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We study the structure of the ground-state wave function for a general model of a continuum po-
laron in d dimensions, coupled to either optical or acoustical phonons. Using a path-integral ap-
proach we derive a simple criterion which is sufficient to guarantee that the exact ground state is
delocalized. This criterion applies to most polaron models studied so far and thus implies that in-
teraction with phonons generally does not lead to a breaking of the translational symmetry, even for
arbitrary strong coupling. We discuss briefly the distinction between self-trapping and localization.

Recently the problem of self-trapping of a polaron,'—*

has gained renewed interest, both theoreticallys‘B and ex-
perimentally.’ The self-trapping effect is usually under-
stood to be associated with a drastic change in the polaron
ground state at a certain value of the coupling strength to
the phonons. Such a change may reveal itself in the
ground-state energy or its derivatives’ as a function of
coupling strength. Alternatively, an appropriately defined
effective mass is found to increase dramatically when the
polaron becomes self-trapped. However, the clearest
theoretical signature of the “self-trapping transition” is in
the nature of the ground-state wave function within the
adiabatic approximation, where the kinetic energy of the
lattice (phonons) is ignored. It is found*$ that under cer-
tain conditions the adiabatic ground state changes sharp-
ly, at a particular value of the coupling strength, from an
extended to a localized or self-trapped regime. It is the
purpose of this paper to study the symmetry of the exact
ground-state wave function, not confined to the adiabatic
treatment. In particular we are interested in whether the
translational symmetry present in the Hamiltonian is
spontaneously broken due to the coupling to the phonon
bath.!® We derive a criterion which is sufficient to
guarantee that this symmetry is not broken and the exact
ground state delocalized. This criterion should be useful
in evaluating the credibility of various approximations to
the polaron problem. For example, it applies to most of
the polaron models studied recently, thus indicating that
the self-trapping transition found in the adiabatic ap-
proach must not be interpreted as a true localization tran-
sition.

As a model we take a generalized Frohlich-type Hamil-
tonian, !

H=P/2M + Y #io(k)aja
k
+3 Vike*(a,+a’ ) . )
k

The position  and momentum p of the particle with mass
M represent d-dimensional vectors. The a; and a; are
the usual Bose creation and annihilation operators for
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phonons of wave vector k. In the limit of long wave-
lengths, k—0, the phonon frequencies w(k) are assumed
to behave as

wlk)~ |k |* k—0. 2)

Thus the usual optical or acoustical phonons correspond
to v=0 or v=1, respectively, but our model may equally
well represent a coupling to other harmonic degrees of
freedom with arbitrary dispersion w(k). Similarly we as-
sume that the coupling V (k) behaves for small k as

Vik)~Va|k |~ k—0 3)

with a coupling strength a and exponent A. In the origi-
nal Fréhlich model,!! for instance, we have v=0 and
A=(d —1)/2, whereas a deformation potential in d =3
corresponds to>® v=1 and A=—+. We will see below
that only the small-k behavior of w(k) and V(k) is
relevant in determining the symmetry of the ground-state
wave function. Thus we need not specify the generally
quite complicated structure of the dispersion and coupling
when k becomes of the order of the inverse lattice spac-
ing. We do, however, assume that V (k) is cut off at high
k.

The Hamiltonian (1) is invariant under the transforma-
tion r—r +rg, ag —>e_lkr°ak. Naively one expects that
the ground-state wave function will respect this transla-
tional symmetry and be extended (delocalized) in the coor-
dinate . To study whether or not this symmetry can be
spontaneously broken, giving a localized ground state, it is
convenient to explicitly break the symmetry by adding a
potential energy term of the form Kr2/2 to the Hamil-
tonian (1), and consider the behavior in the limit K —0.1?
To this end we introduce the generating functional
(B=1/kgT)

G(n,K)= ﬂlim Tr(e ~B%e™)/Tr(e ~B¥) @)

which by differentiation gives equilibrium expectation
values of the moments of r. The limit — o ensures that
these averages are in fact ground-state expectation values.
The second moment of r
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2
(r)(K)=2=G(n=0,K) (s)
an

is a convenient measure of the degree of spatial localiza-
tion of the wave function. If the K—0 limit of (7%)(K)
is finite, the translational symmetry has been broken and
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analyzed in a path-integral representation. The phonon
path integrals, being quadratic, can be evaluated explicit-
ly. Using standard results it is straightforward to express
G as

Dr enr(f:O)e —S/k

_ — nr(r=0)
the ground state is localized. An infinite value indicates a Gn,K)= f Dre—S/% =(e > ©)
delocalized ground state.'?
The generating functional is most conveniently with an effective action S,
]
S=+ f dr(MF2+Kr?)++ f drdr 3 g (r—7')1—cos{k[r(r)—r(r)]}) . (7
k
|

Here we have defined a function Solx)= _;. f dr(Mx 2+ Kx?)

gk(f)zé |V (k)| %e—o®7] 8) ++ [drdrg(r—m)x(n)—x(#)P, (10)

In (6) the path integral is over paths r (7) with the “imagi-
nary time” 7 running from — o to «. Thus (6) can be
viewed®'* as a generating functional for a one-
dimensional classical statistical mechanical system with 7
playing the role of a “spatial” coordinate and r represent-
ing the classical degrees of freedom.

Due to the nonlinearities which enter the last term of
the effective action (7), it is impossible to calculate the
path integral for G exactly. It is, however, not difficult to
give at least a sufficient criterion for a delocalized ground
state. To this end, we first observe that the nonlocal (in 7)
term in S is always positive and that 1—cosx <x2/2.
Therefore the Gaussian model [denoted S,, Eq. (10)
below] which arises from S by replacing

1—cos{k[r(r)—r()]}
with
T{k[r(n—r()1}?,

suppresses all paths r(7) more strongly than the original
model, except for the special paths 7 (7)=const. Thus, on
average, the paths r(7) will fluctuate less (with 7) in the
Gaussian model. This in turn implies that the Gaussian
model will be more effective at localizing the particle. In
other words, the spatial extent of the ground-state wave
function for the Gaussian model, (r?)y(K), will give a
lower bound to the spatial extent of the true wave func-
tion,

(r))oK) < (r?)(K) . 9)

Within the Gaussian model {7%),(K) can be evaluated ex-
plicitly. If (r*)o(K)— 0 as K—0 we may then safely
conclude that the exact ground-state wave function of the
Hamiltonian (1) is spatially delocalized. If, on the other
hand, {(r2),(K) has a finite K —0 limit, the exact ground
state may or may not be localized.

The action for the Gaussian model, described above,
factorizes into d one-dimensional models!’

d
S0= 2 So(Xj)
j=1

of the form

with

g(r)=5= S K| V(k) %= b7l (an
k

The function g(7) is proportional to the coupling strength
a. Its long-time behavior follows from the k —0 behavior
of w(k) and V(k). In particular for vs£0, we have
g(1)~ | 7| % as 7— oo, with!®

a='(!—i-2v_—ﬁ2k (vo£0) . (12)

For v=0, g(r) falls off exponentially. The ground-state
expectation value of r? for the Gaussian model can be ob-
tained from the generating functional (6) with S replaced
by So. This gives

#d

2

I do (13)

2 K)= )
{rol —= [M +6M (0)]0*+K

with a frequency-dependent mass enhancement defined by
25M((u)=—47f0°° drg(m)[1—cos(w7)] . (14)
®

We now analyze (13) in the K—0 limit. Consider first
o> 3 corresponding to a g(r) which vanishes faster than
773, In this case 8M (0 =0) exists and we find

2 _fd 1
(r*) oK)= 2 KM K—0 (15)
with a finite effective mass
M*=M+-23 K| V(k)|* /o k) . (16)
a7 <

For the Gaussian model (10), this effective mass is
equivalent to the one originally introduced by Feyn-
man.!”!® Equation (15) shows that, for o > 3, as K —0 the
ground-state wave function (within the Gaussian model)
delocalizes as 1/V'K regardless of the coupling strength
a. For o in the range 2 <o <3 the effective mass is no
longer finite. The ground state is still delocalized, howev-
er, since (r2)o(K) diverges as K ~¢=2/9~1 when K —0.
The value 0=2 is a special marginal case. From (13) we
deduce that (r2), diverges as In| K | implying a delocal-
ized ground state. However, if an additional periodic po-
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tential is added to the action (10), then it has been
shown!#19=2! that there exists a critical coupling strength,
a., such that for a > a, the ground state becomes local-
ized. For o <2 the integral in (13) is finite as K—0 and
the ground state is localized for arbitrary coupling
strength, implying a broken translational symmetry.

The above analysis indicates that the ground state of
the Gaussian model (10) is delocalized, regardless of the
coupling strength, whenever

[

d+2-2A
- >
v

o 2. (17)

The inequality (9) then shows that o > 2 is a sufficient cri-
terion to guarantee that the exact ground state of the
Hamiltonian (1) is delocalized. On the other hand when
0 <2 the Gaussian model gives a localized ground state.
Although we expect that in this case the exact ground
state may in fact also be localized, we cannot draw any
definite conclusions from the above arguments.

Applying the criterion (17) to a few particular examples
of interest, we note that for the following cases the ground
state is delocalized for arbitrary coupling strength, pre-
cluding any localization transitions: (i) all purely optical
polaron models (v—0); (ii) the acoustical deformation po-
tential coupling in d =3; (iii) electrons on liquid heli-
um,??? for which d =2, v=1,and A= — 3.,

It is instructive to compare our result (17) to a similar
criterion recently arrived at by Spohn.® He finds that the
ground state will be delocalized when o >3 in our nota-
tion. The result (17) shows, however, that this condition

is, in fact, too restrictive since the ground state is delocal-
ized regardless of the coupling strength also for 2 <o <3.
On the other hand, the effective mass, as defined in (16),
is divergent for o <3 which suggests that the system’s
dynamical behavior may change nature?* at o =3.

Finally it is interesting to contrast the criterion (17)
with results from the adiabatic treatment of the self-
trapping transition. According to the theory*® when
8=d —2A—v—2>0 there is a self-trapping transition at
a critical value of the coupling strength, above which the
adiabatic ground state is localized. On the contrary, for
8<0 it is localized (self-trapped) for any coupling
strength. This demonstrates clearly that the adiabatic
ground state does not resemble, in any way, the exact
ground state which as we have seen will in general be
delocalized. In fact, we believe that the self-trapping tran-
sition found in the adiabatic approach is an artifact of the
approximations used.?> It is, however, possible that in
features of the dynamical behavior, such as the polaron
mobility, there are large, yet continuous, changes as a
function of the coupling strength, which manifest them-
selves as a true transition within the adiabatic approxima-
tion.
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