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Conductance fluctuations at the integer quantum Hall plateau transition
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We study numerically conductance fluctuations near the integer quantum Hall effect plateau transition. The
system is presumed to be in a mesoscopic regime, with phase coherence length comparable to the system size.
We focus on a two-terminal conductan@efor square samples, considering both periodic and open boundary
conditions transverse to the current. At the plateau transitBris broadly distributed, with a distribution
function close to uniform on the interval between zero and one in uniéé/bf Our results are consistent with
a recent experiment by Cobden and Kogan on a mesoscopic quantum Hall effect sample.
[S0163-182607)05103-5

I. INTRODUCTION contrast to conventional metallic samples, the magnitude of
the conductance fluctuations is comparable to the mean con-
One of the early surprises of the burgeoning field of me-ductance G~ (1/2)e?/h.
soscopic physics some ten years ago was the observation of In this paper we compute the conductance fluctuations
large conductance fluctuations in small metallic sampfes. employing a simple network model of the integer quantum
Metals with phase coherence lengths exceeding their sizgall effect(IQHE) plateau transition>*?We extract a meso-
were found to exhibit sampléor field) specific fluctuations scopic two-terminal conductance and its samaled field
in their conductance. The magnitude of the fluctuations — o&pecific fluctuations. Our results are entirely consistent with
ordere?/h — was essentially independent of the mean conthe Cobden and Kogan experiment. Right at the transition,
ductance, leading to the name “universal conductance flucthe conductance distribution function is essentially uniform
tuations.” Theoretical explanations are based on models ofn the interval from zero to one in units ef/h.
diffusing electrons, in which localization effects can be Our paper is organized as follows. In Sec. Il we briefly
ignored? Generally, this requires that the mean conductanceeview the network model, specifying the appropriate geom-
is much larger thae?/h, a condition fulfilled in the experi- etry and boundary conditions. The results for the conduc-
ments. tance and its distribution are presented in Sec. lll. Section IV
One of the striking features of the plateau transitions inis devoted to a brief discussion.

the quantum Hall effect® is that the magnitude of the mac-
roscopic longitudinal conductivityr,, is both metallic —
independent of temperature &s-0 — and of ordere?/h.
Conventional localization effects are inoperative due to the To model the IQHE plateau transition, we employ
strong applied magnetic field. For the transition from insula-Chalker and Coddington’s network modélin this model
tor to the first filed Landau level, the experimental vafues the interactions between the electrons are ignored. In their

Il. THE NETWORK MODEL

for the conductivity tensor are consistent with original formulation, the impurity potential was assumed to
be slowly varying on the scale of the magnetic length. The

1 e? semiclassical trajectories moving along equipotentials were

Txx=Oxy=% - (1D modeled via ballistic chiral propagation along the links of a

network. Quantum tunneling at saddle points between nearby

These macroscopic conductivities are self-averaged, sinaquipotentials was incorporated via tunneling at node param-
the sample sizes are much bigger than the phase coherereters, connecting two incoming and two outgoing links. For
length. Several authors have given theoretical arguments isimplicity, the nodes and links were placed on a regular
support of these valu@s,~® although it is unclear that the (squar lattice. Randomness was incorporated via phase fac-
averaging process is appropriate to the experiment. tors for propagation along the links, that were assumed to be

Recently Cobden and Kogan have measured the condu@dependent and uniformly distributed between 0 amd 2
tance of a small quantum Hall effect sample, in the meso- In this paper we focus on the behavior near the plateau
scopic regimé® They find large fluctuations in a two- transition. Being a continuou&econd-ordérphase transi-
terminal conductance near the plateau transitions, as thdjon, we expect that universal critical propertiéscluding
vary the carrier density with a gate voltage. Specifically, theconductance fluctuationshould not depend on details of the
conductance seems to be almost uniformly distributed on thenodel. Thus, for example, the results obtained should also
interval between zero and one in unitsefh. In striking  apply to systems for which the potential it varying
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alternating columns, and are chosen to satisfy the condition
sinh(#;)sinh(#,)=1. Randomness is incorporated via random
phase factors along links.
From symmetry, the plateau transition occurs when
tanh(9;) =tanh(6,), or 6= 6,=In(1+ 2). It is thus conve-
y nient to define a variabla, which measures the “distance”
2 J to the transition

A=tanh 6;)—tank 6,). (2.1

FIG. 1. Schematic representation of the network model for al NiS parameter lies in the rangel<A<1, and vanishes
square sample with side,=L,=4. The arrows indicate the direc- right at the plateau tranS|t|0_n_. _ _
tion of wave propagation along the links, amig and 6, specify For open boundary conditions in the transverggdirec-
scattering at the nodes. The two-terminal conducta@cis mea-  tion, the nodes on the top and bottom edges are modified to

sured between the right and left leads. be

slowly on the scale of the magnetic length. Extensive nu- Wout _ 1 0} vin
merical simulations that have extracted the critical exponent Wi, 0 1

v for the diverging localization length support this )
suppositior?. For example, Lee, Wang, and Kivelddmave SO thatWou=vin andwi,=vey. In this case, the boundary
shown that inclusion of random scattering at the nodes giveQréaks (lowest Landau level particle-hole ~symmetry,

the same value for as in Chalker's original random-phase 2~ ~4. just as the edges do in a real physical system. In
model'2 Moreover, consistent estimates fohave also been € Hall plateau phasé >0, extended edge states confined
obtained from other numerical approaches, such as Thoule£g the top and bottom boundaries of the sample are expected.
number studies of lowest Landau level Hamiltonia®éA [N the localized insulator, corresponding 40<0, all states
more serious concern is the legitimacy of ignoring Coulomb2'€ localized, even near a boundary. In real systems, the
interactions between the electrons. It is conceivable thaPféSence of an edge state accounts naturally for the quantized
interactions—particularly long-ranged Coulomb forces— Hall conductivity. o L

might be a “relevant” perturbation at the noninteracting . With transverse pe_nodlq boundar)_/ conditions, all nodes
phase transition(fixed poiny, leading to new critical (in each colump are identical. In th!s case, there are of
properties#!5 However, experimental measurements iof ~COUTS€ N0 edge states. The two-terminal conductance is only
seem to coincide with the noninteracting value. Being prac_sensmve to extended bulk states, present at the plateau tran-

tical, we ignore Coulomb interactions, and adopt ChalkeSition- The finite system s particle-hole symmetric
and Coddington’s network mod#. (A——A), as will be c_Iear from the numerical resglts.

To be specific, we study a square lattice network of nodes W& compute numerically the total transfer maffixn the
and links, as depicted in Fig. 1. The network is connected t¢* direction, for a network of width., and lengthL, . This
two leads — to the right and left. The distance between thd-y PY Ly matrix relates the incoming and outgoing ampli-
leads, measured in units of the network lattice spacing, i§/des in one lead — the’s to the amplitudes in the other
denoted byL, . Of interest is the two-terminal conductance €ad — thew’s, and can be written schematically as
between these two leads. The sample has a width, denotd=TV. whereW andV are vectors withL,, elements. To
L,, in the transverse direction. We consider two boundan£Xtract the two-terminal conductan@ it is useful to write
conditions in the transverse directiofi) periodic boundary T in the form
conditions and(ii) open boundary conditions. The case of
open boundary conditions corresponds closely to the experi- (Wout) _ ( A B)( Vin)
mental geometry of Cobden and Kog®rn this case, edge Wi, C D/\Vuu'’
states dominate the transport in the IQHE plateau.

Quantum tunneling at each node is represented B by

Uout

where V;, denotes arL,/2 column vector of the incoming
amplitudes in the right lead/,,; the outgoing, and similarly

2 matrix, . . . .
for the other lead. This can be inverted to obtain $aatrix
Wom) costy  sinhd) [ vy, relating all the incoming to outgoing modes, as
Win) \sinhg  coshd)\vgy/’ Wou| (BD™* A-BDTC|(W,
Vou/ DY —-D7IC Vi)

wherev andw represent complex amplitudes for incoming
and outgoing electron waves to the right and left, respecThe two-terminal conductance can be expressed in terms of
tively, of a given node(see Fig. 1 By construction, this the L /2 by L,/2 transmission matrix, which relates the
matrix conserves the current,|wi|2+]|vin|?=|wod?  incoming amplitudes of one lead to the outgoing amplitudes
+|voul The node parametef determines the degree of in the other leadV,,=tW;,. Thus we have=D*. The
backscattering at the node. So, for example, an inciderfo-terminal conductance follows readily fromas™®

wave, sayw;,, is backscattered intav,, with probability
tanh?( ). To make the model invariant underza2 spatial
rotation, the node parameters take two valuisand 6,, in

eZ
G= Ftr[tf’]. (2.2
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FIG. 2. The mean conductangplotted vsA for square sys- FIG. 3. Scaling collapse of the mean conductance from Fig. 2,
tems of four different sizet =4(x), L=8(A), L=16(0), and  plotted vs the parameteyL. ' with »=7/3, for (a) periodic andb)
L=24(O) with (a) periodic and(b) open boundary conditions. open boundary conditions.

transition,G is slightly larger than 1/2, roughly 0.65 for the
larger sizes. The increase Gf(A=0) when changing the
boundary conditions from periodic to open can presumably
be attributed to an additional contribution coming from edge
currents.

To characterize the conductance fluctuations first consider

Below we focus on the two-terminal conductance for
square samples of size=L,=L,=4, 8, 16, and 24. The
distribution function is obtained by evaluatirig for many
different samples. We typically takex610* samples.

lll. RESULTS the root-mean-square conductance, defined as
The mean conductance, denot&d is obtained by aver- —
y & 6G=1\ G>-G?, (3.1

aging G over a large number of samples. In FigaR G is
plotted versus the control paramet&r for four different  where the overbar denotes an ensemble average over differ-
sample sizes, all with periodic boundary conditions in theent samples. In Fig. 4, we pléiG versusA for four different
transverse directior{n this and later figuresG is plotted in  sample sizes, with periodic boundary conditions(a@n and
units €?/h.) As expected the mean conductance is largest aspen in (b). For both boundary conditions, there are large
the plateau transition) =0, reflecting transport via bulk de- fluctuations near the plateau transition, wifG(A=0)
localized states, and falls off towards zero away from the<(0.3. Away from the transition, the fluctuations drop off
transition. For the larger system sizes, the peak imarrows.  rapidly with increasing system size, as expected. In both
With open boundary conditions, the mean conductance risesases, the peaks sharpen with increasipgs expected from
from zero to one, as shown in Fig(l. As the sample size finite-size scaling. The physical origin of the slight double-
increases, the “step” becomes less and less rounded. Tgeaked structure in Fig.(d) is unclear. In contrast to the
gether, the two sets of data f@ resemble experimental mean conductance itself, the root-mean-square conductance
plots of the macroscopic conductivities,, anday,, when is relatively insensitive to finite-size effects at the transition.
plotted versus electron density. However, a direct compari- More informative than the root-mean-square conductance
son with macroscopic conductivities is delicate, since thds the full conductance distribution function, denof(G).
ensemble averaging procedure that we are usingmoape  To obtain this, we simply make a histogram plot of the num-
appropriate to the thermal averaging taking place in macrober of samples with conductancg, for a very large en-
scopic experimental samples. semble. In Fig. 5, we plot the conductance distribution func-
From scaling arguments, one expects that the mean coion at the plateau transitiom\(=0), for the largest system

ductancesG(L,A), should be only a function of the single

scaling parametérLY*A for large enoughL and small P p—— :
enoughA. Herev is the localization length critical exponent, . ]
which has a value~7/3. In Fig. 3, the the data fd in Fig. 03 | .

2 are replotted versus the scaling variatlé”A, with
v=7/3. Although the smaller sizes show marked finite-size 3 o2
scaling corrections, the data collapse is satisfactory at the

larger sizes. o ot | ]
It is amusing that with periodic boundary conditio@at :
the plateau transitioA =0, is very close to 1/2 for the larg- o oL 3

est sizes, the same value as the experimentally measured
macroscopicoy, . But this is probably coincidental, since
our averaging procedure is not appropriate for macroscopic FiG. 4. Root-mean-square conductani@ plotted vsA for a
samples. With open boundary conditions, the mean condugquare system of four different sized:=4(x), L=8(A),
tance is not invariant undex— — A, due to the breaking of L=16(0), andL=24(O) with (a) periodic andb) open boundary
particle-hole symmetry by the boundaries. At the plateawonditions.



1640 SORA CHO AND MATTHEW P. A. FISHER 55

2 T T 2_ T T LA BN L S LR IR rrr T T T ]
‘ L ] N ]
(a) : ] : ]
15 ] E () ] r (o) 1
- o8 | 1 esf .
~ ~ g ] 3 E
T 1o o 08 1 o8| ]
Y 1 & b L ] ¥ b
] 04 [ ] 04 ]
] oz | j m . 02 | .

0- 0 it | b
15 4 05 0 05 1 4 05 0 05 1

A A

FIG. 5. Conductance distribution function right at the plateau F|G. 7. Conductance plotted \& of a single sample for the
transition,A =0, for the system size =24 with (a) periodic andb)  system size. =24 with (a) periodic and(b) open boundary condi-
open boundary conditions. The distribution functions are normaltijons, The solid lines are the mean conductance, which was ob-
ized to unity. tained by taking an ensemble average.

size L =24, with (a) periodic and(b) open boundary condi-

tions. In both cases, the conductance is very broadly distribch@nging the impurity configuratiofi.e., the samplg we
uted, roughly uniform over the interval from zero to one C@n compare their distribution function with ours, which was

e?/h. Above G=e?/h, the distribution functions drop off OPtained by taking an ensemble averag¢he plateau tran-
rapidly, although there is a slightly larger “tail” with open Sition (see Fig. 5. The similarity is striking.
boundary conditions, presumably due to edge current contri- T0 more closely mimic the experimental procedure, we
butions. have computed the conductance forgi@en sample, as a
function of A. This is shown in Fig. 7, for a square system of
IV. DISCUSSION sizeL = 24 with both periodic and open boundary conditions.
Notice the very large fluctuations in the transition region.
The Conductance diStI’ibutiOI’l fUnCtionS Obtained numeri'The behavior in F|g (b) W|th Open boundary Conditions iS

cally compare favorably with those measured in the CobdeRery similar to the “raw” experimental data of conductance
and Kogan experiment on a mesoscopic Hall syst&mn. versus gate potential.

this experiment, the two-terminal conductance of a small
sample(0.6x0.6 um?) was measured as a function of carrier
density, by varying a gate potentM),. Large fluctuations in
the conductance were seen upon varyghrough the pla-

In addition to extracting conductance fluctuations for
square samples, we have studied systems with various differ-
ent aspect rationsl,/L,. For aspect rations between

teau transitions, as shown in Figia In the Hall plateaus roughly 1/3 and 3, the qualitative results are essentially un-

themselves, smaller fluctuations were observed. This beha\'?de'f'ed' For very long sample, howevér,>L, we start

ior is consistent with our numerics for the root-mean-squaré:'ee”ﬁlg effects O.f one-dimensional localization.
fluctuations,5G in Fig. 4, which are largest at the plateau In summary, it appears that the quantum Hall plateau tran-

transition. From the data with gate voltages near the platea®ition Provides an ideal arena for studying finite-size effects
transition, Cobden and Kogan obtained a conductance distrR" random phase transitions. The agreement between simple
bution function, shown in Fig. ®), which is roughly uni- models of noninteracting electrons, and the experimental
form on the interval from zero to one. Under the “ergodic” data is striking. Among the open issues is the role of Cou-

assumption that varying the gate potential is equivalent tdomb interactions, which have been ignored in the numerics.
Will they change the critical behavior, and possibly modify

the conductance fluctuations? Moreover, even without inter-
actions, an analytic description of the transition is lacking,
for either fluctuations or average properties. One can only
] hope that the relative experimental accessibility of the quan-
3 tum Hall plateau transition will spur further theoretical de-

] velopments.
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