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Delocalization transition via supersymmetry in one dimension
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We use supersymmetric~SUSY! methods to study the delocalization transition at zero energy in a one-
dimensional tight-binding model of spinless fermions with particle-hole symmetric disorder. Like the
McCoy-Wu random transverse-field Ising model to which it is related, the fermionic problem displays two
different correlation lengths for typical and mean correlations. Using the SUSY technique, mean correlators are
obtained as quantum-mechanical expectation values for a U~2u1,1! ‘‘superspin.’’ In the scaling limit, this
quantum mechanics is closely related to a 011-dimensional Liouville theory, allowing an interpretation of the
results in terms of simple properties of the zero-energy wave functions. Our primary results are the exact
two-parameter scaling functions for the mean single-particle Green’s functions. We also show how the Liou-
ville quantum-mechanics approach can be extended to obtain the full set of multifractal scaling exponents
t(q), y(q) at criticality. A thorough understanding of the unusual features of the present theory may be useful
in applying SUSY to other delocalization transitions.@S0163-1829~97!03143-3#
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I. INTRODUCTION

Delocalization transitions control the physical behavior
a number of electronic systems, including dirty semicond
tors, metals, and two-dimensional electron gases in the q
tum Hall regime.1,2 In three dimensions, such critical poin
occur at the boundary between a diffusive metal and a lo
ized insulating phase. In two or fewer dimensions, howev
the metallic state is generally unstable~‘‘weak localiza-
tion’’ !, so that delocalization transitions are typically isolat
conductingpointsseparating two localized phases. The p
totypical example is the transition between plateaus in
integer quantum Hall effect~IQHE!: Within a model of non-
interacting electrons, the localization length in each disord
broadened Landau band only diverges at one isola
energy.2 Intense experimental effort has focused on
quantum Hall plateau transitions, and has led to an unp
edented characterization of the universal scaling behav
Indeed, from the experimental point of view, this syste
probably provides the best example of random quantum c
cal behavior.

Theoretically, however, such systems still present a gr
puzzle, in which but a few pieces are in place. Some ana
cal progress has been made for metal-insulator transition
d521e dimensions.3–5 But in two dimensions, despite
set of simple noninteracting Fermion models that desc
the IQHE plateau transition, a controlled analytic treatm
is sorely missing. Efficient numerical methods have been
veloped to investigate these models, and provide a numb
significant empirical observations.6,2 In both these cases
scaling is manifest in the vicinity of the critical point, with
diverging localization lengthj;uM u2n, whereM measures
the deviation from criticality. For the IQHE,n'7/3. For
distances shorter thanj, the single-particle electronic wav
functions @c(x)# are extended, but exhibit complexmulti-
fractal scaling.2 In particular, each disorder-averaged m
ment scales with an independent pair of critical expone
which we denote ast(q) andy(q) for the qth moment:
560163-1829/97/56~20!/12970~22!/$10.00
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@ uc~x!c~0!uq#ens;L2d2t~q!uxu2y~q!. ~1.1!

Here the square brackets denote an ensemble average
disorder configurations,L is the linear extent of the system
and uxu!L is assumed. The scaling for essentially all phy
cal quantities can be formulated in terms of the set of ex
nentsn,t(q), andy(q) ~a simple example is given in Ref
7!.

Supersymmetric~SUSY! techniques offer the tantalizing
possibility of a field-theoretic treatment of such delocaliz
tion transitions. SUSY has a long history in disordered el
tronic systems, where it was first introduced by Efetov
describe diffusive metals.8 The SUSY nonlinears model,
when linearized, provides aGaussian or freefield descrip-
tion of a diffusive metal. Expansions about the metal
phase ind521e dimensions give a fixed point that can b
extrapolated to describe a three-dimensional~3D! metal-
insulator transition. However, isolated delocalization tran
tions in d<2, such as in the IQHE, do not afford the luxu
of expanding about a diffusive metallic phase. Recen
Zirnbauer and others have used SUSY to map the Chal
Coddington network model for the IQHE transition into a
interacting111 dimensional field theory—a supersymmetr
antiferromagnetic spin chain.9–11 Unfortunately, this model
has resisted all attempts at an analytic treatment, despite
essentially complete solution of a related supersymme
ferromagneticchain that describes transport in a dirty 2
chiral metal.12 Falco and Efetov have recently applied th
SUSY nonlinears model in two dimensions to extract mu
tifractal wave function correlations, but in a crossover
gime rather than at an isolated delocalization transition.13

Some analytic progress has been made using a toy m
of Dirac fermions in a random vector potential~RVP!, which
exhibits a 2D delocalization transition.14–17 This model has
the simplifying feature that a zero-energy~critical! wave
function can be found exactly for any realization of the d
order, which enables analytic study of wave-function mu
fractality. A number of different formulations are possibl
but a particularly intriguing approach involves mapping
12 970 © 1997 The American Physical Society
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56 12 971DELOCALIZATION TRANSITION VIA SUPERSYMMETRY . . .
2D Liouville field theory,17 which has been extensivel
studied in string theory. Away from criticality, however, fa
fewer results are known, and at present SUSY techniq
have not been successful in this regard.

In this paper, we study a one-dimensional tight-bindi
system of spinless fermions with random hopping matrix
ements,

H52(
n

tn~cn
†cn111cn11

† cn!. ~1.2!

Here the c8s are canonical Fermion operators satisfyi
$cm ,cn

†%5dmn , and the random hopping strengthstn can be
taken as positive without loss of generality. The continu
limit of this model is in fact a one-dimensional analog of t
2D RVP theory, and many of the same properties obtain.
exact zero-energy wave function is known for each reali
tion of the disorder. Critical singularities are present in t
single-particle density of states as in the 2D RVP model~but
in contrast to the IQHE transition!. Indeed, for the 1D ran-
dom hopping model the density of statesdivergesat the band
center.

There has been considerable prior work on the 1D tra
tion in the random hopping model, primarily focussing
properties derivable from the mean local Green’s functi
the mean density of states and the typical localization len
This work was recently summarized in Ref. 18. Employing
real-space renormalization group~RG! method, D. S. Fisher
~DSF! has obtained the spatial dependence of mean s
correlation functions in several closely related 1D mode
the McCoy-Wu random transvere field Ising model and r
dom Heisenberg andXX spin chains.19,20 In this paper, we
extend the above analyses using SUSY methods to obtain
spatial dependence of theexactcritical and off-critical scal-
ing functions for the mean fermion Green’s function, su
marized in Eqs.~5.31!–~5.40! ~unpublished work by DSF
using real-space methods21 corroborates our results!. Our re-
sults are also reminiscent of forms obtained by Bouch
et al.22 for two-time correlation functions in the mathema
cally similar problem of a 1D random walker in a rando
potential, though the precise relation to our calculation
not been investigated. An important feature not present in
local properties is the emergence of amean localization
length that controls the spatial decay of the average Gre
function,

je;u lneu2, ~1.3!

with e the energy from the center of the band. This length
much longer than thetypical localization lengthj̃ e;u lneu,
found previously by many authors. This important distin
tion between typical and mean correlation lengths has b
emphasized by Fisher in his analysis of 1D random s
chains.

In contrast to the IQHE transition that is mapped into
SUSY spin chain, the SUSY formulation of the 1D rando
hopping model is equivalent to the quantum mechanics
singlesuperspin, with ‘‘Hamiltonian’’

H52vJ z12m0J x24g~J x!2. ~1.4!
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The superspin operatorsJ are defined in Sec. III. This sim
plification enables us to systematically carry through
analysis from start to finish to obtain theexactcritical and
off-critical scaling functions. A key motivation for doing thi
was to investigate in detail the different elements that aris
a SUSY formulation of a delocalization transition. Indee
the ‘‘spin’’ Hamiltonian in Eq. ~1.4! has many unconven
tional properties. It is non-Hermitian, requiring a distinctio
between left and right eigenstates. The spin operators th
selves are in fact elements of the noncompact superalg
U~2u1,1!. The noncompactness of the SU~1,1! subalgebra is
manifest in the representations of the spin operators wh
are infinite dimensional~i.e., the ladder of discreteJ z eigen-
states is infinite!. As demonstrated in Secs. IV-V, near crit
cality the system explores the far reaches of this manifold
spin states, in a manner that can be described byLiouville
quantum mechanics, which was recently introduced in stud
ies of the zero-energy eigenstates in Ref. 23. Furtherm
the SUSY Hamiltonian isdefective, i.e., the ~right! eigen-
states do not span the Hilbert space. To surmount this d
culty requires the definition of ‘‘pseudoeigenstates’’ to co
plete the eigenbasis. A knowledge and familiarity of the
features will likely be crucial to the success of future wo
applying SUSY to other~e.g., 2D! critical points.

As a major function of this paper is pedagogy, we ha
attempted to present the material in enough detail to al
the reader to appreciate the technical elements of the ca
lations. Section II discusses the model, its relations to v
ous random spin chains, the continuum limit, and the r
evant single-particle Green’s functions. In Sec. III, w
describe the mapping to quantum mechanics, derive
SUSY Hamiltonian and its~super!symmetries, and detail the
organization of states into superspin ladders and superm
tiplets. The exact ground state and a class of excited st
needed to compute the desired correlators are found in S
IV and V, leading to the final results in Eqs.~5.31!–~5.40!.
Last, in Sec. VI we pursue the Liouville quantum-mechan
formulation, extending the treatment of Ref. 23 to determ
the full set of multifractal exponents,

t~q!50, y~q!53/2. ~1.5!

II. MODEL AND SYMMETRIES

A. Lattice model and continuum limit

We begin with the free-fermion model, Eq.~1.2!. We as-
sume thattn consists of a large uniform partt and a small
random piecedtn . Under a Jordan-Wigner transformatio
this model is equivalent to a random exchange spin-1/2XX
chain,

HXX52(
n

2tn~Sn
xSn11

x 1Sn
ySn11

y !, ~2.1!

whereSn5sn/2, with s the usual vector of Pauli matrices
For uniform hopping the single-particle states are pla

waves, andH describes a band at half filling, with zer
Fermi energy, and two Fermi points atkF656p/2. With a
small random component in the hopping strengths,
single-particle states will be localized away from the ba
center, but due to a special particle-hole symmetry~see be-
low! the localization length diverges upon approaching z
energy. The density of states is also singular at zero ene
To study this delocalization transition, it suffices to focus
states near zero energy. Provideddtn is small compared to
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12 972 56LEON BALENTS AND MATTHEW P. A. FISHER
the band widtht, it is legitimate to take a continuum limit
retaining a narrow shell of pure energy levels near the
Fermi points.

To this end, we decompose the Fermi fields as

cn5~ i !ncR~n!1~2 i !ncL~n!, ~2.2!

and assume thatc varies slowly withn. To take the con-
tinuum limit we replacen by a continuous coordinatex, and
approximate discrete differences withx derivatives. For the
fermion hopping term this gives

cn
†cn111cn11

† cn; i @cR
†]xcR2~]xcR

† !cR2~R↔L !#

22i ~21!n@cR
†cL2cL

†cR#. ~2.3!

For uniform hopping,tn5t→dx/2, the second term is rap
idly varying and can be ignored, giving the expected~pure!
Hamiltonian,

H052E dx@cR
† i ]xcR2cL

†i ]xcL#, ~2.4!

which describes right and left moving modes at the t
Fermi points.

A small random hoppingdtn causes scattering betwee
the plane-wave states. The important Fourier componen
dtn are at p, since these cause backscattering betw
the right and left movers. We thus decomposedtn
→(21)nm(x)dx/2, wherem(x) is assumed slowly varying
From the second term in Eq.~2.3!, this leads to a~random!
backscattering term in the continuum limit:

H152 i E dxm~x!~cR
†cL2cL

†cR!. ~2.5!

Employing a spinor notation,c5(cR ,cL), the full con-
tinuum Hamiltonian,Hc5H01H1 takes the form

Hc5E dxc†hc, ~2.6!

with a single-particle Hamiltonian,

h52 isz]x1m~x!sy. ~2.7!

It is convenient to decompose the functionm(x) into a
uniform and random piece as

m~x!5m01m̃~x!, ~2.8!

where @m̃#ens50, with the square brackets denoting an e
semble average. Nonzerom0 corresponds to a~uniform!
staggering in the hopping,dtn;(21)nm0, which opens a
gap in the pure spectrum about the band center. In theXX
spin chain, nonzerom0 corresponds to a dimerization in th
bond strengths, and the gap is a spin gap due to singlet
mation across the stronger bonds. Bothm0 and the energye
are tuning parameters that take one away from the delo
ized critical point.

B. Symmetries and delocalization

The lattice free fermion Hamiltonian, Eq.~1.2!, is invari-
ant under the canonical transformation,
o

of
n

-

r-

l-

cn→~21!ncn
† , ~2.9!

due to time-reversal and particle-hole symmetries, pres
even with random hopping strengths. As a consequenc
this symmetry, the single-particle wave functions can be c
sen to be real~time-reversal invariance! and come in conju-
gate pairs with energy6e. Specifically, for a given eigen
function,fe(n) at energye, there is a partner eigenstate wi
energy 2e, given by f2e5(21)nfe(n). At zero energy
one thus anticipates special properties, as discussed bel

In the continuum, the symmetry Eq.~2.9! becomes an
invariance ofHc under the canonical transformation,

ca→ca
† , ~2.10!

for a5R,L. This symmetry restricts the allowed form of th
single-particle Hamiltonianh. Specifically, h cannot have
terms~with no gradients! proportional tosx,sz or the iden-
tity. A generic random 1D tight-binding fermion model, i
which the density of states is regular and all the eigenst
are localized, wouldnot be particle-hole symmetric, and ad
ditional terms, such as a spatially randomsx term, would be
present in the continuum Hamiltonian. The above symme
is clearly crucial for the existence of delocalization at t
band center,e50.

An ~un-normalized! extended state at zero energy can
fact be directly extracted from the continuum wave equati
hF(x)50, where F is a two-component wave function
Writing

F~x!5f6~x!~61
1 !, ~2.11!

the scalar functionf(x) satisifies

@]x6m~x!#f650. ~2.12!

This can be integrated to give

f6~x!}e6*xdx8m~x8!. ~2.13!

For randomm(x), with mean zero, this wave function i
clearly not exponentially localized. If the random functio
m(x) has short-ranged spatial correlations, the logarithm
the wave function undergoes a 1D random walk. For
Gaussian distribution ofm(x) the ~un-normalized! wave
function is log-normally distributed. This wave function is
one-dimensional analog of the exact zero-energy wave fu
tions written down for 2D free fermions described by a Dir
theory with random vector potential. As in the 2D case,
wave function is very broadly distributed, and its correlatio
can be characterized by a multifractal scaling descripti
We return to a discussion of the multifractal characterist
of this wave function in Sec. VI, where we compute t
multifractal spectrum explicitly, following recent work b
Shelton and Tsvelik.23

Away from criticality, for nonzerom0, the zero-energy
wave functions in Eq.~2.13! are exponentially growing and
decaying functions,f6(x);e6m0x. While they are non-
normalizable in infinite space, for a finite system they d
scribe solutions that decay exponentially into the syste
with an associated localization~or correlation! length,
j̃ 51/m0. The critical exponent, defined via
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j̃ ;m0
2 ñ , ~2.14!

is ñ 51. As emphasized by DSF, in addition to the lengthj̃
that describes the decay of a typical~unaveraged! correlation
function, there is another divergent lengthj that describes
the decay of ensemble-averaged correlation functions. C
sistent with arguments by DSF, we find below that this lat
length diverges more rapidly with an exponentn52.

Two similar lengths may be defined by approaching
critical point at finite energye, but with zero massm050.
Using the Thouless construction from the local Green’s fu
tion, previous authors have found a~typical! localization
length j̃ e;u lneu. In constrast, employing a real-space R
approach, DSF has shown that mean correlation funct
decay with a longer length, which varies asje;u lneu2.

Another important characteristic of the above exact ze
energy wave function is that it isnodeless, for each and
every realization of the random potentialm(x). Because of
this, critical properties of the 1D localization transition
e50 are contained in the ensemble averaged single-par
Green’s function, in contrast to the conventional Anders
transition in higher dimensions.

Below we briefly consider symmetry properties of t
single Fermion Green’s function, and obtain expressions
the continuum limit. The next sections are devoted to eva
ating the ensemble averaged Green’s function using su
symmetry methods.

C. Green’s functions

Consider the single fermion Green’s function at energye,
defined as

G~n,n8;e1 iv!5 i E
0

`

dtei ~e1 iv!t^vucn~ t !cn8
†

~0!uv&,

~2.15!

where uv& denotes the fermion vacuum, an
c(t)5eiHtce2 iHt withH the lattice Hamiltonian. Herev is a
small imaginary part to the energy. In practice below,
will take the real part of the energy to be zero,e50, calcu-
late G( iv) for real v, and then extract the energy depe
dence via an analytic continuation.

The spectral decomposition ofG in terms of the exact
eigenstatesfe takes the form

G~n,n8; iv!5(
e

fe~n!fe~n8!

e2 iv
. ~2.16!

Using the symmetry propertyf2e(n)5(21)nfe(n), one
can readily show thatG(n,n8,iv) is real and even inv for
n2n8 odd, and purelyimaginary and odd inv for n2n8
even. For example, withn2n8 even, Eq.~2.16! can be re-
written as

G~n,n8; iv!5 (
e.0

fe~n!fe~n8!
22iv

e21v2 . ~2.17!

The Green’s function, as defined in Eq.~2.15!, can be
reexpressed in terms of the continuum fermion fieldsc(x)
by employing the decomposition, Eq.~2.2!. For n2n8@1,
n-
r

e

-

ns

-

le
n

in
-
r-

-

the discrete separation can be replaced by a continuous
tancex2x8 ~lattice constant equal to one!. One finds

G~n,n8; iv!5 i n2n8(
a,b

~21!an1bn8Gab~x,x8; iv!,

~2.18!

with a andb running over the two spinor components, d
noted as either~R,L!, (0,1), or (↑,↓). HereGab is defined in
terms of the continuum fermion fieldsc as

Gab~x,x8; iv!5 i E
0

`

dte2vt^vuca~x,t !cb
†~x8,0!uv&,

~2.19!

with c(t)5eiHctce2 iHct and Hc the continuum Hamil-
tonian. This continuum Green’s function can alternatively
expressed in terms of the single-particle Hamiltonian,h in
Eq. ~2.7!, as

Gab~x,x8; iv!5^x,au
1

h2 iv
ux8,b&, ~2.20!

where ux,a& denotes a fermion at positionx with ‘‘spin’’
componenta.

Of interest is the behavior of the single-particle Gree
function upon ensemble averaging over disorder realizatio
To be concrete, we take the random functionm̃(x) to be
Gaussian with

@m̃~x!m̃~x8!#ens52gd~x2x8!. ~2.21!

Ensemble-averaged Green’s functions, which we denote w
an overbar, become translationally invariant:

G~x; iv!5
1

N(
n51

N

@G~n1x,n; iv!#ens, ~2.22!

with N→` the number of sites in the tight-binding lattice
From Eq. ~2.18!, this is related to the averaged continuu
Green’s functions,

Ḡab~x; iv!5@Gab~x,0;iv!#ens, ~2.23!

via

G~x; iv!5 i x(
a

~21!axḠaa~x; iv!, ~2.24!

with the separationx either even or odd.
The mean density of states for the original lattice ferm

ons can be written

r~e!5 lim
v→0

1

p
ImG~x50;e1 iv!. ~2.25!

We shall also be interested in the spatial dependence of
correlation function,

C~x,e!5
1

p
ImG~x;e1 i01!. ~2.26!

This function is expected to decay exponentially with a me
correlation lengthj. Due to the delocalized zero-energ
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wave function~at m050), j(e) should diverge upon ap
proaching the band center,e→0.

In Sec. III we will construct a generating functional th
can be used to extractḠ. Our strategy will be to calculate
Ḡ(x,iv) for real v, and then perform an analytic continu
tion to extract the density of states andC(x,e).

D. Related random models

As noted above, under a Jordan-Wigner transforma
the lattice free-Fermion HamiltonianH in Eq. ~1.2! is iden-
tical to a random exchange spin-1/2XX chain. Some prop-
erties of the spin chain can be extracted from the ferm
density of states, specifically the specific heat and
z-component magnetization̂Sz& in response to a magneti
field along thez axis. Unfortunately, spin correlation func
tions are notoriously difficult to extract from the free
fermion representation, due to the nonlocal relation betw
spin and fermion operators~Jordan-Wigner string!. Never-
theless, one expects that the correlation decay length o
fermion Green’s functions will also control the decay of sp
correlations.

As shown originally by Shankar and Murthy, a seco
spin model that is equivalent upon fermionization to the f
Fermion modelH, is the 1D random quantum Ising chain
transverse field, with Hamiltonian

HI5(
n

@2K1,nSn
x14K2,nSn

zSn11
z #. ~2.27!

Here K1 and K2 are spatially random field and Ising ex
change constants, respectively. This model is an anisotr
~‘‘time-continuum’’! version of a 2D classical Ising mode
with random exchange interactions perfectly correlated
one of the two directions, a model first studied by McC
and Wu. For completeness, we sketch this fermioniza
procedure in Appendix A, where we show that the lo
energy properties ofHI follow from the properties of the
single-particle Hamiltonianh in Eq. ~2.7!.

Finally, we should mention the equivalence between
free-fermion HamiltonianH and a 1D model of quantum
particles connected by random strength harmonic spring
model first introduced and analyzed by Dyson almost
years ago.24

III. QUANTUM MECHANICS

As discussed above, much of the information of interes
contained in the mean single-particle Green’s funct
Ḡab(x,e1 iv). In the following we will construct a generat
ing functional that can be used to extractḠ. Our strategy will
be to calculateḠ(x,iv) for real v, and then perform an
analytic continuation to extract the density of states a
C(x,e).

A. SUSY generating functional

Our analysis is based on employing the well-known fie
theoretic representation of an operator inverse to express
ensemble averaged Green’s function,
n

n
e

n

he

e

ic

n

n
-

e

, a
0

is
n

d

-
he

Ḡab~x,iv!5F ^x,au
1

h2 iv
u0,b&G

ens

, ~3.1!

as a functional integral,

Ḡab~x,iv!5 i ^ca~x!c̄b~0!&S , ~3.2!

with

^O&S5F E DcD c̄DjDj* Oe2SG
ens

. ~3.3!

Here the functional integration is over Grassmann fie
c(x) and complex fieldsj(x), with the action

S5E dx@ c̄~ ih1v!c1j* ~ ih1v!j#. ~3.4!

The most noteworthy point is that in Eq.~3.3!, we have
included the complex scalar fieldj in order to cancel the
fermionic determinant that naturally occurs due to thec in-
tegration. In doing so, we obtain the supersymmetric form
Eq. ~3.4!. This enables an ensemble average over the Ga
ian disorderm̃(x) to be readily performed.

For ease in presentation, it is convenient to speak o
slightly simpler object, the partition function

Z5E DcD c̄DjDj* e2S, ~3.5!

where the functional integration is, as before, over Gra
mann fieldsc(x) and complex fieldsj(x), with the action of
Eq. ~3.4!. Correlation functions are obtained by simply in
serting the appropriate fields after the integration meas
and ensemble averaging. The crucial cancellation of the
mionic and Bosonic determinants then gives the trivial ide
tity ^1&51, orZ51. From the functional integral formula
tion, the reason for generating Green’s functions for reav
becomes clear: while the fermionic functional integral is
ways well defined, the bosonic one is only convergent p
vided that the action is bounded below. This is the case h
providedv.0, sinceh is Hermitian.

B. Tranformation to quantum formulation

The above action corresponds to a random o
dimensional statistical mechanics problem. After ensem
averaging over the random functionm(x), the model is
translationally invariant. Our approach is to extract the tra
fer matrix, T̂5e2H, which can be used to reconstruct th
averaged generating function:

@Z#ens5 lim
L→`

STre2LH, ~3.6!

whereL is the length of the system. The symbol STr ind
cates the supertrace, defined by

STrO5Tr@~21!NfO#, ~3.7!

where Tr is the conventional trace, andNf is a fermion num-
ber operator defined below. AlthoughH is an operator, easily
expressed in terms of Fermi and Bose operators~see below!,
it is ‘‘zero dimensional,’’ being independent of the spati
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coordinatex. The problem is thus reduced to studying t
quantum mechanics of the ‘‘Hamiltonian’’H. As usual, the
spectrum ofH contains information about the correlatio
length of the 1D system—in this case the localization leng

To extract the operatorH, we massage the action E
~3.4! into the form of a coherent state path integral withx
playing the role of imaginary time. To this end we l
j↓→2j↓* , leaving j↑ unchanged. Similarly we transform

the independent Grassmann fields asc↓→2 c̄ ↓ and
c̄ ↓→c↓ , leaving the spin-up Grassmann fields unchang
The action can then be written

S5E dx~L01Lv1Lm!, ~3.8!

with

L05 c̄]xc1j* ]xj, ~3.9!

Lv5v~ c̄c1j* j!, ~3.10!

andLm5m(x)A with

A5 c̄ ↑c̄ ↓2c↑c↓1~c→j!. ~3.11!

Notice thatL0 is now in the standard form for a cohere
state path integral ifx is reinterpreted as an imaginary tim
coordinate.

Before extractingH, we perform an ensemble averag
over the disorder. Since we have assumed a Gaussian d
bution, this is readily performed to extract@Z#ens. The only
term in the action that is modified isLm , which now be-
comes

Lm
ens5m0A2gA2. ~3.12!

The transfer ‘‘Hamiltonian’’H can now be read off, since
the full action takes the formS5*x@L01H(c,j)#. In pass-
ing to the Hamiltonian framework, the Grassmann fields
replaced by Fermion operators,c→ f , c̄→ f †, and the com-
plex fields by Bose operators,j→b, j*→b†, wheref andb
satisfy canonical commutation relations:

@ f a , f b
† #25@ba ,bb

† #5dab . ~3.13!

The resulting ‘‘Hamiltonian’’ is

H5v@ f †f 1b†b#1m0A2gA2, ~3.14!

with

A5 f ↑
†f ↓

†2 f ↑ f ↓1~ f→b!. ~3.15!

Although we will hereafter refer toH as a Hamiltonian, it is
important to keep in mind that this operator isnot Hermitian.

SinceH does not conserve the fermion number,Nf5 f †f ,
it is convenient to perform a particle-hole transformatio
defining new fermion fields via a canonical transformatio

F↑5 f ↑ , F↓5 f ↓
† , ~3.16!

whereF†F commutes withH. To preserve the Bose-Ferm
supersymmetry one can also define,

B↑5b↑ , B↓5b↓
† . ~3.17!
.

d.

tri-

e

,

However,B↓ doesnot satisfy the canonical Boson commu
tator, but rather,@B↓ ,B↓

†#521. To restore the canonica
form we define

B̄5B†sz, ~3.18!

so thatB and B̄ satisfy,

@Ba ,B̄b#5dab . ~3.19!

However, it must be kept in mind thatB̄ÞB†.
In term of these new operators, the HamiltonianH be-

comes

H5v@F†szF1 B̄szB#1m0A2gA2, ~3.20!

with

A5F†sxF1 B̄sxB. ~3.21!

At this stage it is convenient to express the Green’s fu
tion, Eq.~3.1!, as a supertrace over quantum states. Cons
the Eq.~3.2! representation in terms of fermions. After tran
forming to the coherent state path integral form, the Gra
mann fields can be replaced by fermion operato
c(x)→exHf e2xH. The average in Eq.~3.2! is replaced by a
supertrace over quantum states:

^O~c,j!&S→^O~ f ,b!&[STr@Oe2LH#. ~3.22!

This gives

Ḡab~x; iv!5 i ~21!a STr@Fa~x!Fb
†e2LH#, ~3.23!

with Fa(x)5exHFae2xH.

C. Supersymmetry

In order to disucss the symmetries of the HamiltonianH it
is useful to introduce a four-component superfield,

C5~F,B!, C̄5~F†,B̄!. ~3.24!

We will use latin indices (a,b, . . . ) to denote the fermion/
boson label, i.e.,a5B,F↔0,1. From this superfield, one
may build a three-component superspin,

Jab5
1

2
CaasabCbb , ~3.25!

where sums on the greek indices are implied. One can
define a set of ‘‘charges,’’

Qab5C̄aaCba , ~3.26!

~sum ona).
The diagonal components ofJ have special significance

In the fermionic sector,

J11[S5F†
s

2
F ~3.27!

forms a set of ordinary Hermitian SU~2! spin operators, sat
isfying @Si ,Sj #5 i e i jkSk. In the bosonic sector, we may sim
larly define three other currents,
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J00[J5 B̄
s

2
B. ~3.28!

These also satisfy the SU~2! algebra,@Ji ,Jj #5 i e i jkJk. How-
ever, althoughJz is Hermitian,Jx andJy areanti-Hermitian.
One could define a Hermitian set of operators, multiplyi
the x andy components ofJ by a factor ofi . These would
then satisfy SU~1,1! commutation relations, instead o
SU~2!.

A useful object is the total spin current,

J5Jaa , ~3.29!

where again the sum on repeated indices is implied. T
spin current commutes with the charges:

@J,Qab#50. ~3.30!

Since the Hamiltonian can be expressed in terms of this t
spin current,

H52vJ z12m0J x24g~J x!2, ~3.31!

the chargesQab also commute withH. ThusQab generate a
set of~super!symmetries ofH. Because of their importance
it is convenient to name them individually:

NB[Q005 B̄B, NF[Q115F†F, ~3.32!

Q[Q015 B̄F, Q̄[Q105F†B. ~3.33!

These latter two operators are fermionic ‘‘charges,’’ whi
will be extremely useful in determining the ground state
H. They obey

Q25Q̄250, ~3.34!

$Q,Q̄%5N, ~3.35!

where the total charge is defined as

N5NB1NF , ~3.36!

which commutes withall sixteen of the U(2u1,1! currents.

D. Hilbert space and representations

Finding the ground-state and low-energy excitations oH
is complicated by the enormity of the Hilbert space. Inde
since the number of bosons with spina, na5ba

†ba , is un-
bounded, the Hilbert space is actually infinite. One basis
states spanning the Hilbert space may be written as a d
product of bosonic and fermionic states:

un↑n↓a&5un↑n↓& ^ uaF&, ~3.37!

wheren↑ ,n↓50•••` are the number of up- and down-sp
bosons, respectively. The parameteraF labels the fermionic
sector, which is spanned by the Fermionic vacuumuvac&,
which is anihillated byF, and three other states

u↑&5F↑
†uvac&, ~3.38!

u↓&5F↓
†uvac&, ~3.39!

u↓↑&5F↑
†F↓

†uvac&. ~3.40!
is

al

f

,

f
ct

As is usual in a quantum-mechanics problem, we m
simplify matters by choosing a maximal set of commuti
variables, whose eigenvalues are good quantum number
this case,NB and NF are obvious choices. The fermioni
chargesQ and Q̄ cannot, of course, be diagonalized. Th
can, however, be combined to form two additional boso
charges

G5Q̄Q, Ḡ5QQ̄. ~3.41!

It is straightforward to show that

G25NG, Ḡ25NḠ , ~3.42!

G1 Ḡ5N, ḠG50. ~3.43!

These relations imply that the eigenvalues of (G,Ḡ ) are ei-
ther (0,N) or (N,0). The four operatorsNB ,NF ,G,Ḡ form
the desired set of good quantum numbers, and it is desir
to reorganize the states given above into a basis diagon
these variables.

1. SU(2)

Before proceeding to determine this basis, consider fi
the fermionic sector of the theory. The fermion number is
fact related to the total spin via

S25s~s11!, ~3.44!

with

s5NF~22NF!/2. ~3.45!

So we can think ofNF as determining the representation
SU~2!. Note that the singlet (s50) representation occur
twice—for NF50,2.

2. SU(1,1) and bosonic ladders

Similarly, the bosonic states may be separated into m
tiplets with fixedNB5n↑2n↓21. Each such multiplet is ac
tually a distinct irreducible representation of SU~1,1!. To see
this, consider the Casimir operator,

J25~Jx!21~Jy!21~Jz!25~NB
212NB!/4. ~3.46!

Fixing NB thus fixes the ‘‘total spin’’ of the SU~1,1! repre-
sentation. Following the analogy with SU~2!, we may label
the states by their total spin and, e.g., the spinJz along thez
axis,

J2u jn&5 j ~ j 11!u jn&, ~3.47!

NBu jn&52 j u jn&, ~3.48!

Jzu jn&5F11u2 j 11u
2

1nG u jn&. ~3.49!

Note that in the last equation we have departed from
usual convention for denotingJz eigenvalues. This is conve
nient because the quantum numbern as we have defined i
takes integer valuesn50, . . .`. The total spin can take half
integer valuesj 50,61/2,61, . . . .



o
s

r
d
y

ig

T
th

s

i

e
f t

are

and

e
i-

ical
ates

ere

56 12 977DELOCALIZATION TRANSITION VIA SUPERSYMMETRY . . .
It is also helpful to have explicit expressions in terms
the previous basis. Since thej th block of states correspond
to a ladder satisfyingn↑2n↓52 j 11, it can be conveniently
generated using the raising and lowering operato
J65Jx6 iJy. As usual, the lowest-weight state in each la
der, denotedu j 0&, is constructed to be annihilated b
J252b↑b↓ :

u j 0&55 1

A~2 j 11!!
~b↑

†!2 j 11uv&, j >21/2

1

Au2 j 11u!
~b↓

†!2~2 j 11!uv&, j ,21/2,

~3.50!

whereuv& denotes the bosonic vacuum:bauv&50. Each lad-
der is constructed by acting on the associated lowest we
state with powers ofJ15b↑

†b↓
† ;

u jn&5S u2 j 11u!
n! ~n1u2 j 11u!! D

1/2

~J1!nu j 0&, ~3.51!

wheren runs from zero tò .

3. SUSY ladders

Clearly the set of eigenvalues ofNB ,NF ,G,Ḡ is insuffi-
cient to distinguish all the states in the Hilbert space.
provide a unique labeling, we will choose to diagonalize
additional operatorJ z5Jz1Sz. This choice is natural in
that J z commutes with the other four diagonal charge
Moreover, the other current present in the Hamiltonian,J x,
leaves the original four quantum numbers unchanged, m
ing only different values ofJ z. The collection of states with
different J z but with the other four charges fixed may b
viewed as the basis for a representation of the algebra o
J operators, i.e., a peculiar~nonunitary! representation of
SU~2!.
, w
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Two sets of such states are easily constructed. These

u2 j ,0,0,N,~ uN11u11!/21n&5u jn& ^ uvac&, ~3.52!

u2 j ,2,N,0,~ uN21u11!/21n&5u jn& ^ u↓↑&, ~3.53!

where the quantum numbers inside the bras on the left-h

side denote eigenvalues of (NB ,NF ,G,Ḡ ,J z), in that order.
States withNF51 are slightly more complicated, sinc

they can involve linear combinations of up or down ferm
ons. ForNÞ0, these are

u2 j ,1,~N2uNu!/2,~N1uNu!/2,uNu/21n&

5A n1uNu
2n1uNu

u jn& ^ u↓&1A n

2n1uNu
u jn21& ^ u↑&,

~3.54!

u2 j ,1,~N1uNu!/2,~N2uNu!/2,uNu/21n&

5A n

2n1uNu
u jn& ^ u↓&1A n1uNu

2n1uNu
u jn21& ^ u↑&,

~3.55!

where in the first set aboven50,1,2, . . .`, while in the
second setn51,2, . . .`.

Apparently these two ladders of states become ident
for N50. What happens in that case? There are two st
which are eigenstates ofNB521, NF51, andJ z5n:

u21/2,n& ^ u↓&,u21/2,n21& ^ u↑&. ~3.56!

If, however, we attempt to diagonalize, e.g.,G, in this two-
dimensional space, we find that it is impossible! In fact, th
is only a single eigenstate for eachn,
u21,1,0,0,n&5H 1

A2
@ u21/2,n& ^ u↓&1u21/2,n21& ^ u↑&#, n.0

u21/2,0& ^ u↓&, n50,

~3.57!
an
ch
ra-

bert
ons
which are annihilated by bothQ and Q̄. Clearly this set of
states does not span the full subspace. To complete it
may define an orthogonal ladder of states,

u21,1,*,*, n&5
1

A2
@ u21/2,n& ^ u↓&2u21/2,n21& ^ u↑&],

~3.58!

for n51,2, . . .`. It is important to note thatu21,1,*,*, n& is

not an eigenstate ofG and Ḡ . Instead, acting with thes
operators onu21,1,*,*, n& gives backu21,1,0,0,n&, i.e., G

and Ḡ act like projection operators in this subspace.
e

E. Eigenstates

1. Supermultiplets

In a conventional quantum-mechanics problem, we c
look for eigenstates of the Hamiltonian separately for ea
distinct set of eigenvalues of the chosen commuting ope
tors. As we have seen above, most of the states in the Hil
space can be specified in this way. To avoid the excepti
for the moment, consider first the sectors withNÞ0. Then
we may findright eigenstates of the Hamiltonian,

HuNB ,NF ,G, Ḡ ,E&5EuNB ,NF ,G, Ḡ ,E&, ~3.59!
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where each such state can be expanded in a basis of a
priateJ z eigenstates, i.e.,

uNB ,NF ,G,Ḡ ,E&5(
J z

xE
NB ,NF ,G,Ḡ

~J z!uNB ,NF ,G,Ḡ ,J z&.

~3.60!

In a theory with ordinary bosonic symmetries, complete
specifying the quantum numbers usually determines a un
set of energies—accidental degeneracies are rare. In a S
theory, however, the additional fermionic generatorsQ and
Q̄ lead to extra relations between states.

To see this, note that sinceQ and Q̄ commute withH,
acting with them upon an eigenstate must either prod
another eigenstate with the same energy or annihilate it.
causeQ and Q̄ do not commute with the four diagonal op
erators, however, theymust change these eigenvalues, a
hence connect distinct states. Because the total chargN

doescommute withQ and Q̄, it ~along with the energyE)
can be used to characterize a multiplet of states connecte
this way.

For NÞ0, the states are in fact organized into doublets
indicated graphically in Fig. 1~a!. One class of doublets in
cludes the ladder of states withNF50,

Q̄uN,0,0,N,E&5cuN21,1,N,0,E&, ~3.61!

QuN21,1,N,0,E&5~N/c!uN,0,0,N,E&, ~3.62!

QuN,0,0,N,E&5Q̄uN21,1,N,0,E&50, ~3.63!

while another includes the states withNF52,

QuN22,2,N,0,E&5cuN21,1,0,N,E&, ~3.64!

Q̄uN21,1,0,N,E&5~N/c!uN22,2,N,0,E&, ~3.65!

Q̄uN22,2,N,0,E&5QuN21,1,0,N,E&50, ~3.66!

where different constantsc can appear in different expres
sions.

For N50, things are more complicated. Distinct eige
states can be found in the sectors withNF52NB50,2, and
for the ladder of states withNF52NB51 and G5 Ḡ50.
The fourth subspace, spanned by theu21,1,*,*, n& basis,

FIG. 1. Organization of multiplets in the SUSY Hamiltonian.~a!
Doublets, involving one bosonic and one fermionic state for to
numberNÞ0. ~b! Singlet ground stateu0& and quadruplets, with
two fermionic and two bosonic states forN50. See text for details
ro-

ue
SY

e
e-

in

s

however,is not closed under the action of H. The best that
one can hope to achieve in this sector, therefore, is to find
eigenstate of the Hamiltonian projected back onto the sa
sector. Such a stateu21,1,*,*, E& satisfies

Hu21,1,*,*, E&5Eu21,1,*,*, E&1uc&, ~3.67!

where

uc&5(
n

x̃nu21,1,0,0,n&, ~3.68!

and is hence orthogonal tou21,1,*,*, n&.
Taken together with the other three states of energyE,

u21,1,*,*, E& forms the fourth member of a superquadrup
@see Fig. 1~b!#. Using Eq.~3.67!, it is straightforward to see
that the three true eigenstates may be obtained through
action ofQ andQ̄ on u21,1,*,*, E&. In particular,

Qu21,1,*,*, E&5c1u0,0,0,0,E&, ~3.69!

Q̄u21,1,*,*, E&5c2u22,2,0,0,E&, ~3.70!

Q̄u0,0,0,0,E&5c3u21,1,0,0,E&, ~3.71!

Qu22,2,0,0,E&5c4u21,1,0,0,E&, ~3.72!

Q̄u22,2,0,0,E&5Qu0,0,0,0,E&5Q̄u21,1,0,0,E&

5Qu21,1,0,0,E&50. ~3.73!

We expect the exception to this rule to be a unique grou
state with zero energy, forming a supersinglet. We can
sentially pin down the sector in which such a singlet c
occur. It cannot occur forNÞ0, sinceG1 Ḡ5NÞ0, and
hence eitherQ or Q̄ would create a new degenerate state. F
N50, it is possible only for a state in theNF52NB51,
G5 Ḡ50 ladder. This is consistent with the existence of o
additional stateu21,1,0,0,n50& in this basis.

2. Partition function and non-Hermiticity

Thus far, we have described the organization of eig
states. To calculate physical quantities, we will need to p
form a trace over the Hilbert space ofe2LH. Once the Hamil-
tonian is diagonalized, this trace can be performed separa
in each multiplet. Some care must be taken to account, h
ever, for the non-Hermiticity ofH.

To do so, let us consider the behavior of the curre
under Hermitian conjugation. The usual SU~2! spin genera-
tors S are of course Hermitian. The bosonic currentsJ are,
however, mixed. In particularJz is hermitian whileJx andJy

are anti-Hermitian. Since the Hamiltonian involves onlyJ z

andJ x, the net effect of conjugation is to change the sign
Jx. This can in fact be accomplished by the unitary transf
mation (U5U†),

U5eipJz
, ~3.74!

which rotatesJx,

U†JxU52Jx, ~3.75!

and therefore conjugates the Hamiltonian,

l
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U†HU5H†. ~3.76!

It therefore follows that ifuE&R is a right eigenstate ofH
with energyE,

uE&L5cUuE&R ~3.77!

is a left eigenstate ofH, i.e.,

H†uE&L5EuE&L⇔L^EuH5L^EuE. ~3.78!

Within each of the doublets, it is advantageous to norm
ize the states such that

L^EuE&R51. ~3.79!

Left and right eigenstates with different quantum numb
are automatically orthogonal, so this normalization guar
tees the resolutions of the identity

1N;NF50,15(
E

@ uN,0,0,N,E&RL^N,0,0,N,Eu

1uN21,1,N,0,E&RL^N21,1,N,0,Eu#,

~3.80!

1N;NF51,25(
E

@ uN22,2,N,0,E&RL^N22,2,N,0,Eu

1uN21,1,0,N,E&RL^N21,1,0,N,Eu#,

~3.81!

for NÞ0. Inserting these into the usual expression for
trace in terms of an orthonormal basis gives

STrN;NF50,1O5(
E

@2L^N,0,0,N,EuOuN,0,0,N,E&R

1L^N21,1,N,0,EuOuN21,1,N,0,E&R#,

~3.82!

STrN;NF51,2O5(
E

@2L^N22,2,N,0,EuOuN22,2,N,0,E&R

1L^N21,1,0,N,EuOuN21,1,0,N,E&R#,

~3.83!

where the minus signs arise from the (21)Nf in the defini-
tion of the supertrace, and again this holds only forNÞ0.
Similarly, the ground state gives a unique contribution,

STr0O5L^0uOu0&R , ~3.84!

whereu0&[u21,1,0,0,E50& is the ground state.
The quadruplets are somewhat trickier. The two sta

with s50 ~i.e., NF50,2) in each quadruplet can be sep
rately orthogonalized, i.e.,

L^0,0,0,0,Eu0,0,0,0,E&R51, ~3.85!

L^22,2,0,0,Eu22,2,0,0,E&R51, ~3.86!

since Uu22,2,0,0,E&R remains in the subspace wit
NF52NB52, and similarly for theNF5NB50 state. The
same is not true for the two states withNF52NB51. In
l-

s
-

e

s
-

fact, it is straightforward to show that corresponding left a
right eigenstates are actually orthogonal! That is,

L^21,1,0,0,Eu21,1,0,0,E&R50, ~3.87!

L^21,1,*,*, Eu21,1,*,*, E&R50, ~3.88!

for EÞ0. This is because theU operator takes each bas
state from one subspace into the other, as can be see
rectly from Eqs.~3.57,3.58!. Instead of the usual normaliza
tion condition, therefore, we must require

L^21,1,0,0,Eu21,1,*,*, E&R51, ~3.89!

L^21,1,*,*, Eu21,1,0,0,E&R51. ~3.90!

The corresponding resolution of the identity is

1N505(
E

@ u2,22,0,0,E&RL^2,0,0,0,Eu1u0,0,0,0,E&RL

3^0,0,0,0,Eu1u21,1,0,0,E&RL^21,1,*,*, Eu

1u21,1,*,*, E&RL^21,1,0,0,Eu#. ~3.91!

From this identity follows the expression for the trace,

STrN50O5(
E

@2L^2,22,0,0,EuOu2,22,0,0,E&R

2L^0,0,0,0,EuOu0,0,0,0,E&R

1L^21,1,0,0,EuOu21,1,*,*, E&R

1L^21,1,*,*, EuOu21,1,0,0,E&R#. ~3.92!

In this paper we are studying primarily properties of t
system in the thermodynamic limitL→`. In this case the
~super!trace ofe2LH reduces to an expectation value in th
singlet ground state, i.e.,

^O&5STrOe2LH→L^0uOu0&R . ~3.93!

It is worth noting, however, that SUSY indeed implie
that the partition function itself is exactly one, even in t
finite system. This is because each multiplet other than
singlet contains equal numbers of fermionic (Nf odd! and
bosonic (Nf even! states, which thereby cancel in the supe
trace. All that remains is the expectation value in the ze
energy ground state, which is unity even forL finite.

IV. GROUND-STATE PROPERTIES

A. Schrödinger equation

As we saw in the previous section, the ground state
sides in a unique~nonunitary! singlet representation of SU~2!
algebra of the total currentJ. As such, it must be annihilate
by both Q and Q̄, and hence fits into the subspace wi
NF52NB51, G5 Ḡ50, i.e.,

u0&R5 (
n50

`

fnu21,1,0,0,n&. ~4.1!

In this basis,J x andJ z have the very simple matrix ele
ments
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J zun&05nun&0 , ~4.2!

J xun&05 1
2 @~n11!un11&02~n21!un21&0], ~4.3!

where we have introduced the more compact nota
un&0[u21,1,0,0,n&. Using these results, and the requireme
of a zero-energy ground state,

Hu0&R5Eu0&R50, ~4.4!

we obtain straightforwardly the Schro¨dinger equation,

n@2~n11!fn1212nfn2~n21!fn222m0~fn112fn21!

12vfn#50, ~4.5!

which implies

2~n11!fn1212nfn2~n21!fn2222M ~fn112fn21!

12vfn50 for nÞ0. ~4.6!

Here we have definedM5m0/2 to simplify some expres
sions in what follows.

B. Normalization and density of states

From the previous section, given the right eigenst
u0&R , a corresponding left eigenstate is obtained by

u0&L5cUu0&R5~21!Jz21/2u0&R , ~4.7!

with an appropriate choice for the constantc. Applying this
to the basis ofJ z eigenstates gives

~21!Jz21/2un&05H ~21!nu21,1,*,*, n&, n.0

u0&0 , n50.
~4.8!

Since theun&0 and u21,1,*,*, n& states are orthogonal, th
normalization requirement reduces to

L^0u0&R5uf0u251. ~4.9!

The density of states is obtained in a similar way. Fro
Eq. ~2.25! the density of states is obtained by analytica
continuing,

G~x50;iv!5(
a

Ḡaa~0,iv!522i L^0uSzu0&R ,

~4.10!

where the second equality follows from Eq.~3.23!. Simple
manipulations then give

G~0;iv!5 i (
n50

`

~21!nufnu2. ~4.11!

C. Continuum limit and boundary conditions

In order to solve for the ground-state wave function, fi
note the following simple property: iffn

1(M ) is a solution
of Eq. ~4.6!, then so is

fn
2~M !5~21!nfn

1~2M !. ~4.12!

Since this is a fourth-order linear difference equation,
would expect four linearly independent solutions. The abo
n
t

e

t

e
e

result reduces these to two trivially related pairs. To und
stand the nature of these two solutions, it is instructive
consider the limitM5v50. In this case there are two ob
vious solutions:fn51 and fn5(21)n satisfy theE50
Schrödinger equation~4.6!. However, these wave function
are not normalizable, a feature due to a pathology of t
theoryat v50. Indeed, nonzerov is essential in guarantee
ing convergence of the bosonic functional integral in t
generating function. Moreover, we are interested in beha
off criticality with MÞ0 and at finite energyiv→e.

A general solution of the Schro¨dinger equation, Eq.~4.6!,
is daunting~although possible forvÞ0—see Appendix B!,
so for simplicity we focus our attention on the critical regim
very close to the localization transition where bo
v,M!g51. In this scaling regime one expects the wa
function to remain close to a superposition of the two triv
@constant and (21)n# solutions, i.e.,

fn5c1f~n,M !1c2~21!nf~n,2M !, ~4.13!

where f(n,M ) is slowly varying with uf(n11,M )
2f(n,M )u!uf(n,M )u. This suggests a ‘‘continuum’’ limit,
in which f(n,M ) may be regarded as a continuous functi
of n, and discrete differences in the Schro¨dinger equation are
replaced with derivatives. In this continuum approximati
the Schro¨dinger equation, Eq.~4.6!, becomes

n
d2f

dn2 1~11M !
df

dn
5

v

2
f. ~4.14!

For v,M!1 the solution of this continuum equation
expected to coincide with the exact eigenfunction of E
~4.6! for n@1. In Appendix B, we verify this for the specia
caseM50, where it is possible to solve directly the discre
Schrödinger equation.

The continuum differential equation~4.14! must be
supplemented by an appropriate boundary condition. A na
ral physical requirement is thatf(n,M )→0 for n→`. Be-
cause we have still have the freedom to choosec1 andc2 in
Eq. ~4.13!, the normalization at the origin can remain arb
trary at this stage.

The two constants in Eq.~4.13! then require two addi-
tional constraints. The first comes from Eq.~4.9!, f051,
giving

c1f~1,M !1c2f~1,2M !51. ~4.15!

The second constraint is obtained from Eq.~4.6! for n51:

f32f152M ~f22f0!1vf1 . ~4.16!

In the limit M ,v!1, and using Eq.~4.13!, this becomes

c1f8~1,M !5c2f8~1,2M !. ~4.17!

D. Solution

We are now in a position to obtain the solution to t
continuum equation. Under an exponential change of v
ables,n5ez, with F(z,M )5f(ez,M ), Eq. ~4.14! takes a
more illuminating form,

F2
d2

dz2 2M
d

dz
1

v

2
ezGF650. ~4.18!
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Indeed, forM50 this is equivalent to a Schro¨dinger equa-
tion for a particle moving in an exponential potential. Sin
z5 lnn, the domain of the equation is 0<z,`. For smallv,
however, the potential is negligible for smallz. It rises very
abruptly and becomes of order 1 forz;zw , where

zw5u lnvu. ~4.19!

In the smallv limit of interest, then, there is a region o
divergent width over which Eq.~4.18! effectively describes a
free particle. The width of the potential is, however, only
order 1. Thus we expect that on the scale ofzw , the expo-
nential potential can be well approximated by ahard wall.

In the following we make this hard-wall approximatio
replacing the continuum equation~4.18! by

F2
d2

dz2 2M
d

dzGF50, ~4.20!

with 0<z<zw . and the boundary condition

F~zw!50. ~4.21!

This simple equation can be readily solved~below! and the
density of states extracted.

As shown in Appendix C, the hard-wall approximation
not necessary, since the exact continuum equations ca
solved explicitly. Although the hard-wall wave function di
fers from the exact solution, the resulting density of sta
coincides, up to an overall~nonuniversal! multiplicative con-
stant.

The solution of Eq.~4.20! consistent with the hard-wal
boundary condition@Eq. ~4.21!# is

F~z,M !5
1

Mzw
@e2Mz2e2Mzw#, ~4.22!

where we have assumed thatv,M!1, and chosen a conve
nient ~but arbitrary! normalization. AsM→0 this reduces to

F~z!512
z

zw
. ~4.23!

Applying the constraints in Eqs.~4.15,4.17!, determines the
constants as

c15c25
zwMvM

12v2M . ~4.24!

To extract the density of states, we use Eq.~4.11! to write

G~0,iv!52ic1c2E
1

`

dnf~n,M !f~n,2M !

52ic1c2E
0

zw
dzezF~z,M !F~z,2M !. ~4.25!

The integral can be readily performed giving

G~0,iv!5 i
M2

v
f ~vM !, ~4.26!

with the exactscaling function
be

s

f ~Y!5cS Y

12Y2D 2

. ~4.27!

Our present implementation of the hard-wall approximat
reproduces the exact value of the nonuniversal const
c54, obtained in Appendix C, but this result depends up
the precise position of the wall.

An exact expression for the density of states in the criti
regime can now be obtained from Eq.~2.25! by performing
an analytic continuation,r(e)5(1/p)ImG(0;e1 i01). Not-
ing that G(0,iv) is purely imaginary and odd inv, one
readily obtains~for e.0),

r~e!5
M3

e
g~eM !, ~4.28!

with

g~Y!5 1
2 Y f8~Y!5c

Y2~11Y2!

~12Y2!3 . ~4.29!

In the M→0 limit, this reduces to

r~e!;
1

eu lneu3 , ~4.30!

a result obtained previously by other methods.
A special feature of one dimension, is that thetypical

localization lengthj̃ can be extracted from the real part
the Green’s functionat x50. As derived in Ref. 25,j̃ (e)
satisfies

] j̃ 21

]e
5PE de8

r~e8!

e2e8
52

1

p
ReG~x50;e!. ~4.31!

Performing an analytic continuation to real energy using E
~4.26! gives ReG(0;e);21/eu lneu2. Integration frome50
using the fact thatj̃ 21(0)50 gives the resultj̃ ;u lneu.

V. FERMION GREEN’S FUNCTION

To determine the mean correlation length, we need
calculate the Green’s function,Ḡ(x,iv), at nonzero x. From
Eq. ~3.23! this takes the form

Ḡab~x,iv!5 i ~21!L
a^0uFae2xHFb

† u0&R . ~5.1!

Given the quantum numbers of the ground state, the s

Fb
† u0&R clearly hasNB521, NF52, G5N51, Ḡ50. We

can, therefore, insert the resolution of the identity from E
~3.81! to give

Ḡab~x,iv!5 i ~21!a(
E

L^0uFau21,2,1,0,E&RL

^21,2,1,0,EuFb
† u0&Re2Ex. ~5.2!

Our task is thus to determine the matrix elements and eig
values needed to carry out this sum. To do so, we expand
eigenstate in the appropriate basis,
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u21,2,1,0,E&R5 (
n50

`

xnun&1 , ~5.3!

where we have abbreviated

un&1[u21,2,1,0,1/21n&. ~5.4!

The wave functionxn then satisfies the Schro¨dinger wave
equation,

2v@n1 1
2 #xn12M @nxn212~n11!xn11#2~n12!~n11!

3xn121~2n212n11!xn2n~n21!xn225Exn ,

~5.5!

where we have again setg51. Again, this equation has th
property that multiplication of a solution by (21)n yields a
solution forM→2M . We therefore expect

xn~M ,E!5c3x~n,M ,E!1c4~21!nx~n,2M ,E!.
~5.6!

Naively, x(n,M ,E) can be obtained in the continuum
limit. Converting finite differences to derivatives, we obta

F2S 2n
d

dn
11D 2

22M S 2n
d

dn
11D12vnGx~n,M ,E!

5Ex~n,M ,E!. ~5.7!

Upon tranforming to logarithmic variables,

x~n,M !5FE~z5 lnn,M !, ~5.8!

one has

@2~2]z11!222M ~2]z11!12vez#FE~z,M !

5EFE~z,M !. ~5.9!

Based on previous experience, we expect that the h
wall approximation gives exact results in the scaling limit.
Appendix D we verify this explicitly, by constructing exac
solutions of the continuum equation~5.7!. Within the hard-
wall approximation the potential 2vez→0 in Eq. ~5.9! is
dropped, and replaced by a boundary condition atzw5u lnvu,

FE~zw ,M !50. ~5.10!

The general solution of Eq.~5.9! with the hard-wall
boundary condition is

FE~z!5e2~11M !z/2sin@b~z2zw!/2#, ~5.11!

whereb5AE2M2.
So far, we have not determined the spectrum, or allow

values ofb. In an ordinary quantum problem, these eige
values would be fixed by a boundary condition atz50. In
this case, however, such a simple treatment is problem
The difficulty arises because, unlike in the ground-state s
tor, neitherxn51 nor xn5(21)n are solutions in the limit
v5M50. We therefore expect a nontrivial solution fo
n5O(1), in that the discreteness ofn is important and the
continuum limit isnot valid.

Fortunately, for 1&n!1/v, we can obtain an asymptoti
approximation which does not rely upon the continuum lim
d-

d
-

ic.
c-

.

This is possible because forn!1/v, the vJ z term in the
Hamiltonian, Eq.~3.31!, can be regarded as a small pertu
bation. Neglecting this term,H is a function only ofJ x, so
that the eigenfunctions ofH are simply eigenfunctions o
J x. As a first step, consider the stateua& with

J xua&5 iaua&. ~5.12!

Expandingua& in theJ z basis,

ua&5(
n

cn~a!un&1 , ~5.13!

one finds the simpler Schro¨dinger equation,

~n11!cn11~a!2ncn21~a!522iacn~a!. ~5.14!

This equation can be solved exactly~see Appendix E!. For
large n, the solution, which is well behaved at the orig
behaves asyptotically as

cn~a!;n21/2@~2n!2 iaG~1/21 ia!

1~21!n~2n! iaG~1/22 ia!#. ~5.15!

Eigenstates ofH therefore take the form

xn;c1cn~a1!1c2cn~a2!, for 1!n!1/v,
~5.16!

wherea6 are the two roots of the equation 4a214iM a5E,
i.e.,

a65
2 iM 6b

2
, ~5.17!

andb5AE2M2.
Mathematically, Eq.~5.16! is anoutersolution, valid out-

side a boundary layer that occurs for largen. To obtain a
complete solution, it must be matched to theinner solution,
valid ‘‘inside’’ the boundary layer, which is just the con
tinuum regime of largen. Within the hard-wall approxima-
tion, this is just the standing wave in Eq.~5.11!.

To match the two solutions, we letn5ez in Eqs.
~5.15,5.16!, which gives

xn;e2z/2$e2Mz/2@c1e2 ibz/21c2eibz/2#

1~21!neMz/2@c1eibz/21c2e2 ibz/2#%. ~5.18!

Similarly, using Eqs.~5.6,5.11!, the continuum solution
gives

xn;e2z/2$c3e2Mz/21~21!nc4eMz/2%sin@b~z2zw!/2#.
~5.19!

These expressions are equal in two situations. One can
c15c25c3/25c4/2 if bzw is an odd multiple ofp. Alter-
natively, c152c25c3/252c4/2 if bzw is an even mul-
tiple of p. The final, matched solution for both cases c
thus be written

F~k!~z,M ![FEk
~z,M !5e2~11M !z/2sin~bkz/21uk!,

~5.20!

where

bk5pk/zw , ~5.21!
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Ek5M21S pk

zw
D 2

, ~5.22!

uk5H 0, k even

p/2, k odd,
~5.23!

c35~21!k11c4[c. ~5.24!

The discrete quantum numberk51,2, . . .`.
The corresponding left eigenstate is obtain by acting w

U from Eq. ~3.74!. Defining

uk&R/L5u21,2,1,0,Ek&R/L , ~5.25!

we choose

uk&L5~21!k11eip~Jz21/2!uk&R . ~5.26!

With this choice, normalization implies that the consta
c5zw

21/2. Thus the final expressions for the~normalized!
eigenstates are

uk&R5zw
21/2(

n
@x~n,M !1~21!n1k11x~n,2M !#un&1 ,

~5.27!

uk&L5zw
21/2(

n
@~21!n1k11x~n,M !1x~n,2M !#un&1 .

~5.28!

These actually form an orthonormal set

L^kuk8&R5dkk8, ~5.29!

as can be verified by direct computation.
Having obtained the full set of eigenvalues and left a

right eigenfunctions ofH in the appropriate sector, it is
simple matter to evaluate the Green’s function using
~5.2!. Using the hard-wall eigenfunctions, we find

Ḡab~x,iv!5 i
32p2

vu lnvu3

M2v2M

~12v2M !2
~21!a

3 (
k51

`

~21!k11k2@~21!avM /2

1~21!k11v2M /2#@~21!bvM /2

1~21!k11v2M /2#e2p2k2x/u lnvu2. ~5.30!

One thereby obtains the final form for the Green’s functio
exact in the scaling limit:

G~x,iv!5H i x11

vu lnvu5 f v
e ~vM !Fv

e ~x/jv!e2x/jM, x even

i x11

vu lnvu5 f v
o ~vM !Fv

o ~x/jv!e2x/jM, x odd,

~5.31!

where the universal scaling functions are given by

f v
e ~Y!5Y fv

o ~Y!5S YlnY

12Y2D 2

, ~5.32!
h

t

d

.

,

Fv
e ~Y!5A(

k51

`

k2e2k2Y, ~5.33!

Fv
o ~Y!5A(

k51

`

~21!k11k2e2k2Y. ~5.34!

Here the nonuniversal amplitudeA532p2 within the hard-
wall approximation, and we have defined two correlati
lengths,

jM51/M2, jv5S lnv

p D 2

. ~5.35!

Notice thatG(x; iv) is pure imaginary forx even and pure
real for x odd, as dictated by particle-hole symmetry. Equ
tion ~5.31! is valid for v.0. Particle-hole symmetry then
determines the Green’s function forv,0, sinceG(x; iv) is
odd in v for evenx and even inv for odd x.

Equation~5.35! gives us the correlation length exponen
n52, defined byj;M 2n, and the dynamical exponen
z5`, defined byv;jz. Equation~5.31! is actually simpler
than one would generally expect on the basis of scaling
the most general scaling form would not factorize as it do
here.

The correlatorC(e)5(1/p)ImG(e1 i01) can be obtained
via analytic continuation, using the symmetry properties
the Green’s function underv→2v. One finds

C~x52n,e,M !5
~21!n

eu lneu6Fe
eS x

je
,eM De2x/jM, ~5.36!

C~x52n11,e,M !5
~21!n11

peu lneu5 Fe
oS x

je
,eM De2x/jM,

~5.37!

where the energy dependent ‘‘localization’’ length is

je5S lne

p D 2

. ~5.38!

The even sublattice scaling function no longer factors,

Fe
e~Y,Z!5 f v

e ~Z!@ 5
2 Fv

e ~Y!1YFv
e8~Y!#

1 1
2 ZlnZ fv

e8~Z!Fv
e ~Y!, ~5.39!

while the odd sublattice scaling function remains simple,

Fe
o~Y,Z!5Fv

o ~Y! f v
o ~Z!. ~5.40!

The scaling forms, Eqs.~5.36!–~5.40!, encode several sig
nificant physical properties. First consider the same sub
tice correlation (x52n), for simplicity at zero staggering
(M50). For distances shorter than the correlation leng
this has a slow power-law decay, sinceFe

e(Y,1);Y23/2, for
Y!1. In particular,

C~x52n,e,M50!;
~21!n

eu lneu3

1

uxu3/2
, ~5.41!

for uxu!je . This can be understood as the product of t
density of states and a two-point ‘‘wave-function corre
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tion,’’ with multifractal scaling exponent~see the next sec
tion! y(q51)53/2. For distancesx@je ~and M50), even
the rare wave functions are localized, andC(x) decays ex-
ponentially. The full scaling function, which describes t
crossover between these two limits, is plotted in Fig. 2. N
the change of signfor Y'2.5—this may be interpreted
physically as arising from the first node in the dominant r
wave function at energye.

The different sublattice Green’s function behaves qu
differently at short distances. Using the Poisson summa
formula, it is straightforward to show that

Fe
o~Y,1!;

Ap

2Y3/2F12
p2

4YGe2p2/4Y1O~e29p2/4Y!,

~5.42!

for Y!1. This implies thatC(x52n11) is much smaller
than the same sublattice correlator. The suppression is du
the fact that sublattice mixing of wave functions occurs o
at finite e. The exact zero-energy ‘‘wave function,’’ dis
cussed in detail in the next section, liesentirely on a single
sublattice.

VI. MULTIFRACTAL WAVE FUNCTIONS

The above results reveal that the ensemble-avera
single-particle Green’s function decays as a power law w
an exponent 3/2 for distances smaller than the correla
lenth. Whenm050, the relevant scale isje5u lneu2/p2, which
diverges at the band center. Such power-law spatial scalin
in striking contrast to the behavior of thetypical Green’s
function, which decays as a stretched exponen
Gtyp;exp(2ax1/2) at criticality. This stretched exponentia
form follows directly from the exact zero-energy wave fun
tion, Eq. ~2.13!, whose logarithm undergoes a on
dimensional random walk.

Power-law scaling of theaverage Green’s function at
criticality can also be understood~albeit more subtly! in
terms of Eq. ~2.13!. To see this it is useful to conside

FIG. 2. Scaling functions for the fermion Green’s function. T
solid and dashed lines are the scaling functions,Fe

e(Y) andFe
o(Y),

for correlatorsC(x) between two sites on the same and differe
sublattices, respectively.
e

e

e
n

to

ed
h
n

is

l,

ensemble-averaged correlation functions of the zero-ene
wave function. As with higher-dimensional localization tra
sitions, such as the plateau transition in the IQHE, this cr
cal wave function is expected to exhibit multifractal scali
characteristics. As shown in a recent paper, such correla
in this 1D case can be computed exactly, via a mapping
Liouville quantum mechanics. This mapping exploits t
equivalence between imaginary time quantum mecha
and the one-dimensional random walk. Slightly generaliz
this work, we compute below the full multifractal spectru
for the 1D critical case. This calculation is instructive since
reveals a link between the supersymmetry calculations
Liouville quantum mechanics.

To extract average wave-function correlators, it is nec
sary to consider normalized states. We thus consider a fi
system of lengthL, and normalize the wave function from
Eq. ~2.13! over the finite intervaluxu,L/2. Focussing on one
component of the spinor wave function, sayf1(x), an ap-
propriately normalized wave function, denoted asc(x), can
be written

c~x!5N21/2ez~x!, ~6.1!

with normalization

N5E
2L/2

L/2

dxe2z~x!, ~6.2!

where we have defined]xz(x)5m(x), with the random po-
tential m(x) assumed as before to be Gaussian w
@m(x)m(x8)#ens52gd(x2x8). It remains to specify the
boundary conditions onc(x) at x56L/2. For technical rea-
sons it is convenient to ‘‘pin’’ the 1d random walker at th
ends, takingz(x56L/2)50.

We focus on the ensemble averaged correlation funct

Wq~x,L !5@ uc~x!c~0!uq#ens, ~6.3!

between two points separated by a distancex, assumed much
smaller than L. The one-point function Wq(L)
5Wq(x50,L), referred to as a participation ratio, is e
pected to vary as a power law with system size:

Wq~L !;
1

Ld1t~q!, ~6.4!

with d51 the spatial dimensionality. The exponentt(q) is
often written ast(q)5(q21)D(q). For a plane-wave or
nonfractal wave function~as in a 3D metal, say! D(q)5d.
For an exponentially localized wave function,D(q)
5t(q)50. A simple fractal would be characterized by
q-independent D, different that the spatial dimension
whereas in a multifractalD depends onq and equivalently
t(q) is a nonlinear function ofq.

The two-point functionWq(x,L) for x much larger than
microscopic lengths~i.e., lattice spacing! yet much smaller
thanL is also expected to exhibit power-law scaling:

Wq~x,L !;
1

Ld1t~q!

1

xy~q! , ~6.5!

t
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with a spectrum of exponentsy(q). For some multifractals a
relation can be obtained betweent(q) andy(q), but in gen-
eral they can be independent exponents.

To extractt(q) and y(q) for the 1D critical wave func-
tion, we follow closely Shelton and Tsvelik.23 The correla-
tion function can be expressed as a functional integral o
the random walk configurationsz(x) as

Wq~x,L !5
1

Z0
E8Dzuc~x!c~0!uqe2S0, ~6.6!

with

Z05E8Dze2S0, ~6.7!

and an action,

S05
1

4gE2L/2

L/2

dx~]xz!2. ~6.8!

Here the prime on the integration indicates the bound
conditions,z(x56L/2)50. In the following we putg51.
The functional integral over disorder configurations is no
trivial due to the normalization of the wave functions. Fo
tunately, the normalization can be exponentiated via
identity,

N2q5
1

G~q!
E

0

`

dvvq21e2vN, ~6.9!

where it can be absorbed into the action. In this way o
obtains

Wq~x,L !5
1

G~q!
E

0

`

dvvq21^eqz~x!eqz~0!&, ~6.10!

where the average is given by

^eqz~x!eqz~0!&5
1

Z0
E8Dzeqz~x!eqz~0!e2S, ~6.11!

with the total action

S5E
2L/2

L/2

dx@ 1
4 ~]xz!21ve2z#. ~6.12!

If x is viewed as an imaginary time coordinate, this av
age is seen to be equivalent to a path integral represent
of the quantum mechanics of a particle with coordinatez
moving in an exponential potential. Passing to the opera
representation of this quantum mechanics by defining
quantum Hamiltonian,

H52]z
21ve2z, ~6.13!

the above average can be written as a quantum expect
value,

^eqz~x!eqz~0!&5
^0ue2LH/2eqz~x!eqze2LH/2u0&

^0ue2LH0u0&
, ~6.14!

with eqz(x)5exHeqze2xH, andH052]z
2 . Hereu0& is a posi-

tion ket with z50.
er

y
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e
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Evaluating the wave-function correlator has thus been
duced to solving for the quantum mechanics of a parti
moving in an exponential potential—Liouville quantum m
chanics. This form is identical to that which arose in t
bosonic sector of the supersymmetric calculation of the
mion Green’s function. In that case, the coordinatez was
related to the boson number vian5ez, andv was a small
imaginary part of the energy. The supersymmetric calcu
tion can thus be viewed as a supersymmetric version
Liouville quantum mechanics. In earlier work, Koga
Mudry, and Tsvelik showed that the wave function corre
tors for a two-dimensional particle described by a Dir
equation with random vector potential~for, which the exact
zero-energy wave function can also be written down exp
itly ! could be formulated in terms of Liouvillefield theory.
Perhaps such a 2D localization critical point can be form
lated in terms of a supersymmetric Liouville field theory.

For simplicity we evaluate the above quantum expectat
value within the hard-wall approximation, which should giv
the correct scaling behavior for the wave-function correlat
As before, we replace the exponential potential by a ha
wall at zw , with ve2zw5c, for a constantc of order 1. The
value ofc affects the overall prefactor in the correlator. W
choose c51/2, which gives the correct normalization
Wq51(L)51/L. Since the quantum particle is contrained
havez,zw , whenv.1 ~and zw is negative! the particle’s
wave function vanishes atz50, so that the quantum expec
tation value in Eq.~6.14! vanishes identically. We can thu
restrict the integration overv to v,1.

The denominator in Eq.~6.14! is the propagator for a free
random walker~i.e., without the hard wall! and can be
readily evaluated giving (4pL)21/2. To evaluate the numera
tor it is convenient to letz→zw2z, so that the quantum
particle is then constrained to havez.0. Within the hard-
wall approximation, the correlator can then be expresse
terms of the free Hamiltonian as

Wq~x,L !5
A4pL

G~q!2q

3E
0

1dv

v
^zwue2LH0/2e2qz~x!e2qze2LH0/2uzw&,

~6.15!

with z restricted positive andzw5u lnvu/2 @the factor of 2
difference between this definition and the one used in
SUSY calculations is a consequence of a different choice
normalization of the fieldz(x)#. To evaluate this quantum
average we introduce a complete set of standing waves,

^zuk&5A2

p
sin~kz!, ~k.0!, ~6.16!

which are eigenstatesH0uk&5k2uk&, and appropriately nor-
malized on the intervalz.0: ^kuk8&5d(k2k8). Inserting
the resolution of the identity,

15E
0

`

dkuk&^ku, ~6.17!
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into Eq. ~6.15!, evaluating the matrix elements in close
form and performing the integration overv gives for largeL
the final result:

Wq~x,L !5
W̃~q2x!

2q21q3G~q!

1

L
, ~6.18!

with

W̃~x!5
16

p E
0

` dkk2

~11k2!4 e2xk2
. ~6.19!

The crossover functionW̃(x) interpolates between one a
x50 and W̃(x);x23/2 for x@1. The crossover length
xc51/q2, is the characteristic distance over which the log
rithm of the wave functionc(x) changes by order 1/q ~or
equivalently the ‘‘time’’ it takes the 1D random walk t
move a distancedz;1/q). This crossover scale clearly de
pends on the strength of the disorder. For the original lat
tight-binding model, when the random hopping strengths
comparable to the mean hopping strength,dtn /t of order 1,
this crossover length is of the order of the tight-binding l
tice spacing. Thus it is clear that theform of the crossover
functionW̃(x) for x of order 1, cannot be universal. In fac
the precise form above is particular to the hard-wall appro
mation, and an evaluation using the exact Liouville eign
functions would give another form, although they agree
their universal largex behavior.

For largex,Wq(x,L);x23/2L21. By comparing with Eq.
~6.5!, the exponentst(q) and y(q) are seen to beindepen-
dentof q, with t(q)50 andy(q)53/2. A vanishingt(q) is
characteristic of an exponentially localized wave functio
However, the two-point correlator for an exponentially loc
ized wave function also decays exponentially (y(q)5`), in
contrast to the present 1D wave function, which exhib
power-law correlations. The 1D critical wave function
typically quasilocalized~centered around a maximum! with
stretched exponential decay. However, theaverage two-
point correlator at separationx is dominated by the rare wav
function, which has a secondary maximum close in mag
tude but separated spatially~by distancex) from its primary
maximum. The likelihood of this involves the extremal st
tistics of a 1D random walk near a global maximum~absorb-
ing wall!, which is being described mathematically above
quantum mechanics near an exponential~or hard-wall! po-
tential. As expected, the two-point wave function correla
at q51 decays with the same exponent,y(q51)53/2, as
the average Green’s function obtained with supersymme

VII. SUMMARY AND CONCLUSIONS

In this paper we have presented a detailed SUSY ana
of the critical properties of the zero-energy delocalizat
transition in the 1D random hopping model. This 1D rando
critical point has been of interest for many years, originat
with the pioneering paper by Dyson in 1953 on a rela
model of a 1D harmonic chain with random sprin
constants.24 Most of the prior work, using a variety of differ
ent approaches, has focussed on properties derivable
the mean local Green’s function, specifically the density
states and the typical localization length,j̃ .18 By employing
-
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i-
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.
-
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-

y
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g
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a real-space RG approach to analyze phase transtions
class of closely related random spin chains, D.S. Fisher
recently extended the analysis to extract the spatial dep
dence of mean correlation functions.19,20 An important ele-
ment is the emergence of asecondcorrelation lengthj that
determines the spatial decay ofmean ~rather than typical!
correlation functions. To the growing body of knowledg
concerning this 1D random critical point, we add seve
new results in this paper.~i! Using SUSY we have compute
the exacttwo-parameter scaling functions for the mean fe
mion Green’s function.~ii ! By employing Liouville quantum
mechanics, we have extracted the set of multifractal sca
exponentst(q) andy(q) that characterize the critical wave
function pair correlators.

Together, these two results encapsulate the important
versal scaling characteristics of this 1D random critical po
The spatial dependence of the mean fermion Green’s fu
tion is controlled by two lengths, a mean localization leng
that diverges upon approaching the band center asje;u lneu2,
and a mean ‘‘staggering length,’’ varying asjM;M 22 when
the strengthM of a staggering in the hopping strengths
taken to zero. These two lengths are to be contrasted
their counterparts, denotedj̃ e and j̃ M , which charaterize
the spatial decay of thetypical ~rather than ensemble
averaged! Green’s function. From the singular behavior
the density of states, one can infer that the typical locali
tion length diverges more slowly, asj̃ e;u lneu. Likewise, the
typical staggering length that follows rather directly from t
nature of the exact~decaying! zero-energy wave function
diverges more slowly,j̃ M;M 21, than its mean counterpar

For spatial separationsx!je ,jM , between two points on
the same sublattice, the mean fermion Green’s function v
ies as an inverse power law ofx with universal exponent 3/2
This result also follows from an analysis of the zero-ene
wave function whose logarithm undergoes a 1D rand
walk, with the exponent 3/2 being related toextremalprop-
erties of the random walker. In contrast, thetypical Green’s
function for x! j̃ e , j̃ M is expected to decay as a stretch
exponential,Gtyp;e2cAx, reflecting thetypical behavior of
the random walker.

A key motivation for the present paper was to investig
in detail features that emerge in a SUSY formulation o
random critical point. The calculation proceeded by expre
ing mean correlators in terms of quantum-mechanical exp
tation values for a SUSY Hamiltonian, which involved
singlesuperspin. This Hamiltonian has a number of nota
features:~i! It is non-Hermitian, with distinct left and righ
eigenfunctions.~ii ! It has a unique zero-energy ground sta
as dictated by supersymmetry, and the excited states ar
ganized into supersymmetric doublets and quadruplets.~iii !
The right ~or left! eigenstates alone donot span the Hilbert
space—the Hamiltonian is thus ‘‘defective.’’~iv! The Hil-
bert space is infinite, due to the noncompact SU~1,1! bosonic
subalgebra of the superspin group.~v! The eigenstates ex
plore the outer reaches of the noncompact manifold, i
manner that can be described by Liouville quantum mech
ics.

It is our hope that a thorough undertanding of these
usual features will be helpful in extending the SUSY a
proach to attack two-dimensional random critical poin
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such as the IQHE plateau transition. It is tantalizing to spe
late that some appropriate supersymmetric version of Li
ville field theory might give a correct description of deloca
ization transitions in 2D.
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APPENDIX A

The mapping from the random transverse field Ising ch
to a free-fermion model was introduced by Shankar a
Murthy. We briefly recapitulate this mapping. In terms
Majorana fermions,

h1,n5
1

A2
)
m,n

sm
x sn

y , ~A1!

h2,n5
1

A2
)
m,n

sm
x sn

z , ~A2!

which satisfy$h i ,m ,h j ,n%5d i j dmn , the random Ising Hamil-
tonian, Eq.~2.27!, can be rewritten as

HI5(
n

@22iK 1,nh1,nh2,n12iK 2,nh1,nh2,n11#. ~A3!

A continuum limit can be taken by puttingx5ndx,
K15dx/2, and K25(1/21m(x))dx, and converting the
sums to integrals. This gives

Hc5E dxh@sxi ]x1m~x!sy#h, ~A4!

where we have defined a two-component Majorana fie
h5(h1 ,h2). For spatially uniformm this model describes
criticality in the pure 2D Ising model, with the phase tran
tion occuring atm50.

To complete the mapping it is convenient to conside
path integral representation of the partition functio
Z5Tr exp(2bH), which can be written as a functional inte
gral over Grassmann fields,h(x,t), with associated Euclid-
ian action:

S5E dx
dv

2p
h~x,v!@ iv1sxi ]x1msy#h~x,2v!.

~A5!

These can be decomposed into new Grassmann fields b
fining

ha~v!5 c̄a~v!, ha~2v!5ca~v!, ~A6!

for positivev and a51,2. In terms of these new fields th
action becomes

S5E
0

`dv

2p
Sv , ~A7!
-
-

,
-
y

4-

n
d

,

-

a
,

de-

with

Sv5E dxc̄ @sxi ]x1m~x!sy1 iv#c. ~A8!

Notice that the functional integral factorizes into a produ
over independent frequencies. In the following we focus
only a single frequency. The action at a single frequency
be cast into the form of Eq.~2.6! by a rotation in ‘‘spin
space’’ around they axis byp/2, which takessx→sz, giv-
ing

Sv5E dxc̄ ~h1 iv!c, ~A9!

with h the 1D random Hamiltonian in Eq.~2.7!. Note that, in
this case, a nonzero massm0 corresponds simply to the de
viation from the Ising critical point.

APPENDIX B

For the special case of the ground-state wave function,
are in fact able to obtain an exact solutionwithout taking the
continuum limit. This is possible because the differen
equation, Eq.~4.6!, is linear inn. Here, we specialize to the
casen50, in which this solution is especially simple.

For M50, the Schro¨dinger equation decouples on eve
and odd sublattices and can be solved independently on e
To bring this out, we define

f2n5gn
e , f2n115gn

o , ~B1!

for n50,1,2, . . . . The even and odd sublattice fields the
obey

vgn
o5~n11!gn11

o 2~2n11!gn
o1ngn21

o , n>0

vgn
e5~n11/2!gn11

e 22ngn
e1~n21/2!gn21

e , n.0.

To solve them, we define the generating function

ĝP~w!5 (
n50

`

gn
Pwn, ~B2!

whereP5o,e. Consider first the odd sector. Multiplying th
equation forgn

0 by wn and summing gives

~12w!2
dĝo

dw
5~12w1v!ĝo. ~B3!

This is easily solved by separation of variables, to give

ĝo5
C

12w
expF v

12wG , ~B4!

whereC is an arbitrary constant. Not the strong divergen
at w51. This implies unacceptable behavior forgn

o at large
n.

The even sector is~fortunately! rather more complicated
The crucial difference is the fact that Eq.~4.6! is valid only
for n.0, leaving an extra free parameter. Carrying out
transform in this case gives
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~12w!2
dĝe

dw
1F1

2S w2
1

wD2v G ĝe52F1

2S 1

w
2g1

eD1vG ,
~B5!

where we have imposed the normalizationg0
e51. Note the

appearance ofg1
e as a parameter in the equation. It must

adjusted to achieve a well-behaved solution.
This inhomogenous equation can be solved by introd

ing the integrating factor (12w)/Awexp@2v/(12w)#. The
solution is

12w

Aw
e2v/~12w!ĝe~w!52Ew dy

Ay~12y!
F12y

2y
1

d

2
1vG

3e2v/~12y!, ~B6!

whered512g1
e . Performing an integration by parts leads

the form

ĝe~w!5
1

12w
@11Awev/~12w!J~w!#, ~B7!

where

J~w!5E
0

w dy

Ay~12y!
F v

12y
2

d

2
2vGe2v/~12y!. ~B8!

To avoid the strong divergence ofgn
e , we clearly need

J~1!50. ~B9!

This fixesd. This implies that

J~w!52E
w

1 dy

Ay~12y!
F v

12y
2

d

2
2vGe2v/~12y!.

~B10!

We now change variables viay512v/t, and also define
s5(12w)/v. Then

J52E
1/s

` dt

tA12v/t
F t2

d

2
2v Ge2t. ~B11!

We may now take the limitv→0, with s fixed, andd@v.
Then

J~s!→
d

2
E1~1/s!2e21/s, ~B12!

where

E1~x!5E
x

`

dte2t/t ~B13!

is the exponential-integral function. Plugging back in giv
finally,

ĝe~s!5
d

2vs
e1/sE1~1/s!5

d

2vE0

`

dt
e2t

11ts
. ~B14!

In fact, ĝe(s) is nothing but the Laplace transform in th
limit v!1,
-

,

ĝe~s!5(
n

gn
ewn5(

n
gn

ee2nvs→E dnge~n!e2nvs

5@Lge#~vs!. ~B15!

We can therefore invert it using the inversion formula,

gn
e5E

c2 i`

c1 i` ds

2p i
ensLge~s!5vE

c2 i`

c1 i` ds

2p i
envs@Lge#~vs!

5
d

2E0

`

dte2tE
c2 i`

c1 i` ds

2p i

envs

11ts
5

d

2E0

`

dt
1

t
e2nv/t2t

5
d

2E0

`dt

t
e2nt2v/t. ~B16!

This is precisely the modified Bessel function solution o
tained from the continuum limit~see Appendix E!.

APPENDIX C

In this appendix we obtain the density of states witho
resorting to the hard-wall approximation, by solving exac
the full continuum equation, Eq.~4.14!. This can be accom-
plished by employing an inverse Laplace transform, defin

f~n,M !5E
0

`

dte2ntf̃~ t !. ~C1!

Providedt2f̃(t)→0 ast→0 ~as required for a well-behave
solution asn→`), insertion into Eq.~4.14! leads to the
simple transformed form,

t2
df̃

dt
1~12M !tf̃5

v

2
f̃. ~C2!

This has the general solution,

f̃~ t !5
a

t12M
e2v/2t, ~C3!

wherea is an arbitrary constant. The ‘‘unnormalized’’ wav
function is thus given by

f~n,M !5aE
0

` dt

t12Me2nt2v/2t, ~C4!

which is the integral representation of a Bessel functi
f(n,M )52a(v/2n)M /2KM(A2vn). To evaluate Eqs.
~4.15,4.17!, we needf(1) andf8(1). These are determine
by making the change of variablesx5t2M, which yields

f~1,M !5
a

ME
0

`

dxexp@2x1/M2~xW21!21/M#, ~C5!

with the scaling variableW5(v/2)M. In the scaling limit
v,M→0 with W fixed and finite, Eq.~C5! can be simply
evaluated. Since each of the arguments in the expone
goes to zero or infinity, the limits of integration are r
stricted, giving

f~n51,M !5
a

M
~12vM !, ~C6!



d

n
e

in
se

q

av

f
on
s,

in
th
c

f
fie

lu
r
k

a
g

n

-

of

56 12 989DELOCALIZATION TRANSITION VIA SUPERSYMMETRY . . .
~using 2M'1). The same change of variables can be use
extract then derivative, giving in the scaling limit

df

dn U
n51

52a. ~C7!

Comparison with the hard-wall forms shows that the co
stants c1 and c2 are identical provided we tak
a51/zw5u lnvu21.

With the exact solutions of the continuum equations
hand, one can readily evaluate the density of states by in
ing the integral representations Eq.~C4!, into the expression
for G( iv) in Eq. ~4.25!. The n integration can be readily
performed. In the scaling limitM!1 the remaining twot
integrations are simple and yield an identical result to E
~4.26!–~4.27!.

APPENDIX D

In this appendix, we obtain the exact excited-state w
functions in the continuum limt in theNF50,2, NB521
sectors, and show that they lead to the same scaling form
the Green’s function as does the hard-wall approximati
Beginning with Eq.~5.7!, we make the change of variable

x~n,M !5a~b!n2~11M !/2x̃ ~n,b!, ~D1!

wherea(b) is a normalization constant to be chosen later
order to maintain the closest possible agreement with
hard-wall solutions in Sec. V. The transformed wave fun
tion then satisfies the simpler equation,

Fn2
d2

dn2 1n
d

dn
1

1

4
~b222vn!G x̃ ~n!, ~D2!

whereb5AE2M2. Equation~D2! is a standard equation o
classical mathematical physics. Its solutions are modi
Bessel functions of imaginary index,

x̃ ~n!5Kib~A2nv!, ~D3!

where we have chosen the solutionK that decays at infinity.
Note that we have assumedE>M2, for which b is real. It is
straightforward to show that there are no satisfactory so
tions with E,M2. Very few results are readily available fo
these functions at imaginary index. Instead, we will ma
heavy use of the integral representation,

x̃ ~n,b!5E
0

`

e2A2nvcoshtcosbt, ~D4!

which can be verified by direct substitution into Eq.~D2!. A
second useful form is obtained by integrating Eq.~D4! by
parts:

x̃ ~n,b!5
A2nv

b E
0

`

e2A2nvcoshtsinhtsinbt. ~D5!

The first task at hand is to determine the spectrum, or
lowed values ofb. To do this required asymptotic matchin
for the continuum solution~valid for n@1) to the ‘‘outer’’
solution of the difference equation withv50 ~valid for
n!1/v). This matching is imposed in the overlap regio
to

-

rt-

s.

e

or
.

e
-

d

-

e

l-

1!n!1/v. To study this limit, we lets5et in Eq. ~D5!,
which is then dominated bys@1. Thus

x̃ ~n,b!;Anv/2
1

2ibE1

`

ds~sib2s2 ib!e2Anv/2s. ~D6!

This gives

x~n,M !;
1

2ib
n2~11M !/2@~nv!2 ib/22~nv! ib/2#. ~D7!

Comparison to the outer solution, Eq.~5.16!,

x~n,M !;n2~11M !/2@c1n2 ib/21c2nib/2#, ~D8!

then gives, as in Sec. V,

bk5pk/zw , ~D9!

c35~21!k11c4[c. ~D10!

We must next determine the constantsc anda(b). Nor-
malization requires

2uCku2ua~b!u2I b51, ~D11!

where

I b5E
1

`dn

n
u x̃ ~n,b!u2. ~D12!

Performing the integral overn gives

I b5
2

b2E
0

`

dtdt8sinbtsinbt8
sinhtsinht8

~cosht1cosht8!2@11A2v

3~cosht1cosht8!#e2A2v~cosht1cosht8!. ~D13!

The next step is to rescale the parametert→t/b, t8→r 8/b to
give

I b5
1

2b4E
0

`

dtdt8sintsint8sech2S t2t8

2b D @11A2v~cosht/b

1cosht8/b!#e2A2v~cosht/b1cosht8/b!. ~D14!

We are interested in smallv, with b5pk/u ln(v)u. In this
limit,

cosht/b5 1
2 ~et/b1e2t/b!' 1

2 v2t/pk, ~D15!

and an identical result witht→t8. The factor in the exponen
tial in Eq. ~D14! therefore becomes

A2v~cosht1cosht8! →
v→0

H 0, 0,t,t8,pk/2

`, otherwise.
~D16!

Taking this limit therefore acts simply to restrict the limits
integration, and we have

I b5
1

2b4E
0

pk/2

dtdt8sintsint8sech2S t2t8

2b D . ~D17!
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Since the sech is sharply peaked around zero in theb→0
limit, we may effectively sett8't in the second sine to
obtain

I b5
1

2b4E
0

pk/2

dtsin2tE
0

pk/2

dt8sech2S t2t8

2b D . ~D18!

The t8 integral is clearly proportional tob, and performing
these integrations exactly gives, in theb→0 limit,

I b5
pk

2b3 . ~D19!

Thus, by choosing

a~b!5b5
pk

u lnvu
, ~D20!

we obtain the same constantc5zw
21/2 as found for the hard-

wall solutions in Sec. V.
We are now in a position to calculate the Fermion Gree

function. As in Sec. V, to use the decomposition in Eq.~5.2!,
we must calculate matrix elements of single-fermion ope
tors between the ground and excited states. In general, u
Eqs.~4.13,5.6!,

L^kuFb
† u0&R;

c1

A2zw
E

1

` dn

An
@~21!bf~n,M !x~n,2M !

1~21!k11f~n,2M !x~n,M !# ~D21!

5
c1

A2zw

@~21!bI ~M !1~21!k11I ~2M !#,

~D22!

where the integral

I ~M !5
pk

zw
E

1

` dn

An
f~n,M ! x̃ ~n,b!nM /2. ~D23!

To evaluate this integral, we lett→et in the integral repre-
sentation, Eq.~C4!, giving

f~n,M !5c1

v

n

M /2 E
2`

`

dte2A2nvcoshteMt. ~D24!

Inserting this and Eq.~D4! above, then integration can be
readily performed, giving
s

-
ing

I ~M !5
pkvM /2

A2vzw
2 E

2`

`

dt1dt2
eMt1cosbt2

cosht11cosht2
. ~D25!

The limits M ,b→0 can be safely taken in the numerator
the integral. The final result is

I ~M !5
p3kv2~12M !/2

A2zw
2

. ~D26!

Putting this into Eq.~D22! above and thence into Eq.~5.2!,
one recovers the final result, Eqs.~5.31!–~5.35! quoted in
Sec. V, with a different value,A5p6/4, for the nonuniversal
constant.

APPENDIX E

In this appendix, we solve the difference equation forJx

eigenstates, Eq.~5.14!, in the appropriate sector for the fe
mion Green’s function. Consider the generating function,

ĉ~w,a!5 (
n50

`

cn~a!wn. ~E1!

Multiplying Eq. ~5.14! by wn and summing gives

~12w2!
d

dw
ĉ~w,a!2wĉ~w,a!522iaĉ~w,a!.

~E2!

This is easily solved by separation of variables. One find

ĉ~w,a!5~11w!21/22 ia~12w!21/21 ia, ~E3!

choosingc0(a)51 to fix the overall constant. This can b
inverted using the contour integral

cn~a!5 R dw

2p i

ĉ~w,a!

w11n . ~E4!

Deforming the contour to obtain a real integral gives

cn~a!5
coshpa

p E
1

` dw

w11n @~w11!21/22 ia~w21!21/21 ia

1~21!n~w11!21/21 ia~w21!21/22 ia#. ~E5!

For largen@1, this integral is dominated byw'1, and can
be easily evaluated to give the result quoted in Eq.~5.15!.
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