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Abstract. In this paper we review recent theoretical results for transport
in a one-dimensional (1d) Luttinger liquid. For simplicity, we ignore elec-
tron spin, and focus exclusively on the case of a single-mode. Moreover,
we consider only the effects of a single (or perhaps several) spatially local-
ized impurities. Even with these restrictions, the predicted behavior is very
rich, and strikingly different than for a 1d non-interacting electron gas. The
method of bosonization is reviewed, with an emphasis on physical motiva-
tion, rather than mathematical rigor. Transport through a single impurity
is reviewed from several different perspectives, as a pinned strongly inter-
acting “Wigner” crystal and in the limit of weak interactions. The existence
of fractionally charged quasiparticles is also revealed. Inter-edge tunnelling
in the quantum Hall effect, and charge fluctuations in a quantum dot un-
der the conditions of Coulomb blockade are considered as examples of the
developed techniques.

1. Introduction

Landau’s Fermi liquid theory is a beautiful and successful theory which ac-
counts for the behavior of the conduction electrons in conventional metallic
systems [1]. The central assumption of this theory, is that the low energy ex-
cited states of the interacting electron gas can be classified in the same way
as a reference non-interacting electron gas. Upon adiabatically “switching
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on” the electron interactions, the excited states are still composed of free
quasiparticles, labelled by momentum, which obey Fermi statistics. The low
energy excitations above the ground state, consist of creating quasiparti-
cles (and quasiholes) with momenta just above (below) the Fermi surface.
The single-particle spectral function for an electron is presumed to have a
5-function peak at the Fermi surface, A(kp,€) = 2nrZrd(e), with a non-zero
coefficient, Zp. For the non-interacting electron gas Zr = 1, but with inter-
actions Zp < 1, reflecting a smaller overlap between the electron and the
quasiparticle. However, provided Zp is non-zero, there exist well defined
low energy quasiparticle excitations, which are in a one-to-one correspon-
dence with the bare electron excitations of the reference non-interacting
electron gas. It is then possible to build a transport theory of Fermi liquids
in direct analogy with Drude theory of the free electron gas, by focussing
on the scattering (by impurities, say) of the low energy quasiparticle ex-
citations. For example, a quasiparticle will scatter off an impurity with a
finite cross-section, leading to a metallic resisitivity for low impurity con-
centration.

For a weakly-interacting electron gas, deviations in the spectral weight
Zp from one can be computed perturbatively in the interaction strength,
provided the spatial dimensionality, d, is greater than one. However, for
the one-dimensional interacting system, low order terms in the perturba-
tion theory are divergent. This signals the breakdown of Landau’s Fermi
liquid theory in the 1d electron gas, for arbitrarily weak interactions [2].
This divergence can be traced to the large phase space in 1d, for an elec-
tron to relax by creating an electron-hole excitation. For d > 1, both energy
and momentum conservation highly constrain the available phase space, but
in 1d for a single branch with linear dispersion, momentum conservation
automatically implies energy conservation, so the phase space is less con-
strained. This leads to a divergent rate for such scattering processes, and
the electron becomes “dressed” by a large number of electron-hole pairs.
This in turn drives the electron spectral weight to zero, Zrp = 0, even for
weak electron interactions. In the limit of weak interaction, it is still pos-
sible to extract the resulting properties of the 1d electron gas by a clever
resummation of the most divergent terms in each order of perturbation
theory [3]. However, the physics is more readily revealed by the method of
bosonization, as discussed below.

Tomonaga [4] (and more recently Luttinger [5]) considered a special
class of interacting 1d electron models, which were linearized around the
Fermi points, and could be diagonalized in terms of boson variables. These
boson variables described collective plasmon excitations, or density waves,
in the electron gas. Some years later, Haldane [6] argued that this bosonized
decription was valid more generally, giving an appropriate description for
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the low energy excitations of a generic 1d interacting electron gas. Haldane
coined the term “Luttinger liquid” to describe this generic behavior, al-
though sometimes it is referred to as a Tomonaga-Luttinger liquid. In such
a 1d Luttinger liquid, creation of a real electron is achieved by exciting an
infinite number of plasmons. Because of this, the space and time depen-
dence of the electron correlation function is dramatically different than in
a non-interacting electron gas, or in a Fermi liquid [7]. This manifests itself
in various kinetic quantities, in particular the Drude conductivity, which is
predicted to vary (as a power law) with temperature [8, 9, 10]. The Lut-
tinger liquid approach to transport in 1d systems was popular in the 1970%s,
being employed in attempts to understand the behavior of quasi-1d organic
conductors.

Recent advances in semiconductor technology have renewed interest in
transport of 1d electron systems. By cleverly “gating” a high mobility two-
dimensional (2d) electron gas, it is possible to further confine the motion
of the electrons, so that they can only move freely along a 1d channel.
Moreover, it is possible to make a very narrow channel, with width com-
parable to the electron‘s Fermi wavelength. In this case, the transverse
degrees of freedom are quantized, and only one, or perhaps several, 1d
channels are occupied at the Fermi level. This “quantum wire” provides
an experimental realization of a 1d electron gas, which should reveal the
signatures of Luttinger liquid behavior without the complicated crossovers
to three-dimensional behavior inherent in the quasi-1d organic conductors.

Edge states formed at the boundaries of the 2d electron gas when placed
in strong magnetic field in the quantum Hall regime, provide another im-
portant example of a one-dimensional electron system [11]. These edge ex-
citations are chiral, moving only in one direction along the edge. For a
quantum Hall bar geometry, the two edge modes confined to the edges
move in opposite directions. Together they comprise a non-chiral system,
which resembles a 1d electron gas. For the integer quantum Hall effect,
these edge excitations are equivalent to a 1d non-interacting electron gas,
(despite the presence of electron interactions). However, in the fractional
quantum Hall effect, the edge excitations are believed to be isomorphic to
a 1d interacting Luttinger liquid [12]. Moreover, due to the spatial separa-
tion between the modes on opposite edges, impurities cannot backscatter,
so that localization effects important in a quantum wire are absent here.

A 1d quantum wire is appropriately characterized by a conductance,
which can be measured in a transport experiment. In the absence of inter-
actions, the conductance of an ideal single-mode channel wire, adiabatically
connected [13] to leads, is quantized, G = 2¢?/h — where the factor of 2
accounts for spin. If a scatterer is introduced into the channel, the conduc-
tance drops, with G = 27 e?/h — where 7 < 1 is the transmission coefficient
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for electrons at the Fermi level. For edge states in the integer quantum Hall
effect, a quantized conductance occurs when there is no backscattering be-
tween modes on opposite edges, and corresponds to the quantized Hall
conductance. Inter-edge scattering is equivalent to a reduced transmission
coefficient, and reduces the conductance.

As discussed above, electron interactions should dramatically modify
the low energy excitations in the quantum wire. As we shall see, this leads to
striking predictions for the transport in a quantum wire with one or several
impurities. Likewise, inter-edge backscattering in the fractional quantum
Hall effect is predicted to be very different than in the integer Hall effect.

In this paper we review recent theoretical results for transport in a 1d
Luttinger liquid. For simplicity, we ignore electron spin, and focus exclu-
sively on the case of a single-mode. Moreover, we consider only the effects
of a single (or perhaps several) spatially localized impurities. As we shall
see, even with these restrictions, the predicted behavior is very rich, and
strikingly different than for a 1d non-interacting electron gas.

The paper is organized as follows. In Section II the method of bosoniza-
tion is reviewed, with an emphasis on physical motivation, rather than
mathematical rigor. After discussing briefly the conductance of an ideal
channel, we reveal the existence of fractionally charged excitations in the
Luttinger liquid. These correspond to Laughlin quasiparticles for fractional
quantum Hall edge states, but should also be present in quantum wires. In
Section 3, we consider the tunnelling density of states for adding an electron
into a 1d Luttinger liquid, which is suppressed, vanishing as a power law
of energy. The exponent is extracted for both tunnelling into the middle
of an infinite 1d wire, and into the “end” of a semi-infinite wire. Section
4 is devoted to a detailed analysis of transport in a Luttinger liquid with
a single barrier or impurity. We consider two limiting cases, a very large
barrier in IVA and a very small barrier in IVB. In Section IVC we show how
the crossover between these two limits can be understood by considering
general barrier strengths, but weak electron interactions. A general pic-
ture of this crossover is described in IVD, and the special case of resonant
tunnelling is discussed in IVE.

In Section V, we consider briefly two particular applications. In VA
we consider tunnelling between edge states in the fractional quantum Hall
effect, which is a rather straightforward application of the general theory.
In Section VB we employ Luttinger liquid theory to describe Coulomb
blockade in a quantum dot. Section VI is devoted to a very brief summary,
and list of other related topics.
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2. Bosonization

Consider the Hamiltonian for spinless electrons hopping on a 1d lattice,
Vv
H = —'tz C}Cj.{_l + h.c. + 5 Z C}CjC}+1Cj+1, (1)
J J

with hopping strength ¢ and near-neighbor interaction strength V. When
V = 0 one can diagonalize the problem in terms of plane waves with en-
ergy Ej = —tcos(k) for momentum k satisfying |k| < w. The low energy
excitations consist of particle/hole excitations across the two Fermi points,
at +kp. Consider a single particle hole/excitation about the right Fermi
point, where a single electron is removed from a state with k£ < kr and
placed into an unoccupied state with k + ¢ > kp. For small momentum
change g, the energy of this excitation is wx = vpq, with vp the Fermi
velocity. Together with the negative momentum excitations about the left
Fermi point, this linear dispersion relation is identical to that for phonons in
one-dimension. The method of Bosonization exploits this similarity by in-
troducing a phonon displacement field, 0 to decribe this linearly dispersing
density wave. When interactions are turned on, the single particle nature of
the excitations is not retained, but this linearly dispersing mode survives,
with a renormalized velocity.

The method of Bosonization focusses on the low energy excitations,
and provides an effective theory. We follow the heuristic development of
Haldane [6], which reveals the important physics, dispensing with mathe-
matical rigor. To this end, consider a Jordan-Wigner transformation which
replaces the electron operator, ¢;, by a (hard-core) boson operator, ¢; =

exp(im 30« mi)bjs where n; = c;f-cj is the number operator. One can eas-
ily verify that the Bose operators commute at different sites. Moreover, the
above Hamiltonian when re-written is of the identical form with ¢’s replaced
by b's. This transformation, exchanging Fermions for Bosons, is a special
feature of one-dimension. The Boson operators can be (approximately) de-
composed in terms of an amplitude and a phase, b — \/n; exp(i¢;). We now
imagine passing to the continuum limit, focussing on scales long compared
to the lattice spacing. In this limit we replace, ¢; — $(z) and n; = p(z),
where p(z) is the 1d electron density. This can be decomposed as p = po+p,
where the mean density, po = kr/7, and p is an operator measuring fluc-
tuations in the density. As usual, the density and phase are canonically
conjugate quantum variables, taken to satisfy

[$(z), p(a")] = id(z — ). (2)

Now we introduce a phonon-like displacement field, 6(z), via p(z) =
8,0(x) /7. The factor of m has been chosen so that the full density takes the
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simple form: p(z) = (kr + 9,0)/m. The above commutation relations are
satisfied if one takes,

i
[$(z),8(z")] = Esgn(m — ). (3)
Notice that 0;¢ is the momentum conjugate to . The effective (Bosonized)
Hamiltonian density which describes the 1d density wave takes the form:

H = —[9(0:4)* + 97" (8:0)?). (4)

This Hamiltonian describes a wave propagating at velocity v, as can be
readily verified upon using the commutation relations to obtain the equa-
tions of motion, 870 = v?826, and similarly for ¢. For non-interacting elec-
trons one should equate v with the (bare) Fermi velocity, vr, but with
interactions v will be modified (see below). The additional dimensionless
parameter, g, in the above Hamiltonian also depends on the interaction
strength. For non-interacting electrons one can argue that g = 1, as follows.
A small variation in density, p will lead to a change in energy, E = %/2x,
where k = 0p/0p is the compressibility. Since 8,6 = 7/, one deduces from
H that k = g/mv. But for a non-interacting electron gas, mvk = 1, so that
g=1.

To see why g shifts with interactions, it is convenient first to identify the
electron creation operator. On physical grounds, the appropriate operator,
denoted 11(z), should create a unit charge (e) excitation at point z, which
anti-commutes with the same operator at a different point z'. Consider the
Bose creation operator, b ~ exp(i¢). To see that this indeed creates a unit
charge (e) excitation, one can write,

ei,p(:,;) _ eiwr f—zoo dxrp(mf)’ (5)

where P = 9,¢/m is the momentum conjugate to #. Since the momentum
operator is the generator of translations (in #), this creates a kink in 6
of height 7 centered at position z. This corresponds to a localized unit of
charge, since the density p = 9,0 /x.

To construct an electron operator requires multiplying the Bose operator
e'? by a Jordan-Wigner “string”: ' 2™y eim[Tp Rewriting in terms
of 6, this corresponds to e'(*%+% . The most general Fermionic charge e
operator can thus be written,

’(,b(.'l?) — Z ?’bm ~~ Z eim(kFI+0(1:})e‘i¢($). (6)

Modd Modd
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The requirement that the integer m is odd is dictated by Fermi statistics,
since one can show using the commutation relations, that

Y ()Pt (&) = MM VER =2 (2" )hyn (). (7)

The terms with m = +1 have a very simple interpretation. The electron
field operator has been expanded into a right and left moving piece, corre-
sponding to the right and left Fermi points at +kp:

V(z) ~ b+, & TR RRTEO ®)

with the definition, ®/;, = ¢ + 0. Here ®p/;, describe the slowly varing
piece of the electron field. These two fields commute with one another, and
satisfy:

[@r(z), @r(2")] = —[@L(2), 2L(2')] = insgn(z — ). (9)

Notice that these unusual commutation relations - referred to as Kac-
Moody - imply that the field conjugate to @ is the derivative of @ itself.
These fields are simply related to the right and left moving electron densi-
ties, denoted Ng/y,, via

1
NR/L = iﬂaxq);g/[,. (10)

Note that these densities sum to give the total density, Ng + Np = p.
It is instructive to re-write the Hamiltonian (4) in terms of the right
and left electron densities,

H = mug[N% + NE + 2ANgNy), (11)
with

vo=uv(g+g")/2
A=(1-@A)/(1+4) (12

This Hamiltonian descibes the system of right- and left-moving electrons
with the interaction strength A between the two species. Notice that for
g = 1 the interaction vanishes, and vy = v; Hamiltonian (11) then gives the
Bosonized decsription of the non-interacting electron gas, and vg = v, the
bare Fermi velocity. Repulsive interactions, (A > 0) correspond to g < 1,
whereas attractive interactions give g > 1.

Since Hamiltonians (4) and (11) give only an effective low energy de-
scription, it is generally difficult to relate the velocity v, and the interaction
parameter g, to the bare interaction strength in the original lattice model,
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say Eqn. (4). However, for a model with long-range electron-electron in-
teractions (Tomonaga model, see e.g., Ref. [7]) these relations can be ob-
tained analytically. In the Tomonaga model, only Fourier components with
k < kg of the interaction potential V (k) are taken into account, and the
parameters in Eqs. (4) and (11) can be expressed [7] in terms of V(0).
We consider here a generalized Tomonaga model, which allows for different
values of interaction between the electrons moving in the same direction
(Vi (0) = V;-(0) = V3) and in opposite directions (V-(0) = Vi(0) = V3).
The velocity v and interaction parameter g can be related to V; and V3 as
follows. In the generalized Tomonaga model, the energy associated with a
density fluctuation in the right- or left-moving mode (Ng or Np) is a sum
of two terms, representing compressibility of the non-interacting Fermi gas,
and the interaction potential Vi, respectively. Equating this with the co-
efficient of N% in 11, gives: mvg = mup + V;. The interaction between the
modes V5 is responsible for the last term in Eq. (11), so that wugA = V5.
These two relations can be used to solve for the velocity v and parameter
g, giving [15]

(1 R-VE Y2 14 Vi 2mp — Vi 2mup\ V2
W TVF * dm2v?, ’ N (1+V1/21T'UF+VQ/2TF'UF)

(13)
In the conventional case Vi = V5 > 0, and v is simply the plasmon ve-
locity, increasing above vp with repulsive interactions which reduce the
compressibility of the electron gas. Notice, moreover, that the sign of 1 —g
is determined by the sign of the interaction, with g < 1 for repulsive inter-
actions. Edge states propogating on opposite edges of an integer quantum
Hall bar, constitute a 1d system with Vi > V5. In particular, for a wide
Hall bar, the inter-edge interaction V; vanishes, so that g =1 .

2.1. MEANING OF g

No matter what the underlying microscopic model is, the parameter g of
the Luttinger liquid (4) can be given a simple physical meaning as a dimen-
sionless conductance. To this end we define new variables ¢g,;, = g¢ & 0
which decouple the right and left moving sectors, and at the same time
diagonalize the Hamiltonian (4). The corresponding right and left moving
densities are

1
=+—20. . 14
NR/L o PR/ (14)
Although npg/;, again sum to give the total density, ng +ng, = p, for g # 1

they do not correspond to the right and left pieces of an electron, but
rather involve contributions from electrons propagating in both directions.
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The right and left fields commute with one another and satisfy,

[¢r(2), dr(2")] = —[¢L(2), ¢L(2")] = ingsgn(z — &), (15)

the same as for N/, except with an important factor of g on the right side.
In terms of these fields, the Bosonized Hamiltonian decouples into right and
left moving sectors:

H= Z;E[n?z—l—n%]. (16)

This innocent looking decoupling, leads to a number of remarkable predic-
tions for the 1d electron gas, as discussed below. Firstly, from the Hamil-
tonian one can generate the equations of motion, which are

(3¢ :EUB;,;)TLR/L =1, (17)

These chiral wave equations have the general solutions, ng/z, = f(z¥wvt), for
arbitrary f, and describe a density disturbance which propagates, without
scattering (or dispersion), to the right or left. This, despite the fact that
the electrons, which are interacting, do scatter off one another.

The physical meaning of g as a conductance can now be revealed. Imag-
ine an external probe (or contact) which raises the chemical potential of the
chiral mode ng, by an amount pg. This can be incorporated by adding to
the Hamiltonian density a term of the form, dH = —eugrnpg. This leads to
a shift in the right moving density, since the total Hamiltonian is no longer
minimized by nrp = 0. Rather, minimization with respect to ng, gives
ng = (ge/2mv)pup. This extra density carries an additional (transport) cur-
rent to the right, of magnitude, Ir = engv. One thus has, Ip = Gu with a

conductance,

e2

G =95 (18)

For non-interacting electrons (¢ = 1), we recover the result of Landauer
transport theory — e?/h conductance per channel. But with interactions G
is modified.

Unfortunately, in a quantum wire, it is essentially impossible to selec-
tively couple to the right moving mode ng, and not the left. Rather, in a
typical transport experiment, the quantum wire is connected at its ends to
bulk metallic contacts, which can be modelled as free electron gases (Fermi-
liquids). In this case, the dc transport will be sensitive to the contacts. This
can be seen by considering an alternative derivation of Eq. (18), based on
linear response theory. Consider an ac electric field E(z,t) = —U'(z) sinwt,
applied along an infinite wire, which is non-zero for z near the origin, say
|z| < L/2. This leads to a term of the form geE(z,t) on the right hand
side of (17). This field will cause an excitation of density waves ng/y(z,t),
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which propogate along the wire. For w < v/L, the wavelength of the ex-
citation becomes much larger than L, so that one may then substitute
U'(z) = —Ué(x), with U the amplitude of the applied ac voltage across the
length L segment. The equations of motion can now be readily solved, giv-
ing for the current response, I(z,t) = ge?U cos w[t — zsgn(z)/v]. Although
the current depends on z, this dependence vanishes in the w — 0 limit, and
gives a dc conductance G = I /U = ge? /h, which reproduces Eq. (18). The
conductance is clearly related to the energy radiated away from the length
L segment. Indeed, the radiated energy per unit time is exactly equal to
the power U2G /2 absorbed from the field. The resulting conductance is
finite, even in the absence of any disorder. It is clear from this arguemnt
that the dc conductance, proportional to the power radiated away, depends
on the value of g in the segment of wire away from the length L region. For
a wire of length L attached (adiabatically) to Fermi liquid leads, one can
take g = 1 in the leads [16], and one then expects a dc conductance given
by G = €?/h. The value of g # 1 in the wire, can be revealed by an a.c.
conductance measurement for frequencies w > v/L, which has magnitude
(17, 18] G(w) = ge?/h.

There is a physical system however, in which the right and left modes,
ng/r can be coupled to selectively. As discussed in more detail in Section 5.1
below, in the fractional quantum Hall effect (FQHE) at such filling factors
v < 1, that »~! is an odd integer, a single current carrying mode is pre-
dicted along the sample edges. In a Hall bar geometry, the right and left
moving modes are localized on the top and bottom edges of the sample,
respectively. These modes are mathematically isormorphic to the right and
left moving modes of the 1d interacting electron gas, n R/L, provided one
makes the identification g = v. In the FQHE geometry, a chemical potential
difference between the right and left moving modes, corresponds to a Hall
potential drop, transverse to the transport current. The above conductance,
corresponds directly to the quantized Hall conductance, G = ve? /h.

2.2. CHARGE FRACTIONALIZATION

The above analogy with the FQHE, suggests the possibility of fraction-
ally charged excitations in the 1d electron gas. To see these, it is conve-
nient to consider adding a small impurity potential, localized at the origin
x = 0. This potential will cause scattering between the right and left mov-
ing modes, ng/r. We shall now show that the “particle” which is backscat-
tered is not a (bare) electron. Rather, the total backscattered charge is
non-integral, with magnitude ge. For repulsive interactions g < 1, this cor-
responds to the backscatering of a quasiparticle with fractional electron
charge. We shall also show, that this fractionally charged quasiparticle,
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also has fractional statistics. A localized impurity potential, U(z) = ud(z),
couples to the local electron density, 11(0)4(0). Inserting the expression
(8), gives the dominant 2kr backscattering contribution:

Hipmp = ué(m)(w;r#/)[, + h.c.) = ué(z)(e® + h.c.). (19)

Although, this perturbation backscatters a (bare) electron, there is a “back-
flow” term due to the electron-interactions. To reveal this, one should re-
express the above perturbation in terms of the fields, ¢ /L, which propogate
freely (to the right or left) even in the presence of electron interactions. One
gets simply,

Himp = ud(z)(e"PRe™"L 4 hc.), (20)

so that the impurity hops an e'?#/t quasiparticle between the two modes.
The charge created by the operator ¢**® can be deduced from the conjugate
momentum, Pr = 0,¢r/2mg which follows from the commutation relations
(15). One has,

61¢R(m) — eiZ'n’gfz PR(ZI), (21)

which creates a kink in ¢ of magnitude 27g centered at z. Since np =
Jrpr/2m the charge associated with this (kink) excitation is fractional,
Q = ge.

Thus, a localized impurity potential in an interacting 1d electron gas,
causes backscattering of fractionally charged quasiparticles (Q = ge) be-
tween the free-streaming right and left moving modes, n r/L- In the FQHE,
a localized impurity is equivalent to a “point contact” in which the right and
left moving edge modes on opposite sides of the Hall bar are “pinched” to-
gether, to allow for inter-mode backscattering. In this case, these backscat-
tered quasiparticles have a natural physical interpretation as Laughlin quasi-
particles with charge @ = ve. The fractional charge can perhaps be revealed
in a shot noise type experiment, as discussed in Ref. [19].

Not surprisingly, these quasiparticle excitations also have fractional
statistics. To see this we can use the commutation relations (15) to show

that,
PR (%) gidr(z') _ eim9sgn(z—1) gidr(2') gidR(z) (22)

so that under exchange they pick up a phase factor exp(ing). For the non-
interacting electron gas, g = 1, the quasiparticles have charge e and Fermi
statistics (the electron!), but with interactions will have fractional statistics.

3. Tunnelling into a Luttinger liquid

As discussed in the previous section, elementary excitations in the Luttinger
liquid are significantly different from bare electrons. This difference reveals
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itself in the behavior of the density of states for tunnelling an electron into
the Luttinger liquid. In subsection A below we will consider specifically the
local tunnelling density of states for an infinitely long Luttinger liquid. An-
other situation of interest, analyzed in subsection B, consists of tunnelling
an electron through a large barrier separating two semi-infinite systems.
This process is sensitive to the density of states at the “end” of a semi-
infinite Luttinger liquid, which, in contrast to the non-interacting electron
gas, behaves differently than the “bulk” density of states.

Since the effective Hamiltonian density (4) is quadratic in the boson
fields, local density of states can be readily extracted. Perhaps the simplest
way to proceed, is to represent the partition function,

Z = Trexp(~p / H), (23)

as an imaginary time path integral over the boson fields:
7= / D¢DOexp(-S), (24)

where the integration is over classical fields ¢(z,7), and similarly 8, with
imaginary time 7 running from 0 to 8. The (Euclidian) action can be written
in terms of the Lagrangian, S = [ dzdr Ly, with

Lo = 20,00,0 + H(4,0), (25)

with H given in (4). It is instructive to perform the (Gaussian) functional
integration over, say ¢, which gives:

1 r

Ly = %[v(ame)z +v71(8,0)7, (26)
describing, via the “displacement” field 6, 1d phonons propagating with
velocity v. Likewise, integration over 6 gives:

£ = L [0(0:9)* + v (8:9)?) (27)

This can be interpreted as a wave propagating in the phase-field ¢. Notice
that ¢ — g~! upon transforming between the two representations, 8 — ¢.
At the special non-interacting point, ¢ = 1, there is a self-duality between
these two representations. Physically, for strong repulsive interactions cor-
responding to g << 1, (zero-point) fluctuations in the displacement field #
are greatly suppressed. In this limit § becomes a “good” classical variable,
and the 1d electron system is well described as a “solid” - or equvalently
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a Wigner crystal. In the opposite extreme of very strong attractive inter-
actions, g >> 1, fluctuations in the phase ¢ are strongly suppressed. The
system is well described as a (almost) condensed superfluid of the (Jordan-
Wigner) bosons, b.

In the presence of a single impurity, the Hamiltonian H (¢, #) in Eq. (25)
should be replaced by H + Hjnyp. Using Eq. (19) and integrating out the
field ¢, we find

0= %[u(aza)z +v71(8,0)2] + ud(z) (2 + h.c.). (28)

In the language of 1d displacements, the impurity plays the role of a pinning
center, which favors a periodic set of values of the displacement field at the
pinning site. A strong center (large |u|) effectively cuts the infinite system
in two semi-infinite pieces with independent excitation spectra. Each piece
is then described by the Lagrangian (26), defined on the appropriate semi-
infinite space with boundary condition 6(z = 0) = 0.

3.1. TUNNELING INTO A CLEAN LUTTINGER LIQUID

Consider now the local electron tunnelling density of states for adding an
electron at energy F,

p(E) =2r > |(n|y!(z)|0)|*6(En — Eo — E). (29)

Here |n) are exact eigenstates of the full interacting Hamiltonian, and E,,
are the corresponding energies. The summation in Eq. (29) is performed
over a complete set of states, and therefore with the help of the identity

m -
0
can be related to the electron Green’s function,

1 0 o2
p(B) = ~Re [~ dte iy (z, )y (2,0)). (31)
0
This can be evaluated by computing the imaginary time correlator,

G(r) = (T-(r)9'(0)), (32)

and then performing an analytic continuation, (1(t)11(0)) = G(r — it).
Upon re-expressing the electron operator in terms of the boson fields,
using (8), the average in (32) can be readily performed for a system with
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a quadratic Lagrangian. For a clean infinite 1d system, one can use the
Lagrangian (25). With a frequency cutoff, 7, ', one finds,

o) = (fem) (33)

with exponent o = (g + g~')/2. After analytic continuation and Fourier
transformation, one thereby obtains,

_21r

P(B) =1 @

O(E)reE~. (34)

Notice that for non-interacting electrons (¢ = 1), one recovers the ex-
pected constant density of states. However, with interactions present, g # 1,
the electron tunnelling density of states vanishes as E — 0. This striking
feature of the 1d electron gas is intimately related to the fractional charge.
For g # 1 the excitations of the system are not free electron like, and there
is an orthogonality catastrophe when one tries to add in an electron. The or-
thogonality catastrophe occurs because the accomodation of an added elec-
tron requires modification of the wavefunctions of all the electrons forming
the liquid. '

The tunneling conductance through a large barrier separating two semi-
infinite Luttinger liquids, is proportional to the product of the “end” density
of states for the two pieces. This can be evaluated with the help of the La-
grangian (27) defined, say, for z > 0, together with the boundary condition
8(z = 0) = 0. The result is similar to Eq. (34) with a = 1/g. This result
can be understood in rather simpler physical terms in the limit of g < 1,
as we now discuss.

3.2. TUNNELING THROUGH A BARRIER IN THE LIMIT g < 1

In the limit of strong electron-electron interactions, the fluctuations in the
“displacement” field are small, and the 1d system with a single barrier can
be treated as a Wigner crystal pinned by an impurity. At low energies F,
the process of tunneling consists of several stages.

If the barrier created by the impurity is narrow and high enough, tun-
neling of the electrons close to the barrier occur on a fast time scale, set by
the Wigner crystal Debye frequency, wp = kpv. This fast process results in
a sudden (|t|<1/wp) creation of an electron vacancy—interstitial pair sepa-
rated by the barrier. The energy of such a configuration is large, ~ wp/g,
and therefore the corresponding state of the Wigner crystal is classically
forbidden. Gradual relaxation of the electron localized near the barrier,
constitutes the slow stage of tunneling,.
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Complete relaxation requires that all the electrons of the Wigner crystal
shift from their initial positions by one crystalline period. Since the overlap
between the initial and final wave functions for each electron is suppressed,
in the thermodynamic limit the initial and final many-body ground states
are orthogonal to one other - the orthogonality catastrophe. This implies
that the tunneling amplitude at £ = 0 vanishes. At E > 0, a complete
relaxation is not required, since the system can end up in an excited state.
The initial ground state should have a non-vanishing overlap with the final
excited state, and the tunneling amplitude is finite [20].

The density of states is directly related to the amplitude of the tunneling
process for a semi-infinite Wigner crystal, after an interstitial is introduced
at its edge, see Eq. (31). In the semiclassical approximation this amplitude
can be expressed in terms of the action accumulated along the optimal
classical trajectory,

(¥(z,t)9! (z,0)) ~ exp[—S(t)]- (35)

As we now show, the slow stage of tunneling contributes a logarithmically
divergent contribution [21] as |¢| — co. This divergence justifies the use of a
(26) harmonic in deformations, and also enables one to treat the low-energy
tunneling semlcla.ssmally, not only in the limit ¢ < 1, but at any value of
g < 1.

Let us consider the evolution of the right half of the pinned Wigner
crystal, z > 0. To connect the initial local deformation g(z,t = 0) = 24(z)
with the final relaxed state p(z,t = oo) = 0, the optimal trajectory must
run in imaginary time, t = i7. The appropriate solution of the equations of

motion gives
_ 2 VT 0 (36)
po) = oo 20
This solution is applicable for sufficiently large x? + (v7)2, so that the
harmonic description, see Eqgs. (4), (26) is valid. Note that the dimensionless
displacement at the origin, 8(z = +0,¢) = —x, remains constant in time,
which allows us to use consistently the limit of a J-function in the initial
condition. Eq. (36) describes the spread and relaxation of the deformation
created by the tunnelling electron. The associated potential energy, Vyer(7),

decreases monotonically with time. Specifically, with the help of (36), one
finds:

5 20 (vr)? 1
Vie (7 / da(2,0)" = = / e o = g )

The kinetic energy is equal to the potential energy (virial theorem), and
thus we find

sty =2 [ Vaeslr )=§1n(wm) (38)

D
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for the tunneling action. Here we have used 1/wp as the short-time cut-off
for the slow part of the evolution. Finally, upon using Egs. (31) we can
extract the tunnelling density of states, p(E) oc E*~! with a = 1/g.

4. Electron transport in a Luttinger liquid with a barrier

In the preceding Section we obtained the tunnelling density of states for
adding an electron at energy E into a Luttinger liquid. We considered
two cases: Tunnelling into an infinite Luttinger liquid and tunnelling into
the end of a semi-infinite system. In both cases the DOS vanished as a
power law of energy for an electron gas with repulsive interactions. Here
we consider an infinitely long interacting electron gas with a single defect
or barrier, localized at the origin. Of interest is electron transport through
the barrier. We first consider two limiting cases, a very large barrier in
Subsection A, and a very small barrier in Subsection B. In Subsection C
we show how the crossover between these two limits can be understood
by considering general barrier strengths, but weak electron interactions. A
general picture of the crossover is discussed in Subsection D. Finally, we
consider the special case of resonant tunneling in Subsection E.

4.1. LARGE BARRIER

An infinitely high barrier breaks an electron gas into two de-coupled semi-
infinite pieces. Each piece can be described by either of the quadratic La-
grangians, (26) or (27). For a very high, but finite barrier, we can consider
electron tunnelling from one semi-infinite piece into the other as a pertur-
bation. The appropriate tunnelling term to add to the Hamiltonian, is of
the form

Huun = to[th] (z = 0)pa(z = 0) + h.c), (39)

where 1, (12) is the electron operator in the left (right) semi-infinite Lut-
tinger liquid. Here ¢y denotes the (bare) tunnelling amplitude. Using (6)
these operators can be readily expressed in terms of the boson fields, # and
¢. However, with an infinitely high barrier the displacement field 0(x) is
pinned at the origin, so one can take ¢(z = 0) = exp[i¢(z = 0)].

The two-terminal conductance through the point contact can now be
computed perturbatively for small tunneling amplitude ¢o. In the presence
of a voltage V' across the junction, the tunneling rate to leading order can
be obtained from Fermi’s Golden rule:

2me
I===3" sul(nlHuun|0)20(Ep, — Ep — seV). (40)

The sum on n is over many-body states in which an electron has been trans-
ferred across the junction in the s, = +1 direction. It is straightforward to

gt s




347

re-express this as

et?
1=28 [ 4B (7 (B)ps (B - V) - pf (B V)i (B)] (41
where p_ (pg) is the tunneling densities of states for adding (removing) an
electron at energy E. These are related by p<(E) = p” (—E).

Upon using the expression (34) for the tunnelling DOS into the end of
a semi-infinite Luttinger liquid, one readily obtains,

_dI

I x 2|V|#9-2y, q(V)= =

oc 13|V |(3/9)-2, (42)
For repulsive interactions (g < 1), the linear conductance is strictly zero!
This is a simple reflection of the suppressed density of states in a Luttinger
liquid. When ¢ = 1 a linear I — V curve is predicted, consistent with
expectations for non-interacting electrons which are partially transmitted
through a barrier. At finite temperatures the density of states is sampled
at F ~ kT, and a non-zero (linear) conductance is expected. Generalizing
Fermi’s Golden rule to 7' # 0 gives the expected result for the (linear
response) conductance:

G(T) o t2T7(/9)-2, (43)

It is instructive to re-cast this result in the language of the renormal-
ization group (RG). Specifically, the vanishing conductance for g < 1 in-
dicates that the tunneling perturbation, tg, is irrelevant. The RG can be
implemented using the Bosonized representation, in which the tunnelling
term takes the form,

Siun = to f dret®(™) (44)

with ¢(7) = ¢1(z = 0,7) — ¢2(z = 0,7). This tunnelling term is aded to
the quadratic Lagrangians (27) for the two semi-infinite Luttinger liquids.
Since the perturbation t; acts at a single space point, z = 0, it is useful
to imagine “integrating out” the fields ¢,(z) for z away from the origin,
leaving only the time dependence, ¢,(z = 0,7). The RG then proceed as
follows. In the frequency domain, ¢(w), one integrates over modes in a shell
we/b < w < we, with w, a high frequency cutoff of order the Fermi energy.
This can be done by splitting the field into “slow” and “fast” modes, below
and inside the shell, respectively: ¢ = ¢ + ¢5. To lowest order in ¢y one
must average over the fast modes:

() = eid(er),
= b Bei?s, (45)
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Here A is the scaling dimension of the operator e'¢. The scaling dimension
is most easily deduced from the two point correlation function,

(') g=10(0)) o | 7|24, (46)

From (35) and (38) one obtains A = 1/g. The RG transformation is com-
pleted by rescaling time, 7" = 7/b, to restore the cutoff to w,. The resulting
action is then equivalent to the original one with ¢ replaced by tj, = tob! 2.
Upon setting b = ef, and denoting the renormalized tunneling amplitude
as t(£), one thereby obtains the leading order differential RG flow equation,

dt
dE - (1 A)t1 (47)
with A = 1/g. The perturbative results (42) and (43) can be obtained by
integrating this RG flow equation until the cutoff is of order kT (or eV),
giving teg ~ toT(/9)~! and G ~ tZ;.

For a channel of finite length L coupled to Fermi liquid leads, renormal-
ization in (47) should be stopped at the level spacing, i.e., at e/ ~ kpL. The
conductance is temperature and voltage independent for T',eV < hvp/L.

42. WEAK BACKSCATTERING LIMIT

Having established that the conductance of a repulsively interacting Lut-
tinger liquid vanishes at 7' = 0 for weak tunneling , we now turn to the
opposite limit in which the barrier is very weak. In this limit we can treat
the barrier as a small perturbation on an ideal Luttinger liquid. The La-
grangian (28) is a particularly convenient representation, with the barrier
strength u assumed small. As discussed in Section IIB, the perturbation
proportional to u backscatters fractionally charged quasiparticles between
the de-coupled right and left moving Luttinger modes. What effect does
this weak backscattering have on transport?

Consider first a simple RG. As descibed in the previous section, to
leading order in u the RG flow equation is,

du
¥ (1 — A)u, (48)

with the scaling dimension A defined via the correlation function,

(6129(1::0,1')e—i?ﬂ(:}::(},(})) X ITl_QA' (49)
Evaluating this using the quadratic part of the Lagrangian (28) gives A =
g. With repulsive interactions (g < 1) the backscattering strength grows
at low energies. Cutting off the flow equations when the temperature T
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is comparable to the cutoff w,, gives an effective backscattering stength
diverging at low temperatures as ueg ~ uT9~'. Eventually, at very low
temperatures the backscattering becomes sufficiently strong that treating
it as a perturbation is no longer valid. Nevertheless, one expects that upon
cooling the backscattering strength will continue to grow, until the system
scales into the large barrier regime discussed in Subsection A. This implies
that at 7" = 0 even a very small barrier will be inpenetrable, and effectively
break the Luttinger liquid into two decoupled pieces.

It is also possible to directly calculate the conductance through a weak
barrier, perturbatively in u. To extract a two-terminal conductance for
an infinite wire (ignoring Fermi liquid leads), one can reason as follows.
With no barrier present, the right and left moving Luttinger modes differ
in potential by the bias voltage eV. This results in a transport current
I = g(e*/h)V. Quasiparticle backscattering between the two modes will
tend to reduce this current. The reduction can be computed perturbatively
using Fermi’s Golden rule as in Subsection A, but with two differences.
First, the charge e in (40) must be replaced by the quasiparticle charge,
e* = ge. Second, the electron tunneling operator (39) must be replaced by
the quasiparticle tunneling term proportional to u. At zero temperature
one obtains,

Tpack o u2|V 292V, (50)

as could have been anticipated from the RG flow equation. Notice that ¢
has been replaced by 1/g in going from the strong to weak barrier result.
Likewise, at temperature T', the backscattering contribution to the (linear)
conductance is given by

2
G - g% o —u?T2, (51)

43. THELIMIT 1 — g < 1

We have seen in Section 4.2 that backscattering off a barrier is enhanced
dramatically when the electron gas is repulsively interacting, with g < 1.
Indeed, even a weak scatterer is expected to cause full reflection at zero
excitation energy. In this section, we show how this surprising result can
be understood in terms of the physical electrons. Specifically, we show that
the scattering rate for an electron off an impurity is renormalized by the
electron-electron interaction, due to the formation of a Friedel oscillation
near the barrier. This results in singular reflection amplitude at ¢ = 2kp.
By considering the limit of very weak interaction, 1 — g < 1, it is possible
to treat the scattering for arbitrary barrier strength [22]. This allows us to
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describe the crossover between the perturbative results for large and small
barrier described above.

Consider first a 1d gas of spinless non-interacting electrons scattering
on a potential u(z) localized near the origin. For simplicity, we assume
the barrier is symmetric, u(z) = u(—z). This allows us to use the same
transmission and reflection amplitudes, ¢y and 79, to describe both sets of
asymptotic wave functions far from the barrier:

1 [k ygpeE 2<0,
tle) = To {toe"’”, z >0, )
for the states incoming from the left, and
B 1 toe—ikz, T < 0,
b-k(z) = V2 { e~z 4 roethz x>0, (53)

for the states incoming from the right. The wave vector k is defined to be
positive.

Scattering from the barrier is modified by electron-electron interactions,
and can be considered perturbatively in the interaction strength. To lowest-
order we neglect inelastic processes in which electrons above the Fermi level
lose coherence by exciting electron-hole pairs. Within this Hartree-Fock
approximation, the many-body electron state can be described by a Slater
determinant of single-electron wave functions. Each electron is affected by
an extra average potential produced by other electrons in the Fermi sea.
This potential and the barrier potential, u(z), act together as an effective
barrier for electron scattering. The single-electron wave functions can be
found as a solution of the Schrédinger equation with this effective barrier,
Then the transmission coefficient can be calculated.

The extra potential consists of two parts: the Hartree potential Vi (z)
determined by the electron density in the system, and a non-local exchange
potential Vey(z,y) which accounts for Fermi statistics of the electrons.
Within this Hartree-Fock approach, the single-electron wave functions can
be found by the Green’s function method. The equation for a single-electron
Hartree-Fock state 1y is:

Yr(z) = ¢k($)+fdka(-’L‘,y)fdz{VH(Z)5(y—z)+Vex(y, z) Y (2). (54)

The Hartree and exchange potentials are defined as:
Vi (z) = [ dyV (z — y)n(y), (55)

Vex(@,y) = =V(z —y) Y $3(u)¥q(2), (56)

lg|<kr
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where V(z — ) is the electron-electron interaction potential, and n(y) =
lal<kr |1q(y)|? is the electron density.

In a first-order Born approximation, ¥ on the right-hand side of Eq. (54)
and in Egs. (55) and (56) is replaced by the unperturbed wave function ¢.
The unperturbed electron density has the form:

o) = ng + %f(f"“ dkRe{roe~%%%}, z <0, (57)
no + L [¥F dkRe{ro*e~2%2}, z > 0.

;From Eq. (57), at large distances |z| > k' the disturbance of density
on(z) = n(z) — po caused by a symmetric barrier decays as

on(z) ~ 2|:|31|:| sin(2kp|z| + argr). (58)

It follows from Eq. (55) that the oscillations of density (57) produce an
oscillating Hartree potential - commonly referred to as a Friedel oscillation;
see Fig. 1. In contrast to the 3d case, where the density oscillation a distance
R from an impurity decays as 1/R3], in 1d it decays only as 1/|z|. As we
shall see, the 7 /kp periodicity and slow decay of the Hartree potential, gives
a contribution to ty and rg which is logarithmically divergent as k — kp.

To extract the contribution to tg, consider an incoming wave from the
left with wave vector k. The modified wave function 9 (z) must have the
following asymptotics:

tpe®®, T — +oo, (59)

V() =~ \/;—W

where t; is the modified transmission amplitude. Thus to find the correc-
tion to the transmission amplitude, we only need the asymptotic form of
the Green function Gi(z,y) as z — +oo. Calculating it with free wave
functions, we find:

ES toetk(z—v) y <0,
Gi(z,y) = g {eik(m—y) + roettEty) 4y > 0, (60)

where vy, is the velocity of an electron with wave vector k.
The transmission amplitude resulting from Eq. (54) is then,

ti =1g — 'ytg|r0|2111 l—m’ (61)

where d is a characteristic spatial scale of the interaction potential V'(z) (if
the range of the interactions is shorter than the Fermi wave length, then
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V)4

Figure 1. Total scattering potential. The central peak is the bare potential of the barrier.

The wings represent the Friedel oscillation induced by the barrier.

d should be replaced by 27 /kp). Here v is a dimensionless parameter that
characterizes the strength of the interaction:

_ V(0) —V(2kr)
Lan 2mup

(62)

with V(q) denoting the Fourier transformation of the interaction.

The zero-momentum contribution V(0) originates from the exchange
term, whereas V(2kr) comes from the Hartree term. Notice that ¥ van-
ishes for a contact interaction, for which V(q) is a constant. Due to Pauli
exclusion, such an interaction can play no role. For a finite range repulsive



353

interaction, <y is positive, and the transmission is suppressed, in accord with
the results of Sections 4.1,4.2. Indeed, we can relate g and vy by calculating
the lowest-order interaction correction to the compressibility of a 1d Fermi
gas. For weak interaction we find

1
1—9::55—1%7. (63)

Thus we see that Eq. (61), upon taking the proper limit (|tg| < 1 or
Iro| < 1), can be viewed as the solution of the lowest order RG equation
(Eq. (47) or Eq. (48)respectively).

The first-order result (61) for the transmission amplitude consists of
two equal contributions. The first one corresponds to a plane wave coming
from the left and reflected by the barrier with amplitude ry. It is then
scattered back to the barrier by the Friedel oscillation on the left-hand side
with amplitude — 57§ In(1/|k — kp|d). Finally the electron penetrates the
barrier with amplitude #y. The second contribution is the product of the
amplitudes of the following processes: an electron first penetrates the barrier
with amplitude g, then it is reflected back to the barrier by the Friedel
oscillation on the right-hand side with amplitude —-%'yra‘ In(1/|k — kr|d),
and eventually reflected by the barrier to the right with amplitude ro. The
total first-order contribution to the transmission amplitude is the sum of
these two coherent processes. -

The result (61) has a logarithmic divergence as k — kr, no matter
how small the coupling constants (62). This indicates the inadequacy of
the first-order calculation at small |k — kr|. The second order contribution
can be extracted by using the first-order ¢ (z) (59) as a new wave function
in the right-hand side of Eq. (54), and repeating the previous calculation.
The result is,

] 2

(64)
Here we have only kept the most divergent terms, which at second order
has the form [yIn(1/|k — kp|d)]®. At n-th order we expect terms of the
form [yIn(1/|k — kr|d)]™. Since all these terms are divergent, a straight-
forward perturbative approach is clearly inadequate. Instead, we adopt a
renormalization group approach, as described below.

The Hartree and exchange potentials depend on the reflection ampli-
tudes, and they are modified along with these amplitudes. In a region (—I,!)
close to the origin, the electrons are scattered by the bare barrier with trans-
mission amplitude ty and produce an extra potential that is proportional
to |rg|. Perturbative calculation for the transmission amplitude is carried

1

1 ‘_l o
(k—kr)d

t :to—-—tolrolz’)/hl’m 2

tolrol2(2ltol? ~Irol?) [,Yln
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out with the bare amplitudes. Such a calculation is justified as long as the
correction from the perturbative calculation is indeed small. This is true
for [ not too large, such that aIn(l/d) < 1. Beyond this distance, the whole
region (—I,l) enclosed should be considered as an effective barrier to the
electrons outside. This effective barrier is characterized by the now renor-
malized amplitudes, denoted r and ¢. With these new amplitudes, we can
find the new Hartree and exchange potentials in the outer region. Then
the perturbative calculation can be carried out to a larger spatial scale. To
ensure that perturbation theory is valid in every step, the above renormal-
ization procedure is done repeatedly for larger and larger scales.

This idea leads to the following formulation. We start with a region of
length 2! centered around the barrier. The scale [ is chosen to be much
larger than d but not too large, so that 1 < In(l/d) < 7~ !. The modi-
fied transmission amplitude due to the electron-electron interaction in the
region (—I[,!) can then be found by perturbation theory,

t1 = to — yto(1 — |to]?)e, (65)

with £ =Inl/d > 1.

We then go to a larger scale, taking the region (—{,!) as a composite scat-
terer. Using the renormalized transmission amplitude and correspondingly
renormalizing the additional Hartree and exchange potentials, we repeat
the calculation for this next scale [ exp(£). Then to the next larger scale,
which is [exp(2¢), and so on. In general, the iterative renormalization of
the transmission amplitude after n steps of scaling to larger distances can
be found from

lnt1 =1t — 'Ttn(l - |tn|2)‘€' (66)
This iteration procedure should be stopped at a length scale 1/|k — kp|,
beyond which the scattered electron loses phase coherence with the Friedel

oscillation, and the transmission amplitude is not renormalized any further.
In the continuous limit, Eq. (66) becomes

dt :
o=~ — 1), (67

where £ is the logarithm of the length scale. Integrating equation (67) from
£ =0 to ¢ =1In(l/|k — kr|) and using the boundary condition t|,—g = to,
we find a renormalized transmission amplitude

to|(k — kr)d|"

= ) (68)
" VP + TePIk — kr)dP
The transmission coefficient 7~ = |¢|? is then
E/Dg|*
T(e) = TolB/ Dol (69)

-~ Ro+ To|E/Dg|>’
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where Tp = 1 — R = |to|” is the bare transmission coefficient, and Dy =
v /d. The expansion of Eq. (68) up to the second order in vy coincides with
(64).

The renormalized transmission coefficient (69) allows us to find the tem-
perature dependence of the linear conductance of a 1d spinless interacting
electron system with a single barrier. At high temperatures T' > Dy the
conductance is given by the Landauer formula for an ideal Fermi gas,
Gy = (e?/2wh)Ty. At lower temperatures the transmission coefficient is
renormalized. Because of the smearing of the Fermi surface, F in Eq. (69)
should be replaced by T', and the following temperature dependence of the
linear conductance is found:

& To(T/Do)*
" 2th R + To(T/Do)®”

G(T) (70)
Formula. (70) describes explicitly the crossover between the limits of weak
reflection and weak tunneling considered above in the framework of Lut-
tinger liquid theory. The proper expansion of Eq. (70) and the use of
Eq. (63) yields the limiting results, Egs. (43) and (51). The crossover tem-
perature depends on the strength of the barrier, T* = Do(Ro/ To)Y/27. The
differential conductance G(V) at a high voltage eV > T' may be obtained
by substitution 7" — eV.

4.4. CROSSOVER BETWEEN THE WEAK AND STRONG
BACKSCATTERING

The preceding results can now be pieced together to form a global picture
of the behavior of a scattering defect in a Luttinger liquid. The perturbative
results in IV.A and IV.B describe the stability of two renormalization group
fixed points. For repulsive interactions (g < 1), the “perfectly insulating”
fixed point, with zero electron tunneling ¢y = 0, is stable, whereas the “per-
fectly conducting” fixed point, with zero backscattering u = 0, is unstable.
(For attractive interactions, g > 1, the stability conditions are reversed.)
Provided these are the only two fixed points, it follows that the RG flows
out of the conducting fixed point eventually make their way to the insulat-
ing fixed point. In the limit of very weak repulsive interactions, 1 —g << 1,
we showed this crossover explicitly in Section IV.C, but it is true more gen-
erally. This is a very striking conclusion, since it implies that a Luttinger
liquid with arbitrarily weak scatterer, with amplitude u, will cause the con-
ductance to vanish completely at zero temperature. Of course, for u very
small, very low temperatures would be necessary to see this. In this sce-
nario, the conductance as a function of temperature will behave as follows.
At high temperatures, the system does not have “time” to flow out of the
perturbative regime, so the conductance is given by G = (ge?/h) —u?T*~2.



356

As the temperature is lowered below a scale T* o ul/ (1‘9), perturbation
theory breaks down. Eventually, the system crosses over into a low temper-
ature regime in which the conductance vanishes ag 7(2/9)-2

The validity of this scenario rests on the assumption that no other
fixed points intervene. This assumption has been verified both by quantum
Monte Carlo simulations [23], and more recently by exact non-perturbative
methods based on the thermodynamic Bethe ansatz [24].

4.5. RESONANT TUNNELLING

We now briefly consider the phenomena of resonant tunnelling through a
double barrier in a 1d Luttinger liquid. Our reasons are two fold: (i) Ex-
periments on quantum Hall edge states, discussed in the next Section, have
measured resonances which can be compared with Luttinger liquid theory,
(ii) The nature of the crossover between the weak and strong backscattering
limit, determines the lineshape and temperature dependence of resonance
tunnelling peaks in a Luttinger liquid.

As a point of reference, we first review resonant tunneling theory for a
1d non-interacting electron gas. Consider then 1d electrons incident on a
double barrier structure, with a (quasi-) localized state between the bar-
riers. As the chemical potential u of the incident electron sweeps through
the energy of the localized state, ¢, the conductance will exhibit a peak
described by,

'y
€—ep)?+1?

2
G = [ def'(e~n) (71)

h (
Here I';, and 'y are tunneling rates from the resonant (localized) state to
the left and right leads and I' = (' +T'g) /2. The Fermi function is denoted
f(e). At high temperatures, T' > T, the resonance has an amplitude I"/T
and a width 7. At low temperatures, the lineshape is Lorentzian, with
a temperature independent width T. Moreover, when the left and right
barriers are identical, the on-resonance transmission at zero temperature is
perfect, G = 2 /h.

How is this modified when the electron gas is an interacting Luttinger
liquid? Since arbitrarily weak backscattering causes the zero temperature
conductance to vanish, one might expect that resonances are simply not
present at 7' = 0. As we now show, this is not the case. Rather, perfect
resonances are possible, but in striking contrast to (71) for non- interacting
electrons, they become infinitely sharp in the zero temperature limit.

To see this, it is convenient to consider the limit of a very weak double-
barrier structure. For non-interacting elecrons, resonant tunneling is not
normally studied for weak backscattering, since in this limit the trans-
mission is large even off resonance, which tends to obscure the resonance.
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However, in a Luttinger liquid, the off-resonance conductance vanishes at
zero temperature, leaving an unobscured resonance peak, as we now argue.

Consider then scattering of a pure Luttinger liquid from a small bar-
rier, denoted wu(z), which is non-zero only for z near zero. For resonant
tunnelling, the potential should be taken to have a double-barrier struc-
ture. This potential couples to the electron density, via an additional term
in the Hamiltonian,

M, = / deu(z)d! (@)(z). (72)

This can be re-expressed in terms of the boson fields by inserting the expres-
sion (2.6) for the electron operator. We assume that 6(z) is slowly varying
on the scale of the potential, and so replace it by #(z = 0). The integration
over z can then be performed to give,

oo

Himp =% _Z uneﬂnﬂ(m:O), (73)
n=—o00

where the coefficients, u, = u*,, = i4(2nkp), are proportional to the Fourier

transform of u(z) at momenta given by n times 2kp. For a symmetric

barrier, u(z) = u(—z) the coefficients u, are real.

In Equation (19) we retained only the first term in this sum. The higher
order terms correspond to processes where n-electrons are simultaneously
backscattered, each by a momenta 2kp, from one Fermi point to the other.
Alternatively, (73) can be viewed as an effective potential ueg(6(z = 0)),
which is invariant under the transformation § — 6 + w. Since 8/7 is the
number of particles to the left of z = 0, u.s may be regarded as a weak
pinning potential in the Wigner crystal picture.

As we shall now see, for weak backscattering, the single electron process,
ie. the 2k backscattering term u, is the most important. This follows read-
ily from a perturbative RG calculation, as in Section 4.2. Specifically, the
scaling dimension, A, of the perturbation u,, defined via the correlation
function,

(ez'2n9(:r=0,-r)e—i2n0(a:=0,0)) o |TI_2AH: (74)
with imaginary time 7, can be readily evaluated using the quadratic part
of the Lagrangian (28), to give A, = n%g. Thus the leading order RG flow
equations for the renormalized coupling u,(£) are simply,

du
d—; = (1 — n%g)up. (75)

With increasing n, the scaling dimension increases, and the perturba-
tion, u,, becomes less relevant (or more irrelevant), suggesting we need
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only focus on u;. However, imagine fine-tuning u; to zero. As we shall
see, this corresponds to tuning to a resonance. The next most important
backscattering process is uz. But notice, that for g > 1/4 this backscatter-
ing amplitude scales to zero, as do all the higher order processes, u, with
n > 2. Thus, if u; is tuned to zero, provided g > 1/4 one expects perfect
transmission at 7" = 0. On the other hand, as we have shown earlier when
uy 1s nonzero, it grows under RG (for ¢ < 1), and the conductance van-
ishes at T' = 0. Thus at zero temperature, there will be an infinitely sharp
resonance peak as uy is varied through zero!

How easy is it to achieve such a resonance? For g > 1/4, the criterion
is that the renormalized value of u; vanishes. In general, u; is complex,
so that the resonance condition requires the simultaneous tuning of two
parameters. However, for symmetric barriers, u; is real and only a single
parameter need be tuned.

A resonance with no width is in striking constrast to the conventional
result for non-interacting electrons. In that case, the width is set by the
tunnelling rate I' from the localized state between the barriers, into the
leads. The higher the barrier, the smaller the decay rate, and the narrower
the resonance. An electron in a localized state between two barriers in a
Luttinger liquid will be unable to decay (at T' = 0), since the tunnelling
density of states into the “leads” vanishes. The electron remains localized
forever, with an infinite “lifetime” - which gives a simple explanation of
the infinitely sharp resonance. At a finite temperature, the electron will be
able to decay, since the tunnelling DOS into a Luttinger liquid is non-zero
away from the Fermi energy. One thus expects that the resonance will be
thermally broadened, as we now confirm.

Consider tuning through such a perfect resonance by varying a param-
eter. It is convenient to denote by § the “distance” from the peak position
in the control parameter. Close enough to the resonance one has u; o 4.
For very small § the RG flows will thus pass very near to the perfectly
conducting fixed point, since all of the other irrelevant operators will scale
to zero before u; has time to grow large. Eventually, u; does grow large
and the flows crossover to the insulating fixed point. Temperature serves as
a cutoff to the RG flows, as usual. This reasoning reveals that for both §
and temperature small, the conductance will depend only on the universal
crossover trajectory which joins the two fixed points. The uniqueness of the
RG trajectory implies that the conductance will be described by a universal
crossover scaling function. Moreover, since u; grows with exponent 1 — g,
the conductance, which is generally a function of both § and T, will only
depend on these parameters in the combination, §/7"'~9. Thus, for small T
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and d, the resonance lineshape is given by a universal scaling function,

982 =~ 1—
G(T,d,9) = TGQ(CQ‘S/T B (76)

where ¢, is a (non-universal) constant.

The scaling function G¢(X) depends only on the interaction parameter
g, but is otherwise universal, independent of all details. The limiting be-
havior of G4(X), may be deduced from the perturbative limits. For small
argument X, the perturbation theory result (51) implies

Gy(X) =1- X2 (77)

For large argument, corresponding to the limit 7" — 0, the scaling function
must match on to the low temperature regime (43), which gives a 7'(2/9)—2
dependence. This implies that for X — oo,

Gy(X) oc X729, (78)

The scaling form for the conductance near resonance, reveals that the
width of the resonance scales to zero with a power of temperature, 7' 9. No-
tice that in the non-interacting limit, g — 1~, this reduces to the expected
temperature independent linewidth. Moreover, the finite temperature res-
onance lineshape is non-Lorentzian, with tails decaying more rapidly, as
X~2/9. Again, for g — 1 this reduces to the expected Lorentizian form for
the non-interacting electron gas.

The exact scaling function which interpolates between the small and
large X limits, can be computed for g = 1/2 by re-Fermionizing the Lut-
tinger liquid. More recently, Fendley et. al. [24] have computed G4(X) for
arbitrary g, using the thermodynamic Bethe Ansatz.

5. Applications

Here we demonstrate two applications of the theory reviewed in the previous
sections. The first one relates the general theory to the experimentally
observable transport phenomena in a mesoscopic quantum Hall effect. The
second one uses the mathematical tools described above in the theory of
Coulomb blockade.

5.1. TUNNELING BETWEEN QUANTUM HALL EDGE STATES

5.1.1. Edge states in the regime of quantum Hall effect
Despite the firm theoretical basis upon which the Luttinger liquid the-
ory rests, there has been precious little compelling experimental evidence
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that real one-dimensional electron gases are anything but Fermi liquids.
This, despite the fact that in recent years it has become possible to fab-
ricate single channel quantum wires. Several recent experiments [25, 26]
have reported interesting transport data on such quantum wires, and of-
fered possible interpretations in terms of Luttinger liquid theory. But the
analysis is complicated by several factors. Firstly, it is difficult to eliminate
unwanted impurity scattering along the wire. When this is strong, it causes
backscattering and localization, destroying the Luttinger liquid phase. But
even in a very clean wire, the Luttinger liquid parameter g, which deter-
mines the power law of tunnelling density of states, is unknown, depending
on the details of the Coulomb interaction strength, which complicates the
interpretation. Fortunately, there is another experimental system which is
expected to exhibit Luttinger liquid behavior, and does not suffer from the
above difficulties - namely edge states in the quantum Hall effect.

The quantum Hall effect occurs at low temperatures in two-dimensional
electron gases with low carrier density, when placed in a strong perpundic-
ular magnetic field. The key experimental signature consists of quantized
plateaus in the Hall conductance as the magnetic field is varied. In the
plateaus, the Hall conductance, G, is “locked” to values which are simple
rational numbers of the quantum conductance, Gy = ve? [h, with rational
v. In the integer quantum Hall effect, v is an integer, whereas in the frac-
tional quantum Hall effect, » = p/q with integer p and odd integer g. In
the plateaus the longitudinal conductivity, oz;, vanishes rapidly as T' = 0.

The integer quantum Hall effect (IQHE) can be understood in terms of
9d non-interacting electrons in a magnetic field. When the Fermi energy
lies between Landau levels, there is an energy gap of order the cyclotron
energy, w. = eB/m, which accounts naturally for the vanishing o;,. But at
the edges of the sample, there are gapless current carrying states. In a semi-
classical picure, these can be thought of as orbits which “skip” along the
edge due to the magnetic field and edge confining potential. The direction
of the skipping, clockwise or counter-clockwise, is determined by the sign of
the magnetic field. In a full quantum treatment, these edge orbits become
quantum modes. For n full Landau levels in the bulk, there are n edge
modes, one for each Landau level.

The IQHE edge modes are equivalent to the right moving sector of a 1d
non-interacting electron gas. In a Hall bar geometry, the modes on the top
and bottom edges move in opposite directions. For v = 1 there is a single
right moving mode on the top edge, and a left mover on the bottom. These
two modes can be described by the Hamiltonian (16) with ¢ = v = 1. That
is, they are mathematically equivalent to a 1d non-interacting electron gas.
However, since the two modes are spatially separated - on opposite sides of
the Hall bar - impurities cannot cause backscattering and localization.

i
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Quantization of the Hall conductance can be understood very simply in
terms of the edge states. As discussed in Section IL.A, raising the chemical
potential of the right moving mode with respect to the leftmover by an
amount 4, leads to a transport current, I = Gu with G = ge?/h from (18).
In the Hall bar geometry, u corresponds to the transverse (Hall) voltage
drop, so G is a Hall conductance - appropriately quantized for ¢ = 1.

The fractional quantum Hall effect occurs when a single Landau level is
partially filled, with a fractional filling v. For non-interacting electron there
would be an enormous ground state degeneracy in this case. At rational fill-
ing fractions, v = p/q, the electron Coulomb repulsion lifts this degeneracy,
leading to a unique ground state with an energy gap to excited states. The
resulting FQHE state is predicted to have very interesting properties, such
as quasiparticle excitations with fractional charge and statistics.

In pioneering work, Wen [12] argued that FQHE states should also have
gapless current carrying edge modes. But in contrast to the IQHE, these
edge modes were argued to be Luttinger liquids. Specifically, for the Laugh-
lin sequence of fractions, at filling v = 1/¢ with odd integer ¢, a single
chiral Luttinger liquid mode was predicted. For a Hall bar geometry, as in
the IQHE with v = 1, there would be one right moving mode on the top
edge, and one leftmover on the bottom. Again, these two modes can be de-
scribed by the Hamiltonian (16), but now with fractional Luttinger liquid
parameter, g = v = 1/q. Remarkably, the Luttinger liquid parameter for
FQHE edge states is universal, determined completely by the bulk FQHE
state, and independent of all details.

For hierarchical FQHE states, at fillings v # 1/¢, multiple edge modes
are predicted [12], in some cases moving in both directions along a given
edge. In the following we will focus for simplicity on the Laughlin sequence
of states, and in particular on the most robust state at v = 1/3.

Although FQHE edge modes at filling » = 1/3, and a Luttinger liquid
with g = v are essentially equivalent, there are some subtle differences which
must be kept in mind. Specifically, in the Luttinger liquid the fundamental
(right moving) charge e Fermion operator (the electron) is given from (6) by
Yr ~ €®+9) This can be re-written in terms of the right and left moving
Boson modes, ¢r/, = gp +0, as g ~ e'(?*r+9L) This operator thus adds
charge 2/3 into the right moving Boson mode, and 1/3 into the left. In
the FQHE, this corresponds to adding 2 fractionally charged quasiparticles
(charge e/3) to the top edge of the Hall bar, and 1 to the bottom edge. But
this is a non-local operator, and hence unphysical in the FQHE, whereas it
is nice local operator in a quantum wire.



_|—|\!/_r—|_

S 5\/_( D

—|_|/_\|_|7
e

| 2

Figure 2. Schematic portrait of a point contact, in which the top and bottom edges of
a Hall fluid are brought together by an electrostatically controlled gate (G), allowing for
the tunneling of charge between the two edges. Here S and D denote source and drain,
respectively.

5.1.2. Inter-edge tunneling at a Point Contact

As discussed in Sections 3 and 4, the most remarkable property of a Lut-
tinger liquid is the vanishing density of states for tunnelling electrons. To
allow for intermode edge tunnelling in the FQHE, it is necessary to bring
together the opposite edges of the Hall bar. This can be achieved by gat-
ing the electron gas, as depicted schematically in the Figure 2. Consider
specifically, a gate which brings the opposite edge modes together at one
point. This is equivalent to putting a single defect in an otherwise clean
Luttinger liquid. In this geometry, charge can tunnel between the top and
bottom edge modes, through the narrow strip of FQHE fluid (see Fig. 2).
The appropriate term to add to the Hamiltonian is given in (20), and cor-
responds to the transfer of a fractionally charged Laughlin quasiparticle
(charge e* = ve = e/3) from top to bottom, with amplitude ». In a Lut-
tinger liquid, this same perturbation corresponds to a weak 2kp electron
backscattering, with “backflow”.

Since g = v < 1 this weak backscattering amplitude, u, grows at low
temperatures, and the system crosses over into a large barrier regime, as
discussed in Section 4. The large barrier limit corresponds to Figure 3a,
in which the incident top edge mode is almost completely reflected. Weak
tunnelling from left to right can be treated perturbatively, in the amplitude,
to. In this case, it is an electron which is tunnelling, with charge e. As shown
in Section 4.1, (Eqn. (43)), this leads to a conductance which vanishes as
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(b)

Figure 3. A quantum Hall point contact in the (a) weak tunneling limit and (b) the
weak backscattering limit. The shaded regions represent the quantum Hall fluid with
edge states depicted as lines with arrows. The dashed line represents a weak tunneling
matrix element connecting the two edges.

a power of temperature,
G« 21@M~2 T4, (79)

for v =1/3.

Fig. 4 shows data [27] for the conductance as a function of temperature
through a point contact in an IQHE fluid at » = 1 and a FQHE fluid at
v = 1/3. The difference in behavior is remarkable. For v = 1 the conduc-
tance approaches a constant at low temperatures, whereas for v = 1/3 the
conductance continues to decrease upon cooling. Moreover, the low temper-
ature behavior for v = 1/3 is consistent with the T dependence predicted
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Figure 4. Conductance of a quantum point contact as a function of temperature for (a)
v =1, and (b) v = 1/3. Taken from Ref. [27].

in (79). This data provides experimental evidence for the Luttinger liquid,
a phase discussed theoretically over 30 years earlier.

In this same experiment, the conductance through the point contact was
measured as a function of a gate voltage, controlling the pinch-off. The data
in Fig. 5, shows a sequence of reproducible conductance peaks. A natural
interpretation is that these are resonant tunnelling peaks, through a state
localized in the vicinity of the point contact. As discussed in Section 4.5,
resonant tunnelling peaks are expected in a Luttinger liquid whenever the
amplitude for the dominant backscattering process (u1) is tuned to zero. In
the FQHE, this process corresponds to tunnelling a single e¢/3 quasiparticle
from the top to bottom edge. Since » > 1/4, the higher order processes
which involve multiple quasiparticle tunnelling are irrelevant. Thus, for a
symmetric scattering potential, finding a resonance requires tuning only a
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Figure 5. Two-terminal conductance as a function of gate voltage of a GaAs quantum
Hall point contact taken at 42 mK. The two curves are taken at magnetic fields which
correspond to v = 1 and v = 1/3 plateaus. Taken from Ref. [27].

single parameter, such as the gate potential.

Fig. 6 shows a scaling plot of one of the resonances for » = 1/3 in
Fig. 5 from the data of Webb et al. The widths of the resonances at
several different temperatures have been rescaled by T?%/3, as suggested by
(76). Since the peak heights were also weakly temperature dependent (and
roughly one third of the quantized value (1/3)e?/h) the amplitudes have
also been normalized to have unit height at the peak. The temperature
scaling of the peak widths is indeed very well fit by T2/3, Also shown in
Fig. 6 are quantum Monte Carlo data and an exact computation from
Bethe Ansatz for the universal scaling function in (4.38). The agreement is
striking. Although the experimental lineshape does drop somewhat faster
in the tails, the shape is distinctly non Lorentzian with a tail decaying with
a power close to that predicted by theory. It should be emphasized that the
experimental data does not represent a “perfect resonance”, since the peak
amplitude is dropping (slowly) upon cooling, rather than approaching the
quantized value, (1/3)e?/h. By varying an additional parameter besides the
gate voltage (such as the magnetic field) though, it should be possible to
find a perfect resonance for v = 1/3.

In a very recent experiment, Chang et. al. [28] have succeeded in tun-
nelling into a FQHE edge from a bulk metallic system. The 2DEG was
exposed, in situ, by cleaving a bulk GaAs sample. A thin insulating barrier
was grown onto the cleaved face. Heavily doped material was deposited on
top of the insulating layer. The experiment measured the tunnelling con-
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Figure 6. Log-log scaling plot of the lineshape of resonances at different temperatures.
The x axis is rescaled by T?/%. The crosses represent experimental data of Ref. [27] at
temperatures between 40mK and 140mK. The squares are the results of the Monte Carlo
simulation, and the solid line is the exact solution from Ref. [24].

ductance from the heavily doped “metal” through the insulating barrier
into the FQHE edge. The tunnelling conductance from a Fermi liquid into
a g = v chiral Luttinger liquid, is predicted to vanish as, G ~ T(/¥)~1,
Since the DOS in a Fermi liquid is constant, this power is 1/2 as large as
for tunnelling between two g = v chiral Luttinger liquids. Similarly, at zero
temperature, the I-V curve is predicted to vary as I ~ V1/¥. Figure 7 shows
data for the I-V curve which is consistent with this power law.

5.2. COULOMB BLOCKADE OF STRONG TUNNELING

In this section we apply the mathematical tools developed for a 1d Luttinger
liquid, to an apparently unrelated physical problem - namely the Coulomb
blockade. Consider a conducting metallic grain (or “dot”) connected to
an infinite lead by a junction, see Fig. (8a). The grain is also coupled
capacitively to another gate electrode. The electrostatic energy of the grain
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Figure 7. Current-voltage characteristics for tunneling from a bulk-doped n+ GaAs
into the edge of a v = 1/3 fractional quantum Hall fluid for two samples: Sample 1 at
magnetic field B = 13.4T (crosses), and sample 2 at B = 10.8T (solid circles). The solid
curves represent fits to the theory; the extracted values of the exponents for the two
curves are o = 2.7 and a = 2.6 respectively. (Taken from Ref. [28].)

is
(@ —eN)?

Hg = 2Ce (80)
where () is the charge of the grain and Cj is its capacitance. The parameter
N is proportional to the gate voltage V,. Variation of the gate voltage V,
changes the equilibrium charge of the grain. If the channel to the lead
is almost depleted, and its conductance G — 0, then the charge @) can
only take on discrete values @ = Ne. The equilibrium charge (Q) should
minimize the energy (80) within the set of integer A, and therefore changes
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Figure 8. (a): Metallic grain connected to a lead by a channel (taken from Ref. [30]).
The charge on the grain is controlled by the gate voltage, Vg, applied to an electrode

which is coupled capacitively to the grain. (b): One-dimensional channel connecting the
grain to the lead

in a stepwise fashion with the gate voltage, (Q) = IntNe. On the other
hand, if G is large, one expects the grain charge to vary linearly with the
gate voltage, (Q)) = Ne. Of interest is the behavior in the crossover region
between these two limiting cases, as the conductance to the lead is varied.

This problem is non-trivial, because the electron-electron interaction
term (80) must be treated non-perturbatively. As we shall see, if the junc-
tion is modelled as a single-mode channel with tunable reflection amplitude
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r, it is possible [29, 30] to apply the methods described in Section 2. Indeed,
using bosonization, Matveev [30] has shown that (Q) = Ne at r = 0, and
found analytically the function ¢(N) = (Q) — Ne for weak reflection. (Here
and after, (...) denotes a ground-state average.) The average charge is di-
rectly related to the ground state energy, g(N) = —(Cy/e)OE/ON. Below
we follow closely the line of arguments presented in Ref. [30].

To find the ground state energy E, we need to supplement the Hamil-
tonian (80) by a part describing non-interacting electrons. For the case
of a grain with size L large compared to the Bohr radius, ap = h? /me?,
this can be simplified. If the motion within the grain is chaotic, then the
dwelling time for an electron entering the grain through a single-mode chan-
nel is 74 ~ 6~1, where § is the electron level spacing in the grain. On the
other hand, the quantum charge fluctuations which destroy the discrete-
ness of (Q) occur on the time scale 7, ~ 1/Ec, where Eg ~ e?/Cy is the
single-electron charging energy. The latter time scale is relatively short,
7¢/7d ~ aB/L < 1 (the estimate is performed for a two-dimensional grain).
Over this time, electrons participating in the charge fluctuations (i.e., those
that pass through the channel) do not get back into the channel after “ex-
ploring” the grain. It means that we need to add to Eq. (80) a Hamiltonian
describing only the electrons moving through a one-dimensional channel.
In the absense of a barrier within the channel, this Hamiltonian is

Hy = ivp [ do [ph(@)0:br(@) ~ ¥} ()00 (0)] (81)

where wL(:r) and ¢£(:c) are the creation operators for right- and left-
movers, respectively. We have used here a linearized electron spectrum,
since the energy scale E¢ is much smaller than the Fermi energy, Ec/Efp ~
(ap/L)(kpap)™? < L.

The definition of the charge operator @ in Eq. (80) depends on where we
¢draw” the boundary between the channel and the grain. This arbitrariness
in convention only affects the phase of the oscillations of ¢(IN ). But this
phase does not carry any physical meaning, provided the gate voltage is
small enough not to deplete the grain entirely. Therefore, Q can be viewed as
the charge passed e.g. through the middle (z = 0) of the channel, Fig. (8b)
into the dot,

Q=c [ do[vhenr(@ + vh )], (82)
0

Now, with the help of Eq. (8), we can bosonize the Hamiltonian (81),
which gives Eq. (4) with g =1,

Ho = S2((0:0)" + (2:0)°). (83)
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Bosonization of the interaction part (80) is also straightforward, after we
put Pk (z)Yr(z) + ¥l (2)Pr(z) = —0,0(z)/m into (82),

1 2

™

€

2

He = E¢ [ (84)

In the absence of a barrier in the channel, it is easy to show that g(N) =
0. Indeed, after the transformation

6(x) — 0(z) + N, (85)

the Hamiltonian Hy + Hc does not depend on N; there is no Coulomb
blockade at 7 = 0. The ground state energy starts to depend on N, if a bar-
rier causes backscattering in the channel. The corresponding Hamiltonian
(cf Eq. (19)) in the boson variables is

u
Hipis = —MD cos[26(0)], (86)

where u is the 2kp—component of the scattering potential, and D is a high
energy cut-off. The transformation (85), makes evident the periodic depen-
dence of the full Hamiltonian, Hy + Himp + Hc, on N.

To find the correction to the ground state energy to first order in |r|,
denoted E,y, the perturbation (86) must be averaged in the ground state
of the Hamiltonian Hy + Hc, Eqgs. (83), (84). It then follows directly from
Eqgs. (83), (84) and (85), that E; o cos(2rN). The proportionality coef-
ficient can be estimated with the help of the RG equation (48). In the
absence of the local interaction (84), the renormalization (48) is valid for
all energy scales and can be taken to the limit £ — oo, which results in a
vanishing effective scattering potential, By = 0. With a finite E¢, the renor-
malization should be stopped at exp(—¢) ~ E¢/D, which at g = 1 leads to
E, = —const - (u/vp)Ec cos2rN. To leading order in the backscattering,
|r| = u/vF, so that

E{ = —const - |r|E¢ cos 2w N. (87)
An exact result for F; obtained [30] in the framework of the Debye-Waller
theory for the quadratic Hamiltonian Hy + Hc, yields const = eC /7, with

C =~ 0.5772 being Euler’s constant. Finally,

C
a(N) = —e?|r|sin27rN. (88)
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6. Conclusion

In this paper we have reviewed recent theoretical results for transport in a
one-dimensional (1d) Luttinger liquid. For simplicity, we have ignored elec-
tron spin, and focussed exclusively on the case of a single-mode. Moreover,
we have considered only the effects of a single (or perhaps several) spa-
tially localized impurities. Even with these restrictions, the predicted trans-
port behavior is qualitatively different than for a non-interacting electron
gas. Specifically, for repulsive interactions, even a weak impurity potential
causes complete backscattering, and the conductance vanishes completely
at zero temperature. This can be understood in terms of the vanishing
density of states, to tunnel an electron throught the barrier from one semi-
infinite Luttinger liquid to another. At finite temperature the tunnelling
electron has finite energy, and the conductance is non-zero, varying as a
power of temperature. The precise power law depends on the dimensionless
parameter (conductance) g which characterizes the Luttinger liquid.

For a very weak barrier, at elevated temperatures, the backscattering
is weak, but grows rapidly with cooling. This growth can be understood
physically in terms of the fact that the discrete backscattered charge in this
limit, is less than the electron charge e, but rather given by ge with g <1
for a repulsively interacting electron gas (see Eqn. (2.21)). For inter-edge
tunnelling in the fractional quantum Hall effect, this process corresponds to
the backscattering of a Laughlin quasiparticle (with g = v = 1/3, say), but
such fractionally charged excitations are in fact a generic property of the 1d
Luttinger liquid, and should be present, for example, in narrow quantum
wires. The fractional charge might be directly measureable via shot-noise
experiments through a single impurity.

The transport behavior in a 1d Luttinger liquids is of course much richer
once one relaxes the restrictions of a single impurity and a single channel.
The case of a single channel with many impurities has been considered by a
number of authors [31]. In the absence of electron interactions, all states are
localized in 1d, and the system is an insulator. With repulsive interactions,
localization effects are enhanced, and the system is insulating, even though
the notion of single particle localized eigenstates is no longer operative.
However, for spinless electrons with sufficiently strong attractive interac-
tions, the system is predicted to undergo an insulator-to-metal transition.
In the metallic phase, the conductivity is predicted to diverge as a power
law of temperature (with a variable power greater than one), in contrast to
a normal 3d metal, in which there is a finite residual resistivity at 7' = 0.
While the electron interaction in a quantum wire is clearly repulsive, a long
skinny gate across a fractional quantum Hall fluid at, e.g., filling v = 1/3,
creates a system which is isomorphic to a (spinless) 1d electron gas with
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strong attractive interactions [32]. By varying the gate potential along such
a line junction, it should be possible to tune through this 1d localization
transition.

For a real one-channel quantum wire, it is of course necessary to take
into account the spin of the electron [22, 33]. The method of bosonization
can readily accomodate the spin degree of freedom. The spinful interacting
electron gas has two modes, one which carries the charge and the other the
spin [3, 7]. These two modes will generally propagate at different veloci-
ties, a phenomena known as charge/spin separation. The effects of impu-
rity scattering on the spinful electron gas are qualitatively similar to that
without spin. Specifically, with repulsive interactions, a single impurity will
typically be sufficient to completely backscatter both the charge and spin
modes. The conductance will be driven to zero as a power law of tem-
perature, with possible logarithmic corrections. Resonant tunnelling is also
possible for a spinful electron gas, but can occur in several different guises,
depending on the charge and spin state of the localized state.

In a wider quantum wire, several transverse modes will co-exist at the
Fermi energy. This can also be treated with bosonization. Generally, asso-
ciated with each channel is one gapless charge mode and one gapless spin
mode. The tunnelling density of states to add an electron, will generally
still be singular, as for a single channel, but the associated exponents be-
come smaller as the number of channels increase [18, 34]. Multiple channels
are also present at the edges of hierarchical fractional quantum hall states
[35], such as at filling v = 2/3 . Multi-component models are also necessary
to treat charge fluctuations under the Coulomb blockade conditions (Sec-
tion 5.2) in the realistic case of electrons with a spin degree of freedom.
Indeed, a recent theory of Coulomb blockade effects for coupled quantum
dots [36], has yielded predictions which are in quantitative accord with
experiment [37].
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