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We consider the effects of Coulomb interactions on single-wall carbon nanotubes using an on-site Hubbard
interaction,u. For the~N,N! armchair tubes the low-energy theory is shown to beidentical to a two-chain
Hubbard model athalf-filling, with an effective interactionuN5u/N. Umklapp scattering leads to gaps in the
spectrum of charge and spin excitations which are exponentially small for largeN. Above the gaps the intrinsic
nanotube resistivity due to these scattering processes is linear in temperature, as observed experimentally. The
presence of ‘‘d-wave’’ superconductivity in the two-chain Hubbard model away from half-filling suggests that
doped armchair nanotubes might exhibit superconductivity with a purely electronic mechanism.
@S0163-1829~97!50518-2#

Carbon nanotubes constitute a novel class of quasi-one-
dimensional~1D! materials which offer the potential for both
new physics and technology.1 Although built only with car-
bon atoms, they can be grown in a tremendous variety of
shapes and sizes. The simplest single-wall tube consists of a
single graphite sheet which is curved into a long cylinder,
with a diameter which can be smaller than 1 nm. Several
groups2 have succeeded in measuring the resistance of a
singlemultiwall nanotube, composed of several concentric
cylinders. Crystalline ‘‘ropes’’ consisting of a triangular
packing of ~nominally! identical single-wall tubes are also
very promising, exhibiting signatures of metallic transport.3

Generally, single-wall tubes can be characterized by two
integers (N,M ) which specify the superlattice translation
vector which wraps around the waist of the cylinder. Current
theories4,5 consist of band-structure calculations and predict
a rich variety of behavior, ranging from metallic ‘‘armchair’’
tubes with (N,N) to insulating ‘‘zig-zag’’ tubes with
(N,0). For very small nanotubes, however, electron correla-
tion effects should become important, as in other 1D
systems.6 In this paper we study these effects using a tight-
binding description~which correctly reproduces the band-
structure calculations! supplemented by an on-site Hubbard
interactionu. For the (N,N) armchair tubes we show that the
effective description at low energies isidentical to a two-
chain Hubbard model athalf-filling with an effective inter-
action strength,uN5u/N. Since this effective interaction is
weak for N;10, its effects can be treated perturbatively.
Particularly important are electronic Umklapp scattering pro-
cesses, present at half-filling. These are predicted to open a
small charge and spin gap, changing the behavior from me-
tallic to insulating at low enough temperatures. Similar con-
clusions have been reached independently in very recent
work by Krotov, Lee, and Louie.7 At temperatures above
the charge gap, a simple weak-coupling analysis of these
interactions gives a resistivity which varies linearly with
temperature, which may explain the observed behavior3 in
single carbon ‘‘ropes.’’ Furthermore, doping an armchair
nanotube is equivalent to moving away from half-filling in
the two-chain Hubbard model. This problem has been exten-
sively studied,8 and exhibits superconducting behavior at

low temperatures, with a ‘‘d-wave’’ symmetry. This sug-
gests a possible electronic mechanism for superconductivity
in doped nanotubes.

Following various authors,4 we first consider a single
sheet of graphite, composed of carbon atoms arranged on the
sites of a honeycomb lattice. The underlying Bravais lattice
is triangular, with two sites per unit cell. The two primitive
Bravais lattice vectors areaW 65(a/2)(61,A3), where
a5A3d, with d the near-neighbor carbon separation. Of the
four outer-shell electrons of each atom, three form thesp2
bonds of the lattice, while the fourth can tunnel between
neighboringpz orbitals. A simple description, which cor-
rectly accounts for the semimetallic behavior of graphite,
consists of a tight-binding model with onepz orbital per
carbon, and a tunneling matrix elementt between neighbor-
ing atoms. The Bloch states for this tight-binding model
form two bands, with energiesE6(kW )56uj(kW )u where

j~kW !52tcos~kxa/2!eikya/2A31t'e
2 ikya/A3, ~1!

andkW is the crystal momentum. Here we have allowed for a
different hopping strength,t' , in they direction~see Fig. 1!.
With one electron per carbon atom, the Fermi energy is at
E50, with the lower band full and the upper empty. The
striking feature of this band structure is that there are two
isolated points in the first Brillouin zone, denotedKW 6 , where
the bands touchE50, and there are gapless excitations. In
the vicinity of these ‘‘Dirac’’ points, forqW 5kW2KW 6 small,
the dispersion is relativistic, withE(qW )5vuqW u and
v5(A3a/2)t ~for t'5t). When t5t' , the gapless points
occur atKW 65(64p/3a,0), but are shifted along thekx axis
for tÞt' ~see Fig. 2!.

Single-wall nantotubes consist of rolling the honeycomb
sheet of carbon atoms into a cylinder. Each tube is charac-
terized by two integers4 (N,M ), which specify the superlat-
tice translation vectorT(N,M )5NaW 11MaW 2 , which wraps
around the waist of the cylinder. The crystal momentum
transverse to the axis of the cylinder is then quantized. Band
structure predicts4 metallic behavior whenever the gapless
points in the Brillouin zone lie on the allowed transverse
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quantized wave vectors. For the armchair nanotubes with
(N,N) this is illustrated in Fig. 2~a!, where the allowed val-
ues ofky are shown as dashed lines forN54. Since gapless
modes are present atky50, band structure predicts metallic
behavior for armchair tubes, independent ofN. Due to cur-
vature effects,5 the hopping matrix elements along (t) and
around (t') the nanotube will differ slightly, by an amount
of order 1/N2. This shifts the Dirac points atKW 6 alongkx ,
but leaves the armchair tube gapless~metallic!. For the
(N,2N) zig-zag tube@equivalent to the (N,0) tube# with
nonintegerN/3, the gapless points do not coincide with
quantized transverse momenta, so that insulating behavior is
predicted with a gap varying as 1/N. For integerN/3 the
Dirac points fort5t' are at quantized transverse momenta,
but are shifted away slightly, of order 1/N2, due to curvature
effects5 (tÞt'). Thus band structure predicts semimetallic
behavior for integerN/3 zig-zag tubes@Fig. 2~b!#.

For the armchair tubes the low-energy modes occur near
the two gapless points, atky50. The 1D dispersion away
from these two points is shown in Fig. 3. In addition there
are gapped modes atkyÞ0, with an energy of order

DN52pv/(A3Na)5pt/N ~for t'5t). BelowDN , the mode
structure is equivalent to a 1D two-band model, independent
of the nanotube sizeN.

Coulomb interactions can be incorporated into the nano-
tube tight-binding model, and will introduce interactions into
the effective 1D model. To be concrete we focus on an on-
site Hubbard interactionu, so that the full Hamiltonian be-
comes

H52 (
^rr 8&

t rr 8ca
†~r !ca~r 8!1u(

r
n↑~r !n↓~r !, ~2!

where the first sum is over spin states (a5↑,↓) and near-
neighbor sites of the honeycomb lattice, and
na(r )5ca

†(r )ca(r ). We now show that for (N,N) armchair
tubes the effective interacting 1D model isidentical to a
two-chain Hubbard model with an interaction strength,
uN5u/N. To do so, we choose a particular basis of states
spanning the space of low-energy states withky50:

fn1~x,y!5H N21/2dx,na0dy,6l a0 /A3 n even,

N21/2dx,na0dy,~6l 11!a0 /A3 n odd,
~3!

fn2~x,y!5H N21/2dx,na0dy,~6l 22!a0 /A3 n even,

N21/2dx,na0dy,~6l 13!a0 /A3 n odd,
~4!

where the second Kronecker delta function must be satisfied
for some integerl , and a05a/2. As indicated in Fig. 1,
fn1 andfn2 are simply the two normalized basis states with
uniform support atx5na0 on even or odd chains, respec-
tively. In the low-energy theory, we may restrict the expan-
sion of the field operators to this basis:

ca
†~r !5(

ni
fni~r !cnia

† . ~5!

Inserting this into the Hubbard Hamiltonian and summing
over y for fixed x gives

H5(
n

$2t~cnia
† cn11,ia1H.c.!2t'~cn1a

† cn2a1H.c.!%

1uN(
ni

cni↑
† cni↑cni↓

† cni↓ , ~6!

which is precisely the Hamiltonian of the two-chain Hubbard
model, but with aneffectiveweak interactionuN5u/N. The
factor of 1/N arises because the electrons are delocalized
around the circumference of the nanotube, and hence occupy
the same site with a probability reduced by 1/N.

A considerable amount is known about the two-chain
Hubbard model,8 particularly in the weak-coupling limit,
where controlled renormalization group calculations may be

FIG. 1. Illustration of the graphite lattice, with labeling and
periodic boundary conditions for an armchair tube.

FIG. 2. Dirac points in the Brillouin zone. Dark circles and
crosses indicate the locations of the gapless points fort'5t, while
gray symbols schematically indicate the shifted positions for
t',t. Dashed lines cut the zone at a discrete set of allowed trans-
verse momenta in~a! the armchair tube and~b! the zig-zag tube
~here withN53).

FIG. 3. One-dimensional spectrum near Dirac points.
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used. These methods proceed by diagonalizing the kinetic
energy, linearizing the 1D spectrum near the resulting Fermi
points, and expanding the Hubbard interactions in the basis
of states of the resulting two bands. In the undoped case at
half-filling, interactions drive an instability to a Mott-
insulating spin liquid with a gap in both the chargeandspin
sectors. In the weak-coupling limit,uN!t, both gaps are
exponentially small:D;texp(2ct/uN). At temperatures be-
low the charge gapDc , activated behavior is expected in the
resistivity, r;exp(Dc /kBT), as illustrated schematically in
Fig. 5. With increasinguN the charge gap evolves continu-
ously into the strong-coupling Mott gap associated with the
energy cost of doubly occupying a site. The spin gap at
strong coupling is more subtle, but indicates a quantum dis-
ordered or short-range resonating valence bond~RVB!
ground state.9 A spin gap is also present in a two-leg
Heisenberg ladder, in contrast to a single chain which has
gapless spin excitations.10 For the armchair tubes the spin
gap at strong coupling can be understood in terms of a
Heisenberg spin model on the honeycomb network, which is
topologically equivalent to the ‘‘brick wall’’ lattice shown in
Fig. 4~a!. In the anisotropic limitJ'@J, local spin singlets
form along the vertical rungs, and there is a spin gap to
triplet excitations.

Upon doping fort'&2t, the two-chain Hubbard model is
known to undergo a phase transition into a state which re-
tains the spin gap but develops power-law singlet supercon-
ducting ~SS! and charge-density-wave~CDW! correla-
tions.8 Furthermore, the pair wave function associated with
the SS correlator has approximatedx22y2 symmetry~i.e., a
sign change from quadrant to quadrant in thekx ,ky plane!.
Both theoretical and numerical studies8,11 suggest that the
SS correlations are enhanced over the CDW ones if the
Fermi level is pushed into the proximity of a band edge. In
weak coupling, the enhancement is mediated by scattering
into the nearly empty/full band, for which the 1D van Hove
singularity provides an enormous density of states. This sug-
gests that for armchair tubes, superconducting effects might
be maximized by tuning the doping so that the Fermi energy
coincides with the lowest-lying (ky562p/NaA3) bands
near the two Dirac points~see Fig. 3!.

For (N,2N) zig-zag tubes with integerN/3 the gapless
Dirac points coincide with the discrete quantized momenta
for t5t' , see Fig. 2~b!. However, due to curvature effects
tÞt' , so that the gapless points are slightly shifted, leading
to a small gap5 of order ut2t'u;1/N2. Since this is smaller
than the effective interaction strength, which varies as 1/N, it
is probably legitimate to ignore this small shift when inter-
actions are included. Even with this simplification, it is not
possible to map the zig-zag tube directly into a two-chain

Hubbard model. Nevertheless, proceeding by focusing on the
two gapless modes and expressing the Hubbard interaction in
terms of these, one obtains an effective interacting 1D two-
band model for the zig-zag tube. Just as for the two-chain
Hubbard model, this model has Umklapp scattering pro-
cesses, but their particular strengths are different. It is natural
to expect that these Umklapp processes will gap out both the
charge and spin excitations, just as for the Hubbard model,
although a definitive statement requires a detailed calcula-
tion. Since theN53 zig-zag tube essentially consists of
three real-space chains, a spin gap may seem surprising. In-
deed, it is known10 that conventional Heisenberg spin lad-
ders with anodd number of legs havegaplessspin excita-
tions, in contrast to the spin-gapped even leg ladders. An
important distinction, however, is the unusual topology of
the strong coupling Heisenberg model for the zig-zag tube,
as depicted in Fig. 4~b!. In the anisotropic limit,J'!J, spins
on such a ‘‘herringbone’’ lattice will indeed form local sin-
glets across the vertical bonds, with a spin gap.

Returning to the armchair tubes, since the effective inter-
action strengthuN5u/N, one expects correlation effects to
be weak for largeN. Indeed, as noted above, the gaps in the
undoped case become exponentially small foruN!t, and the
scale for superconductivity will likewise be small, indicating
the desirability of reducing the nanotube size in experiments.

Even for largerN ~the weak-coupling limit!, however, an
interesting observable consequence of interaction physics
should remain in the high-temperature resistivity. Indeed,
Umklapp scattering leads to an intrinsic contribution to the
scattering rate which in weak coupling varieslinearly in T
for T*Dc in 1D ~Ref. 12!. This is a dramatic enhancement
over the conventional Fermi-liquidT2 resistivity, and can
also be much larger than scattering due to~3D! phonons,
which vanishes at least as fast asT3. We now proceed to
obtain a quantitative estimate of this effect.

The effective low-energy Hamiltonian for the (N,N)
nanotube~and for the two-chain Hubbard model! consists of
right and left moving electrons in the two bands:

H05 (
a51,2

E dx@cRa
† iv]xcRa2cLa

† iv]xcLa#, ~7!

where we have suppressed the spin label. Since the equiva-
lent two-chain Hubbard model is at half-filling, the presence
of the Hubbard interaction,uN , introduces Umklapp scatter-
ing, as well as numerous momentum conserving four-
fermion interactions. The three Umklapp interactions, which
scatter two right moving electrons into two left movers, take
the form

FIG. 4. Effective spin models for~a! the armchair tube and~b!
the zig-zag tube. FIG. 5. Resistivity of an ideal armchair tube~schematic!.
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HU5uNa0E dx@cL↑
† cL↓

† cR↓cR↑1H.c.#, ~8!

where we have now suppressed the band index. The scatter-
ing rate from Umklapp scattering can be extracted from the
imaginary part of the electron’s self-energy,G(v,T)
5ImS(v,T,kF). To lowest order there is a single diagram
for each of the three Umklapp interactions, which give iden-
tical contributions. One finds

G~v,T!5
3

8p
~uNa0 /v !2TG̃~v/2T!, ~9!

where G̃(X) is a scaling function which approaches 1 as
X→0, and varies asuXu for large X. If we ignore vertex
corrections, the Kubo formula for the 1D conductivity can be
expressed in terms ofG as

s5
8ve2

\ E
2`

` dv

2p

~2]v f !

G~v,T!
, ~10!

where f5(ebv11)21 is the Fermi function. The resulting
1D resistivity is

r~T!5
c

16p

h

e2
~uNa0 /\v !2~T/\v !, ~11!

with c a dimensionless constant of order one.
One of the most promising recent experiments3 studied

single-wall carbon nanotubes packed together into a triangu-
lar lattice to form crystalline ‘‘ropes.’’ These ropes have di-
ameters of 50 to 200 Å, are tens to hundreds of microns long,

and are believed to be predominantly composed of (10,10)
armchair tubes. Transport data on a single rope reveals a
resistivity increasing linearly with temperature between 50
and 300 K, consistent with metallic behavior. At lower tem-
peratures the resistivity appears to saturate, perhaps turning
up slightly but showing no compelling sign of a sizeable
charge gap.

A comparison with these results can be made by convert-
ing Eq. ~11! to the 3D resistivityr3d'rD2, whereD is
the nanotube diameter. This gives the rough estimater3D
;2(u/t)2(T/t)mV cm. Notice that the nanotube sizeN has
dropped out. In the experiments,drexp/dT'1022 mV cm/K.
To account for this magnitude one would need a rather large
bare Hubbard interaction,u/t;10, perhaps not unreasonable
given the neglect of long-ranged Coulomb forces in our
simple Hubbard treatment. The finite residual resistivity as
T→0 is presumably due to disorder. For example, local
kinks or other defects in the rope packing would naturally
lead to a temperature-independent additive contribution to
the resistivity~see Fig. 5!. However, other effects such as 3D
crossover may also play a role at low temperatures. Such
crossover is influenced by coherent intertube electronic hop-
ping, Coulomb screening from neighboring tubes, and per-
haps other effects. More microscopic estimates and/or ex-
perimental measures of these couplings are clearly required,
and we are pursuing these issues currently.
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