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We use supersymmetriSUSY) methods to study the delocalization transition at zero energy in a one-
dimensional tight-binding model of spinless fermions with particle-hole symmetric disorder. Like the
McCoy-Wu random transverse-field Ising model to which it is related, the fermionic problem displays two
different correlation lengths for typical and mean correlations. Using the SUSY technique, mean correlators are
obtained as quantum-mechanical expectation values fof21[1) “superspin.” In the scaling limit, this
quantum mechanics is closely related to-aD-dimensional Liouville theory, allowing an interpretation of the
results in terms of simple properties of the zero-energy wave functions. Our primary results are the exact
two-parameter scaling functions for the mean single-particle Green'’s functions. We also show how the Liou-
ville quantum-mechanics approach can be extended to obtain the full set of multifractal scaling exponents
7(q), y(q) at criticality. A thorough understanding of the unusual features of the present theory may be useful
in applying SUSY to other delocalization transitiofS0163-182@7)03143-3

I INTRODUCTION [1(X) (0) Heng~L =4~ @V |x| 719, (1.

Delocalization transitions control the physical behavior ofHere the square brackets denote an ensemble average over

a number of electronic systems, including dirty semiconduc#disorder configurationd, is the linear extent of the system,
tors, metals, and two-dimensional electron gases in the quaand |x| <L is assumed. The scaling for essentially all physi-
tum Hall regime'? In three dimensions, such critical points cal quantities can be formulated in terms of the set of expo-
occur at the boundary between a diffusive metal and a localRentsv,7(q), andy(q) (a simple example is given in Ref.
ized insulating phase. In two or fewer dimensions, however/)-

the metallic state is generally unstabléweak localiza- Supersymmetri¢gSUSY) techniques offer the tantalizing
tion™ ), so that delocalization transitions are typically isolatedP0SSibility of a field-theoretic treatment of such delocaliza-
conductingpoints separating two localized phases. The pro-tion transitions. SUSY has a long history in disordered elec-

totypical example is the transition between plateaus in théronic. systgmst where iéwas first introduped by Efetov to
integer quantum Hall effe¢tQHE): Within a model of non- describe diffusive metals.The SUSY nonlineaw model,

interacting electrons, the localization length in each disorder‘-’."hen Ilnear!zedz provides Gaussm_n or fredield descrip- .
on of a diffusive metal. Expansions about the metallic

broadened Landau band only diverges at one |solateHhase ind=2+ ¢ dimensions give a fixed point that can be

energy’ Intense experimental effort has focused on th extrapolated to describe a three-dimensiof@D) metal-
L . . €Shsulator transition. However, isolated delocalization transi-
edented charactenzatlorj of the ur_nversallscallng behawolﬁons ind<2, such as in the IQHE, do not afford the luxury
Indeed, from the experimental point of view, this systemg¢ oyhanding about a diffusive metallic phase. Recently,
probably prowdes the best example of random quantum critizjnhauer and others have used SUSY to map the Chalker-
cal behavior. _ Coddington network model for the IQHE transition into an
Theoretically, however, such systems still present a granghteracting1+1 dimensional field theory—a supersymmetric
puzzle, in which but a few pieces are in place. Some analytigntiferromagnetic spin chaiv** Unfortunately, this model
cal progress has been made for metal-insulator transitions ifas resisted all attempts at an analytic treatment, despite the
d=2+e€ dimensions® But in two dimensions, despite a essentially complete solution of a related supersymmetric
set of simple noninteracting Fermion models that describgerromagneticchain that describes transport in a dirty 2D
the IQHE plateau transition, a controlled analytic treatmenthiral metall? Falco and Efetov have recently applied the
is sorely missing. Efficient numerical methods have been deSUSY nonlineai model in two dimensions to extract mul-
veloped to investigate these models, and provide a number difractal wave function correlations, but in a crossover re-
significant empirical observatioi$. In both these cases, gime rather than at an isolated delocalization transitfon.
scaling is manifest in the vicinity of the critical point, with a  Some analytic progress has been made using a toy model
diverging localization lengtE~|M|~*, whereM measures of Dirac fermions in a random vector potenti@VP), which
the deviation from criticality. For the IQHEy~7/3. For  exhibits a 2D delocalization transitidfi-}’ This model has
distances shorter thafy the single-particle electronic wave the simplifying feature that a zero-energgritical) wave
functions[ #(x)] are extended, but exhibit complewulti-  function can be found exactly for any realization of the dis-
fractal scaling® In particular, each disorder-averaged mo-order, which enables analytic study of wave-function multi-
ment scales with an independent pair of critical exponentsfractality. A number of different formulations are possible,
which we denote as(q) andy(q) for the gth moment: but a particularly intriguing approach involves mapping to
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2D Liouville field theory!” which has been extensively The superspin operatot§ are defined in Sec. Ill. This sim-
studied in string theory. Away from criticality, however, far plification enables us to systematically carry through the
fewer results are known, and at present SUSY techniqueanalysis from start to finish to obtain tlexactcritical and
have not been successful in this regard. off-critical scaling functions. A key motivation for doing this
In this paper, we study a one-dimensional tight-bindingwas to investigate_ in detail the diff(larer]telemen'ts that arise in
system of spinless fermions with random hopping matrix el-& SUSY formulatlon_ of a delocalization transition. Indeed,
ements, the “spin” Hamiltonian in Eqg. (1.4 has many unconven-
tional properties. It is non-Hermitian, requiring a distinction
between left and right eigenstates. The spin operators them-
- i i selves are in fact elements of the noncompact superalgebra
" ; ta(CnCn+1F Cot 1C)- 12 U(2|1,2). The noncompactness of the @) subalgebra is
manifest in the representations of the spin operators which
Here thec’s are canonical Fermion operators satisfyingare infinite dimensiondi.e., the ladder of discretg * eigen-
{Cm,CI}Z Smn,» and the random hopping strengtijscan be ~ states is infinite As demonstrated in Secs. IV-\(, near'criti—
taken as positive without loss of generality. The continuumcality the system explores the far reaches of this manifold of
limit of this model is in fact a one-dimensional analog of the SPIN States, in a manner that can be described.ibyville
2D RVP theory, and many of the same properties obtain. Afluantum mechani¢svhich was recently introduced in stud-

exact zero-energy wave function is known for each realizal€S Of the zero-energy eigenstates in Ref. 23. Furthermore,

tion of the disorder. Critical singularities are present in thethe SUSY Hamiltonian islefective i.e., the (right) eigen-

singe-paricle densiy of siaies a5 i he 2D RVP matial 108 "L SPar e et opace, To st e i
in contrast to the IQHE transitionindeed, for the 1D ran- y req P 9

. ) : plete the eigenbasis. A knowledge and familiarity of these
Sg::ef;Opplng model the density of statisergesat the band features will likely be crucial to the success of future work

. . applying SUSY to othefe.g., 2D critical points.

_ There has been considerable prior work on the 1D transrpli\g agmajor function (ofgthis %aper is ISedagogy, we have
tion in the random hopping model, primarily focussing on gtempted to present the material in enough detail to allow
properties derivable from the mean local Green’s functionine reader to appreciate the technical elements of the calcu-
the mean density of states and the typical localization lengthations. Section Il discusses the model, its relations to vari-
This work was recently summarized in Ref. 18. Employing aous random spin chains, the continuum limit, and the rel-
real-space renormalization grotRG) method, D. S. Fisher evant single-particle Green’s functions. In Sec. Ill, we
(DSH has obtained the spatial dependence of mean spirdescribe the mapping to quantum mechanics, derive the
correlation functions in several closely related 1D modelsSUSY Hamiltonian and itésupeysymmetries, and detail the
the McCoy-Wu random transvere field Ising model and ran-organization of states into superspin ladders and supermul-
dom Heisenberg anX X spin chains®% In this paper, we tiplets. The exact ground state and a class of excited states
extend the above analyses using SUSY methods to obtain tieeded to compute the desired correlators are found in Secs.
spatial dependence of thexactcritical and off-critical scal- 1V and V, leading to the final results in Eq&.31)—(5.40.

ing functions for the mean fermion Green’s function, sum-Last, in Sec. VI we pursue the Liouville quantum-mechanics
marized in Eqs.(5.3)—(5.40 (unpublished work by DSF formulation, extending the treatment of Ref. 23 to determine
using real-space methddscorroborates our resujtsOur re-  the full set of multifractal exponents,

sults are also reminiscent of forms obtained by Bouchaud 7(q)=0, y(q)=3/2. (1.5

et al?? for two-time correlation functions in the mathemati- '

cally similar problem of a 1D random walker in a random Il. MODEL AND SYMMETRIES

potential, though the precise relation to our calculation has

not been investigated. An important feature not present in the A. Lattice model and continuum limit

local properties is the emergence ofnaean localization We begin with the free-fermion model, E(1L.2). We as-

length that controls the spatial decay of the average Green'sume thatt,, consists of a large uniform pattand a small

function, random piecest,,. Under a Jordan-Wigner transformation,
this model is equivalent to a random exchange spinXbR

£.~|Inel?, (1.3 chain,
with e the energy from the center of the band. This length is Hyx= —En: 2t,(ShShi 1T SISh 1), (2.1

much longer than thetypical localization lengthZ .~|In€|, . ) .
found previously by many authors. This important distinc-whereS,= o/2, with o the usual vector of Pauli matrices.
tion between typical and mean correlation lengths has been For uniform hopping the single-particle states are plane
emphasized by Fisher in his analysis of 1D random spifvaves, andH describes a band at half filling, with zero
chains. Fermi energy, and two Fermi points Iq{i=_ + /2. With a

In contrast to the IQHE transition that is mapped into as_mall rano_iom component in th? hopping strengths, the
SUSY spin chain, the SUSY formulation of the 1D randOmsmgle-partmle states will be localized away from the band

hopping model is equivalent to the quantum mechanics of Ser» but due to a special particle-hole symmesee be-
) : S Lo ow) the localization length diverges upon approaching zero
single superspin, with “Hamiltonian

energy. The density of states is also singular at zero energy.
To study this delocalization transition, it suffices to focus on
H=2wJ *+2mJ *—49(J %)% (1.4  states near zero energy. Providég, is small compared to
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the band widtht, it is legitimate to take a continuum limit, ch—(—1)"c!, (2.9
retaining a narrow shell of pure energy levels near the two
Fermi points. due to time-reversal and particle-hole symmetries, present
To this end, we decompose the Fermi fields as even with random hopping strengths. As a consequence of
this symmetry, the single-particle wave functions can be cho-
Cn=(1)"¢r(n)+(—0)"P(n), (2.2 sen to be realtime-reversal invariangdeand come in conju-
gate pairs with energy: e. Specifically, for a given eigen-
function, ¢.(n) at energye, there is a partner eigenstate with
energy —e, given by ¢__=(—1)"¢.(n). At zero energy
one thus anticipates special properties, as discussed below.
In the continuum, the symmetry E@2.9 becomes an
clenritel, il Yhacbr— (o) r— (RL)] invariance ofH, under the canonical transformation,

and assume thap varies slowly withn. To take the con-
tinuum limit we replacen by a continuous coordinate and
approximate discrete differences withderivatives. For the
fermion hopping term this gives

—2i(—1)"ykp —dlvR]. (2.3 Yo UL, (2.10

For uniform hoppingt,=t—dx/2, the second term is rap- for a=R,L. This symmetry restricts the allowed form of the
idly varying and can be ignored, giving the expectpdre  single-particle Hamiltoniarh. Specifically, h cannot have

Hamiltonian, terms(with no gradients proportional toc*,o” or the iden-
tity. A generic random 1D tight-binding fermion model, in
Ho= _f dxt utiootre— utio , 24 which thg density of states is .regular and all the eigenstates
0 LRl b Yt o] 24 are localized, wouldhot be particle-hole symmetric, and ad-

twoditional terms, such as a spatially randerhterm, would be
present in the continuum Hamiltonian. The above symmetry
is clearly crucial for the existence of delocalization at the

which describes right and left moving modes at the
Fermi points.
A small random hoppingt,, causes scattering between

the plane-wave states. The important Fourier components {and centere=0. .

ot, are at i, since these cause backscattering between An (up—normallzed extended state a_1t ZEro energy can in

the right and left movers. We thus decompos fact be directly extracted from the continuum wave equation:
. n

—(—1)"m(x)dx/2, wherem(x) is assumed slowly varying. hd(x)=0, whered is a two-component wave function.

From the second term in E¢R.3), this leads to grandom Writing
backscattering term in the continuum limit:
? D)= - (x)( ), (219
Hy= _iJ' dxm(X)(l,U;ral!fL— l/’I‘/’R)- (2.5 the scalar functionrp(x) satisifies
Employing a spinor notationy= (g, ), the full con- [dx=m(x)]¢.=0. (212
tinuum Hamiltonian,H.=Hy+ H, takes the form This can be integrated to give
chf Xm/lThlp, (26) ¢i(x)ocetfxdx’m(xr). (213)
with a single-particle Hamiltonian, For randomm(x), with mean zero, this wave function is
_ clearly not exponentially localized. If the random function
h=—ig®d,+m(x)o”. (2.7 m(x) has short-ranged spatial correlations, the logarithm of

) ] ) ) the wave function undergoes a 1D random walk. For a
It is convenient to decompose the function(x) into &  Gayssian distribution ofm(x) the (un-normalizeyl wave

uniform and random piece as function is log-normally distributed. This wave function is a
- one-dimensional analog of the exact zero-energy wave func-
m(x) =mg+m(x), (28 tions written down for 2D free fermions described by a Dirac

theory with random vector potential. As in the 2D case, the
wave function is very broadly distributed, and its correlations
can be characterized by a multifractal scaling description.
i th h We return to a discussion of the multifractal characteristics
gap in the pure spectrum about the band center. Indie of this wave function in Sec. VI, where we compute the

spin chain, nonzerang corresppnds tp a d|mer|zat|or_1 in the multifractal spectrum explicitly, following recent work by
bond strengths, and the gap is a spin gap due to singlet forSheIton and Tsvelil®

mation across the stronger bonds. Bothand the energy
are tuning parameters that take one away from the deloca\IN
ized critical point.

where[ﬁ]ens=0, with the square brackets denoting an en-
semble average. Nonzemm, corresponds to guniform)
staggering in the hoppingst,~(—1)"my, which opens a

Away from criticality, for nonzerom,, the zero-energy
ave functions in Eq(2.13 are exponentially growing and
decaying functions,¢.. (x)~e*=™*. While they are non-
normalizable in infinite space, for a finite system they de-

B. Symmetries and delocalization scribe solutions that decay exponentially into the system,
The lattice free fermion Hamiltonian, E¢L.2), is invari- ~ With an associated localizatiorfor correlation length,
ant under the canonical transformation, '£=1/mq. The critical exponent, defined via
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Femg? (2.14 the discrete separation can be replaced by a continuous dis-
o tancex—x’ (lattice constant equal to oheDne finds

is 7=1. As emphasized by DSF, in addition to the length

that describes the decay of a typi¢ahaveragegcorrelation g(n,n";iw)=i""""> (- 1)“”*3”'Ga5(x,x’;iw),
function, there is another divergent lengihthat describes a.B

the decay of ensemble-averaged correlation functions. Con- (2.1
sistent with arguments by DSF, we find below that this latteryiy, and 8 running over the two spinor components, de-

length diverges more rapidly with an exponent2. noted as eithe(R,L), (0,1), or (I, ]). HereG, is defined in
Two similar lengths may be defined by approaching theerms of the continuum fermion fields as
critical point at finite energy, but with zero massny=0.

Using the Thouless construction from the local Green'’s func- L N .,

tion, previous authors have found (gpical) localization Gap(X,X ilw)=|J0 dte” v (X, 1) gp(x",0)|v),
length Z.~|Ing. In constrast, employing a real-space RG (2.19
approach, DSF has shown that mean correlation functions Mt i i i
decay with a longer length, which varies &s~|Ine/. with y(t)=e""cye" """ and H; the continuum Hamil-

Another important characteristic of the above exact zerotonian. This continuum Green’s function can alternatively be
energy wave function is that it isodeless for each and expressed in terms of the single-particle Hamiltonilarin
every realization of the random potentia(x). Because of Ed- (2.7, as
this, critical properties of the 1D localization transition at

: . . . 1
e=0 are contained in the ensemble averaged single-particle Gap(X X ;i) = (X, a| ——Ix", ), (2.20
Green’s function, in contrast to the conventional Anderson h—iw
transition in higher dimensions. where |x,a) denotes a fermion at position with “spin”

Below we briefly consider symmetry properties of the componenta.
single Fermion Green’s function, and obtain expressions in ¢ interest is the behavior of the single-particle Green's

the continuum limit. The next sections are devoted to evalugnction upon ensemble averaging over disorder realizations.

ating the ensemble averaged Green’s function using super- ~
symmetry methods, o be concrete, we take the random functim(x) to be

Gaussian with

C. Green'’s functions [m(x)ﬁ(x’)]ensz 295(x—x'). (2.21)
Consider the single fermion Green’s function at ene¢gy

. Ensemble-averaged Green’s functions, which we denote with
defined as

an overbar, become translationally invariant:

g(n,n’;e+iw):ifdte‘““w‘(v|cn(t)c§,(0)|v>,
0
(2.1

where |v) denotes the fermion vacuum, an
c(t)=e'"ce " with H the lattice Hamiltonian. Here is a
small imaginary part to the energy. In practice below, we
will take the real part of the energy to be zees; 0, calcu-
late G(i w) for real w, and then extract the energy depen-
dence via an analytic continuation. via

The spectral decomposition &f in terms of the exact
eigenstatesg, takes the form

N .
gxiw)= NZ& [G(Nn+X,N;i®)]ens: (2.22

d with N— the number of sites in the tight-binding lattice.
From Eq.(2.18), this is related to the averaged continuum
Green’s functions,

Gop(X;i @) =[Gop(X,0ii ) Jens (2.23

G(Xiw) =172 (—1)PGo(Xiiw), (2.24

I R AWLALY

. (2.16  with the separatiox either even or odd.
The mean density of states for the original lattice fermi-

Using the symmetry propertys_.(n)=(—1)"$.(n), one ©ONS can be written
can readily show thag(n,n’,iw) is real and even inw for

e—iw

n—n’ odd, and purelyimaginary and odd inw for n—n’ p(e)=lim ng(xzo;éﬂw). (2.25
even. For example, with—n’ even, Eq.(2.16 can be re- 00T
written as

We shall also be interested in the spatial dependence of the

—Jiw correlation function,

e+ w?’

g(n,n';iw>=§0 dn)p(n’) (2.17

1 —
C(x,e)=;lmg(x;e+i0+). (2.26
The Green’s function, as defined in E@.15, can be

reexpressed in terms of the continuum fermion fiefds) This function is expected to decay exponentially with a mean
by employing the decomposition, ER.2). Forn—n’>1, correlation length{. Due to the delocalized zero-energy
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wave function(at my=0), &(e) should diverge upon ap- _ 1
proaching the band centes—0. Gup(Xiw)= (X,a|m|0-,3>} , 3.9
In Sec. lll we will construct a generating functional that ens
can be used to extra&. Our strategy will be to calculate as a functional integral,
G(x,iw) for real , and then perform an analytic continua- — . . —
tion to extract the density of states a@dx, €). Gap(X,i@) =1 (ho(X) 5(0))s, 3.2
with
D. Related random models
As noted above, under a Jordan-Wigner transformation (O)s= f DyDyDEDE Oe™ S (3.3

the lattice free-Fermion HamiltonigH in Eq. (1.2) is iden- ens

tical to a random exchange spin-I&X chain. Some prop- Here the functional integration is over Grassmann fields

erties of the spin chain can be extracted from the fermiony(x) and complex fields(x), with the action

density of states, specifically the specific heat and the

z-component magnetizatiof§?) in response to a magnetic — .

field along thez axis. Unfﬁj%ately, spin correlation func- S:f dx[(ih+w)yg+ £ (ih+w)€]. 34

tions are notoriously difficult to extract from the free-

fermion representation, due to the nonlocal relation betwee

spin and fermion operator§lordan-Wigner string Never-

theless, one expects that the correlation decay length of t . . . ; .

fermion Green'’s functions will also control the decay of spintegratmn. In_domg so, we obtain the supersymmetric form in

correlations. Eq. (3.4). ThLS enables an ensemble average over the Gauss-
As shown originally by Shankar and Murthy, a secondian disordem(x) to be readily performed.

spin model that is equivalent upon fermionization to the free For ease in presentation, it is convenient to speak of a

Fermion modelH, is the 1D random quantum Ising chain in slightly simpler object, the partition function

transverse field, with Hamiltonian

a’he most noteworthy point is that in E¢3.3), we have
included the complex scalar field in order to cancel the
ngmionic determinant that naturally occurs due to thea-

zzf DyDyD¢DE e S, (3.5

X Z QL
H'_E [2K1nSnt 4K2nSiShal- 22D \yhere the functional integration is, as before, over Grass-
mann fields/(x) and complex fieldg(x), with the action of
Here K, and K, are spatially random field and Ising ex- EQ. (3.4). Correlation functions are obtained by simply in-
change constants, respectively. This model is an anisotroperting the appropriate fields after the integration measure
(“time-continuum”) version of a 2D classical Ising model and ensemble averaging. The crucial cancellation of the fer-
with random exchange interactions perfectly correlated irmionic and Bosonic determinants then gives the trivial iden-
one of the two directions, a model first studied by McCoytity (1)=1, or Z=1. From the functional integral formula-
and Wu. For completeness, we sketch this fermionizatioriion, the reason for generating Green’s functions for real
procedure in Appendix A, where we show that the low-becomes clear: while the fermionic functional integral is al-
energy properties of{, follow from the properties of the ways well defined, the bosonic one is only convergent pro-
single-particle Hamiltoniam in Eq. (2.7). vided that the action is bounded below. This is the case here

Finally, we should mention the equivalence between theprovidedw>0, sinceh is Hermitian.

free-fermion Hamiltoniar?{ and a 1D model of quantum
particles connected by random strength harmonic springs, a B. Tranformation to quantum formulation
model first introduced and analyzed by Dyson almost 50

The above action corresponds to a random one-
years agé? b

dimensional statistical mechanics problem. After ensemble
averaging over the random functiom(x), the model is
. QUANTUM MECHANICS translationally invariant. Our approach is to extract the trans-

. kal _ _H .
As discussed above, much of the information of interest id€f matrix, T=e"", which can be used to reconstruct the
averaged generating function:

contained in the mean single-particle Green’s function
G,p(X,et+iw). In the following we will construct a generat- [ Z]ene lim STre 1, (3.6
ing functional that can be used to extr&:tOur strategy will Lo

be to calculateG(x,iw) for real w, and then perform an \hereL is the length of the system. The symbol STr indi-
analytic continuation to extract the density of states and¢sies the supertrace, defined by

C(x,€).
STIO=Tr{ (- 1)MO], 3.7

A. SUSY generating functional where Tr is the conventional trace, aNd is a fermion num-

Our analysis is based on employing the well-known field-ber operator defined below. Althoughis an operator, easily
theoretic representation of an operator inverse to express thexpressed in terms of Fermi and Bose operatees below,
ensemble averaged Green'’s function, it is “zero dimensional,” being independent of the spatial
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coordinatex. The problem is thus reduced to studying theHowever,B, doesnot satisfy the canonical Boson commu-
quantum mechanics of the “Hamiltoniari. As usual, the tator, but rather[B, ,BI]=—1. To restore the canonical
spectrum ofH contains information about the correlation form we define
length of the 1D system—in this case the localization length. o

To extract the operatoH, we massage the action Eq. B=B'¢?, (3.18
(3.4) into the form of a coherent state path integral with —
playing the role of imaginary time. To this end we let SO thatB andB satisfy,
fl_’_ff , leaving &, unchanged. Similarly weiansform B B_]=5 (3.19
the independent Grassmann fields a@——¢, and ar=pl Tap: :
W — 1, leaving the spin-up Grassmann fields unchangedHowever, it must be kept in mind th&+ BT

The action can then be written In term of these new operators, the Hamiltonidnbe-
comes
= +L,+ . —
S J AX(Lot Lot L), 38 H=w[FTo?F +Bo?B]+myA—gA?, (3.20
with with
Lo= Yo+ 9,€, (3.9 A=F'o*F + Bo*B. (3.21)
Lo=o(ip+EE), (3.10 At this stage it is convenient to express the Green’s func-

tion, EQ.(3.1), as a supertrace over quantum states. Consider
the Eq.(3.2) representation in terms of fermions. After trans-
— forming to the coherent state path integral form, the Grass-
A= =i T (Y—8). 31D mann fields can be replaced by fermion operators:
Notice thatL, is now in the standard form for a coherent y(x)—eHfe H The average in Eq3.2) is replaced by a
state path integral ik is reinterpreted as an imaginary time supertrace over quantum states:
coordinate. M
Before extractingH, we perform an ensemble average (O(¢,8))s—(O(f,b))=ST{Oe ="].  (3.22
over the disorder. Since we have assumed a Gaussian distfipis gives
bution, this is readily performed to extrdcE]q,s. The only
::eorrrnneisn the action that is modified i§,,, which now be- G_aﬁ(x;iw)zi(—l)“ STr[Fa(x)FLe*LH], (3.23

and L,,=m(x)A with

with F(x)=e*"F e M.
L= moA—gAZ, (3.12
The transfer “Hamiltonian”H can now be read off, since _ c. SUperSymme_try o
the full action takes the fors= [,[ Lo+ H(#,£)]. In pass- N order to disucss the symmetries of the Hamllton-rhn
ing to the Hamiltonian framework, the Grassmann fields ards useful to introduce a four-component superfield,

replaced by Fermion operatorg— f, I—ﬂ”, and the com- — ==
plex fields by Bose operatorg—b, & —b', wheref andb V=(F,B), W¥=(F,B). (329

satisfy canonical commutation relations: We will use latin indices 4,b, . ..) to denote the fermion/

7 _ tq_ boson label, i.e.a=B,F—0,1. From this superfield, one
[FaTp]-=[ba:bs]=dup- 313 may build a three-component superspin,
The resulting “Hamiltonian” is

1—
H=o[fTf+bb]+myA—gA?, (3.19 Tab=5Vaa0apVop. (3.29
with where sums on the greek indices are implied. One can also
A:f%rfI_fIfﬁ(f_’b)- (3.15 define a set of “charges,
Although we will hereafter refer t6l as a Hamiltonian, it is Qab=Y 2, ¥, (3.2

important to keep in mind that this operatomigt Hermitian.
SinceH does not conserve the fermion numkg=f1f, ~ (SUm ona). o
it is convenient to perform a particle-hole transformation, 1 he diagonal components gf have special significance.

defining new fermion fields via a canonical transformation, N the fermionic sector,

Fi=f,, F=f, (3.1 Tu=5- FT%F (3.27
whereF'F commutes withH. To preserve the Bose-Fermi
supersymmetry one can also define, forms a set of ordinary Hermitian §B) spin operators, sat-
: isfying [S,9]=i€*SK. In the bosonic sector, we may simi-

By=b;, B =b|. (3.17  Jarly define three other currents,
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o As is usual in a quantum-mechanics problem, we may
Jo=J=B5B. (3.28  simplify matters by choosing a maximal set of commuting

o - variables, whose eigenvalues are good quantum numbers. In
These also satisfy the $2) algebra[J',3']=i€'*J* How-  this case,Ng and Np are obvious choices. The fermionic

ever, although® is Hermitian,J* andJ” areanti-Hermitian.  chargesQ and Q cannot, of course, be diagonalized. They

One could define a Hermitian set of operators, multiplyingcan "however, be combined to form two additional bosonic
the x andy components ofl by a factor ofi. These would  charges

then satisfy SWL,1) commutation relations, instead of

SU(2). r-50. T-00 as
A useful object is the total spin current, QQ. QQ. (3.4D
It is straightforward to show that
T=Taa: (3-29) o
where again the sum on repeated indices is implied. This I'2=NI’, T?=NT, (3.42
spin current commutes with the charges: o o
'+I'=N, I'T=0. 3.4
[7:Qubl=0. (3:30 443
Since the Hamiltonian can be expressed in terms of this total Nese relations imply that the eigenvalues B{I() are ei-
spin current, ther (ON) or (N,0). The four operatordlg,Ng,I',I" form
, . e the desired set of good quantum numbers, and it is desirable
H=2wJ*+2myJ " —=49(J )", (3.3)  to reorganize the states given above into a basis diagonal in
the charge©,, also commute withH. ThusQ,, generate a tese variables.
set of (supejsymmetries oH. Because of their importance,
> ‘ i, : 1. SU(2)
it is convenient to name them individually:
L Before proceeding to determine this basis, consider first
Ng=Qq=BB, Ng=Q;;=F'F, (3.32 the fermionic sector of the theory. The fermion number is in
L fact related to the total spin via
=Qu=BF, Q=Qi—F'B. 3.3
Q=Qo1 Q QlO- | (3.33 | Pos(st1), (3.44
These latter two operators are fermionic “charges,” which
will be extremely useful in determining the ground state ofWith
H. They obe
y obey s=Ng(2—Np)/2. (3.45
2_2_
Q°=Q"=0, (3.34 So we can think olNg as determining the representation of
SU(2). Note that the singlets=0) representation occurs

{Q.Q}=N, (3.39  twice—for Ng=0,2.

where the total charge is defined as
g 2. SU(1,1) and bosonic ladders

N=Ng+Ne, (3.36 Similarly, the bosonic states may be separated into mul-
which commutes wittall sixteen of the U(f1,1) currents.  tiplets with fixedNg=n, —n, —1. Each such multiplet is ac-
tually a distinct irreducible representation of @L1). To see

D. Hilbert space and representations this, consider the Casimir operator,

Finding the ground-state and low-energy excitationsiof J2= (324 (I)%+ (I5)2=(N3+2Ng)/4.  (3.46
is complicated by the enormity of the Hilbert space. Indeed
since the number of bosons with spin nazblba, is un-
bounded, the Hilbert space is actually infinite. One basis of
states spanning the Hilbert space may be written as a dire
product of bosonic and fermionic states:

'Fixing Ng thus fixes the “total spin” of the SU,1) repre-
entation. Following the analogy with $2), we may label
e states by their total spin and, e.g., the sfialong thez
axis,

|nTnla>=|nTnl>®|aF>, (337) J |]n>_J(J+1)|Jn>1 (347)
wheren, ,nlzo-.- - are the number of up- and dovyn—spin Ng|jin)=2j|jn), (3.48
bosons, respectively. The parameter labels the fermionic
sector, which is spanned by the Fermionic vacujwac), . 1+|2j+1] .
which is anihillated by, and three other states Fin)=| ————+nl[in). (3.49
[1)=F]lvag, (339 Note that in the last equation we have departed from the
N usual convention for denotindf eigenvalues. This is conve-
[1)=F]lvag, (339 nient because the quantum numipeas we have defined it

ot takes integer valuas=0, . . .. The total spin can take half-
[11)=F{F||vag. (340  integer value§=0,+1/2,x1, . ...
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It is also helpful to have explicit expressions in terms of Two sets of such states are easily constructed. These are
the previous basis. Since tljth block of states corresponds
to a ladder satisfying, —n; =2j+1, it can be conveniently |2j,0,0N,(IN+1|+1)/2+n)=|jn)®|vad), (3.52
generated using the raising and lowering operators:
J*=J*+iJY. As usual, the lowest-weight state in each lad-

der, denoted|j0), is constructed to be annihilated by 12,2N,0(IN= 1|+ )2+ m)=|jm)e|] 1), (353

J-=—biby: where the quantum numbers insideme bras on the left-hand
side denote eigenvalues dfi§ ,N,I',I',.7 %), in that order.
1 (bT)2j+l|v> j=—1/2 States withNg=1 are slightly more complicated, since
V(2j+1)! 1 ' they can involve linear combinations of up or down fermi-
ljoy= (3.50  ons. ForN+#0, these are
_—(bT)_<2j+l)|v , j<—1/2,
J2i+ar ! > [2j,1,(N—|N[)/2,(N+|N|)/2,|N|/2+n)
- o +IN| . no .
where|v) denotes the bosonic vacuutw;|v)=0. Each lad- =V3 +|,\|||Jﬂ>®|l>+ 2T|N||J”—1>®|T>y
der is constructed by acting on the associated lowest weight n n
state with powers od " =bb]; (3.54)
my=| 2L 4 e @5 127, 1N+ [N])/2,(N= [N)/2) N| 2+
lin)= TCEEIEE (3M)"joy,  (3.5D j.1( )12, )12, n)
wheren runs from zero toe. — n i n+INJ _
2n+|N||Jn>®|l>+ 2n+|N||Jn 1®l1),

3. SUSY ladders (3.55

Clearly the set of eigenvalues df;,Ng ,F,F_is insuffi- . . o
cient to distinguish all the states in the Hilbert space. Tovhere in the first set above=0,1,2 ..., while in the

provide a unique labeling, we will choose to diagonalize theS®cond sen=1,2, .. .. o
additional operator7 ?=J?+ <. This choice is natural in Apparently these two ladders of states become identical

that 72 commutes with the other four diagonal charges.for_NZO' What happens in that case? There Zare two states
Moreover, the other current present in the Hamiltonigrf, ~ Which are eigenstates &fg=—1, Ng=1, andJ *=n:

leaves the original four quantum numbers unchanged, mix-

ing only different values of7 2. The collection of states with [—12n)®|]),|—1/2n—1)®|1). (3.56
different ;7 # but with the other four charges fixed may be

viewed as the basis for a representation of the algebra of th& however, we attempt to diagonalize, e.j,, in this two-

J operators, i.e., a peculignonunitary representation of dimensional space, we find that it is impossible! In fact, there

SU2). is only a single eigenstate for eanh
~ll-v2nyel)+|-12n- D[], n>0
—[|-1/2n)® —-12n-1)®|1)]1,
|—1,1,0,0n)=1{ V2 (3.57
[-1/2,00®]]), n=0,
|
which are annihilated by bot® and Q. Clearly this set of E. Eigenstates
states does not span the full subspace. To complete it, we 1. Supermultiplets

may define an orthogonal ladder of states, ) )
In a conventional quantum-mechanics problem, we can

1 look for eigenstates of the Hamiltonian separately for each

—[|-12n)®|l)—|-12n-1)e|1)], distinct set of eigenvalues of the chosen commuting opera-

V2 tors. As we have seen above, most of the states in the Hilbert
(3.58 space can be specified in this way. To avoid the exceptions

for the moment, consider first the sectors wiNi¥0. Then

we may findright eigenstates of the Hamiltonian,

|-1,1%,* n)=

forn=1,2, .. .. Itis important to note thgt-1,1*,*, n) is

not an eigenstate of' and I'. Instead, acting with these
operators or}—1,1},*, n) gives back —1,1,0,0n), i.e,, T o o
andI" act like projection operators in this subspace. H|Ng,Ng, I, T,E)=E|Ng,Ng,I", T,E), (3.59
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N#£0 N=0 however,is not closed under the action of.H he best that
one can hope to achieve in this sector, therefore, is to find an
NF0| |1 2| NF(I) 1| 2| eigenstate of the Hamiltonian projected back onto the same
* 0 sector. Such a state-1,1*,*, E) satisfies
Q Q Q/’"& Hl—1,1%* E)=E|—1,1** E)+|¢), (3.67)
./\. ./\. * . where
N~ A ‘k./c' B
(@ ®) n

o _ _ o and is hence orthogonal te-1,1%,*, n).

FIG. 1. Organization of multiplets in the SUSY Hamiltoni&a). Taken together with the other three states of endggy
Doublets, involving one bosonic and one fermionic state for total| EEE: E) forms the fourth member of a superquadruplet
numberN+0. (b) Singlet ground stat¢0) and quadruplets, with o0 F,ié].'l.b)]. Using Eq.(3.67), it is straightforward to see
two fermionic and two bosonic states fide=0. See text for details. that the three true eigenstates may be obtained through the

where each such state can be expanded in a basis of app@ftion ofQ andQ on|—1,1%*, E). In particular,

priate 7 * eigenstates, i.e., Q|-1,1%* E)=c,]0,0,0,0E), (3.69
INg,Ng [T Ey=2>, xne:Ne-Dl( 72)|Ng ,Ng T, T, T 2). Q|-1,1%,* E)=c,|—2,2,0,0E), (3.70
jZ

3.6 —

(3.60 Q|0,0,0,0E)=c5|—1,1,0,0E), (3.79
In a theory with ordinary bosonic symmetries, completely
specifying the quantum numbers usually determines a unique Q|—-2,2,0,0E)=c,4|—1,1,0,0E), (3.72
set of energies—accidental degeneracies are rare. In a SUSY
theory, however, the additional fermionic generatQrand Q_|—2,2,0,0E>=QI0,0,0,0E)=Q_|—1,1,0,0E>

Q lead to extra relations between states.
. . — . =Q|—-1,1,0,0E)=0. 3.73
To see this, note that sind@ and Q commute withH,
acting with them upon an eigenstate must either produce e expect the exception to this rule to be a unique ground
another eigenstate with the same energy or annihilate it. Bestate with zero energy, forming a supersinglet. We can es-
causeQ andQ do not commute with the four diagonal op- sentially pin down the sector in which such a singlet can
erators, however, thegnustchange these eigenvalues, andoccur, It cannot occur foN#0, sincel'+T'=N=#0, and

hence connect ‘?"S“”Ct stite_s. Becaus_e the total chidrge hence eithe® or Q_W0uld create a new degenerate state. For
doescommute withQ andQ, it (along with the energ¥) N=0, it is possible only for a state in theg=—Ng=1,
can be used to characterize a multiplet of states connected {P_T_ ) |aqder. This is consistent with the existence of one
this way. - ' . . .
. . . additional state¢—1,1,0,0n=0) in this basis.
ForN+#0, the states are in fact organized into doublets, as " ¢ n=0) in thi I
indicated graphically in Fig. (. One class of doublets in-

- 2. Partition function and non-Hermiticity
cludes the ladder of states wi=0,

Thus far, we have described the organization of eigen-
Q_|N,0,0N,E>=CIN—1,1N,O,E>, (3.6 states. To calculate physical quantities, we will need to per-
form a trace over the Hilbert space@f-". Once the Hamil-
QIN-1,1N,0E)=(N/c)|N,0,0N,E), (3.6  tonian is diagonalized, this trace can be performed separately
in each multiplet. Some care must be taken to account, how-
—OIN_ _ ever, for the non-Hermiticity oH.
QIN.0.0N.E)=QIN=1,1N.08)=0, (369 To do so, let us consider the behavior of the currents
while another includes the states whkh=2, under Hermitian conjugation. The usual @JUspin genera-
tors S are of course Hermitian. The bosonic curredtare,
QIN—2,2N,0E)=c[N—1,1,0N,E), (3.64 however, mixed. In particulal* is hermitian whileJ* andJY
_ are anti-Hermitian. Since the Hamiltonian involves oply
QIN-1,1,0N,E)=(N/c)[N—2,2N,0E), (3.65 ands*, the net effect of conjugation is to change the sign of
_ JX. This can in fact be accomplished by the unitary transfor-
QIN—2,2N,0E)=Q|IN-1,1,0N,E)=0, (3.66 mation U=U"),

\ggtna;e different constants can appear in different expres- U=¢™" (3.74
For N=0, things are more complicated. Distinct eigen-which rotates)*,
states can be found in the sectors with=—Nz=0,2, and t
_— _ T u'Ju=-J3% (3.79
for the ladder of states witiNe.=—Ng=1 andI'=1=0.
The fourth subspace, spanned by thel,1*,*, n) basis, and therefore conjugates the Hamiltonian,
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UTHU=HT. (3.76 fact, it is straightforward to show that corresponding left and

) . _ . right eigenstates are actually orthogonal! That is,
It therefore follows that if|E)g is a right eigenstate ofi

with energyE, (—1,1,0,0E| - 1,1,0,0E)g=0, (3.87

|[E)L=cU|E)r 3.77 (=1,1%* E|-1,1%,*, E)g=0, (3.89

is a left eigenstate ofl, i.e., for E#0. This is because the operator takes each basis

+ _ _ state from one subspace into the other, as can be seen di-
HY[E) =E[E) = (ElH=(E[E. (378 rectly from Eqgs.(3.57,3.58. Instead of the usual normaliza-
Within each of the doublets, it is advantageous to normalion condition, therefore, we must require

ize the states such that {(~1,1,0,0E|~1,1#,*, E)a=1, (3.89
L(E[E)r=1. (3.79

Left and right eigenstates with different quantum numbers h di luti f the identity i
are automatically orthogonal, so this normalization guarand N€ corresponding resolution of the identity is
tees the resolutions of the identity

(—1,1%* E|-1,1,0,0E)g=1. (3.90

In_o= ; [12,—2,0,0E)r.(2,0,0,0E| +]0,0,0,0E ),
1N;NF:o,1=§ [IN,0,0N,E)g(N,0,0N,E| (000,08 +|— 11 0,08~ 115 E]

+[N=1,IN,0E)ri(N—1,1N,0E[], +]=1,1%,*, E)ry(—1,1,0,0E[]. (3.9

(3.80 From this identity follows the expression for the trace,

Inine-17= 2 [IN=22N.0E)ri(N~2,2N.0F] STh-00=3 [ ~1(2.~2.00E/0[2,-2.00E)s
+|N—1,1,0N,E>RL<N—1,1,0N,E|], _L<0701010E|O|0101070E>R
(389 +(—1,1,0,0E|0|—1,1%,*, E)s
for N#0. Inserting these into the usual expression for the -
trace in terms of an orthonormal basis gives +(=1,15* E[O[-1,1,0,0E)r]. (3.92
In this paper we are studying primarily properties of the
SThin.-010=> [—1(N,0,0N,E|OIN,0,0N,E)g system in the thermodynamic limit—. In this case the
E (supeitrace ofe " reduces to an expectation value in the
+(N=1,1N,0E|O|N—1,1N,0E)g], singlet ground state, i.e.,
(3.82 (0)=STroe ""— (0]|0|0)g. (3.93

It is worth noting, however, that SUSY indeed implies
that the partition function itself is exactly one, even in the
finite system. This is because each multiplet other than the
+1(N—1,1,0N,E|O|N—-1,1,0N,E)g], singlet contains equal numbers of fermionid;(odd) and

(3.83 bosonic (N; evern states, which thereby cancel in the super-
trace. All that remains is the expectation value in the zero-
energy ground state, which is unity even foffinite.

SThn.=10= ; [—(N—2,2N,0E|O|N-2,2N,0E)g

where the minus signs arise from the 1)Vt in the defini-
tion of the supertrace, and again this holds only Kot 0.

Similarly, the ground state gives a unique contribution, IV. GROUND-STATE PROPERTIES

STrrO=(0[O[0)g, (3.89 A. Schrodinger equation

where|0)=|—1,1,0,0E=0) is the ground state. As we saw in the previous section, the ground state re-
The quadruplets are somewhat trickier. The two statesides in a uniquénonunitary singlet representation of )
with s=0 (i.e., N-.=0,2) in each quadruplet can be sepa-algebra of the total currer. As such, it must be annihilated

rately orthogonalized, i.e., by both Q and Q, and hence fits into the subspace with
.{0,0,0,0E/0,0,0,0E)g=1, 38y Ne=~Ne=1,I'=I=0,ie,
L{—2,2,0,0E|-2,2,0,0E)r=1, (3.86 |0Yr= 2>, éql—1,1,0,0n). (4.9
n=0

since U|—2,2,0,0E)gr remains in the subspace with
Ng=—Ng=2, and similarly for theNr=Ng=0 state. The In this basis,7* and 7 * have the very simple matrix ele-
same is not true for the two states with-=—Ng=1. In  ments
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JYnYe=n|n)o, (4.2 result reduces these to two trivially related pairs. To under-
stand the nature of these two solutions, it is instructive to
TXInYo=3[(n+1)[n+1)g—(n—1)|n—1)], (4.3  consider the limitM=w=0. In this case there are two ob-
. ._vious solutions:¢,=1 and ¢,=(—1)" satisfy theE=0
wher_e we have mtr_oduced the more compact nOtat'O%chr"cdinger equation(4.6). However, these wave functions
IMo=[—1,1,0,0n). Using these results, and the requirement, e ot normalizable, a feature due to a pathology of the
of a zero-energy ground state,

theoryat w=0. Indeed, nonzera is essential in guarantee-

H|0)gr=E|0)g=0 (4.4) ing convergence of the bosonic functional integral in the
. ) L ) generating function. Moreover, we are interested in behavior
we obtain straightforwardly the Schiimger equation, off criticality with M #0 and at finite energyo— e.

A general solution of the Schdinger equation, Eq4.6),
L=+ D éneot2n¢n=(N= 1) n2=Mo(bn1=dn-1) g daunting(although possible fotw+#0—see Appendix B

+2w¢,]=0, (4.5  so for simplicity we focus our aFtention on 'Fhe critical regime
o very close to the localization transition where both
which implies w,M<g=1. In this scaling regime one expects the wave

function to remain close to a superposition of the two trivial
[constant and € 1)"] solutions, i.e.,

$n=c1d(n,M)+cy(=1)"¢(n,—M), (413

where ¢(n,M) is slowly varying with |¢(n+1,M)

— ¢(n,M)|<|p(n,M)|. This suggests a “continuum” limit,

in which ¢(n,M) may be regarded as a continuous function
of n, and discrete differences in the Sctiimger equation are
From the previous section, given the right eigenstataeplaced with derivatives. In this continuum approximation

_(n+1)¢n+2+2n¢n_(n_1)¢n—2_2M(d’n+1_ d’n—l)
+2w¢,=0 for n#0. (4.6)

Here we have definel =mgy/2 to simplify some expres-
sions in what follows.

B. Normalization and density of states

|0)r, @& corresponding left eigenstate is obtained by the Schrdinger equation, Eq4.6), becomes
0).=cU|0)g=(—1)""0)g, 4. d? d

with an appropriate choice for the constantApplying this

; B .
to the basis of7 * eigenstates gives For w,M<1 the solution of this continuum equation is

(—1)"-1,1%*n), n>0 expected to coincide with the exact eigenfunction of Eq.
e (4.8  (4.6) for n>1. In Appendix B, we verify this for the special
. caseM =0, where it is possible to solve directly the discrete
Schralinger equation.
The continuum differential equatiorf4.149 must be
supplemented by an appropriate boundary condition. A natu-
I_<o|o>R:|¢0|2=1, 4.9 ral physical requirement is that(n,M)—0 for n—o. Be-
cause we have still have the freedom to choosandc, in
The density of states is obtained in a similar way. FromEg. (4.13), the normalization at the origin can remain arbi-
Eq. (2.29 the density of states is obtained by analytically trary at this stage.

P12\
( 1) |n>0 |0>O, nzo

Since the|n)y and|—1,1%,*, n) states are orthogonal, the
normalization requirement reduces to

continuing, The two constants in Eq4.13 then require two addi-
tional constraints. The first comes from E@.9), ¢o=1,
G(x=0;i0)= X G,q(0jiw)=—2i,(0|S0)g, giving
(4.10 C1¢(IM)+crp(1,—M)=1. (4.19
where the second equality follows from E@.23. Simple  The second constraint is obtained from £4,6) for n=1:
manipulations then give
P ’ bo—d1=—M(do—do)twdy.  (4.16
= — In the limit M,w<<1, and using Eq(4.13, this becomes
G(0iiw)=i % (~1)" 4l (4.12) g Eq4.13
C1¢' (ILM)=cy¢'(1,—M). (4.17
C. Continuum limit and boundary conditions D. Solution

In order to solve for the ground-state wave function, first
note the following simple property: i, (M) is a solution
of Eq. (4.6), then so is

We are now in a position to obtain the solution to the
continuum equation. Under an exponential change of vari-
ables,n=¢?, with ®(z,M)= ¢(e*, M), Eq. (4.19 takes a

S (M)=(—1)"¢+(—M) (412  more illuminating form,
n n . .
Since this is a fourth-order linear difference equation, we d? M d o 0 (419

' i i - -M_-+5e*|P.=0.
would expect four linearly independent solutions. The above dz dz 2 & P
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Indeed, forM =0 this is equivalent to a Schdinger equa- 2

tion for a particle moving in an exponential potential. Since f(Y):C(ﬁz) : (4.27)
z=Inn, the domain of the equation issiz<<o. For smallw,

however, the potential is negligible for smalllt rises very  Our present implementation of the hard-wall approximation

abruptly and becomes of order 1 fpr-z,, where reproduces the exact value of the nonuniversal constant,
c=4, obtained in Appendix C, but this result depends upon
z,=|Inw|. (419 the precise position of the wall.

In the smallw limit of interest, then, there is a region of An exact expression for the density of states in the critical

divergent width over which Eq4.18 effectively describes a regime can now be o_btamed from E@.29 by _peiformmg
free particle. The width of the potential is, however, only of & analytic continuationp(e) = (1/m)Img(0;e+i0™). Not-
order 1. Thus we expect that on the scalezgf the expo- g that G(0iw) is purely imaginary and odd im, one
nential potential can be well approximated byard wall. readily obtaingfor €>0),

In the following we make this hard-wall approximation, 3

i i i M
replacing the continuum equati@A.18 by ple)= ?g(e'\"), 4.28
¢’ M d b= 4.2 i
~32 Mgz ®=0 (420  with
with 0<z=<z,,. and the boundary condition Y2(1+Y?)
" ’ O)=3YF(V)=cg—yam (429
®(z,)=0. (4.21)

. . . In the M —0 limit, this reduces to
This simple equation can be readily solvdmtlow) and the -

density of states extracted. 1
As shown in Appendix C, the hard-wall approximation is p(e)~——3 (4.30
: : : e|Inel*’
not necessary, since the exact continuum equations can be
solved explicitly. Although the hard-wall wave function dif- oIt obtained previously by other methods.

fers from the exact solution, the resulting density of states 5 special feature of one dimension, is that ttypical

coincides, up to an overalhonuniversglmultiplicative con- o ~
P a 3 b localization lengthé can be extracted from the real part of

stant. -
The solution of Eq(4.20 consistent with the hard-wall the Green’s functiorat x=0. As derived in Ref. 25£(¢)
boundary conditiofiEq. (4.21)] is satisfies
1 GE? € 1 -
D(ZM)= —[e M2 g~Mzy], (4.22 ¢ =PJ de P logGix=0e). (43D
Mz, de €—€ T

where we have assumed thafM <1, and chosen a conve- Performing an analytic continuation to real energy using Eq.
nient (but arbitrary normalization. AsM—0 this reduces to  (4.26) gives R&j(0;e)~ — 1/e|In€?. Integration frome=0

, using the fact tha ~(0)=0 gives the resul€~|Ine|.
B(2)=1-—. 4.23
w V. FERMION GREEN’S FUNCTION

Applying the constraints in Eq$4.15,4.17, determines the

constants as To determine the mean correlation length, we need to

calculate the Green's functiog(x,i ), atnonzero x From
z,M o™ Eq. (3.23 this takes the form
Clzczzm. (4.24) o
Gap(X,iw)=i(~1){(0|F e "F[[0)s.  (5.1)

To extract the density of states, we use Egl]) to write )
Given the quantum numbers of the ground state, the state

- _ = FLIO) clearly hasNg=—1, Ne=2, =N=1, T =0. We
- _ BIY/R B P TR S '
G(0jw) 2IC1<32J1 dné(n,M)¢(n,—M) can, therefore, insert the resolution of the identity from Eq.
(3.8)) to give

Zy
=2ic1c2f dze€d(z,M)P(z,—M). (4.25 o
° Gup(xi0)=1(=1)* 2 L(O[F,|~1,2,1,0E)p,
The integral can be readily performed giving
, (—1,2,1,0E|F}|0)re™ FX. (5.2

G(0jiw)=i jf(wM), (426 Our task is thus to determine the matrix elements and eigen-
values needed to carry out this sum. To do so, we expand the

with the exactscaling function eigenstate in the appropriate basis,
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o0

|—1,2,1,0|E>R:n§O XnalM)1, (5.3
where we have abbreviated
In)1=-1,2,1,0,1/2-n). (5.4)

The wave functiony, then satisfies the Schiinger wave
equation,
20[n+3]xnt2M[Nxq- 1= (N4 1) xpi1]—(n+2)(n+1)
XXn+2+(2n2+ 2n+1)xp—n(n—1) xn-2=Exn,
(5.5
where we have again sgt&=1. Again, this equation has the

property that multiplication of a solution by+1)" yields a
solution forM— — M. We therefore expect

Xn(M!E):CBX(n!M!E)+04(_1)nX(n1_M!E)'
(5.6

Naively, x(n,M,E) can be obtained in the continuum
limit. Converting finite differences to derivatives, we obtain

[—(Zn%H 2—2M(2n%+1 +2wn|x(n,M,E)
=Ex(n,M,E). (5.7)
Upon tranforming to logarithmic variables,
x(N,M)=®g(z=Inn,M), (5.8

one has
[—(20,+1)2—2M(29,+ 1)+ 2we?]P(z,M)

—Edg(z,M). (5.9
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This is possible because for<1/w, the w7 * term in the
Hamiltonian, Eq.(3.31), can be regarded as a small pertur-
bation. Neglecting this ternt{ is a function only of7*, so
that the eigenfunctions afi are simply eigenfunctions of
J*. As a first step, consider the stdie) with

JYa)=ia|a). (5.12
Expanding|a) in the 7 # basis,
|@)=2 yn(a)ln)s, (5.13
one finds the simpler Schdimger equation,
(N+1)¢hns1(a) —Nipy_g(a) = —2iayy(a). (5.19

This equation can be solved exacthee Appendix E For
large n, the solution, which is well behaved at the origin
behaves asyptotically as

Yo(a)~n"Yq(2n) 71T (1/2+ia)
+(—D)"2n)'°T(1/2—ia)]. (5.15

Eigenstates oH therefore take the form

for 1<n<l/w,

(5.1

wherea . are the two roots of the equatiordd+ 4iM a=E,
ie.,

Xn~Citn(ap)tc_yp(a_),

—iM=
ax =TB, (5.17
and 8= JE—M?Z.

Mathematically, Eq(5.16) is anouter solution, valid out-
side a boundary layer that occurs for langeTo obtain a

complete solution, it must be matched to thaer solution,

Based on previous experience, we expect that the hardplid “inside” the boundary layer, which is just the con-

wall approximation gives exact results in the scaling limit. In
Appendix D we verify this explicitly, by constructing exact
solutions of the continuum equatidb.7). Within the hard-
wall approximation the potential @e*—0 in Eqg. (5.9 is
dropped, and replaced by a boundary condition,at |Inw|,

(5.10

The general solution of Eq(5.9 with the hard-wall
boundary condition is

Pe(zy,M)=0.

Pe(z)=e M2 B(z—12,)/2],

where 8= \E—M?Z.

(5.1)

tinuum regime of largen. Within the hard-wall approxima-
tion, this is just the standing wave in E¢.1J).

To match the two solutions, we lebh=e* in Egs.
(5.15,5.16, which gives

% ~e72/2{e*M2/2[C+e*iBz/2+C eiBz/Z]
N _
+(—1)"eM¥ ¢ P2t c_e P2} (5.18

Similarly, using Egs.(5.6,5.1), the continuum solution
gives

Xn~€ 7 cie” M+ (—1)"c,eM ¥ sin B(z—2,)12].
(5.19

So far, we have not determined the spectrum, or allowed'hese expressions are equal in two situations. One can take

values of 8. In an ordinary quantum problem, these eigen-

values would be fixed by a boundary conditionzat0. In

C,=C_=cCg/2=c,/2 if Bz, is an odd multiple ofr. Alter-
natively, c,. = —c_=c3/2=—c,/2 if Bz, is an even mul-

this case, however, such a simple treatment is problematigiple of 7. The final, matched solution for both cases can
The difficulty arises because, unlike in the ground-state seahus be written

tor, neithery,=1 nor x,=(—1)" are solutions in the limit
o=M=0. We therefore expect a nontrivial solution for
n=0(1), in that the discreteness of is important and the
continuum limit isnot valid.

. . wh
Fortunately, for =En<1/w, we can obtain an asymptotic

approximation which does not rely upon the continuum limit.

dM(2,M)=bg (z,M)=e" W sin(B,z/2+ 6,),
(5.20

ere

Bi=klz,, (5.21)
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, [T 2 * )
Ee=M"+| |, (5.22 Fe(Y)=AY, k% XY, (5.33
W k=1
0, k even = ,
0= /2. Kk odd, (523) FZ(Y):AKZ:L (_1)k+lk2efk Y' (534)
cy=(—1)k l¢,=c. (5.24)  Here the nonuniversal amplitude= 3272 within the hard-
) wall approximation, and we have defined two correlation
The discrete quantum numblke1,2, . . .. lengths

The corresponding left eigenstate is obtain by acting with
U from Eq.(3.74). Defining

Inw)?
Eu=1M?2, §w=(—). (5.35
|k>R/L:|_112,1.0Ek>R/|_, (5.25

a
Notice thatG(x;iw) is pure imaginary folx even and pure
real forx odd, as dictated by particle-hole symmetry. Equa-
|k>L=(_1)k+lei1-r(JZfl/2)|k>R. (5.26 tion (5.31 is valid for o>0. Particle-hole symmetry then
) _ ) S determines the Green’s function far<0, sinceG(x;iw) is
With this choice, normalization implies that the constantgdq in o for evenx and even inw for odd x.

we choose

c= z,M?. Thus the final expressions for th@ormalized Equation(5.35 gives us the correlation length exponent,
eigenstates are v=2, defined byé~M™", and the dynamical exponent,
z=oo, defined byw~ &. Equation(5.31) is actually simpler
|k>R=z_1/22 [x(n,M)+(—1)" %+ Iy (n,—M)]|n),, than one would generally expect on the basis of scaling —
v the most general scaling form would not factorize as it does
(5.20  here. 3
The correlatoC(€) = (1/7)ImG(e+i0") can be obtained
Ky, =7~ 12 — )™k Ly (n M)+ x(n, —M)T|nY,. via analytic continuation, using the symmetry properties of
k=2 En: (=D X( )X i)y the Green’s function undeb— — w. One finds
(5.28
(=D _ [ X _
These actually form an orthonormal set C(x=2n,e,M)= line] F¢ g—,e"" e ¥tv, (5.3
€|lne E
L(KIK"Yr= ks, (5.29 (— 1)+t
as can be verified by direct computation. C(x=2n+1,eM)= —5F2(—,6M e tm,
. . . me|Ine] &,
Having obtained the full set of eigenvalues and left and (5.3

right eigenfunctions oH in the appropriate sector, it is a o _

simple matter to evaluate the Green’s function using Eqwhere the energy dependent “localization” length is

(5.2). Using the hard-wall eigenfunctions, we find e\ ?
ne)

_ 322 M2 £ ©-39
Gapli0) =1 i g2z D

w

The even sublattice scaling function no longer factors,

X > (=D (- 1)*0M? FE(Y,2)=1S(Z)[3FS(Y)+YF(Y)]
k=1
+3ZInZfE (Z)FE(Y), (5.39

+(_1)k+lw—M/2][(_1)BwM/2 - - - - . -
while the odd sublattice scaling function remains simple,

+(— 1)kl MR- w2k |Inw|? (5.30

One thereby obtains the final form for the Green’s function,

exact in the scaling limit: The scaling forms, Eq$5.36—(5.40, encode several sig-
nificant physical properties. First consider the same sublat-
tice correlation x=2n), for simplicity at zero staggering

Fo(Y.2)=Fo(Nfe(2). (5.40

ix+l
sTS(@M)FE(x/€,)e XM, X even

= w|nw| (M=0). For distances shorter than the correlation length,
g(x,lw)= jx+1 y " this has a slow power-law decay, sine§Y,1)~Y %72 for
—— {0 0 —x X odd, < i
w||na)|5f“’(w JFo(X[E,)e " em, Y<1. In particular,
(5.31) 1
where the universal scaling functions are given by C(x=2n,e,M=0)~ dlneP® Wm (5.4

2

: (5.32

YinY
1-Y?

for |x|<&,. This can be understood as the product of the
density of states and a two-point “wave-function correla-

fZ(Y)=YfZ(Y)=(
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ensemble-averaged correlation functions of the zero-energy
wave function. As with higher-dimensional localization tran-
sitions, such as the plateau transition in the IQHE, this criti-
cal wave function is expected to exhibit multifractal scaling
characteristics. As shown in a recent paper, such correlators
in this 1D case can be computed exactly, via a mapping to
Liouville quantum mechanics. This mapping exploits the
equivalence between imaginary time quantum mechanics
and the one-dimensional random walk. Slightly generalizing
this work, we compute below the full multifractal spectrum
for the 1D critical case. This calculation is instructive since it
reveals a link between the supersymmetry calculations and
Liouville quantum mechanics.
To extract average wave-function correlators, it is neces-
. . sary to consider normalized states. We thus consider a finite
Y system of length_, and normalize the wave function from
Eq. (2.13 over the finite intervalx| <L/2. Focussing on one
FIG. 2. Scaling functions for the fermion Green'’s function. The comp'onent of the.Spmor wave fUIthlon, say.(x), an ap-
solid and dashed lines are the scaling functid#gy) andF2(Y), propriately normalized wave function, denotedygs), can

for correlatorsC(x) between two sites on the same and differentbe written
sublattices, respectively.

P(X) =N~ 12X (6.2)

tion,” with multifractal scaling exponentsee the next sec- . L
tion) y(q=1)=23/2. For distances> ¢, (andM=0), even  With normalization
the rare wave functions are localized, a@¢x) decays ex-
ponentially. The full scaling function, which describes the N= J'L/Z dxe?20 6.2
crossover between these two limits, is plotted in Fig. 2. Note .y ' '
the change of signfor Y~2.5—this may be interpreted
physically as arising from the first node in the dominant rarewhere we have definegl z(x) =m(x), with the random po-
wave function at energy. tential m(x) assumed as before to be Gaussian with

The different sublattice Green’s function behaves quitd M(X)M(X’)]ene=298(X—x"). It remains to specify the
differently at short distances. Using the Poisson summatiobboundary conditions ogk(x) atx= %= L/2. For technical rea-
formula, it is straightforward to show that sons it is convenient to “pin” the 1d random walker at the

ends, takingz(x=*=L/2)=0.

o "2’4Y+O(e*9”2’4Y) We focus on the ensemble averaged correlation function,

2
Fo(Y,1)~ %f/z[ 1_Z_Y
(5.42 Wq(X,L):Hl/f(X)(,//(O)|q]ens, (6.3

for Y<<1. This implies thatC(x=2n+1) is much smaller between two points separated by a distancassumed much
than the same sublattice correlator. The suppression is due ¢maller than L. The one-point function Wy(L)
the fact that sublattice mixing of wave functions occurs only=W,(x=0L), referred to as a participation ratio, is ex-
at finite e. The exact zero-energy “wave function,” dis- pected to vary as a power law with system size:

cussed in detail in the next section, liestirely on a single
sublattice. 1
Wo(L)~ ravmap (6.4
VI. MULTIFRACTAL WAVE FUNCTIONS

with d=1 the spatial dimensionality. The exponettt]) is
The above results reveal that the ensemble-averaged . =\ ien as#(q)=(q—1)D(q). For a plane-wave or

single-particle Green’s function decays as a power law Withnonfractal wave functiorias in a 3D metal, sayD(q)=d
an exponent 3/2 for distances smaller than the correlatio&or an exponentially localized wave ’functioc:D(q)-
lenth. Whermy=0, the relevant scale & =|In€?«?, which y

diverges at the band center. Such power-law spatial scaling is 7(q)=0. A simple fractal would be characterized by a
. g€ : P SP ! g5—independentD, different that the spatial dimension,
in striking contrast to the behavior of thgpical Green’s

function, which decays as a stretched exponential‘,’vhereas in a multifractaD depends org and equivalently

Gyp—exp(—ax*?) at criticality. This stretched exponential 7(q) is a nonlinear function og.

form follows directly from the exact zero-energy wave func- mi;gzct(\;v?épg Qt tfﬁgzcéloqgm((;); I;) ;?:irng rg?%:'ular]g;;g:?e rr]
tion, Eg. (2.13, whose logarithm undergoes a one- P ginsl.e., P Y

dimensional random walk. thanL is also expected to exhibit power-law scaling:

Power-law scaling of theaverage Green’s function at
criticality can also be understooglbeit more subtly in Wi(x,L)~ 1 1 6.5
terms of Eq.(2.13. To see this it is useful to consider am LA* 7@ yy(a) '
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with a spectrum of exponenygq). For some multifractals a Evaluating the wave-function correlator has thus been re-
relation can be obtained betweeft)) andy(q), but in gen- duced to solving for the quantum mechanics of a particle
eral they can be independent exponents. moving in an exponential potential—Liouville quantum me-
To extractr(q) andy(q) for the 1D critical wave func- chanics. This form is identical to that which arose in the
tion, we follow closely Shelton and TsvelfR. The correla- bosonic sector of the supersymmetric calculation of the fer-
tion function can be expressed as a functional integral ovemion Green’s function. In that case, the coordinatevas
the random walk configuratiorgx) as related to the boson number wie= €%, and v was a small
imaginary part of the energy. The supersymmetric calcula-
tion can thus be viewed as a supersymmetric version of
Liouville quantum mechanics. In earlier work, Kogan,
Mudry, and Tsvelik showed that the wave function correla-
tors for a two-dimensional particle described by a Dirac
, equation with random vector potentidbr, which the exact
Zo:f Dze o, (6.7 zero-energy wave function can also be written down explic-
itly) could be formulated in terms of Liouvilléeld theory
and an action, Perhaps such a 2D localization critical point can be formu-
lated in terms of a supersymmetric Liouville field theory.
1 (L2 ) For simplicity we evaluate the above quantum expectation
SO:E 7L/2dX(8XZ) : (68 yalue within the hard-wall approximation, which should give
the correct scaling behavior for the wave-function correlator.
Here the prime on the integration indicates the boundanas before, we replace the exponential potential by a hard-
conditions,z(x=*L/2)=0. In the following we putg=1.  wall atz,, with we’?*v=c, for a constant of order 1. The
The functional integral over disorder configurations is non-value ofc affects the overall prefactor in the correlator. We
trivial due to the normalization of the wave functions. For- choose c=1/2, which gives the correct normalization,
tunately, the normalization can be exponentiated via thgy, _,(L)=1/L. Since the quantum particle is contrained to
identity, havez<z,, whenw>1 (andz, is negative the particle’s
wave function vanishes at=0, so that the quantum expec-
N—q:Ldewwq—le—wN (6.9 tation value in Eq(6.14 vanishes identically. We can thus
r'(a)Jo ’ restrict the integration oven to w<1.
The denominator in Eq6.14) is the propagator for a free
ndom walker(i.e., without the hard wall and can be
readily evaluated giving (#L) Y2 To evaluate the numera-
1 (= tor it is convenient to lez—z,—2z, so that the quantum
We(x,L)= mJ dowd™ Yeded?0) (6,10  particle is then constrained to have-0. Within the hard-
a)Jo wall approximation, the correlator can then be expressed in

1 (7
WyxL)=5- | Pduomoe s, @o

with

where it can be absorbed into the action. In this way one_
obtains

where the average is given by terms of the free Hamiltonian as
1 4L
qz(X) aaz(0)y — 2(X) nq2(0) o= S ™
(e9X¢ >—ZOJ Dze#¥et#Pe™>  (6.1]) Wy(x,L)= RO
with the total action 1de
Xf 7<ZW|efLHolzefqz(x)efqzefLHO/2| ZW>,
0

L/2
S=J dx[ 2 (0,2)%+ we??]. (6.12
—L12

(6.195

If x is viewed as an imaginary time coordinate, this aver-with z restricted positive and,,=|Inw|/2 [the factor of 2
age is seen to be equivalent to a path integral representatififference between this definition and the one used in the
of the quantum mechanics of a particle with coordinate SUSY calculations is a consequence of a different choice of
moving in an exponential potential. Passing to the operatofiormalization of the fieldz(x)]. To evaluate this quantum

representation of this quantum mechanics by defining @average we introduce a complete set of standing waves,
guantum Hamiltonian,

H=—02+ we?, (6.13 (z|k)= \/gsin(kz), (k>0), (6.16

the above average can be written as a quantum expectation

value, which are eigenstateld o|k)=k?|k), and appropriately nor-
(0] e~ LH2ga2(x) gazg—LHIZ| 0 malized on the intervak>0: (k|k’)=&(k—k’). Inserting

<eqz(x)eqz(0)>: 0 - o) (6.14 the resolution of the identity,
e "o ' )

with e92X) = gxHedZe™XH andH = — 2. Here|0) is a posi- 1= fxdk| K)(K] 6.17
tion ket withz=0. 0 '
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into Eqg. (6.15, evaluating the matrix elements in closed a real-space RG approach to analyze phase transtions in a

form and performing the integration overgives for largeL class of closely related random spin chains, D.S. Fisher has

the final result: recently extended the analysis to extract the spatial depen-
dence of mean correlation functiofs?® An important ele-

Wo(x,L)= W(?X) 1 6.18 ment is the emergence ofsecondcorrelation lengthé that
a 2971g°r(q) L’ ' determines the spatial decay ofean (rather than typical
with correlation functions. To the growing body of knowledge
concerning this 1D random critical point, we add several
- 16 (= dkk 2 new results in this papef.) Using SUSY we have computed
WM(X)= _fo me . (6.19  the exacttwo-parameter scaling functions for the mean fer-

mion Green’s function(ii) By employing Liouville quantum

The crossover functiof(x) interpolates between one at mechanics, we have extracted the set of multifractal scaling

— 3 exponentsr(q) andy(q) that characterize the critical wave-
x=0 and W(x)~x for x>1. The crossover length, ¢, nction pair correlators.
X;=1/g%, is the characteristic distance over which the loga- Together, these two results encapsulate the important uni-
rithm of the wave fun?,tl(_)n,b(x) changes by order 4/(or  \ersal scaling characteristics of this 1D random critical point.
equivalently the “time” it takes the 1D random walk 10 The spatial dependence of the mean fermion Green’s func-
move a distancéz~1/q). This crossover scale clearly de- tion s controlled by two lengths, a mean localization length
pends on the strength of the disorder. For the original latticgy,5¢ diverges upon approaching the band center. agine]?
tight-binding model, when the random hopping strengths arg,,q 4 mean “staggering length,” varying §,§~ME‘2 Wher’1
comparable to the mean hopping strengity,/t of order 1, 1o strengthM of a staggering in the hopping strengths is
t_hls crossover Iengt_h is of the order of the tight-binding lat-i51en to zero. These two lengths are to be contrasted with
tice spaqu. Thus it is clear that tiierm of the CTOSSOVET i iy counterparts, denoted, and €,,, which charaterize
funcnonW(x) for x of or_der 1,_ cannot be universal. In faCt',the spatial decay of theypical (rather than ensemble-
the precise form above is particular to the hard-wall approxiuyerageyl Green's function. From the singular behavior of

mation, and an evaluation using the exact Liouville eignenyhe gensity of states, one can infer that the typical localiza-

functions would give another form, although they agree in . . ~ . .
their universal largex behavior. tion length diverges more slowly, @as.~ |Ine|. Likewise, the

a3 : . typical staggering length that follows rather directly from the
For largex, Wy(x,L)~x~*¥2L~1. By comparing with Eq. ) ) .
(6.5, the exponents(q) andy(q) are seen to béndepen- nature of the exactdecaying zero-energy wave function

dentof g, with 7(gq) =0 andy(q)=23/2. A vanishingr(q) is diverges more sIowa§M~M ~1 than its mean coun.terpart.
characteristic of an exponentially localized wave function. ~FOr spatial separations<¢. £y , between two points on
However, the two-point correlator for an exponentially local- the same sublattice, the mean fermion Green’s function var-
ized wave function also decays exponentiafyd) =), in ies as an inverse power law wiwith unlvgrsal exponent 3/2.
contrast to the present 1D wave function, which exhibitsThis result also follows from.an analysis of the zero-energy
power-law correlations. The 1D critical wave function is Wave function whose logarithm undergoes a 1D random
typically quasilocalizedcentered around a maximorwith ~ Walk, with the exponent 3/2 being related éatremalprop-
stretched exponential decay. However, theerage two- erties of the rarldoT walker. In contrast, ttypical Green’s
point correlator at separationis dominated by the rare wave function forx<¢., &y is expected to decay as a stretched
function, which has a secondary maximum close in magniexponential,G,,,~e~ ", reflecting thetypical behavior of
tude but separated spatiallpy distancex) from its primary  the random walker.
maximum. The likelihood of this involves the extremal sta- A key motivation for the present paper was to investigate
tistics of a 1D random walk near a global maximgabsorb- in detail features that emerge in a SUSY formulation of a
ing wall), which is being described mathematically above byrandom critical point. The calculation proceeded by express-
guantum mechanics near an exponential hard-wal) po-  ing mean correlators in terms of quantum-mechanical expec-
tential. As expected, the two-point wave function correlatortation values for a SUSY Hamiltonian, which involved a
at g=1 decays with the same exponeg{q=1)=3/2, as singlesuperspin. This Hamiltonian has a number of notable
the average Green's function obtained with supersymmetryfeatures:(i) It is non-Hermitian, with distinct left and right
eigenfunctions(ii) It has a unique zero-energy ground state,
VII. SUMMARY AND CONCLUSIONS as dictated by supersymmetry, and the excited states are or-
ganized into supersymmetric doublets and quadrupfgis.
In this paper we have presented a detailed SUSY analysighe right (or left) eigenstates alone dwt span the Hilbert
of the critical properties of the zero-energy delocalizationspace_the Hamiltonian is thus “defective(iv) The Hil-
transition in the 1D random hopping model. This 1D randompert space is infinite, due to the noncompact{Bll) bosonic
critical point has been of interest for many years, originatin%uba|gebra of the superspin group) The eigenstates ex-
with the pioneering paper by Dyson in 1953 on a relatedpjore the outer reaches of the noncompact manifold, in a
model of a 1D harmonic chain with random spring manner that can be described by Liouville quantum mechan-
constant$* Most of the prior work, using a variety of differ- jcg.
ent approaches, has focussed on properties derivable from |t js our hope that a thorough undertanding of these un-
the mean local Green’s function, specifically the density ofysyal features will be helpful in extending the SUSY ap-
states and the typical localization length!® By employing  proach to attack two-dimensional random critical points,
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such as the IQHE plateau transition. It is tantalizing to specuwith
late that some appropriate supersymmetric version of Liou-
ville field theory might give a correct description of delocal-

ization transitions in 2D. Sw:j dxylaide+m(x)o? +iw]p. (A8)

Notice that the functional integral factorizes into a product

over independent frequencies. In the following we focus on
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APPENDIX A Sw:f dxg(h+iw)i, (A9)

The mapping from the random transverse field Ising chairwith h the 1D random Hamiltonian in E¢2.7). Note that, in
to a free-fermion model was introduced by Shankar andhis case, a nonzero masyg corresponds simply to the de-
Murthy. We briefly recapitulate this mapping. In terms of viation from the Ising critical point.

Majorana fermions,

APPENDIX B
1
nl,n:T OO (AL) For the special case of the ground-state wave function, we
2 m<n are in fact able to obtain an exact solutiwithout taking the
continuum limit This is possible because the difference

pn= o ot (A2) equation, Eq(4.6), is linear inn. Here, we specialize to the
2n Y2 man MM casen=0, in which this solution is especially simple.

, ) ) ) For M=0, the Schrdinger equation decouples on even
which satisfy{ 7i,m . 77j,n} = 6i Smn, the random Ising Hamil- 54 odd sublattices and can be solved independently on each.

tonian, Eq.(2.27), can be rewritten as To bring this out, we define
Hi=2 [ 2iK 10710720+ 2K on 10 720+1]- (A3) bon="n:  bane1= Mo (B1)
n
for n=0,1,2 .... Theeven and odd sublattice fields then

A continuum limit can be taken by puttingk=ndx, obey
K;=dx/2, and K,=(1/2+m(x))dx, and converting the

sums to integrals. This gives ©0y=(n+1)y2,;—(2n+1)y2+ny°_,, n=0
HC:J dxn[ o%id,+m(x)a¥] 7y, (A4) oye=(N+1/2)ys, ,—2nys+(n—=1/2)y5_,, n>0.

where we have defined a two-component Majorana field, To solve them, we define the generating function

n=(n1,7,). For spatially uniformm this model describes

criticality in the pure 2D Ising model, with the phase transi- ~p - B n

tion occuring am=0. Y (W):Z’o YaW (B2)
To complete the mapping it is convenient to consider a

path integral representation of the partition function,whereP=o0,e. Consider first the odd sector. Multiplying the

Z=Tr exp(-BH), which can be written as a functional inte- equation fory2 by w" and summing gives

gral over Grassmann fieldg(x, 7), with associated Euclid-

ian action: , Y° R
_ — _ 0
do (1—w) aw (1-w+w)y°. (B3)
S=fdx— X,0)[io+ oXid,+maY]n(X,—w). . , . . .
2@ (X @)[1o+ oo+ mo? @) (A5) This is easily solved by separation of variables, to give
A5
These can be decomposed into hew Grassmann fields by de- 2o_ c w
o v ex , (B4)
fining 1-w 1-w
%(w)zﬁ(w), Dol — @)= (@), (A6) whereC is an arbitrary constant. Not the strong divergence

atw=1. This implies unacceptable behavior fg} at large
for positivew and «=1,2. In terms of these new fields the n.

action becomes The even sector iortunately rather more complicated.
The crucial difference is the fact that E@.6) is valid only
S= J xd_“’ s (A7) for n>0, leaving an extra free parameter. Carrying out the
0 2m ' transform in this case gives
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+w}, YS)=2 Ypw'=2 vre "~ J dnyS(nye "
n n

(B5)
where we have imposed the normalizatipii=1. Note the
appearance of; as a parameter in the equation. It must be
adjusted to achieve a well-behaved solution. ctie ds ctie ds

This inhomogenous equation can be solved by introduc- VﬁZI _ ﬁe”SLye(s)zwf _ ﬁean[Lye](wS)
ing the integrating factor (w)/wexd—w/(1-w)]. The o e
solution is S(=  _ feti= ds e™® &(> 1

“2), 0t a2, O

LW W = fWL[l—_néﬂ,
Jw Wa-yl 2y 2 :éf“ﬂ
2

=[Ly*J(ws). (B1Y)
We can therefore invert it using the inversion formula,

e*nt*w/t' (BlG)

ot
xe @7y, (B6) - . . . .
_ . _ This is precisely the modified Bessel function solution ob-

wheres=1- . Performing an integration by parts leads to tained from the continuum limitsee Appendix E

the form

1 APPENDIX C
Yi(w) = 1_W[1+ Vwe W I(w)], (B7) In this appendix we obtain the density of states without
resorting to the hard-wall approximation, by solving exactly
where the full continuum equation, Edq4.14). This can be accom-
plished by employing an inverse Laplace transform, defining
w dy w 0 1
J(W)=f ————c-—w|e YY) (BY) m _
0 W1-ylTy 2 pnM)= [ e "o, v
0

To avoid the strong divergence ¢f, we clearly need . - )
Providedt?¢(t)—0 ast—0 (as required for a well-behaved

J(1)=0. (B9) solution asn—©), insertion into Eq.(4.14 leads to the
L . simple transformed form,
This fixes é. This implies that
: 298 | 1o mg=23 c2
J(W):—f _dy e 5 e—wl(1-y) ar =3¢ (€2
wiy(1-y)l1=y 2

(B10) This has the general solution,

We now change variables vig=1- w/t, and also define ~ a o
s=(1-w)/w. Then ¢(t)=—tl,Me : (C3
= dt [ & L wherea is an arbitrary constant. The “unnormalized” wave
J=- L/st 1—w/t_t_§_w e (B1)  function is thus given by
. . N . . s o0 dt
We may now take the limit»—0, with s fixed, andé> . qS(n,M):af J oz (4
Then ot
S L which is the integral representation of a Bessel function,
J(s)—= 5 Eqy(Ls)—e™ %, (B12  ¢(n,M)=2a(w/2n)"*Ky(y2wn). To evaluate Egs.
(4.15,4.17, we needgp(1) and¢'(1). These are determined
where by making the change of variables=t~™, which yields
e a o
£,00= | dte ®13 P1M)= o [ “dxexi - w2, (e
X 0
is the exponential-integral function. Plugging back in gives,with the scaling variableN=(w/2)M. In the scaling limit
finally, w,M—0 with W fixed and finite, Eq(C5) can be simply
. evaluated. Since each of the arguments in the exponential
" 5 5 o) e* . . . . . . . _
o s _ 9 goes to zero or infinity, the limits of integration are re
v(s)= 205t Ei(1/s)= wao dt1 - (B14) stricted, giving
~e . . ; a
I_n fact, v®(s) is nothing but the Laplace transform in the dN=1M)= —(1— M), (C6)
limit <1, M
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(using M~1). The same change of variables can be used td<n<1/w. To study this limit, we lets=e' in Eq. (D5),

extract then derivative, giving in the scaling limit which is then dominated bg>1. Thus
d¢ =—a. (C? Y(n,B)~ n(ulzifocds(siﬁ—siﬁ)e‘mﬁS (D6)
dn| _, ’ 2iB )1 .

Comparison with the hard-wall forms shows that the con-This gives
stants cq andl C, are identical provided we take
a=1/z,=|Inw| . 1 . .
Witr1V tk|1e e|xact solutions of the continuum equations in X(”'M)Nﬁ” WA (nw) 2= (nw)' 2. (D7)
hand, one can readily evaluate the density of states by insert-
ing the integral representations E@4), into the expression Comparison to the outer solution, E&.16),
for G(iw) in Eq. (4.295. The n integration can be readily

performed. In the scaling limiM<1 the remaining twa x(N,M)~n~+Wi[c n=1h24c_n'#2], (D)
integrations are simple and yield an identical result to Eqs;,on gives. as in Sec. V
(4.26~(4.27). gives, as| -V
Bx=mklz,, (D9)
APPENDIX D
c3=(—1)*"1¢,=c. (D10)

In this appendix, we obtain the exact excited-state wave
functions in the continuum limt in th&=0,2, Ng=—-1
sectors, and show that they lead to the same scaling form f%
the Green’s function as does the hard-wall approximation.

We must next determine the constantanda(g). Nor-
alization requires

Beginning with Eq.(5.7), we make the change of variables, 2|Ck|2|a(ﬁ)|2|ﬁ= 1 (D11)
x(n,M)=a(gn~ "% (n,p), (D1)  where
wherea(8) is a normalization constant to be chosen later in odn _
order to maintain the closest possible agreement with the 'ﬁ:J 7|X(n,,8)|2. (D12
1

hard-wall solutions in Sec. V. The transformed wave func-

tion then satisfies the simpler equation, Performing the integral over gives

2

d 1 . .
2 2_ = 2 (= sinksinht’
N?——+n——+—(B%=2wn)|x(n), (D2) :_f ainaraingy _ SEsinftt
dn dn 4 lg 2, dtdt’singtsingt (cosh+cosh’)2[1+ V2w
where 8= JE—M?Z. Equation(D2) is a standard equation of o ,
classical mathematical physics. Its solutions are modified X (costt+cosht’)]e™ vew(costtreostt), (D13)

Bessel functions of imaginary index, The next step is to rescale the parametet/3,t'—r’'/B to

~ ive
X(M=Kis(\2nw), o3 ¢
where we have chosen the solutiérthat decays at infinity. __f P

Note that we have assumé&d=M?, for which 3 is real. It is IB_Z,B“ 0 dtdt’sintsint’sectf 23

straightforward to show that there are no satisfactory solu- . /

tions with E<M?. Very few results are readily available for +cosh’/B)]e v2elcost/f+cosit’/f) (D14)

these functions at imaginary index. Instead, we will make ) ) ] ]
heavy use of the integral representation, We are interested in smalh, with 8= wk/|In(w)|. In this
limit,

x(n,B)= fo e~ 2necosticogpt, (D4) costt/B=1(e"A+e VB)~1y Uk, (D15)

©

t—t’
[1+V2w(cosh/B

and an identical result with—t’. The factor in the exponen-

which can be verified by direct substitution into E§2). A tial in Eq. (D14) therefore becomes

second useful form is obtained by integrating EQ4) by

parts: 0, O<tt'<wk/2
T V2w(cosh+cosh’) — [oo otherwise
> —V2no! ; ; w—0 ' .
x(n,B)= 3 fo e V2necostigintt singt. (D5) (D16)

The first task at hand is to determine the spectrum, or ald aking this limit therefore acts simply to restrict the limits of
lowed values of8. To do this required asymptotic matching intégration, and we have

for the continuum solutiorfvalid for n>1) to the “outer” 2 ,

solution of fthe differenc_e gquation _Witsz (valid for_ 'B:%Jw dtdt’sintsint’secﬁ(t_t ) (D17)
n<1/w). This matching is imposed in the overlap region 2B"Jo 2B
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Since the sech is sharply peaked around zero inghe0
limit, we may effectively sett’~t in the second sine to

obtain
1 ka/z 2 wki2 H( t’)
| g=—2 dtsi tf dt’sec . (D18
F2p%)0 0 2B (b1

Thet’ integral is clearly proportional t@, and performing
these integrations exactly gives, in t8e~0 limit,

K
|B=2—183. (Dlg)

Thus, by choosing

a(B)=pB= (D20)

||nw|

we obtain the same constar z,,*2 as found for the hard-

wall solutions in Sec. V.
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cosBt,

cosh1+ cosltt,’ (029

M/2
[(M)= f dt,dty—————

The limits M, 83— 0 can be safely taken in the numerator of
the integral. The final result is

ke~ (M2

V27,

Putting this into Eq(D22) above and thence into E¢.2),
one recovers the final result, Eq®.31)—(5.35 quoted in
Sec. V, with a different valued = 7%/4, for the nonuniversal
constant.

[(M)= (D26)

APPENDIX E

In this appendix, we solve the difference equation Sr
eigenstates, E(5.14), in the appropriate sector for the fer-
mion Green’s function. Consider the generating function,

We are now in a position to calculate the Fermion Green’s

function. As in Sec. V, to use the decomposition in E52),

we must calculate matrix elements of single-fermion opera-
tors between the ground and excited states. In general, using

Egs.(4.13,5.6,

(K3 0y~ @U—l)%(n,M)x(n,—M)
g V2z,J1 \n

+(= 1) " p(n,—M)x(n,M)] (D21)

— L (= DAM)+ (— DR (—M)],

V2z,
(D22)

where the integral

I(M>=:—:fd—[:an,M)}(n,ﬂ)nM’z. (D23)

To evaluate this integral, we lét-e' in the integral repre-
sentation, Eq(C4), giving

(D24)

d(n,M)= cl f dte V2necositgMt

Inserting this and Eq(D4) above, then integration can be
readily performed, giving

Eff(w,a>=n§0 Yn(@)w" (ED)

Multiplying Eq. (5.14 by w" and summing gives

—2iap(w,a).
(E2)
This is easily solved by separation of variables. One finds

d. -
(1_W2)d_VV¢(W’ a) _Wlﬂ(W- a) =

&(W,a):(1+W)71/27ia(1_w)7l/2+ia, (E3)

choosingyy(a)=1 to fix the overall constant. This can be
inverted using the contour integral

dw #(w,a)

1+n -

2w w (E4)

()=

Deforming the contour to obtain a real integral gives

coshra (= dw . .
f Wl+n[(w+1)71/27|a(w_1)71/2+|a

n(a)=

+(_1)n(w+ 1)71/2+ia(W_1)7l/27ia]. (E5)

For largen>1, this integral is dominated by~1, and can
be easily evaluated to give the result quoted in Gql5.
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