
open boundary conditions.

FIG. 4. Root-mean-square conductancedG plotted vsD for a
square system of four different sizes:L54(3), L58(n),
L516(h), andL524(s) with ~a! periodic and~b! open boundary
conditions.
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1640 55SORA CHO AND MATTHEW P. A. FISHER
sizeL524, with ~a! periodic and~b! open boundary condi-
tions. In both cases, the conductance is very broadly distr
uted, roughly uniform over the interval from zero to on
e2/h. Above G5e2/h, the distribution functions drop off
rapidly, although there is a slightly larger ‘‘tail’’ with open
boundary conditions, presumably due to edge current con
butions.

IV. DISCUSSION

The conductance distribution functions obtained nume
cally compare favorably with those measured in the Cobd
and Kogan experiment on a mesoscopic Hall system.10 In
this experiment, the two-terminal conductance of a sma
sample~0.630.6mm2) was measured as a function of carrie
density, by varying a gate potentialVg . Large fluctuations in
the conductance were seen upon varyingVg through the pla-
teau transitions, as shown in Fig. 6~a!. In the Hall plateaus
themselves, smaller fluctuations were observed. This beh
ior is consistent with our numerics for the root-mean-squa
fluctuations,dG in Fig. 4, which are largest at the plateau
transition. From the data with gate voltages near the plate
transition, Cobden and Kogan obtained a conductance dis
bution function, shown in Fig. 6~b!, which is roughly uni-
form on the interval from zero to one. Under the ‘‘ergodic’
assumption that varying the gate potential is equivalent

FIG. 5. Conductance distribution function right at the platea
transition,D50, for the system sizeL524 with ~a! periodic and~b!
open boundary conditions. The distribution functions are norma
ized to unity.

FIG. 6. Cobden and Kogan’s experimental data:~a! Two-
terminal conductance plotted vs the gate voltageVg . The thick
solid line is the same data averaged over aVg interval of 16 mV.~b!
Conductance distribution of data points near the plateau transiti
in the interval 2.06<Vg<2.12.
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changing the impurity configuration~i.e., the sample!, we
can compare their distribution function with ours, which w
obtained by taking an ensemble averageat the plateau tran-
sition ~see Fig. 5!. The similarity is striking.

To more closely mimic the experimental procedure,
have computed the conductance for agiven sample, as a
function ofD. This is shown in Fig. 7, for a square system
sizeL524 with both periodic and open boundary condition
Notice the very large fluctuations in the transition regio
The behavior in Fig. 7~b! with open boundary conditions i
very similar to the ‘‘raw’’ experimental data of conductanc
versus gate potential.

In addition to extracting conductance fluctuations f
square samples, we have studied systems with various di
ent aspect rations,Lx /Ly . For aspect rations betwee
roughly 1/3 and 3, the qualitative results are essentially
modified. For very long sample, however,Lx@Ly we start
seeing effects of one-dimensional localization.

In summary, it appears that the quantum Hall plateau tr
sition provides an ideal arena for studying finite-size effe
on random phase transitions. The agreement between si
models of noninteracting electrons, and the experime
data is striking. Among the open issues is the role of C
lomb interactions, which have been ignored in the numer
Will they change the critical behavior, and possibly mod
the conductance fluctuations? Moreover, even without in
actions, an analytic description of the transition is lackin
for either fluctuations or average properties. One can o
hope that the relative experimental accessibility of the qu
tum Hall plateau transition will spur further theoretical d
velopments.
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FIG. 7. Conductance plotted vsD of a single sample for the
system sizeL524 with ~a! periodic and~b! open boundary condi-
tions. The solid lines are the mean conductance, which was
tained by taking an ensemble average.
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