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We present a systematic weak-coupling renormalization géB@®) technique for studying a collection df
coupled one-dimensional interacting electron systems, focusing on the exanhpleg@Hubbard ladders. For
N=2,3, we recover previous results, and find that also more generally broad regions of the phase space of
these models are unstable to pairing, usually with approximatave symmetry. We show how these insta-
bilities can be understood in terms of a fairly conventional “gap” functioat the discretized Fermi surface,
and describe how this function is calculated. The dimensional crossovérssas and as many such ladders
are weakly coupled together are also discusg88163-182697)00836-9

I. INTRODUCTION two respects. First, it allows a determination of the phase
diagram for any small value dfl, thereby elucidating the

Over the past few years, considerable interest has focusgahysics of doped spin liquids, the even/odd effect, and geo-
on systems of coupled chain conductors. Early theoreticainetrical frustration. Furthermore, our equations allow a com-
studies of Heisenberg laddefappropriate for the strongly plete interpolation between one and two dimensi@isng a
interacting, nonitinerant half-filled limitrevealed an inter- particular path in parameter space—see bglodn under-
esting odd/even effedt® If the number of legs of the ladder, standing of such a dimensional crossévés a crucial first
N, is even, the system is expected to be a spin liquid with step in interpreting experiments in quasi-one-dimensional
singlet ground state and(apin gap to the lowest-lying ex- conductors.
citations carrying angular momentum. For dddthe ground To determine the behavior in the weak interaction limit,
state has quasi-long-range antiferromagnetic order and a se'e employ a generalization of the renormalization group
of gapless spin-wave excitations, which puts it in the univer{RG) developed in Ref. 13the extension to the particular
sality class of the single spin-1/2 Heisenberg chain. RecertaseN=3 has already by studied by Arrigf#}. This pro-
progress in the experimental preparation of relatively isovides a systematic basis for treating the logarithmic diver-
lated spin ladders has begun to probe some of this rich phygiences arising in a naive perturbative analysis. Coupled with
ics and appears to have verified these expectations fdhe technique of bosonization, the primary output of the RG
N=2,357° The behavior ofdopedladders, i.e., those with is a “gap” function A, describing pairing and the relative
itinerant charge carriers, is much richer. Particular theoreticgphase among the various spin and charge modes in the sys-
attention has been paid to the cabk=2, the two-leg tem. In the limit of largeN, A becomes identical to the gap
ladder?31°-18Early motivation stemmed from the possibility function defined in the conventional BCS theory of super-
of realizing a concrete example of resonating valence bondonductivity, and one may thereby connect our results di-
ideast”*® According to this line of thought, since the two-leg rectly with higher dimensional analogs.
Heisenberg ladder is a spin liquid, the doped carriers expe- The RG also determines the zero temperature behavior as
rience a short-range attractive interaction, leading to pairinghe chain length is taken to infinity. Because such a system
and the persistence of the spin gap. Such behavior is indeds, for any finiteN, still one-dimensional, it cannot sustain
observed in simulations of two-chain Hubbsdtandt-J  true off-diagonal long-range order, but is instead a general-
models?22~2>which push the current computational limits of ized Luttinger liquid. The particular Luttinger liquid phase,
numerical methods working directly at zero temperaturewithin a general classification scheme developed in Ref. 13
Subsequent work by numerous authors has since demoaiso follows from the gap function. We will use this nota-
strated the existence of such a spin gap phase for low dogion, in which a phase witlm gapless charge armu gapless
ings by controlled analytical methods in weak spin modes is denotedmSn in what follows.
coupling?***11 This weak-coupling approach has the addi- The results of our calculations for positivé¢ Hubbard
tional advantage that it provides a full picture of the phasechains in the phase diagrams are summarized in Figs. 6—10.
diagram, even away from half filling. We emphasize that the phase diagrams are valid for arbitrary

In this paper, we extend this analysis to more generalfilling n and transverse hopping except at some specific
N-chain Hubbard modef€2°Such an extension is useful in lines (see below. First note the proliferation of phases s
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increases from 2 to 4. We believe that this complexity pertions are necessary to explain superconductivity in 2D repul-
sists even in thé&N— o limit (but see below The crossover sive Hubbard systems.

to two dimensions is thus highly nontrivial. Second, despite The remainder of the paper is organized as follows: In
the repulsive interactions, the majority of phases exhibitSec. Il, we introduce th&l-chain Hubbard model, its weak-
some degree of reduction of gapless spin modes, i.e., pairin§oupling limit, and a compact current-algebra notation for
The symmetry of the pair wave function is in most casedhe allowed interactions. In Sec. Ill, the RG equations are
consistent with ad-wave form. Unlike the two-chain case, derived using the operator product expansion to one loop
however, a\ is increased, gapless spin modes exist due t&rder,_ and the numerical method used to study these equa-
the presence of nodes in the pair wave function. Under diftions is explained. In Sec. IV, we show how the results of

ferent circumstances, as can be seen from Figs. 6—10 boﬁﬁese numerics can be understood using bosonization, intro-
dos > andd.. states ’appear ' ' ucing the gap functiord in this context. These techniques
Xé—y Xy .

A number of special results are obtained for articularare applied in Sec. V to determine the phase diagrams of
P ) P three- and four-chain systems. Our analysis of the 2D limit is
small values oN. In the caseN= 3, the difference between

e . . , iven in Sec. VI, and implications for numerics and experi-
open and periodic boundary conditions is quite pronouncedyents are discussed in Sec. VII. Four Appendixes give fur-

due to the strong role of frustratidand consequent absence the details of current algebra methods, RG equations for
of particle/hole symmetjyin the periodic case. As found ymkjapp couplings, initial values of coupling constants for

previously by Arrigoni®** and SchulZ® this Hubbard the Hubbard models, and Klein factors needed for the
“prism” exhibits a spin gap at half filling, which persists hosonization calculations.

over a range of both particle and hole doping. An especially

surpr.is.,ing effect occurs .foN=4 with periodic bo.undary Il. N-CHAIN HUBBARD MODEL

conditions. In certain regions of the phase diagrésmgled

Cooper pairs condense, not into the zero center-of-mass mo- The N-chain Hubbard model is described by the Hamil-

mentum state, but rather into the=+2 center-of-mass tonianH=Hgy+Hy,

(quasijangular momentum states around the four-chain cyl-

inder. We therefore .ca.II this.a gyliqdrically extend@EX) Ho= 2 {—t[diTa(X+1)dia(X)+ H.c]

d-wave phase. Preliminary indications of the CIEXNﬁ%ve X0,

phase have been found in recent numerical calculations.
Although detailed phase diagrams such as these have only —t, [dl 1,(x)d;o(x) +H.c]}, (2.7)

been obtained foN=2,3,4, our RG equations are valid for

arbitraryN. They can be easily integrated numerically to any _ ot . T . .

desired accuracy to determine most features of the weak- Hy % U:d;; 00 di 0o di (x)diy (x):, 22

coupling phase diagram for afy. In the limit N—oo, sev-

eral connections can be made with other wirRhis limit ~ Whered;(d/) is a fermion annihilatioricreation operator on

may be taken in several ways. For the simplest form of oughaini (i=1..N), ande=1,| is a spin index. The param-

flow equations to remain valid, the interaction strength eterst andt, are hopping amplitudes along and between the

must be scaled logarithmically to zero &s—o. Strictly ~ chains, andJ is an on-site Hubbard interaction.

speaking, then, these RG equations do not describe truly We begin by diagonalizing the quadratic part of the

two-dimensional systems with finite, nonsingular, interac-Hamiltonian,Hy, as appropriate in the weak-coupling limit,

tions. The only logarithmic reduction of the domain of va- U<t,t, . This is accomplished by transforming to new fer-

lidity with increasingN suggests, however, that the two- mion fields;, where

dimensional limit may nevertheless be well approximated in

this scheme. We present arguments that this is indeed the

case. First, in the largd limit, our RG equations reduce, up

to an overall normalization of the interaction strength, to

those of Shankat derived directly in two dimensions. Sec- The transformation matrixXs depends upon the boundary

ond, an extended set of RG equations incorporating addiconditions in the transversey) direction. For periodic

tional interactions, which we argue captures completely théoundary condition§PBC's), the eigenfunctions are plane

two-dimensional limit for small nonzerd, can be shown to waves, and

be equivalent to the previous ones for interactions with a

nonsingular momentum dependence at the Fermi surface. 1 2
Sjmz Nex W]m (PBO)

dja:% Sjmlrbma' (23)

Based on these analyses, we expect our RG equations to 24

contain a complete description of the dimensional crossover

in the weak-interaction limit. In this limit, explicit analysis of while for open boundary condition®©BC's), the transverse
the 1N correction terms show that all the pairing instabilities eigenfunctions are standing waves,

occur only at very low temperatured,(N)~Ay~e N

Feedback of the forward-scattering interactions into the Coo- 2
per channel, responsible for the pairing instabilities in the im= VNt oM
smaller ladder systems at weak coupling, is therefore insuf-

ficient to produce superconductivity in the two-dimensionalThis brings the Hamiltonian into diagonal form in momen-
limit. We conclude thastrongand/or nearly nested interac- tum space:

(OBC). (2.5

W -
Nr1/™
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7= dp ; gives rise to modifications of the remaining effective action
Ho= 2, 77 (P Yia(P)Yia(P)- (2.6)  of O(U?/t,U%1t,), negligible relative to the bar®(U) cou-
he S plings for U<t. We denote the number of remaining par-
The single-particle energy is tially filled bands byN;<N. Second, we also integrate most
of the longitudinal momentum modes in the partially filled
€i(p) = —2tcop—2t, cogky;). (2.7 bands, leaving only those in a width\2around each Fermi

A difference in the spectra between OBC's and PBC's arise§°iNtKri (we will return to fix A later). That is, we integrate

due to a difference in the set of allowed transverse moment®Ut #i.(P) and ¢i,(p), provided |p—kg|>A and
These are |p+kgi|>A. This again leads to a renormalization of the

“bare” couplings in the remaining effective action, this time

with the additional logarithmic factor

k i=12,...,N for OBC's; (2.9

VTN y
Ugr=U|1+consX—In(kg/A)]|. (2.19
2 t

N
yi= i=0,il,...,(i)[§

=R

for PBC’s, (2.9

This second step of integration is perturbatively controlled

where[x] means the largest integer less tharin the case \allir(lj(lénakes negligible modification to the bare couplings, pro-

of PBC, the momenta fdk,;= = 7 are equivaleni.e., differ

by 2m) for N even. For this reason, we have enclosed the t

final = in Eq.(2.9) in parentheses, which indicates that for U< (ke TA) (219
even, only one of these should be included for the proper F

counting of modes. Assuming Eq(2.15 is satisfied, the remaining fields have

Equation(2.7) definesN bands, which, in weak coupling, |ongitudinal momentum in only a narrow shell near the

are filled up to the chemical potentidtermi energy u. For  Fermi points. Within each shell, we can define chifraght
those bands which are partially filled, this defines a set ohnd left moving fermions as
Fermi points{kg;} via _ _
Yia~ URia€ F*+ Y8 'KFX  for OBC's; (2.16
€i(Kgi) = p. (2.10

The chemical potential is fixed in terms of the physical den- _
sity n (measured as a particle number per)ditethe implicit ~ Here we have introduced the notatioa —i, which we will
condition continue to use throughout the remainder of the paper. With
this definition, 5,4 ; have opposite momenta in the PBC
2 kFi:anENkF. 2.11 case(wher'e transverse momentum is a good quantum num-
i 2 ben. The fieldsyg;, ¥ ; may be thought of as “slowly vary-
ing,” due to their restricted range of momenta.

We now turn to the treatment of interactions. It is useful  For smallA, the dispersion may be linearized within each
to introduce a functional integral formulation. Correlation momentum shell. The effective Hamiltonian is then
functions are calculated as averages with respect to a
“Boltzmann weight” e~ S, whose(Grassmahintegral is the
partition function(for example, see Ref. 34

Uia~ Uria€ F¥+ 707 KFX for PBC's. (2.17)

Ho:§ AXUi[ Phial OtiRia— YL i 0l Othiial,
B ' (2.189
Z=Tre‘BH=f [dy][dyle S, (212 wherev;=2t sinkg;.

_2 Ea(x)&rwia(x) +H

laxX

As it stands, the problem is formulated asMypchannel
where 8= (kgT) ! is the inverse temperature. Unless ex-interacting 1D Fermion system. It will sometimes be useful,
plicitly stated otherwise, all calculations in this paper arehowever, to view the system instead as a finite-width strip of
performed at zero temperature, i.85=. The (imaginary  a two-dimensional Hubbard model. To translate between the
time) actionS is two pictures, we recognize that in a finite-size system, only a
discrete set of transverse momekjaare allowed. One may
S= deT 2.13 think of these momenta as “cutting” the 2D Fermi surface,
0 ' the intersections being the 1D Fermi points as shown in Figs.
_ 1, 2. This gives an intuitive connection to more familiar two-
and ¢ and ¢ are Grassman fields. dimensional physics, and also helps in identifying the pos-
In this formulation, it is straightforward to focus on the sible four-fermion interactions. One caveat that should be
low-energy properties of the system. This is accomplished bgept in mind, however, is that for OBC's, the standing-wave
integrating out all Grassman variables corresponding to fertransverse eigenfunctions are linear combinations of mo-
mionic operators creating excitations with substantial gapsmenta+ kyi, so that a single pair of 1D Fermi points corre-
In particular, we first integrate out completely al{, and  sponds in this case loosely four points on the 2D Fermi
i, corresponding to completely filled or empty bands, forsurface.
which all excitations are separated by a finite energy from We now try to write down all possible four-point interac-
the chemical potential. When interactions are included, thigion terms allowed by symmetry. In addition to the
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FIG. 1. Band structure of the four-chain Hubbard model with
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Note thatQ, only appears for PBC's, since for OBC's, trans-
verse momentum is not a good quantum number. Momentum
conservation is implemented by the latti@dunction

nZ 8(Qx—27n,) (OBC’s)
RQ=1
anﬁy 8P[Q-2m(n,,ny))] (PBC’S),
(2.22
wheren, ,n, are integers. Vertices with nonzencare called

umklapp interactions.
The dependence of the vertex function lopis analyzed

PBC'’s. Mapping onto the 2D BZ is shown at the left-hand side. Thevia the Taylor expansiofwe will assume it is differentiab)e

configuration of chains in real space is shown in the upper right.

Jd
. _ . _ 2
U(1)XSU(2) symmetry corresponding to charge and spin V[{Pa,|a,ka}]—V[{Pa,|a,0}]+§a: kaaka+o(k ).

conservation, these terms must be preserved by charge con-

(2.23

jugation, time reversal, parity, and spatial translation opera- ] ) . ] o
tions. The most general particle-conserving four-point verteVe Wwill see that, while the leading term marginalin the

has the form

dk, .
o= [ 1T 5o 3 SQVI{Pasiarkil

X b i (K i (Ko) Pp i, (Ka) e i (Ka),

where Pij=* 1< (R/L), and spin indices are left implicit.
The fermion fields¢paia(ka) are Fourier transforms of the

(2.19

slowly varying chiral fields defined in Eq&.16) and(2.17).

The

strengths

of the

couplings

V[{P,,i4,ks}]. The total momentum transf€) is

Qx= —P1kp1—=PoKpa+ Pakpa+ Pakea— ki —ka+ Kzt kg,

are denoted hy

RG sense, all the higher derivative corrections are in fact
irrelevant and can be neglected to tlieading order of
accuracy desired here.

A. Interactions for OBC's

Having obtained a general expressidiq. (2.19] em-
bodying the constraints on allowed vertices, we now turn to
the classification of the solutions of these constraints in the
particular cases of interest. We will do this first for the case
of OBC's, proceeding in two steps. First, we locate the pos-
sible combinations of the band indicgB,,i,}, and second,
we determine possible combinations of spin indices, which
are implicit in Eq.(2.19, by SU?2) symmetry. Constraints
from other symmetries are also discussed.

For OBC'’s, only momenta in thé&, direction is con-
served. We will assuma is sufficiently small that the inter-

220 nal moments; may be neglected in E¢2.20. The condi-
o tion for validity of this assumption will be derived at the end
2 b _pli i ; of the section.
Q N (=Pala=Pelzt Palat Paly) (PBO). Since kg;<w, ny, can take values, 0+1, 2. For
(22)  n,==+2, all the Fermi moment&g;==. This means that
these bands must be completely filled, and, following the
ky — reasoning described earlier, do not survive in the low-energy
NI, S -:—:—:—-:—:— theory. Forn,= =1, momentum balance is possible in par-
4L /] ‘\L\“\“R T tially filled bands. However, at generic fillings, the Fermi
AL /2/L 2R\\-\\‘3\R S momenta are incommensuraia units of 27), and cannot
o /lL TN be made to sum up ta-2#. More careful consideration
It ! K shows that such interactions only exist on specific umklapp
L fall lines in the @,t, /t) plane. In this paper, we will restrict
“‘5 /._5 / ourselves to the study of generic fillings, for which these
\‘é g umklapp interactions in thk, direction may be neglected.
s ‘8 The last kind of vertices witin,=0 conservex momenta
: P exactly. They may be found by plotting the interactions on
2A the 2D Brillouin zone(BZ). These vertices satisfy

FIG. 2_. Band structure of four-chgm Hubbard_model with P,ke1— PoKeo+ P3kea+ Pyke,=0.
OBC'’s. Since the actual transverse eigenstates with OBC's are (2.29
standing-wave superpositions containing batk, , we have indi- ) ) - _
cated each 1D Fermi point by two poirfsne closed and one open For a generic Fermi surface, two familiar classes of interac-
circle abové on the BZ. The spatial configuration of chains is tions are always allowed. The first comprises forward-
shown in the upper right. scattering interactions, which satisfy

Qu(n,t;)=—
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wm ky 24 ky Each vertex obtained so far has several possible generali-
il hild ; zations once the spin indices are included. To make them
),' ‘f\ R /,‘ }\ explicit, we now introduce charge and spin currents, in the
/ —\ / k AR scalar and vector representations of (3}J respectively.
/ iR\; / *X These are
(;' Y kx| L:iL \ kx
AL ok A\ ] : 1,
AN A \ ) Ji=Watliar Jij=5 ViaTap¥ip (2.28
RS N/
A [ '\ I8 where o denote Pauli matrices. These currents satisfy so-
called Kac-Moody algebras, and this notation is therefore
@ b) often referred to as current algebra. To regularize the com-

posite operators in Eq2.28), the currents are further defined
to be normal orderegalthough we do not indicate the nor-
mal ordering explicitly. Four-point vertices can be written
down as products of two currents. Such bilinear current-
current interactions are §P) scalars(as appropriate for the
o o ) Hamiltonian densityif and only if they are formed by cou-
(i1,i2)=(i3,i4) forward scattering. (225  pjing two charge or two spin currents. Each vertex in Eq.
(2.27 has two counterparts once spin is included. The subset

FIG. 3. Examples of Cooper scatteriag [part(a)] and forward
scatteringf;; [part(b)].

(PIIPZ):(P37P4)

The second set is the Coopér backscatteringchannel,

defined by of these which couple right and left movers is
_ _ a1 _ _=pqR4L  =ocqR 1L
P1=P;,P3=Py; Tini = CﬁJijJij_'—CijJij'Jij 7
S _ —fhIaRIL + TR 35 (2.29
i1=i,,i3=1, Cooper scattering. (2.26

) ) where f;; and'éij denote the forward and Cooper scattering
In Egs.(2.25 and(2.26), and in the remainder of the paper, 5mpjitudes, respectively, between bandsidj. Summation
P=—-P and (X;,X5)=(X3,X4) indicates pairwise equality, oni,j is implied.
i.e., eitherx; =Xz, Xo=X4 OF X3=X4, X,=X3. The two pos- Sincef;; ,c;; describe the same vertex, we choose the di-
sible solutions for forward scattering actually describe theagonal piece of the forward-scattering amplitude to vanish,
same vertices, up to a sign from the fermion ordering. Reje. T.,=0, to avoid double countings. Under charge conju-

ferri[rt'lg_to t_h? 2DtBZ(see Fig. 3, t?]”e se$s| that fokr)ward- gationJ;;—J;; , which impliesC;; =Cj; . Similarly, reflection

scattering interactions conserve the particle number sepa: . - L .

rately in each band, i.e., one electron is annihilated an y_mme_try(ln X) |m_pI|esf,J_ fji. While it is not obvious at

created in each of the bandg and i,. In the Cooper his point, the choice of signs for the scalar and vector cou-
2 -

scattering channel, however, a pair of electrons is annihilate il\l/neg?) A?s:fg.iﬁfri)c?igzz that they are all positive for repul-
in bandi, and then scattered into bar L . .
There1 are, however, other verticne% at specific fillings ThgreR are qther mteracﬂqns which are_completely chiral,
These vertices correspond to special nontrivial solutions o?'g"‘]“‘]ii - Ass well known in conformal f'el.d theory, such
Eq. (2.24. Such solutions exist only on specific lines in the purely cr_ural_ interactions do not renormalize or generate
(n t /.t) blane Because these lines form a set of measurreenormallzatlon at leading order, and can be neglected in our
ze'ré in the fuII. phase space, the correspondifigP,,i.}] weak-pgupling anglysis. Physically, thgy modify slightly the
will be denoted “minor” vertices. Like the umklapp interac- velocities” of various charge and spin modes, which are

tions, these minor vertices can be excluded at generic ﬁ”glready order one in the bare theory.

ings.

gWe have obtained the allowed vertices in momentum B. Interactions for PBC's
space. However, since the couplings are not momentum de- When PBC'’s are imposed instead of OBC's, the system
pendent, they can equally well be written in terms of a localretains a finite set of discrete transverse translational symme-
Hamiltonian density in coordinate space, i.e., try operations. Correspondingly, the transverse momentum
Ky (or more properly the exponentialy) is a good quantum
number, and the allowed interactions are further constrained
by the requiremer®, =2mn, . Sincekg; ,ky;<m, n,,n, can

Hin= 2 AFL{Pa il Wb b Ve, 0,

ala yi

‘ take the values, 0+ 1, = 2. As explained in the last subsec-
+CH{Pa,ia}1¢b i Wi Ypi, Wy}, (227 tion, vertices withn,=+2 can be ignored in the low-energy
v theory and those with,= =1 only live on specific umklapp
where all they and " are evaluated at the same space pointlines and thus are not included. It follows that in the srhkll
We have made the classification into forward and Cooperlimit at generic fillings, it is sufficient to consider only ver-
scattering channels explicit by the change of notationtices withn=(0,0),(0+1),(0,+2), which conserve th&
V[{Pa,ia,0l]1—=F[{Pa.,ia}],C[{Pa.,i,}], as appropriate. In momentaexactly
the case of forward scattering, as remarked earlier, the two The allowed vertices are found in two steps. First, we find
solutions of Eq.(2.29) lead to a singld- vertex. all possible vertices which conserxemomentum, and then
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we rule out some of them by conservationyomomentum. 28 Ky oA ky
To do the former, first note that under w reflection - T 1 T T3
ky— —ky, which implies the Fermi momenta satisfy L/f \\-\K‘R / LN iR
kei=kg,, where1=—i. This parity constraint, combined // \\ /_ \ \
with conservation ofx momentum alone allows vertices (/ \\ ‘ f iL \ \ .
which satisfy —F- " R
V\lL iR /\ul 2 \|L \\ /}
(P1,P2)=(P3,Py), (i1,i)=(%is,*is) (230
1,72 3,7 1.12 3 4 \ / \ J{ ‘R
or Y i \ 1k
P1=P,,P3=P,, i1=%i,, ig=%i,. (2.3D @ ©
Note that Eqs(2.30 and (2.31) differ from their counter- FIG. 4. Examples of transverse umklapp scattedf}dpart(a)]

\ - andu? [part(b)]. As is clear from the figure, the momentum in the
ij ’
parts for OBC’s[Egs.(2.25 and(2.26)] by the extra choice k. direction is not conserved.

of + sign for PBC’s. Physically, this arises because with ™

PBC's, plane waves with momentak, form two indepen-  the second set is similar to forward scatterifsge Fig.

dent allowed transverse eigenfunctions, while only the smglql(b)l and has

standing-wavésuperposition of the twoeigenfunctions sat-

isfies OBC'’s. As before, additional vertices exist on special (P1,Py)=(P3,Py);

lines in the phase diagram, but will be ignored here.

Since they momentum is also conserved, not all of the o o N

vertices in Eqs(2.30 and(2.31) are allowed. Consider first (i1,i2)=(13,14), i1—ip= 5 (2.39

the corresponding constraint for oddl We must evaluate ) ) ) ) o

Eq. (2.21), which can be rewritten as The two kinds of umklapp interactions in tke direction can
also be written down as products of currents. Following the

—Pyi;—Paiy+ Paig+ Pis=nyN. (2.32 method we developed in last subsection, thgsemklapp

interactions which couple the right and left movers can be

Since all the band indices satisfi{<(N—1)/2, solutions described by

with n,=+2 do not exist. Furthermore, after substitution of

the partial solutions in Eq$2.30and(2.31), a little algebra -H2= —Hiljp‘]ﬁ.]%wLUﬁ‘TJﬁJ%,
shows that the left-hand side in E.32) is always even, so e Rl o R
that no solutions exists far,= + 1 either. Therefore, for the - isz\]i?]jff Ur3 =J;,. (2.36

odd-chain systems, we need only consider the vertices Whiclh licit in thi ion is th : Eqs(2.3 d
conserve momenta exactly, i.e., with-(0,0). mplicit in this notation is the constraifisee Eqs(2.34) an

Equation(2.32 for n,=0 is satisfied if and only if the-  (2-39] that thetl;; are nonzero only fofi —j|=(N/2). Since
sign is chosen in Eq$2.30 and(2.31). With this restriction, ~U;;>U;,~ describe the same interaction, we choose
the allowed interactions are precisely the same forward- an’q’izi%ﬁizj"fo to avoid double counting. Since under charge
Cooper-scattering ones that occur in the OBC case, and may. . .. R T A S :
therefore be described as before by E2j29. %njugatlon.,.],]??]“ > = i Similarly, End(ir a parity

The situation is more complicated fod even, because trangfo:;naufon, ()= (i) ?(Td R_.)L' SO L_’ii:u"IJ" ist §
solutions of Eq(2.32 exist withn,=*1 andn, = +2. The Finally, of course, non-umklapp interactions also exist for

latter do not actually introduce any addition complications.g:’ e?N. Ju;t as dfoé\I odd, thhesen =|(0,0) vertifcesoaé%,sim%l]y
This is because fan,= *2, all the band indices must satisfy € Torward and ©00per channél ones as for S. there-

liJ=N/2. The bands,=*N/2 are, however, equivalent, :‘ore,dfor et\_/en—chain s_yste;’ns Witg (F;BC,S' the fullfzt of al-
since theiry momenta differ by 2r. Therefore, the band owed VErtices comprises forward, LOoper, ay € *2m)
indices can instead be chosen equal, and then satjsf. umklapp interactions, as given in E@.29 and Eq.(2.39.
Thesen=(0,2) vertices are thus included in the=(0,0) set

which will be discussed later. C. Constraints on momentum cutoff
The difficulty arises whem=(0,£1), i.e.,nj=*1. So far, we have determined all the interactions allowed by
symmetry, assuming that the momentum cutbffs “small
—P1i1—Paip+ Paig+Pyis==N. (233 enough” to neglect the- k; — k,+ k3 + k4 term in Eq.(2.20).

In this section, we make this requirement precise, and inves-
tigate how this begins to break down for larger

In fact, the results in the last two subsections are strictly
correct only forA=0. With a finite cutoff, the picture is
modified in two ways. First, the specific lines on which the
— . = “minor” couplings exist are widened and occupy a finite
area in the Q,t, /t) plane. Second, for sufficiently largk,
new vertices(not included in the forward and Cooper-
— . . ﬂ (2.34 scattering channelscan arise for generic fillingdi.e.,

2° ' throughout the i§,t, /t) pland.

In this case, choosing the sign in Eqs(2.30 and(2.31)
leads to solutions of Eq2.32). The first set of these is simi-
lar to the Cooper channgbee Fig. 4a)], with indices satis-

fying
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Consider first the minor vertices, which exist in the region A ky 24 Ky
of the phase diagram defined b et i
P 2 ! Y /) ‘,\i\(j%)R / | ﬂ{&)R
f(n,t, ;ijkl)=—Pikgj— Pokg; + Pake+ Pakeg N RN
1 1RFi 20 Fj 3RF ARE (/ (i+6)Rk&\i {/ \\
f n,t ,|k| <4A. 2.3 N N ke |/ jL kx
|£( i )| | | ( 7)_ 3 SRR T
For A=0, as noted previously, solutions of this equation \_ L / ( /
other than the Cooper- and forward-scattering ones exist N\ A N\ W
only on isolated lines. SincHn,t,) is a smooth function of \ [ 3\ [
its arguments, there will be finite neighborhoods around
these lines which satisfy Eq2.37. The widthssn of these @ ®
neighborhoods can be estimated by Taylor expanding |G, 5. New vertices for finite cutofh. It is possible to shift the
around thef =0 lines, i.e., Cooper verticegshown by dashed linggor a finite cutoff and still

maintain momentum conservation. The maximum shifis esti-

~A. (2.39 mated in Eq(2.44).

%5n
. . . Cooper-scattering channels. X is large enough to allow
Since the derivatives of the Fermi momentlz/on, are of  is "guch interactions exigenerically i.e., throughout the

an order of one, the width of the line is approximately as(n,tl /t) plane. As an example, consider the shifted terms
large as the cutoff, (for PBC’9 shown in Fig. 5:

A _ R L R L
o~ (2.39 —Hii () =Cf(0)I% 5+ i +fﬁ(5)3i,i+531,j+a-(2.4])

To know the fraction of the phase diagram influenced b))-lgre 5hparamgtr|zes t(:]e transvirsef mqlmentum shift; fc()jr
these minor vertices, it is also necessary to determine th =0, é € vert_lces reduce to the familiar Cooper- an
number(or equivalently, the densityof these regions. Con- 'orwar -Scattering types.

sider first OBC'’s. Since each region grows adiabatically €t US consider in dgtairl1 the co;dri;[ions under whigh
from aA=0 line, we can simply count the number of soly- CONSETves momentum in the cutoff thedsee Fig. 3. Be-

tions to f(n,t, :ijkl)=0 (at, say, fixedt,). Roughly, the cause both andj have begn shifteq byin Eq.(2.4D,Qyis
number of solutions may be estimated as follows. Picking &'éady conserved by design. Taking into accddptonser-
fixed n andt, , we choose three of the band indices, gy  Vation by Taylor expandingfor 5<N), Eq.(2.37) gives the
andk. Thenf=0 determines a Fermi momentikp, for the ~ "€duirement

last band. Generally, however, this momentum will not be

dk dk 2
one of the discrete set of Fermi momenta for thiandt, . ’d—kx(i)— d—kx(j)’—wé</\a. (2.42
Now begin varying say, , keepingi,j,k andn fixed. Ast, Y y N
varies, so ddr;,kg; andkgy, and hence the requirdd:;.  To obtain an order of magnitude estimate, we then approxi-

As this happens, very sodg;, will pass through an allowed mate the mean curvature between bandsby its typical
value, and we have found a solution. Given that, one mayaluet, /t,
then varyboth t, andn in order to keepf =0 for this par-

ticularijkl, defining a curve in ther(t, /t) plane. Since this dkc  dk | d’ke2m
can be repeated for each setigf,k, the total number of d_ky(' _d_ky(J) - dk§ W"_”
such curves iNno~ N3. For PBC’s, roughly the same ar-
gument holds, except thiatand| are related by conservation _ ti 2_77 o 24
of Qy. The r;umber of minor vertices for PBC'’s thus reduces |t/ N li=il. (243
to EglrnTérg'\éN, the fraction of the phase diagram in which The maximum allowed shif,,,,,in band indices is therefore
minor vertices contribute can be estimated simply by sum- t\ N2 A
ming the widths of these lines. The resulting fraction ma"w(t_)m k_F (2.49
is

f minor~ N minordN is negligible f<1) provided
For 6,,.<1, only the unshifted Cooper channel interaction is

k_<m (0OBO), allowed. Demanding this leads to the constraint

F A [t 1 »
A1 kLT \we) (249
—<— (PBO). (2.40

ke N

Combining the constraint on the initial coupling strengths,
For sufficiently largeA, the one-dimensional bands associ- Eg. (2.19, and that on the momentum cutoff, Eq2.40,
ated with adjacent points on the Fermi surface begin to overt2.45), we find the reduced set of interactions in £g.29
lap, and it becomes possible to form new interactions byand(2.36) is sufficient provided the initial coupling strengths
substituting one for the other in the original forward- andsatisfy
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U 1 all fields are at nearby space points. This allows the use of
T<W' (2.49  the operator product expansion to replace the products of
such nearby operators by a series of local operdtorsre-
Here we have dropped the order one factors in front of theview, see Refs. 37, 38i.e.,
logarithm which are different for OBC’s and PBC's. Since

the condition orlJ is only logarithmic inN, it is not a severe ba Ay /1y _
constraint on the initial values of the couplings for finite a igzdT'dXI<Hmt(7'le1)Hmt(TzaX2)>o
chains. Nevertheless, it is clear that the true two-dimensional
limit is rather subtle. Indeed, E@2.46 indicates a possible f
L ’ D = int)o - i)
non-commutativity of the order of limitgat zero tempera- dx d7(Hing)o 3.4

ture) in taking U—0 andN—o. We will return to the in-

teresting and important issues involved in the 2D limit in
Sec. VI. For the moment, we will restrict ourselves to finite
N and discuss the corresponding weak-coupling behavior qga
such systems, under the conditions of E3j46).

The method to compute the effective interactiof{;,,, can

be found in Appendix A.

As shown in Appendix A, the effective interactia?t,

s the same form as the original Hamiltonian, and thus has
the effect of renormalizing the bare couplings. The RG fin-

ishing with a rescaling step, which attempts to bring the
IIl. RENORMALIZATION GROUP FLOW EQUATIONS theory as much as possible back to its original form. To

To analyze the behavior of the weakly interacting system,restore the origi_nal val_u_e of the _cutoff and maintain the_ origi-
we employ the RG approach. In this section, we describe thBal et of Fermi velocities requires the change of variables
scheme used and present the resulting differential RG flow X
equationganalogous flow equations for particular restricted X'=—, 7'=
cases were obtained in Refs. 35 and.3&urther details of b
the calculations can be found in Appendix A. The general — o , Yo
approach of the RG is to progressively eliminate short- ¥ (X,7)=b y(x",7"), 4" (X,7)=b (X", 7").

,
B’ (3.5

wavelength, high-energy degrees of freedom. To formulate 3.9
this mode elimination, we first rewrite the partition function Wwhile this indeed preservest one-loop ordérthe form of
in terms of an average, Sy, the interactions are of course changed. The simplest way
to keep track of these changes is to perform the RG
Z:J [dy][dye o Sm infinitesimally with the rescaling fa@ctorb=_e‘“. Iterating
both steps of the RG then leads to differential RG flow equa-
=Zo(e Sy, 3.1) 'It_i(zlr;s_ler the coupling constants, as a function of length scale

whereZ, is the partition function without interactions, and  For OBC's, the allowed couplings are forward and Coo-
angular brackets with the subscript O denotes an averageer scattering. The RG equations governing them are

with respect to the quadratic acti®@ only. This form may 3

be reexponentiated using the cumulant expansion, f_p:(cpj)er 1_6(Cﬁ 2 3.7

(e Smyo=exp{{—SnoT 3 [(Sho—(Sm)al+ O(S?nt)(é' 2

Up to this point, we have systematically derived the low-
energy fermion model with a “momentum-shell” cutoX.
While the RG may be implemented dir_ectly with this model, _ (':ipj - E {aj (chc+ 2 cher)}

it happens that the one-loop RG equations needed here are in k ’

fact independent of the cutoff scheme used. This indepen-

dence arises from the dominance of logarithmically diver- +(chhf+ f5cihl), (3.9
gent terms at one-loop level, whose coefficients are insensi-
tive to the particular form of cutoff used. We take advantage
of this property here by adopting instead a real-space cutoff
a~1/A. This distance then appears as an explicit cut-off in

all x integrals, e.g., +(chhi+cihf - %cﬁhﬁ , (3.10

fo )2 PO 1 a\2
fij=—(f) +20ijcij_§(0ij , (3.9

- 1
cij= _; {aij (chey+cikek;+ 2 cike)}

) o where fj;=f;; /m(vi+v;) and the same foc;;. Also, we
(Shpo= L igz d7dXi{ Hint( 71, X1) Hin( 72,X2) o, defineh;;=2f;;+ &;c;; for convenience. The weight factor
Y (33) ?n the Summatlom”’kE {(vi+v|_<)(z_)j+vk)/[2v_k(vi_-i-vj)]_}
is symmetrical ini,j. The dots indicate logarithmic deriva-
using the compact notatioff= f a-|x, -x,/<s - Each integral  tives with respect to the length scale, if= af/dl.
is now separated into two parts: long-wavelength modes, For PBC's, if the number of chains is odd, the allowed
|x1—X,|>ba, and short-wavelength modes, vertices are the same as in OBC, and E§s7)—(3.10 hold
a<|x;—X,|<ba, whereb>1 is the rescaling parameter. without modification. However, if the number of chains is
This separation is convenient because in the latter integragven, the additional umklapp interactions in tgedirection
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give rise to additional flow equations and extra terms in thanteractions. The perturbative RG is valid provided all the
forward and Cooper-scattering equations above. Becausenormalizednteractions are small, i.gg;(l;U)|<1, which
these augmented RG equations are quite complicated and @ certainly true initially. To proceed, we need to assume
not provide any obvious insights upon inspection, we havesomething about the form @f(l;U) near the divergent scale
relegated them to Appendix B. l4. Assuming a power-law first suggested in Ref.(@hich

Equations(3.7)—(3.10 must be supplemented by initial can be verified analytically for simple cases and numerically
conditions to completely specify the problem. While it is of quite generally, dimensional analysis essentially requires
course straightforward to obtain these initial values from the

bare couplings, it does require a certain amount of algebra to UG;
work out the effect of the unitary transformation in E¢&4) gi(l;U)= To=Un7’ (4.9
and (2.5 (see Appendix € Initially, then, all the couplings 0
fij,cij areO(U/t) (but with specific ratios wherel,=Ul,4 and we have sdt=1 here and in the remain-
der of this section. The order one coefficie@sand expo-
IV. STRONG-COUPLING ANALYSIS nents y; remain to be determined. Given the form of Eq.

. . . o (4., it is clear that the formally divergent couplings only
n .th's section, we describe the appllcgtmn of the BGbecome much greater thahwhenl is very close tdy. We

equations to th&-chain Hubb.ard models with both OBC's are thus actually interested in thesymptoticbehavior of
and PBC's for smalN. We will see that the RG flows al- gs. (3.7—(3.10. Unlike the full integration of the RG
most always diverge, and will discuss the interpretation of;
such divergences, using as input certain general features
the numerical integrations. The instabilities encountered ge
erally correspond to some degree of pairing, the notion o
which we make precise through the study of various pairS
fields.

ws, the less ambitious task of determining these asymptot-
s can in fact be accomplished analytically, as we now dem-
dnstrate.

In order to fix the exponenty;, it is necessary to use
ome input from numerics. In particular, in every case we
have examined, the vector part of the forward-scattering in-
teractions, f{j, is always marginallyirrelevant From Eq.
(3.9, this implies that the combinationcgci‘?—%(ci‘})2 is

1. General scheme small, i.e.,<O(U?). Since we are keeping only those inter-

With the initial values in hand, the RG flow equations canactions which scale to values of_order one, to this order of

be integrated to investigate the physics of the weak-couplingCcuracy the renormalized couplings satisfy

limit. We have done this using Mathematica on a Sun

A. Classification of couplings

Sparc-4 workstation. While the specific solution found de- f(1*)=0, (4.2
pends upon the details of the model parameters., N,
t, /t, n), certain gross features of the behavior are generic. In ci(I™)=~4chi(I*) (i#]). 4.3

particular, for almost all sets of initial conditions, the solu-

tions of the RG equations are singular, and certain lineaEquations(4.2) and (4.3 suffer corrections ofO(U), but
combinations of coupling constants diverge at sdimiée |;. ~ May be treated as equalities in the following leading-order
Since the RG equations were obtained perturbatively, thegnalysis.

are not valid arbitrarily close to such an apparent divergence. Equations(4.2) and (4.3 can be understood in a simple
To obtain sensible results, we instead cutoff the RG flow aphysical way. Some simple algebra demonstrates that if Eqgs.
some specific length scald*<l4, chosen so that (4.2 and(4.3) were replaced by exact equalities, these con-
U/t<max(f; G ,u;}<1. At this cutoff length scale, the cou- ditions would be preserved by the RG flow. Thus it is natural
p|ings may be classified into two groups. The first set in-t0 suspect that under these conditions, the system has ac-
cludes those couplings which have become “large” but stillquired an additional symmetry. Indeed, upon closer exami-
weak, i.e.,U/t<g;<1, which we call marginallyrelevant  hation one finds that the constraint implieslependenton-

The remaining Coup"ngs do not grow under the RG’ butservation of Spin within each band. AlthOUgh this is not an
remainO(U/t) or smaller, and will be callednarginal or ~ exact property of the Hubbard model, it is approximately
margina”y irre|evant respective'y_ At the |ength Sca|é, Satis.ﬁe(.j due tO the On—S.ite n-a.tl..lre of the interaction.s. For
the system thus exhibits a separation of energy scales, witpn-Site interactions, Fermi statistics allow only a coupling of
the marginally relevant interactions much larger than theoPpositely oriented spins, which implies E@t.3). Appar-
marginal or marginally irrelevant ones. The phase diagram ontly the deviation from this symmetry caused by the non-
the system may then be determined simply by neglecting thgero initial values off is sufficiently small to allow the
latter interactions and studying the states determined by theymmetry to be asymptotically restored at long distances.

marginally relevant couplings alone. Based on this observation, we will calculate the exponents
v in the U—0™" limit, taking as an example the Cooper-
2. Strict U—07 limit scattering vertices. Other exponents can be obtained by simi-

lar means. The RG equations for the Cooper couplafgs

In the truly asymptotic limitU—0*, much of the classi- ) .
fication of couplings can be accomplished analytically. To doEq' (3.9 can be rewritten with the help of E¢.3) as

so, consider the formal solutions of the RG flow equations as
functions (?fl and the H_ubbard mter.act-ldd, Whlchlwe will o~ —(Cﬁ)z—z a“’k(cﬁ()z_ (4.4)
denoteg;(l;U), wherei is a composite index labeling all the k
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Since all terms on the right-hand side are of the same sign A o
(negative, they cannot cancel one another, and balancing the UriLia(1™) 7 7€ VAT PRILI),

two sides of the equation then gives the constraint

4.9

Here the chiral boson fieldgg, ;, obey the commutation
yi’ +1=max2y;” 2y}, (4.5  relations

where J’icjfTE y(ci)- _ o [PRria(X), PRjp(Y)]= —[DLia(X), PLjp(Y)]
Equation(4.5 has two solutions. The first is

i
=—SgNX—Y) 50,3, 4.1
’ylclf'g ,yicio': 1. (46) 4 gr( y) ij%ap ( @

The second possibility is i
[ria(X), bLip(Y)]= 7 (4.11
Vil <vik =(1+¥/2<1. (4.7 _ _ _
The %;, are Majorandreal fermions, known as Klein fac-

We thus conclude that all the exponents associated with Coders, introduced to preserve the proper anticommutation re-
per couplings are bounded above by one. Similar considetations between fermion fields with differing band and spin
ations applied to the other RG equations imply thattthe indices. They obey
exponents are less than or equal to one. If one can probe
arbitrarily near the divergent poity (i.e., if U is put arbi- 1MiarMpt =26ij0ap- (4.12
trarily close to '), any couplings with exponentg =1 will
eventually outstrip any others with smaller expondietgen
those with larger prefactorsin the strictU—0" limit,
therefore, the relevant couplings are those with exponen
yi=1 _

From Eq.(4.1), the relevant couplings with initial inter- Pia= Priat Plias
actionU thus satisfy

It is usually more convenient to trade the chiral boson fields
pairwise for a conventional bosonic phase fieddand its
tgual (displacementlikgfield 6, defined by

0ia=¢Ria_¢Lia' (413
I'U)~ UG; 48 They satisfy [ ¢(x),6(y)]=—10(y—x). Physically, the
gi(lU)= lo—Ul’ 4.8 6(x) field describes the displacement of the electrons, while

the dual field¢(x) represents their phase. We can make a
for | near the cutoff length scalg. Substituting Eq(4.8)  further canonical transformation to
into Egs.(3.7—(3.10, the parameters) andly cancel out,

leaving a set ofalgebraic relations between theonstants (¢,9)ip:[(¢,0)”+(¢>,0)u]/\5,
Gi. These algebraic equations are formally obtained from
Egs. (3.7)—(3.10 simply by replacingg;— G; andg;—G; . (¢,9)i0:[(¢,g)m_((ﬁ,g)il)]/\/E_ (4.14

The relative strengths of various couplings in the asymptotic

regime can then be determingelatively) easily using these The p fields then describe charged singlet excitations, while
algebraic relations. Usually there is more than one solutioithe o fields describe neutral excitations carrying spin. Carry-
for G;. The identification of specific solutions with specific ing through the change of variables in E¢.9) carefully,
initial conditions which depend on, e.g., filling factor can  one finds that the noninteracting Hamiltonian Ef.18) is
only be found using numerical integration of the full RG equivalent to the bosonic Euclidean action

equations. We emphasize as well that these results rely upon

the strictU—0" limit. A priori, given the lack of other _ Ui 2 27,
energy scales in the Hubbard model, we would nevertheless SO_% ‘s 5 L(9xi,) "+ (9x6:,)"]+10x6;,9 b1,
expect such results to hold qualitatively providges1 (for (4.15

fixed small finiteN). In fact, given the large number of cou-

pling constants involved, apparently order one factors catvherev=p,o.

conspire to render the limits of validity of this strict weak- ~ Upon bosonizing with Eg4.9), the four-fermion interac-
coupling limit considerably smallée.g.,U/t<10 °in some tions are converted to linear combinations of gradient cou-
regions of the phase diagram even for=2—see Sec. Y plings and sinusoidal functions of the phases. The former
For U/t=<1 butoutsidethe strictU—0" limit, the algebraic  9ive rise to continuous shifts of the parameters of the low-
relations do not hold, but we nevertheless expect quantitsnergy description: modifications of mode velocities, charge

tively correct results from th@umericalintegration of the ~Stiffnesses, etc. We say that these shifts leave the system in
full RG flows. the samephase The sinusoidal interactions, by contrast, can

potentially cause more drastic changes in the low-energy
theory. They tend to “pin” their argumentéinear combina-
tions of the bosonic phase® particular values, modulo2

Our strategy will be to bosonize relevant couplings in theWe will treat the marginally relevant couplings in this way,
renormalized Hamiltonian at the scafe This is done using by expandingthe corresponding harmonic functions around
the bosonization formufd*° their minima, regarding the fluctuations around them as mas-

B. Bosonization strategy
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sive. This will effectively give gaps to some of the modes of
the original noninteracting fermion system, resulting in dis- Hi(nt)NZ cijcog \V876;,)
tinct new phases. '

To perform this procedure and determine the nature of the

gaps arising from the interactions, then, it is sufficient to +E<_ 4cjicog V4wl )cog V2w, ,)coS\2mb;,),
keep only those marginally relevant couplings which become =
sinusoids upon bosonization. There are still quite a number (4.19

?f potgnnal such terms, So it now pays to use some add'ﬁvherew’-iz(gzﬁpi(ﬁl’)/\/i. As pointed out by Schuf® this
ional input from the numerics. g ! J o
explicit form after bosonization depends on the representa-
tion chosen for the Klein factors. In other words, we still
have some “gauge” freedom left to shift the bosonic fields.
For simplicity, we will first focus on situations in which However, the physical correlation functions, which include
the relevant couplings include only forwardf Y and these Klein factors, are independent of the specific gauge
cooper- €) scattering vertices. This is completely generalchoice.
for OBC's, but excludes certain regions of phase space in the We next locate the minima of Eq4.19. These cam
case of PBC’s with evel, for which the transverse um- priori be nontrivial, but turn out to be very simple in prac-
klapp (u) couplings may become relevant. This alternatetice. In fact, we find that in all cases, the numerically deter-
channel of instability will be returned to later in this section. mined values of the coefficienty andcjj are such that each
term in Eqg.(4.19 can be minimizedseparately Most often
1. Semiclassical Hamiltonian and analysis this occurs because all the relevant couplings occur in chan-
nels connecting only two specific bands. We will focus on
this special case now, in order to present a more detailed but

C. Generic instability

As a preliminary step in the analysis, we first rewrite the
interactions in terms of the underlying fermion fields. Using

the SU2) identity, containable exposition. o
U2 y To proceed, let us denote the indices of the two strongly
Oop Oye=28005,~ 8,0p0,yc, (4.1  interacting bands bya and b. The numerical integration

demonstrates that, although they are initially positrepul-

the scalar and vector parts from EG-29 become sive interactiong the diagonal Cooper-scattering spin verti-
ces are driven negative under the RG. That is

(1) t t
Hint —; [ YriatriatLjp¥Lip c?,,c0,<0. (4.20

We also obtain the sign
+(cfi+ %Cﬁ)l/f;iaijal//Ei/;l//Ljﬁ 9

- ca,=4ch >0. 4.2
— L Uiyt el 417 =4 420
Here we have dropped the irrelevant forward scattef[ﬁg Given these signs, a global minimum of £¢.19 is
Following the strategy above, we must now bosonize the 5 _
system. In doing so, the interactions in E¢.17) may be 2m{Oaq) =, (4.22
divided into two sets. The first consists f andcf; , which N 4.23
bo/ ™ ’ .

only contribute gradient terms after bosonization. To deter-
mine the phase of the system, therefore, we need include = o\
only the second set, which contains the Cooper couplings 4m(dag)=(I+m+2n+1)m, (4.24

Cii, Cjj, andcf; . Keeping only these terms, and imposing wherel,m,n are integers. Since all solutions give the same
the constraint in Eq(4.3), the interaction Hamiltonian be- results of correlation functions, we will pick the m=n=0

comes solution for convenience. Fluctuations around this semiclas-
1 sical solution are massive, as can be seen by the change of
o variables
Hi(nlt)zz Ecii'p};ia‘/{i?/’m?‘/ﬁia

0a0'2<9a0'>+ 60, (4.295

T = T
&, 2 iETRiaTLiaTRjaPLia Opo={Ops) + 80, (4.26
+ Phia gLV (4.19 Po=(dln)+ By . (4.27

wherea= — a. The interactions withv= g in the third and Expanding to quadratic order gives
fourth terms in Eq(4.17) aforementioned independent con-
servation of spin in channelsandj. This ordering of fer-
mion fields is particularly convenient for bosonization.

As shown in detail in Appendix D, for this set of interac-
tions the Klein factors can be represented by the identity
n;=1. Inserting Eq(4.9) in Eq. (4.18, we then obtain

1 1
Hini ~ 5 (Mg)2(862,)%+ 5 (MF) X(505,.)

1 ]
+ 5 (M) (8¢5, )2 (428
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up to a constant. The masses for spin and charge modes avae, the correlation functions of the gapped phase variables
will decay exponentially ovefrescaled distances of order

mZ=2\2m(|cZ |+ )™ (429  one. This allows us to make the requirement of “well-
separated” points more precise. Since the internal coordi-
mg=2+2m(|cg,|+ )Y, (4.30 nates of the fields have themselves been rescaleg, lity
follows that for|X|> ¢, the massive phase variables in two
m2,=4/m(cZ,) Y2 (4.3) pair fields separated by a distant¥| are exponentially

decorrelated(provided the “internal” coordinates satisfy
3f2<|<|X|), and may be integrated out independently for each

V. For instance,

Comparison with the corresponding quadratic frequenc
terms in the noninteracting actigiq. (4.15] indicates that
Eq. (4.28 describes threegyapful modes, 6,,, 6,,, and
¢y, . The first two terms in Eq4.28 suppress fluctuations o - NNt - ,

ina'?he spin densities of the two channels, and correspond to (WACX) We(0X7))g~ (Va(X.X))g(Va(0X'))g ’(4 36
spin gaps with magnitudes proportionalng andmg . The '

third term “locks” together the relative phase of the chargefor |X|> &, where the subscripg indicates an average over
modes in the two channels. The remaining linear combinathe gapped phase fields.

tion ¢2; and its conjugat®?, are not affected bWi(nlt)v and It is thus sufficient to study the partially averaged pairing
continue to describe a gapless total charge mode. operatorg W(X,x))4. We will do this carefully for the case
of the two bandsa andb. The average is carried out with
2. Pair fields respect to the actioB=S,+S;, where

The existence of a spin gap naturally suggests pairing of

electrons with oppositely oriented spins. To investigate this — f U (02t (920214000
notion further, it is instructive to consider a pairing operator So z xr 2 [(9xbe)™+ (9x05)7] +19x0s0- s
(4.37)

wheres=ao,bo,abp—, as obtained from Eq4.15), and
which annihilates two electrons with specified band indices

and spin at particular positions. For compactness, we will S zf HD
omit explicit labeling of the pairing operato¥ unless nec- 1)y, Tt
essary to avoid ambiguity. In a true superconductor, such o
pair fields condensgso that(¥)#0. The Mermin-Wagner oM EGs.(4.28 and (4.37, the small deviations56,,,
theorem prohibits such a continuous symmetry breaking if b, 8nd 8¢, are decoupledfrom each other, but not
1+1 dimensions, butd' can have power-law correlations from their conjugate fle_lo}sat the quadratic level, and may
(quasi-long-range orderOf physical interest are correlation therefore be averaged independently.

functions of two or more of the variou® operators at dif- a Ine;rzrr?ég]%f(?[ﬁtet:;ﬁg;:%?él@li;ls ngortar:n;oﬁzgfe the
ferent well-separated pointg X). For instance, PP Jug gy @Fbo ab -

By the uncertainty principle, sindep, #]=0(1), these vari-
—(pt 1 ables are wildly fluctuating. This implies that any complex
Cap(XX) = (WX x)¥e(02)), (4.33 exponential containing one of these fields will average to
where the composite indeX=(Paiaa@a,PajaBa), andB is  zero, unless it appears in the form of a “neutral” difference
defined in the same way. Following the RG strategy, correat nearby points, in which its fluctuation mean value is auto-
lation functions such a€,g(x) are evaluated in several matically subtracted. If such a subtraction does occur, the
steps. First, we employ the perturbative RG, integrating oufiverage will decay exponentially with the separation of the
fermion modes until the scalé . Ignoring perturbative cor- subtracted fields.
rections from the mode integration, each pairing operator In fact, only four pairing operators satisfy this strong neu-

W(X,X) = thpia( X+ XI2) hpr s(X—X/2), (4.3

(4.39

then picks up just the rescaling factor trality constraint, and are therefore nonvanishing. These are
. 1 . Wy (X,X))g=(AE) X+x/2)/ A
‘P(X,X)%A—g‘P(XIAf,X/AE;I*), (4.3 (g (X,X))g=(AE) ™ Pral( MAE]

X g [(X=xI2)[A&])q,
where we have defined tlmherence Iengtl&zAfle'*. At

this point, the relevant couplings have become of order one, (Wg-(X,%))g= (A" Hra [(X+XI2IAE]
and may be safely bosonized. Carrying this out gives X i [ (X—x/2)/A£]) (4.39
g :
: 1 . where agaird=a,b. As expected, only electrons with oppo-
TX )= A€ a7 pEXAIVAT Ppia (XTX/2)AL] site spin tend to form pairs.

Inserting Eq.(4.35 into Eq.(4.39, we obtain three aver-
+prj gl (X=X/12)IAE]}]. (4.3 ages. In the relative charge sector,
The next step is to insert this in the desired correlation func-

tion, e.g., Eq.(4.33, and integrate out the massive modes +-ﬁ p— -/ p—
using Eq.(4.29. Since the masses in E(.28 are order x| =15 [ ban (XD + dap (= xI2)+ 02y (x12)



- 9§b(x/2)])>

g
= ii<ex;{ i g[ﬁgﬁgb(le)-i- 8y (—x/2)

+605, (X/2) — 59§b()(/2)]> >
9

= +igl, (Ax), (4.40

wherexy=x/A &, and we have without loss of generality cho-

senX=0, since the average is independentXoby transla-

tional invariance. The functiogh, (x) satisfies
0<g4,(0)=1, g4, ~C.e 2,

x>1, (4.4)

with C; andC, order one constants. The exponential decay

arises from the separation of the tw, fields, whose rapid
fluctuations exponentially suppress the average. More fo
mally, the correlator involves a ‘“string” connecting
X= * x/2, which carries an action per unit leng#tring ten-
sion) of 1/¢.

Similar reasoning leads to the results in the spin sector:

<ex;< *i \/g [¢dU(X/2)_ ¢d(r( _X/2)+ ed(r(X/z)

:gd(r(AX)i (442

g

+ ad(r(X/Z)]>>

wheregq,(x) are functions with the same propertiesgg ,
Eq. (4.4)).

The fourth factor emerging from the averages in Eq.

(4.39 is the exponential of the?, field, which is not aver-

aged over. At this point, therefore, thé'd:>g fields are still
operators. Using Eqg4.40—-(4.42), they may be cast into
the form

(W (X,X))g= = Ag()€ *Ning g, (4.43

where ¢(X) = /7@ (XIA€), and we have used the fact
x=<¢ (enforced byg, andgy,) to neglect thex dependence

of ¢. The overall sign arises from reordering the Klein fac-

tors. Physically, we may now interpreét as the usual(1)

phase of the superconducting order parameter. The prefactor
A4 is what is conventionally interpreted as the pair wave

funcion in a superconductor, and has the form

1
(0= 520l (ME0a,(0E), (444

The relative minus sign betwee{nifm)g, (\i’d,)g implies

that the pair wave function is a spin singlet, as is demon-

strated by rewriting this result as

<‘i’RiaLjﬁ(X,X)>g= 8 Ai(X)(8y1 8, — 8 8p1)E ).
(4.46

N-CHAIN HUBBARD MODEL IN WEAK COUPLING
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FIG. 6. Phase diagram of the two-chain Hubbard model with
weak repulsive interactions.

As in conventional superconductdiSC), the ground state of
the system is a singlet and, therefore,(ZUnvariant.

The relative sign betweefW, . )q, (¥p. )4 indicates that
the pair wave function had-wave symmetry in momentum
space. This is illustrated in Figs. 6—10. The precise nature of
the wave function, i.e., the distinction betweeg > and
d,y pairing, depends on the positions @f,p) on the Fermi
surface. To emphasize this point, we now calculate the pair
wave function in real space.

The most general pairing operator in coordinate space is

‘I’(R,r,a,ﬂ)=¢/xa( R+%

;
lpﬁ( R— E)’ (4.47)

whereR=(X,Y) is the coordinate of the center of mass, and
r=(x,y) is the relative distance between the pairing elec-
trons. Herea,B are the spin indices of the electron pair.

1
t

22

C383

FIG. 7. Phase diagram of the three-chain Hubbard model for
OBC's.
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FIG. 8. Phase diagram of the three-chain Hubbard model for 0

PBC'’s.

0 172 1

The pair fieldsV [Eq. (4.32] and ¥ [Eq. (4.47)] are FIG. 10. Phase diagram of the four-chain Hubbard model for
essentially related by a Fourier transform in the transvers€BC's. The states marked with an asterisk exhibit CEX pairing.
(P,i) indices. To make this explicit, we must keep track of
boundary conditions. For OBC'’s, the right and left movers

are standing waves in the transverse direction, and *; sin(kyiy1)sin(ky;y2)
—_ ) ik iX A —ik iX\qj ) ~ . .
a1~ {Ria(X) €7+ g (x)e™F }sm(ky,y)&4.48) K[ (Wriat p(X,X)) g6 KE X2 ik X2
wherek,; are the transverse momenta defined in E48). + (WL arip(X,X)yge keI XX ke (X=x12] (4 50)
For PBC's, because the system is translational invariant, the ) )
decomposition is the usual Fourier one, In the second line, we have used the fact that the nonvanish-
‘ ‘ ing ¥ operators pair right and left moving fermions, and
Yol1)~ ria(X)€XFI 4 ()@ TKFT, (449  have thereby droppetrg and W, contributions. Using
; _ ; Vliarig(X,X) = = WPrigLi«(X,—X), andA;(—=x)=A;(x) and
where the Fermi vectdkg;=(kg; ,27i/N). LiaRjs RipLia - '
Consider first OBC's. Using Eqe4.47) and (4.48), Eq. (4.46, Eq. (4.50 leads to the familiar form
(P(R1,a,B))qg (V(R,a,B))g=Py(Y,1) Xape'. (4.5

:Z {SIN(Ky iy 1) SIN(Ky Y 2) th o X+ XI2) s X —X12)} ';rhee spatial and spin parts of the Cooper pair wave function
]

t

‘ cosi OFEAY,r)= > 2A(x)cogkex)sin(kyiy)sin(kyyz),
cis1 cist 1=ab
2 L
Xap=0a105,— 84,057 - (4.52
C281
c1so | \ 22 B 150 The positions of the electrons are denoted as
0 \V\esss 1 ym:[Yt (y/2)_]. Because of the ha_rd-wall boundary condi-
q"@ tions, the spatial part of wave function depends on the trans-
1 L l(é\‘ : verse center-of-mass coordinaté. Because A,A,<0,
L 2 ®JB%(r) hasd-wave symmetry in real space.
A:®:_ N | €352 For PBC's, the results are quite similar. The pairing op-
T ST a5 erator retains the same form of E¢.51), with instead
/281
q>§B°(r)=.2b 2A,(X)cogKg;r). (453
0 n e
0 172 1

In this case, the wave function only depends on the relative
FIG. 9. Phase diagram of the four-chain Hubbard model forcoordinater because the system is translational invariant.
OBC's. Once again, the symmetry éswave like.
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D. Even chain PBC’s Notice that electrons with oppositg, but thesame k are
paired. This implies that the Cooper pair carries nonzero

Turning to the case of eveN with PBC’s, the generic i ) e
transversequasimomentumiro clarify the situation further,

presence of transverse umklapp (interactions allows for a > . X
new RG instability. This possibility is realized foi=4, as \I/:ve”now S;:.[)r(]amallze to the t():aset of primary mtereNt=4t "
we have found by numerically integrating the extended equat©!'oWINg theé previous subsection, we can again put the
tions of Appendix B. In certain regions of the phase diagramPaifing operator into real space. Equati@nbl) continues to
the Cooper ¢) couplings become asymptotically irrelevant, hold, but with

and instead the transverse umklapp and forward-scattering o .

interactions become dominant. As before, this occurs in only Dp_a(Y,X)= D 2A(x)cogKeix)e'ZiY

two bands, which we will again denoteandb. In order for i=ab

these two bands to be connected by two-particle umklapp _ e .

processes, they must satigly—b|=N/2. More careful at- =~ 4Aq (x)cogkeax)sin(Y), (4.60
tention to the numerics shows that, in addition, these relevanthere we have used reflection symmetry which implies

couplings satisfy 0a0=0pb, IN Eq. (4.59, and henceA,=—A,, as well as
1 kra=krp= /2 in this case. Note thaf takes on integer and
Uellf)_4 ab>0 (4.59 half-integer values, so tha is real but can vary in sign. If

one imagines wrapping the four chains around into a cylin-
- - der, theY dependence is simply a superposition of the
faa<0.fpp=0. (459 m==+2 angular momentum states, i.e.,

Equations(4.54 and (4.595 appear quite similar to Egs. sin(7Y)=sin(20), (4.6
(4.20 and(4.21), already encountered in the generic case. In
fact, careful study shows that the instability encountered her@here ® = mY/2 is the angle around the cylinder. For this
is mathematically equivalent, after a relabeling of the bandsfeason, we call this a CEX-wave state. Note that since the
to the earlier case. Instead of repeating the analysis of thguperposition here is purely real, the state does not carry any
previous subsectioad infinitum we will therefore instead Spontaneous current.
only sketch the essential points of the parallel treatment
needed here. V. PHASE DIAGRAMS
To account for the change in paired bands, we combine

the chiral boson modes into the modified canonically conju- " the previous sections, we have described the RG and

bosonization technology necessary to analyze a weakly inter-

gate fields,
acting one-dimensional Fermi system for any generic set of
9 = DRiw— PLias parameter values. We have, of course, applied these methods
to study the particularly interesting case of thechain Hub-
ach’Rer bLia (4.56 bard models. The detailed calculations involve lengthy but

o _ _ _ straightforward numerical integrations of the RG equations
Defining spin and charge bosons as in E414), the inter-  and mapping out the ensuing pairing instabilities as a func-

action terms become tion of N, n, andt, /t. The primaryresultsof this work are
the phase diagrams shown in Figs. 6—10. For the most part
I<nlt>_,_H<2> 2 f "cog /_8776’i0) thgse stand on their own, but we will comment on a few
points.
+4ullcoq 4 ¢ p)Sin(/2 Harr) A. Commonalities
X sin( \/2770b(,), (4.57 1. Band transitions
where Pi—(¢§t¢7ﬁ)/\/§. This is of the same form as Eq. In the weak-coupling limit, it is natural that the gross

(4.19 and the semiclassical analysis is identical, with 6 features of the phase diagrams are dictated by the noninter-
and ¢ ¢. All the subsequent steps of the analysis carryacting band structure. In particular, the-t, /t plane is di-
through with small modifications. The nonvanishing partially vided into distinct regions, in each of which a particular

averaged pair fields expressed in terms of band indices aréumberN; of 1D bands areartially filled (and hence not
inert). The boundaries between these regions constitute band

(WRiat ) g= S7AI(X) Xape **, (458 transitions, which generally survive as phase boundaries in
— ) ] the weakly interacting system.

where(X) =4, (X/A¢), and the gap functions in mo-  hile the band transitions need not be the only phase
mentum space are boundaries in the interacting system, they usually form the
most noticable divisions of the phase space. To locate them,
one must solve Eq42.7), (2.8), (2.10, (2.11) for the lines
along whiche,(0)=u (banda is just empty or e,(7)=pu
A (banda is just full), for eacha. These curves are indicated in
~_ the figures by heavy lines. The shading of the regions sepa-
Bp=~ 2mé 3 92 (X/€)8os (X ). (4.59 rated by the heavy lines indicates the numNerof partially

A —
8a= 55 O (X/£)0a,(X/2),
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filled bands, with white c_orresponding td;=1 and the Ci”E('=vk/U)=4CfE(|=vk/U)2618Xﬁ[—62vk/vE],
darkest shade correspondingNe= N. (5.5)
2. Band-edge phases whereEl andaz are order one constants.

To complete the argument that bakdbecomes decou-
pled from the others, we must now show that this suppres-
sion persists into the regime of divergence of other cou-
plings, i.e., to the cutoff scale". To do so, we employ the
algebraic relations valid in the asymptotic regifisy. (4.8)].
Consider, for example, the relation derived from E8.9).

On one side of such a band transition, the “critical” band
(let us denote its index bgg=E) is almost empty or almost
filled. This gives rise to a very small Fermi velocityz<t,
in the weak-coupling RG. For such a small velocity, the
dimensionless couplings acting purely within the bandre
greatly enhanced:gee=0ee/(2m0e)>0ae, fOr a#E. 1pe coninutions on the right-hand side can be separated
PhyS|caIIy,.th|s increased scattering is due smply tq thqnto singular and nonsingular parts,
large density of states near the 1D van Hove singularity at
the edge of the band. o_ o o i

Strictly speaking, the RG equations as we have derived Cu @aeCieCie + (nonsingular terms (5.0
them are not valid directly at the band transition. This iswherek,|#E. Here we have used the relat@f=4Cf; as
because the spectrum of an empty/full band is not relativisticisual. Since the factag, ¢~ 1/vg is singular whervg—0,
but quadratic &~ k?/2m), demanding a differertanisotrop-  there are only two possible options. Either the singularity in
ic) scaling. We can, however, approach very close to they ¢ is cancelled, an€yg~ Jvg, or the singular and nons-
band transition in the weak-coupling limit. That is, provided ingular parts equal zero separately and
that we keepJ/vg<<1 (a much more stringent requirement
thanU/t<1), Egs.(3.7)—(3.10 remain valid. Cye=0. (5.7

In this region, the nearly vanishing Fermi velocity pro-
vides a useful small parameter. Indeed, those coupling
within bandE are (at least initiall) much larger than those

involving any of the noncritical bands. For the initial stages : . L Ik . .
g any g asymptotic regime. This is indeed observed in all numerical

of integration of the RG flows, then, these “edge-band” in- . ; . "
teractions dominate the evolution of the couplings. In par_lnteg(at|ons of the f!“' R.G equations near a band transition.
‘ This decoupling implies that the low-energy structure of

ticular, they lead to a decoupling of the critical band from the . : : .
remaining degrees of freedom. To see this, consider the evéhe system is obtained by adding the single gapless charge

lution of the interactions between bakdand another band ﬁjnrg z?l?h(ran(r)e(ﬁZi(r)]Erfhebggggatlhba?rxoﬁdthr?al\?gv;)ecrc]:irr?g dsf/:/lcja(r:;a
In the Cooper channel, 9

bandE inert. To determine the phase of the Hubbard model
in the band-edge regime, therefore, we may simply add

Ehe former possibility is inconsistent with the exponential
Suppression in E5.5), so we expect that instead E&.7)
holds and the couplings,e will flow to zero in the

i 2e ECEE C1S1 to the gapless mode content on the other side of the
Ce| 16 Cle 51 band transition, in which the critical band is indeed inert. If
cyrl ” CE 5.1 the phase on this side &Sy, , then the band-edge result on
Cee CRet ECEE the other side of the transition line is
Because the initial value for the Hubbard model, CnSu+C1S1=Cny1Su+1- 5.8
C{’E(O)) (1 B. Specific features
o or | = 2]cle(0), (5.2
Cie(0) 4 1. “d-wave” pairing
happens to be one of the eigenvectors of the matrix in Eq. Probably the most striking aspect of the phase diagrams is
(5.2), the solution is particularly simple: the ubiquity of paired states—i.e., gapping out of the spin
modes in at least some of the bands. Following the methods
cE(l)=4ck(l)=C e (C2lve)! (5.3  of Sec. IV, these pairing instabilities can be associated with a
gap function defined at the allowed discrete points on the 2D
whereC,,C, are constants oD(U). Fermi surface. Except in certain regions of phase space in the

This exponential decay holds provided thenning cou-  four-chain model, this gap function has an approximate
plings within bandE (c£g,cZg) remain large compared to “d-wave” form. ForN=3, ad-wave gap has an interesting
the interband couplings. Examination of Eg®8.9 and consequence in this context: the discrete transverse wave
(3.10 shows that the intra-edge-band couplings relax logavectorsk,, can coincide with the nodes in the pair wave
rithmically to zero in the initial flow regime. The above function. This indeed occurs, e.g., near half-filling fé=3

equations are thus valid for with OBC's for t;, <v2t, giving rise to simultaneous domi-
nant superconducting correlations and power-law antiferro-
P 1 ) s U magnetism. Thel-wave interpretation begins to break down,
Cee.Cee™ 7> Cke:  Cke™ o (54 however, forN=4 with OBC's, where several gapless spin

modes are present for small/t. The unusual distribution of
Following Eq.(5.3) out to this, we see that the couplings to gapped and ungapped modes on the Fermi surface in this
the critical band are indeed exponentially suppressed case is, we expect, a consequence of the one-dimensional
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weak-coupling limit taken here, which becomes rather re- 3 1

strictive for largerN. A more complete discussion of the 14+ 5Ch— 5(1+ay )CL=0. (5.10
approach to a two-dimensional weak-coupling limit is de-

scribed in Sec. VI. Now consider the stability of this solution. From E-10),

H (o g
2> Ppeculiarities of PBC's the difference betweea]; andc3, obeys

The systems with PBC’s exhibit a number @heoreti- d
cally) interesting peculiarities. Fdd=3, some of these have m(c‘fl— Co)=—(cf;—coy(cfitcyy).  (5.11
been pointed out by Arrigorit*! who performed a similar
weak-coupling analysis. For odd, the effects of PBC’S can  gjncec are negative near the divergent pdit the differ-
be expected to be rather severe. In the Hubbard model, theé’nce o“ g gent paint

e o
break particle-hole symmetry, which has the effect of elimi- of Cooper couplings;, — G5, is relevant, and the above
nating reflection symmetry of the phase diagram around haI?OIu'[Ion 'S N factgnstal?le Fgr the .sp.emal initial value

71— ¢5,=0, which is attained in the limib—1, the system

filling. Furthermore, half filling no longer coincides with the €11~ C2 -
conditions needed for umklapp processes at the Fermi level® speC|aI_Iy tuned to"an qnstatf)le gqumbnul\r;ln, a_md mf
This has the happy consequence that our generic treatme’ﬁrt1a$e enjoys a small region of existence. Moving away from

(which ignores these umklapp interactipmemains valid at Ealfdfilli;g, Zo;veaver, the ir?_equ_JaIity O.f Fecrjmi_velok?ities in
n= 1. One then finds the rather surprising result that the half= ands L an estroys this fine-tuning, driving the system

filled system has gapless charge excitations and a spin ga way from FheClSO state. In the asymptotic limit, _the syable
precisely the opposite of what is expected in the strong: Olution is n fact .the much S|mple_£3281 fI(_)w. This point
coupling limit with OBC's, where there is a charge gap has been missed in other_galczlélatlons, owing to the assump-
(~U), and the effective Heisenberg modelith odd N) is tion qu equal Fermi velocitie$ a_nd thg Iacko gJI a careful
expected to have a gapless spin mode. Some partial undeﬁl—ablllty analysis of the asymptotic regimes*'We em-

standing can be gained from the fact that an odd-chairﬁ’haSiTe' hovxiievgr, that numler?ca:ly thiskinstabill_ity is e_>;]-
Heisenberg model with PBC’s ifustrated and can be tremely weak. For even relatively weak couplings wit

shown (at least forN=3) to indeed have a spin gap. How- 10" °<U/t=1, we find that theC1S0 phase remains quasis-

ever, the absence of a charge gap is a weak-coupling resug’}ble’ occupying in fact the majority of the two-chain phase
and indicates the existence ofveetal-insulator transitiorat lagram.

half filling as U is increased. Interestingly, the weak-
coupling paired state can be eitherdyf, or d,>_,2 type, as VI. DIMENSIONAL CROSSOVER

indicated in Fig. 8. . . .
indicared In +ig In this section, we discuss how the system approaches 2D

A different sort of feature arises for PBC's withi=4. behavior ad . The limit wall " bil q
Although this situation retains particle-hole symmetry, there enavior asv-—ece. 1he imit 1S actually quité subtie, and we

nevertheless exist regiorithe largest occurs for weak dop- will consider two d|§t|nct ways of performing it. The sim-
ing with t; >t) in which the finite transverse size has a se—pIESt procedure is simply to attempt to preserve the validity
vere effect. This CEXI-wave phase has a pair wave function of the RG as pre_sented heﬂ?qs- (.3'7)._(3.‘1@]' This 1d
whose phase depends upon trensverse center-of-mass co- weak-coupling limitan be realized in principle for any fixed

ordinate of the pair. This phenomenon is described in Sec.(bUt large N for sufficiently smallU, but takingN—c ac-

IV D, and is certainly special to the one-dimensional cyIin—tuaHY requires that the interactions vanish as well. A more
drical geometry considered here physically appealing approach is the trup 2veak-coupling

' limit, in whichN— for a fixed(but smal) U. In this case,
3. Extreme asymptotic instability of the C1S0 phase the RG as constructed so far must in principle be supple-

A number of authors have predicted the existence of zliﬂentEd by additional interactions.

C1S0 paired state for a weakly interacting two-chain Hub- _ _ S
bard ladder. As notefin proof) in Ref. 13 in the asymptotic A. One-dimensional weak-coupling limit

limit U/t—0", the C1S0 phase in fact occurs only for in- e first consider the naive limit of the RG floW&gs.
finitesimal doping, being replaced everywhere else by thg3 7)—(3.10] asN—c. Recalling the results of Sec. [Eq.
C2S1 phase. For reasonabfbut still smal) values in the (2 46)], to retain the validity of these equations, the interac-
range 10 °<U/t=1, however, the1S0 phase still appears tions must be simultaneously taken to zero, witkst/In N.
as dominant. _ _ _ Since this constraint is only logarithmic M, this is actually
To understand this result requires a more detailed examiot a strong restriction even for reasonably large values of
nation of the asymptotic regime near the RG divergence. T and might indeed be physically relevant in some systems.
do so, we again consider the algebraic relations described in | the largeN limit, the RG flows are dominated by those
Sec. IV A, _ ~ terms involving sums over intermediate band indices; which
Using Eq.(4.8), we look for a solution of the resulting effeciively increase these terms by a factomof To make

algebraic equations for whickiy,#0, corresponding to @ the largest terms of order one for lartye we introduce the
C1S0 phase. Some straightforward calculations give thgescaled coupling constants

unigue answer
o o 1 o P = 12 vivj oP
Cly=C5= — 5 (1+V1-4ay L)), (5.9 TN v+o; O (6.
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and similarly for the other interaction channels. Note that, - dk;j

with Hubbard initial conditions, the values &f, are of an g V(ky k) =— f_ 5 Viky k) V(ky ky),

order of oneg(in N). Inserting this into Eqs(3.7)—(3.10 and i 6.11)
dropping theO(1/N) terms, one finds that the forward and ‘
umklapp scattering vertices are exactly margiqairenor-  as derived previously by ShanRadirectly in 2D.
malized. The Cooper channel interactions obey the simpli-

fied equations B. Two-dimensional weak-coupling limit

) 1 o L On reflection, the agreement with approaches directly in
ach=— N E (Chck;+ %Cff(CL’j), (6.2  two dimensions is perhaps surprising, since the RG equations
. used above are valid only fdd/t<1/InN as N—o. To
study the true 2D weak-coupling limitwith U/t<1 but
a|éf}=—%2 (B4 +Eqeh+ seqey). (8.3 fixed as N—) requires cgn'sideration of the additional
K shifted interactiongsuch as+®) introduced in Sec. Il C. For-
o » ” ) tunately, one can show that, even upon including these inter-
The Hubbard model initial condition thaich(0)=c;;(0) is  aciions, the modifications of the RG equations are actually
preserved by Eq(6.3), so they may be collapsed into the pegjigible in weak coupling. Rather than belabor this reason-
single nontrivial RG equation, ing, which is essentially discussed already in, e.g., Shankar's
review article®® we will only schematically indicate how this
comes about.

Once the additional shifted interactions are included in the
RG, we must worry about two questions. How do these new
Note that the right-hand side of E¢6.4) has the form of vertices renormalize, and how do they feed back into the
matrix mUltipliCﬂtion. This ImpIIeS that, prOVided the initial flow equations for the unshifted Coup"ngs? In answer to the
couplings matrix is diagonalizable, each eigenvaluef the  first question, under normal conditions, the shifted interac-

1
1) Ao A0
SN Ek CikCk; - (6.9

matrix ¢’ evolves independently according to tions renormalize almost identically to their unshifted coun-
terparts, at least in the initial stages of the RG. This is be-

%__E)\z 6.5 cause for each process involving two unshifted vertices

dl - N ' feeding into an unshifted vertex, there is an analogous pro-

) o o o cess involving the same vertices shifted, usually feeding
Focusing for simplicity on PBC’s, the initial value of is back into the analogous shifted vertex. Next, note that, in
weak coupling, the range of momentum shifts is highly con-

u 1 strained:

it <0):(5) N (6.6

Since this has the form of an outer product, it is proportional
to a projection operator onto the vector\/ﬂz—(. It thus has
N;—1 null vectors and a single nontrivial eigenvector pro-
portional to 14/v;.***2 The eigenvalues are

|AKy| = 27| 8|/N<27 Spmay/ N~ AL, 1,

t
2|Aky| = |Aky|max: 77.TJ-e—constt/U7 (6.12

as can be seen from EgR.44 and (2.15. For any non-
singular interaction, the initial coupling constants are reason-
0,...,0. (6.7) ably smooth in momentum space, so that all the shifted in-

teractions in the narrow rangé, ;| <|Ak,| are essentially
From Eq.(6.5), the N; zero eigenvalues are unchangedeq“al in magnltupl_e. Since each shifted vertex then hgs the
under the RG, while\; obeys same |n|_t|al condltl_ons _and ob_eys the same RG equation as
an unshifted coupling, it remains so under the RG, and the

NX4(0) original equations remain sufficient to study their evolution.

N(hH= m (6.8 It remains to answer the second question. Tlaees few

1 additional processes involving the shifted interactions, such

where\;(0)=(U/2m) =, 1lv, . Sincex,(0)>0, itis margin-  aS the one shown in Fig. 11, Whi_ch feed back into the origi-
ally irrelevant and flows to zero. This implies that all the nal Cooper- and forward-scattering channels. The feedback

1

Uk

U
m(0>=(ﬁ§

Cooper interactions flow logarithmically to zero. into the forward-scattering channel is negligible for the same
To connect with previous two-dimensional treatments, wePhase-space reasons that render them exactly marginal for
may define a simple continuum limit: N—oc above. More subtle is the feedback into the unshifted
Cooper channel. Once shifted vertices are included, an inter-
cT—V( Kyi Kyj), (6.9 mediate sum ove# allows for nonvanishing contributions of
. the form
) S L (6.10 dey t
INW ) . Cij cons e -
N 4 T WZHHFTE& Cl a7 5(8)+---

which gives the RG equation (6.13
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VII. DISCUSSION

24 ky
> — The principal results of this paper are tNechain weak-

/I A=\\'R iR i coupling phase diagrams, described in detail for small and
/ ' \\L G-8)L large N in Secs. V and VI, respectively. We now conclude
(BIR_S, with a discussion of themplicationsof these results for both
oL iR T‘ ke ideal finiteN systemgaccessible via numerical calculations
\\ : / - and for true quasi-one-dimensional systems, where nonzero

i (DI / , (+3)R , interladder couplings need to be taken into account.
L\ N ( il iR
A. Numerics
FIG. 11. An example of renormalization af] from shifted Numerical calculations have the advantage that direct
vertices in Eq(6.13. comparisons with 1D models can be made. Recall that each

phase is characterized at the simplest level by its number of

in which the (shifted forward-scattering vertices feed back gapless charge and spin modes. These numbers can be mea-

into the Cooper channel even Bis— (Since 8, /N is fi- sured numerically in a number of ways. Most directly, the

nite in this limit). However, the phase space for these renor—lo"ve.St.'Iying charge gnd Spin excitation energies can be de-
malizations is considerably smaller than the processes ajermining by comparing ground state enerdies e.g., exact

ready included. Roughly speaking, these additional terms afagonalization or density-matrix RG methodsith par-
down by a factor ofA/m~ exp(—constxt/U) from the oth- ticles added or spins flipped. Such measurements can also be
{gfined to determine the energies for the lowest-lying excita-

tions with a definitgparity, which can be related to the band
mdices used here. Thetal numberof gapless modegoth
charge and spincan in principle be extracted alternatively
from the coefficient of 1/ (wherelL is the chain lengthin
the finite-size correction to the ground-state energy density.
The parity of the ground state and low-lying excited states
C. Instabilities for 1 <N <o are also accessible in weak coupling. Here we focus on the
C1S0 phase in a two-chain system as an example. The parity
operator of a two-chain system is

are restricted to a widthAky|n.<27. Furthermore, the
number of allowed terms continues to decrease as the R
proceeds to lower energies, since the band curvature
effectively grows under rescaling.

In the largeN limit, therefore, additionalshifted inter-
actionsare present at weak but finite couplings, but do not
modify the RG equations or their analysis as presented
above. AtN=oc, then, the 2D metal is marginally statife.

What occurs in weak coupling for large but finiké? Our \{vhereNz is the total number of particles in the antibonding

numerical results suggest that instabilities always persi : ; S
when feedback of forward-scattering interactions into th:band' The parity operatdt commutes with the Hamiltonian,

Cooper channel is included. However, this cross coupling i$0 thf'"t parity Is a go_o_d quantum ”“”."ber- If the grqund state
an O(1/N) effect, and so is extremely weak for large Is a linear superposition of states with odd/e\ns, it has

Specifically, these terms can only begin to affect the flowso.dd/ even parity. In th€1S0 phase, if total number of par-

once the Cooper interactions have themselves renormaliz &Ies is evenN, is even because electrons pair up in both
down to order IN. Since theN=cs flows are logarithmic ands. Therefore, the ground state has even parity. However,

this occurs only after a rescalifig= € ~ eV, so that the char- if the total number is odd, the analysis is complicated and

actersic energy gapsand crial temperaurgso any 1o 2 9P Gueston fer s sy, The partes of
paired states should obey y

tween the corresponding creation operators and parity opera-
tor. The Bosonic field operatop?, (p), which is the only
Ayse N, (6.14 gapless mode in th€1S0 phase, creates a density excitation
with momentap. If we expressN, in terms of the bosonic

fields
with a prefactor which is not determinable by such coarse

arguments.

This exponential decrease of the energy scale for pairing Na= \/5{92;)(”)_ O2p( =)},
is a signature of the rather robust stability of the generic N ) .
Fermi liquid. This weak-coupling result, however, does notlt IS €asy to show thati, (p) commutes with the parity
make any statement about pairing instabilities$ongre- ~ OPerator. This implies that the excited state hag th.e same
pulsive interactions. Nongeneric situations can, of coursg?arity as the ground state. In other words, the excitation car-
give rise to much larger energy scales, even at weak coJies even parity. Consequently, numerical calculations
pling. Of particular importance in highly anisotropic repul- Should find acharge gapin the odd-parity channel, despite
sively interacting systems is the spin-density-wave instabilihe exsistence of a gapless charge mode with even parity. A
ity. Because this requires nesting in weak coupling, thesimple test is the correlation function
associated interaction vertices have been thrown out in our
calculations. C(x)=(Ap(x)Ap(0)), (7.3

P=expimN,), (7.0

(7.2
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[ R A N A O :Z:i: {: -
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(a) (b)

FIG. 13. Lowest-order diagrams illustrating the generation of
interchain pair-hopping’ and pair-density interactiond” from the
e bare interchain hoppint and density interactiot)’.

FIG. 12. A 2D array of Hubbard ladders, with weak interladder

hoppingt’ and interladder density-density interaction. out the large wave vector modefi(|>A) on each ladder,

t’ andU’ will suffer small renormalizations, and other new
where AP(X)ECIacla(X)_CZQCZa(X)- Since interactions will also be generated. Two of these are of par-

PTApP=—Ap, C(x) has only odd-parity(relative to the ticular importance: two-particle hopping processes, in which

ground stateintermediate states, and should therefore deca?"’0 Fermions are simultaneously transferred from one ladder
0 a neighbor, and four-particle “pair-density” interactions,

exponentially C(x) ~e~2°r-Xv, . ) ) e , : ;
It is often more convenient to compute correlation func-"N Which fermions interact energetically on neighboring lad-
ers in a manner quartic in the density, but no charge is

tions rather than ground state energiggleed, in a Monte _ . . . .
Carlo calculation, this is essentially the only optiom this transferred. These will occur with a pair-hopping amplitude
He and a pair-density interactiod”, which are approxi-

case, the information that can be most reliably assayed is t
presence or absence of charge and spin gaps. If there is a trJi€ly
gap in either sector, the corresponding correlators are ex-

pected to decay exponentially in space. To probe the charge t"~(t")2U?/t3, (7.4
sector, the correlators of interest are those of the density
pZCLCa and the pair fieldA=c;c, . In the spin sector, the U”~(U")2U%t3, (7.5

corresponding operator is simply the sjg@n cz (a/2)cg. In

principle, a detailed examination of the Fourier content ofin the weak-coupling limit(see Fig. 13 For generality, we

the correlations should identify the Fermi momenta of theshall keepg” andU"” as independent parameters. Other inter-
gapless spin and charge modesen more information than actions are of course also generated, but are either of similar
their numbe), but this is quite difficult in practice due to type but much smaller magnitude than those already consid-

finite-size limitations imposed by the numerics. ered, or are higher-order and hence at least perturbatively
irrelevant.
B. Experimental consequences At this point, we proceed with the RG as before, working

Comparison with experiments is more challenaing. In ar_perturbatively int'/t, t"/t, U'/t, andU"/t. Like the original
. parison w P . 9ing. In Par yder parameters, these will also rescale and nonlinearly
ticular, it is inevitably the case that in any candidate com-

ound there is at least some residual coupling between la renormalize themselves and other couplings. The corrections
P N ) piing . 0 Egs.(3.7—(3.10 will, however, be negligible provided
ders as shown in Fig. 12. In this sense, all real materials ar. . :
. : : ; e values of the  running couplings
at best quasi-one-dimensional. It is to the features of sucf " ; " - .
. . . . . It),,t"1t), U’ 1t], U/t g;(1). Initially, this of course re-
guasi-one-dimensional ladder materials and the regime of va- . s i 4
1 ) o . quirest’,t”,U’,U"<U, but the constraints become stronger
lidity of the previous results in this context to which we now . X
. ; : . as we iterate to lower-energy scales. In particular, for the
turn. The discussion will be kept at a general level, using;; o
. : . ivergences encountered purely within the ladder RG to be
only scaling considerations. We take as a model a two- of

: . : essentially unchanged requires that the running interladder
three-dimensional regular array Nfchain ladders, the pre- , = .
. SO . ; couplings be negligible compared to ofsnce the relevant
cise geometry of which is not crucial, although special cases, \ier couplings become of order onat the scale

resulting in Fermi-surface nesting will not be addressed. ﬁ* . : .
; : : ; ~ct/U, wherec is a constant. Simple power counting
microscopic electronic model for such an array would in-

volve the hopping amplitudes and interactions both on and"®®
between the ladders. We will assume that the former are of

the Hubbard form studied in the previous sections. The latter ﬂ(i) - ﬂ (7.6
generically introduce two new energy scales: an interladder al\t t’ '
hopping amplitude’ and an interladder density-density in-

teractionU’ (Fig. 12. For now, we assume thatt least 9 [t £ 2

t'/t,U'/t<1. E(T)%(ﬂ , (7.7)

1. Weak interactions

To proceed, let us imagine repeating the weak-coupling J (U’)%(U_’)z (7.9
RG with these additional interactions. Upon first integrating al ' '
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T\ _ZT’ (7.9  we must now address the physics at energy scales h&low
To do this, we use a different RG rescaling, using standard
sincet’, t”, U’, andU” represent two-, four-, four-, and sine-Gordon techniqué$.This gives the linear flow equa-
eight-fermion operators. The hoppingt thus grows expo- tions,
nentially, the two-particle processd$/t,U’'/t scale only

J ( U”) u” To determine the nature of the ground state of the system,

logarithmically (are margingl and the pair-density interac- aJ., 1) 2 i
tion U” is strongly irrelevant. The 1D RG results are then U 27 5|V OLD) S (UYL, (7.19
valid up to the instability scal&* provided
' _ J
t'<te Ct/U,_\,A’ (71@ ﬁU”m(Z—2K)U"+O[(t")2,(U”)2]. (71@
II<
v=u, (7.19 Note that the Josephson couplitigis relevant forK >1/4,
U'=u (7.12 while the pair-density interactions are relevant 1.
’ There is therefore no region of stability for truly one-
U"<te?VVU~t3/A2 (7.13  dimensional behavior, regardless ¢f. Most probably

] ) 1/2<K <1, andboth perturbations are relevant. If both the
whereA is the energy scale of the gap in the 1D sysfeote  gimensionless bare interactions are wekt,U"/(t£2)<1,

that factors of {/U) in the prefactor are not captured within thep the nature of the instability is determined by the inter-
a one-loop RG treatment, so this is a rough estimate and n@{ction which renormalizes to largerder ong values first.

a strict asymptotic stateméniThe requirement of <A has  gjmple algebra thus predicts that pair-tunneling dominates
a simple physical interpretation: fot=A, it is favorable for o

singlet pairs to break up to reduce their kinetic energy, de-
stroying the paired state. tr\2-2Kk gy
Provided Egs.(7.10—(7.13 are satisfied, the strong- ( 2(@
coupling analysis of Sec. IV holds, and the paired bands are
adequately described by the single collective phase modgnd the ladders phase lock into a bulk SC state. In the oppo-
¢*" (and its conjugat®® ™). For concreteness, we now spe- site limit, pair-density interactions dominate and lead to a
cialize to the two-chain case, where there are no additiongdajred-insulator or charge-density wa(@DW) state. Note
bands. The single-particle tunneling operator conjugaté to that for K close to 1, the SC state dominates for all but
then involves exponentials of the dual fieldg, [c.f. Eq.  extremely smallt”. Generically, though, a$” is reduced
(4.28], which fluctuate wildly and are exponentially sup- pelow the limit of Eq.(7.17, the system makes a transition
pressed(strongly irrelevant Similarly, the density-density o the CDW state.
interactionU’ is also negligible due to strong fluctuations of | et us now use the estimates in E¢&.4) and (7.5 to
the relative-displacement mode’~. The remaining two determine the bulk phase diagram for the two-chain system
couplings(t” and U”) survive, and have simple interpreta- in the weak-coupling limit. As’ is decreased, the pairing
tions. The pair-hoppingt” simply hops a single boson be- instability occurs first, according to E¢Z.10, whent’ <A.
tween neighboring ladders, and is hence like a Josephsqust below this scale, it is straightforward to show that this
coupling. The pair-density coupling)” is effectively a instability always leads to a SC rather than CDW, provided
density-density interaction between bosons on neighboring)/t<1, as supposed. This is because Eql7 can be re-
ladders, which are created by the pair fields of Sec. IV. Inwritten, using Eqs(7.4) and (7.5 and the scaling of the

2-1/(2K)

; (7.17)

t

terms of the phases, the effective Hamiltonian is dimensionless coherence length t/A, as
Kov v / / (1—1/4K)/(1-K)
_ p+y2 p+y2 t t [JU'UA
Het fdx[; { o (PR + S (057 = | , (718

and [1—-1/(4K)]/(1—K)=1 for K>1/2. Only for much
smallert’ does this inequality cease to hold and the system
go over into a CDW state. A schematic zero-temperature
phase diagram for fixed small/t with these features is
' (7.149 shown in Fig. 14.

Supposing the system is in the SC phase at zero tempera-
where the indexn labels the different ladders, and we haveture, what is the expected phenomenology as the temperature
taken the cutoff scald =1 for simplicity. The factor o2 is varied? In weak coupling, we expect several large cross-
in the pair-density interaction reflects its irrelevance at theover ranges. Fof> T~ A, the system acts approximately
noninteracting fermion fixed point, and results directly fromin a noninteracting 1D fashion, with small logarithmic cor-
integration of Eq(7.9). As discussed in Ref. 13 the stiffness rections which are precursors of the instability to be encoun-
K is not exactly determinable within the weak-coupling RGtered forT=T,,,. Below that temperature scale pairing ef-
for generic parameters. However, various arguments suggefgctively occurs, and measurementée.g., magnetic
K>1/2,* and, in particulark ~1 close to half filling in the  susceptibility or electron tunnelifgprobing single-particle
two-leg (N=2) laddet* at weak coupling. and spin excitations should exhibit activated behavior. How-

-
(nn')

U/I
g cos/m(65" —6°))

t" cosym (¢t — )
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2. Beyond weak interactions

Fermi Liquid Although the analysis of this paper has assurhedt,

A many two-chain models have now been convincingly dem-
onstrated, numerically and in some limits analytically, to dis-
play spin gaps when weakly doped even for relatively strong

Superconductor interactions(e.g., U=t). In fact, most aspects of the phe-
nomenology in this conclusion are expected to continue to
hold even in this limit, provided that thaterchaincouplings

0 CDW are small,U’,t"<t. In particular, on physical grounds, we

0 U expect a transition to a Fermi liquidor at least two-
dimensional behavigffor t’=A. Fort’ <A, interchain cou-

FIG. 14. Schematic zero-temperature phase diagram in thplings essentially never break pairs, and the physics will still

t’-U’ plane for an array of coupled ladders. be well-described by Eq7.14 at these and lower-energy

scales. Of course, in strong coupling the parametém=snd

ever, although pairs form &, superconducting coher- U_” cannot be_ estimated using the Weak-couplir]g diagrz_ims of
ence sets in only at a lower temperatuFe,. Fig. 13 leading to Eqgs(7.4) and (7.5. In addition, it is
To see this, we continue rescaling after reachihgi.e., difficult in strong coupling to determink: recent numerical

to energies below the spin gap. We can now rescale furthefimulations withU/t=8 suggest values df~1/2,** some-

as indicated above, until the rescaled temperature grows f¢hat smallefand hence less superconduclitigan in weak

the order of the energy cutoff, at which point the zero-coupling. With these caveats, the remaining phenomenology

temperature RG fails. Having already rescalettte In(t/A), ~ Should continue to hold, both for the zero-temperature phase

the effective temperature has already been increased f§agram and for the crossovers and transition$-a0.

(t/A)T, but forT=<A, this is still small relative to the cutoff

t, and we can rescale further by the fackor A/T. At this ACKNOWLEDGMENTS

point the temperature is on the order of the cutoff, and ther-
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mal smearing is sufficient to remove any remaining quantum . : )
9 y g4 éersatlons. This work has been supported by the National

coherence at lower energies. The corresponding lengti”. :
; cience Foundation under Grant Nos. PHY94-07194, DMR-
Ly~ v/T represents a quantum to classical crossover scale 400142, and DMR-9528578.

temperaturd. Fluctuations of larger size behave essentially
classically(as can be shown explicitly by restricting the res-

caled effective action to the zero Matsubara frequency APPENDIX A: CURRENT ALGEBRA
modes and can be studied using the rescaled clasgotaise Current-algebra methods allow, among other things, an
only) model algebraiccalculation of the one-loop RG equations. Here we
give a very terse description of this method. All currents are
K defined in terms of the fermion fields, i, (i=1,2,... ,N),
IBHcIass:J dx{ ; > (Oxh™)? which obey the operator products,
8ii 0
t" (A 2—1/2K _ t i aB+
s ¢ (?) cosVm( " — BT Uria(X T Pj6(0.0~ 5 7= +0(1),
(nn’)
55,
(719 Mo D00~ S5 v0(), (A

1
This classical model has only a single dimensionless co
pling constant, as can be seen by rescalngx/K. The
superconducting transition must occur when this dimension
less value is order one, giving the critical temperature

L\7\/herezi=vi7-—ix. The operator products should be under-
stood to hold when two pointsx(7) and (0,0 are brought
close together. We therefore only need to keep the singular
terms as replacement within correlation functions. As an ex-
ample, consider the produdf;J,,. Performing all possible

{7\ 2K/(4K=1) contractions gives
Tsc~A<T) ) (7.20

35 (X, 1) Im(0,0)~ oty gt

valid within the SC region of the phase diagram away from o
g P g y 5im5jl+_27;_n;.:wjalrlll1-a:
|

the zero-temperature quantum SC-CDW transition. Note that - 47722izj

for t"<t, there is a large temperature rangg<T<T

over which the system has a “pseudo-gap-like” behavior. +ﬂ.d/¢ G130 dim
The difference between the exponer€/24K—1) and 1/2 27rz; et me siiEdme

(the classical result for weakly coupled 20y chaing rep- 5
resents a suppression of the transition temperature due to ]

im
S s TR, W L 1 P
quantum fluctuations. 2mz;"™ 2wz "N UM 4n?z7
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+0(1).

APPENDIX B: RG EQUATIONS
OF UMKLAPP INTERACTIONS

We can compute the full set of operator products in a similar

way. The ones needed are

For PBC’s, when the number of chains is even, we need
to study the transverse umklapp interactions in addition to

a b 1/2 5ab 6” Sim the forward and Cooper vertices. We then obtain additional
Jiidim~ 4?7,z Simdji + 2wz, "™ 2wz, Pyl terms on the right-hand sides of E¢8.7)—(3.10. Denoting
: : these bysfj; , oc;j, one finds
iGabC 5“ 6im
2\ 2z It 2 ) (A3) -
4 e 5fﬁ §|12 Qi k{(u 2}

Sil S,

Idm~ 59— 5.3 (A4) —{(UZ)2+ F(u2)?

27TZ]' im 27TZi o

where the coordinates of two operators on each left-hand
side are consecutivelyx(7) and (0,0). Similar forms hold
for the left-moving currents, but witg—z]" .

The RG equations can be obtained very simply from the
operator product expansions. We use the functional integral
formulation which results in the Euclidean action,
Sg=[dx drH, and the partition function,

- [ tduliaye = (A5)

To perform the RG, the exponential is expanded to quadratic
order inH. A typical term takes the form,

J (JRii(2) 3 (2)IRU(W) (W), (AB)

where [, denotes a four-dimensional integral over the two
complex planeg andw. As in any RG, we wish to integrate

+ 2 {UEHH U, (D)

5f|(]- 5I_]2 @i, k{2U u|k %(uilk(r)z}

—{2ufPuZ7+ (Ui}

+2 {2uPut—3(u*H?, (B2)
Y J i iJ
1 lo 2, lo 20
sch = &{(uH2+ H(uH%+2(u Jﬂu% f5U U,
(B3)
1 10' lo
sci = &{2uPu— 3 (usH)?
+2(u2£u1"+ AT T (B4)

ijiJ i iJ

out the short-scale degrees of freedom to derive the effectivé/e also need the RG equations for the umklapp couplings
theory at long wavelengths and low energy. Here this is acthemselves, which are

complished by considering the contributions to EA6)
when the two pointz andw are close togethefnear the
cutoff scalg. We make use of the operator product expansion
to integrate out the short-scale degrees of freedom, which
gives

(f abc ade 1 1 J
2w 27(Z— W) 27(ZF —w}) i -
(A7)

We choose a short distance cutaff A~ in space, but none
in imaginary time. For a rescaling facttr, we must then
perform the integral,

| f q f@ d 1 Inb
L= X — ,
U Jacixi<ba ) o T(Zw)zziz}‘ 7(vi+v;)
(A8)

bution to the RG equation after integration is

(f7)?
—_ mdleJR“JL” y (Ag)

_(quulj +q”

=2(cm +cm1”——

where pll—f
wherez is the relative coordinates in EGA8). The contri-  a=p,o.

1 — l 1 2
p (qu p+16q|a]- |JG-)—"_2(C#'I!)—’_16(:4t‘I )a

(B5)
%qi‘}uilj”)—(fi‘%Lf;’ﬁuﬁ"
+2(c—uz”+c 2f’——c—u , (B6)

2’3—2(c—u +%C.‘T—ui1-"
+2(pfudf + f5piui’), (B7)

llr)+2(pllull +p(r 2p

—3pjui?) —2f7uf” (B8)

IJ ’
—f{ and qﬁzzaijczf;+(2fi"1——fi‘j——ffﬁ,

APPENDIX C: INITIAL VALUES OF THE COUPLINGS

Upon changing to the band basis, the on-site Hubbard
repulsion is transformed into a set of interactions between

wheredl=Inb is the logarithmic length scale. This term, the different bands. Using Eq.3), we have

when reexponentiated, renormalizﬁ% and gives the first
term in Eq.(3.8). All other terms in the RG equations can be
carried out by similar steps.

—Hine=— UE m(x)cm

|1(X)Ci¢(x)5 (C1
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TI=4Cr=2UA 7, C10
——uY Aijki 3¢?T¢n¢lll/fuh . ! ! ' ( . )
ikl wherer=—i. From Eq.(2.4), one can compute these initial
values. These are

where Ajj =2 ShiSniShiSmi- (C2 2U

m f" 4f"—W (C1))
Consider first OBC's. After linearizing around the Fermi

points, each operator is split into left and right moving U

pieces. In terms of these, Eﬁ:4’5ipj N (C12

If the number of chains is even, we also need the initial
values of the transverse umklapp couplings. In fact, the ini-
tial values are the same as those for the forward and Cooper

|nt UE 2 AleI ‘r//PllTwPZJT

ijkl Pj==

-l (= P1Kg1+ Pokgp— Pakpg+ Pakes)
X¢P3KL¢P4H'G 1KkF1+ Pokpo—Pakpat Pakea)

couplings:
(C3
. . . Gl ggie_2Y (C13
Now we are ready to compare the coefficients of interactions ij i TN
in Egs.(2.29, (C3). For example, comparing the coefficient
in front of the termyfy, i ¥, ¥i1 yields the relation S 1V
1 ~0’_ —
2 Fij = UAsjji = Ujj - (C4 Note that, in all case, the initial values of the rescaled cou-
. . + t ) plings in Eqs.(3.7)—(3.10 (without the tilde$ are obtained
Comparing the coefficients afr;; i1 Yui, gives by multiplying the factor 1#(vi+v)).
—(fP 4+ 1oy =
(Fi+afi)=—UAu; €9 APPENDIX D: REPRESENTATIONS
We can then solve for the initial values of the forward cou- FOR THE KLEIN FACTORS
lings. . . . .
ping The Klein factors defined in Ed4.9) satisfy the commu-
fa 4fP 2UBy;, tation relations,
, , {Miar Mgt =26 0ap- (D1)
where BiiE; | Sl I Sl (©8  In order to bosonize the relevant interactions in Eq18,
) ) ) we need to prove that the products of the Klein factors in
A straightforward computation gives different terms commute with each other. Then, they can be
1 1 simultaneously diagonalized with a specific choice of repre-
Bij:m 1+§5i+j,N+1+§5i,j . (C7) sentation.

The products of the Klein factors for the first term in Eq.

By similar comparisons, we obtain the initial values of the (418 are
Cooper couplings,
P Ping 41 7d) Td| Tdi = 7d) Tdt Tdi 7d, = L. (D2)

Cii=4cfi=2UA;; =2UB;, (€8 For the second term, the Klein factors we need are
where in the last step we use the fact that the transformation _ _ (D3)
matrix S; in Eqg. (2.5 is real for OBC's. "ai Mal o) b1 = Tal Tat o1 7o) = 9-

For PBC's, similar results can be obtained by this methodA simple computation giveg?=1. Thus, all the products of
Taking care to note the different conventions for left andKlein factors in the above equations commute with each

right movers for PBC'§see Eq(2.17], the initial values of  other. It is therefore consistent to choose the trivial represen-

the forward and Cooper couplings are tationg=1. For the cases of interest, then, no special signs
or auxiliary fermion fields are necessary in the bosonized
To=4ff =2UA; 7}, (C9  Hamiltonian.
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