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Transport of surface states in the bulk quantum Hall effect
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The two-dimensional surface of a coupled multilayer integer quantum Hall system consists of an anisotropic
chiral metal. This unusual metal is characterized by ballistic motion transverse and diffusive motion parallel
(2) to the magnetic field. Employing a network model, we calculate numerically the phase coherent two-
terminal z-axis conductance and its mesoscopic fluctuations. Quasi-one-dimensional localization effects are
evident in the limit of many layers. We consider the role of inelastic dephasing effects in modifying the
transport of the chiral surface sheath, discussing their importance in the recent experiments oétCaiuist
[S0163-18297)04847-9

I. INTRODUCTION ballistic in-plane motion and diffusive motion parallel to the
magnetic field. Vertical transport in such a multilayer sample
In a two-dimensional incompressible quantized Hall stateas first investigated experimentally in Ref. 11, and has re-
the low-energy excitations are confined to the edge of theently been revisited by Druistt al.* The latter experiment
sample. These edge states provide a simple way to undeprovides striking evidence of the novel behavior characteris-
stand transport in both integer and fractional quantum Halfic of the chiral metal.
systemd. For the integer quantum Hall effect with one filled ~ Most of the theoretical work on the chiral metal phase has
Landau level, there is a single edge mode, describable ifocused on the mesoscopic regime, with the sample assumed
terms of a free chiral fermion. Edge states in the fractionapmaller than the phase breaking lengths. The predicted be-
quantum Hall effec{FQHE) are believed to béchiral) Lut-  havior for such phase-coherent transport is very rich, with
tinger liquids, and have been probed via tunneling spectroghree different possible regimesee Fig. 2 connected by
copy in several recent experiments. universal crossovefs®®
In recent years there has been much interest in multilayer The purpose of this paper is twofold. First, we revisit the
quantum Hall systems. In double-layer systems the layer inphase-coherent regime and study in detail the conductance
dex plays the role of a pseudospin, and these systems ha@&d its fluctuations. Performing numerical transfer matrix
revealed a number of new surprises. In the opposite extrengalculations on a directed network model for the chiral metal
with many layers, the samples become three dimensionagnables us to extract the conductance and its fluctuations in
and a number of new features are expected. In such bultge various regimes, and compare directly with earlier ana-
samples with interlayer tunneling smaller than the Landadytic approaches. We then address the important role of
level spacing, the(intege) quantized Hall effect in each phase breaking processes, which have been ignored in earlier
layer should survive, and the sample exhibité Quantum  theoretical discussions.
Hall phase. Chalker and Dohmehave recently discussed ~ The paper is organized as follows. In Sec. Il we briefly
the phase diagram in such a system, in a model of nonintefeview the existing theoretical predictions for the phase co-
acting electrons with disorder. In the absence of disorder, theerent transport. In Sec. lll we describe the network model,
Landau levels will be broadened into bands in the presencand extract numerically the phase-coherent conductance in
of interlayer tunnelingt. Disorder further broadens these the various regimes. Section IV is devoted to a discussion of
bands. Near the band centers a diffusing three-dimensiongephasing processes, and Sec. V to prospects and conclu-
(3D) metallic state is expected. In the tails of the Landausions.
bands, the bulk states are localized, but current carrying edge
states nevertheless lead to a quantum Hall (_affect. For one_full Il. PHASE-COHERENT REGIME
Landau level, each layer has a single chiral free Fermion
edge state, which together comprise a 2D subsystem—a chi- For one full Landau level, there is a single free chiral
ral surface sheath? This surface phase forms a novel 2D Fermion edge mode in each layer, as depicted in Fig. 1. In
chiral metal system, which has been analyzed theoreticallthe presence of an interlayer tunneling amplittdassumed
by a number of authors:1°In the presence of impurity scat- much smaller thark w.), these chiral edge modes disperse
tering, the transport is predicted to be very anisotropic, withalong thez axis, and form one-half of an open 2D Fermi
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\-b—/ 1 a FIG. 2. Three different regimes of the phase-coherent transport

of the surface sheath of a sample with heigh&ind circumference

\b/ C. BothL, the typical distance an electron diffuses alongzlaeis
A upon circling the sample once, argd the 1D localization length,
X - can be deduced from the measurablaxis conductivity and geo-

) ) metrical parameters, as discussed in the text.
FIG. 1. Geometry of a multilayer quantum Hall system with an

interlayer hopping amplitgde allowing vert.ical transport. WittN Thus bothL, and ¢ depend only on geometrical parameters,
layers the system has height-Na, and a circumferenc€=2ar. 554 the measurable axis conductivity o. Notice that

- (¢la)=2(Lo/a)?, so that provided.,>a one hast>L,,.
surface. Impurities cause electrons to scatter about the Fermi apg the heightL of the sample varies, three regimes are
surface, as in any dirty metal. Due to the chiral nature, thebossible(see Fig. 2 For L<L,<¢&, an electron typically
in-plane motion remains ballistic with velocity, eveninthe  jiffuses from the bottom to the top of the sample before
presence of impurities. However, thiaterlaye) motion par-  circumnavigating the sample once. In this 2Biral metal
allel to the field becomes diffusive, with diffusion constant regime, an electron suffers dephasing in the leads before cir-
D. Easier to measure than the ballistic velocity or diffusionC"ng the sample. FolL,<L<¢, the electron circles the
constant is the axis (2D sheekconductivityo,, related tov  sample many times, and phase-coherent processes around the
andD via an Einstein relatich sample are important. The system behaves like a phase-
coherentquasi-1D metal Finally, for L>¢ 1D localization
effects dominate, and the system id (localized insula-
tor.

The predicted behavior for the phase-cohemeakis con-
wherea is the interlayer(lattice) spacing angp=1/hva the  ductance and its mesoscopic fluctuations depends sensitively
density of states. It will be convenient to introduce a dimen-on which regime the system is in. Consider first (dgnen-
sionlessz-axis conductivity viao,,= (€*/h)o. sionles$ mean two-terminal conductance along thexis,

For a mesoscopic sample with finite circumfere@and G \yhere the overbar denotes an average over disorder real-
number of layersN=L/a, there are several important time ,ations. In both the 2D chiral metal and the 1D metal re-
scales. For ballistic motion with velocity, an electron cir- gimes, Ohmic behavior is predicted with
cumnavigates the sample in a timg=C/v. In a time
m.=L2/D an electron will diffuse from the bottom to the top — C
of the sample. The transport will be phase coherent provided G= EU+O(L/§)- 24
the dephasing time, is much longer than both, and 7, . o _ _

In princip'e, this mesoscopic regime exists for any samp'e aThe usual “weak localization” Correct|0ns, which are of or-

sufficiently low temperatures, since the dephasing time dider (L/¢)°, are absent due to the breaking of time-reversal
verges asT—0 (r,~#/kgT in the quasi-one-dimensional Invariance. In the 1D insulating regime §trong _Iocallzatlon is
limit of interes). Here we focus on the fully coherent regime, OPerative, and the mean conductance is predicted to fall off

2.1

20 D €?
Tz2= € PP A h

returning to dephasing effects in Sec. V. exponentially with a universal forh (for L>¢£)
For a sample with finite circumferend®, there are two — 3
important length scales along tkexis, which demarcate the G=2(m&/2L)"“exp(—L/2¢). (2.5

boundaries between three reginisse Fig. 2*°8 Upon cir-
cumnavigating the sample once, an electron will diffuse
along thez axis a distance_o=+D 7, which can be ex-
pressed in terms of the measurablaxis conductivityo as

Conductance fluctuations are also of interest, which can

be characterized by the varian@&?, wheresG= G-G.In
the 2D chiral metal and 1D metal regimes, Gruzberg, Read,
and Sachde¥ have shown that the variance can be written

Lo=(acC)Y2 22

2_
For finite C with L—« the system is one dimensional, and 0G"=d(L/Lo) + O(L/9), (2.6
localization along the axis is expected. Théypical) local-  where ®(X) is a universal scaling function that smoothly
ization length¢ for such a quasi-1D system is proportional to connects the two regimes. Deep within the 1D metal regime
the (dimensionless1D conductivity,é~ o5, Which can be  the variance approaches a universal number well known for
written as quasi-1D metalsd (L/Ly— ) =1/15. In the 2D chiral metal
regime, ®(L/Lo)~(Lo/L)? for L/L, small. The conduc-
&=20C. (2.3 tance fluctuations are large in this limit, since the sample
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FIG. 3. Network model for the surface sheath. HereL/a=4
chiral edge modes are interconnected with dimensionless tunneling

to, with periodic boundary conditions taken in thedirection of FIG. 4. The single node inside the circle in Fig(r8drawn in a
circumferenceC. The z-axis conductance is computed by employ- more conventional wayrepresented by the matrix in E.3). The
ing a transfer matrix acting in the direction. transfer matrix progresses from bottom to top.

effectively breaks up intor,/7 =(Lo/L)? incoherent re- G=tlt"t]. 3.2

gions, which add independently to the conductance and it§
fluctuations. Gruzberg, Read, and SacH8éave obtained incident into channelor nodd i on the bottom edge to be

the full universal scaling functio® (X), which interpolates transmitted into channgl on the top edge. Herdl, is the

between these two limits. In the 1D localized regime, thenumber of channels.

;ﬂngsgrtg;crﬁz;tse ?ég?:;?g];? ;gtxgxigrr]oadly distributed, with .The transmission matrix is computed numerically by iter-
' ating a transfer matrix from the bottom to the top of the
sample. This involves reexpressing each node in a form re-
. NUMERICS lating the amplitudes in one edge mode to the amplitudes in
the adjacent edge mode:

he matrix elements;; are the amplitudes for an electron

A. Network model

Following Chalker and Dohmehwe employ a simple Win rolto o | [ vin

network model to study phase-coherent transport of the sur- Wout - 1ty rolty 33

face sheath. The network model consists of directed links

carrying electron current, connected via node parameters, e study a range of system sizes with the channel number
depicted in Fig. 3. All links carry current in thedirection, N¢=4,8,16,32 and the layer numbbi=8,10,12,16. Being

as appropriate for the chiral surface sheath. Scattering at tHeterested in conductance fluctuations, it is necessary to
nodes is characterized by(eeal and dimensionlesdrans- ~ €valuate the conductance exactly for each given disorder re-
mission amplitude, for tunneling in thez direction between alization. The self-averaging Lyapunov exponents for a

edge states in neighboring layers. For a given nodeShe sample withL—co cannot be used to extract the sample to

matrix relating incoming to outgoing amplitudes is given ex-sample fluctuations in a finite system. This restriction im-

Uout

plicitly by poses rather serious constraints on the accessible system
sizes.
Since the microscopic parameters of the network model,
Wout ro to \/wp . ) L
= , 3.0 ‘o andb, are not experimentally meaningful quantities, it is
Uout to —ro/\vin useful to relate them to a macroscopic observable, namely

the measurablez-axis sheet conductivity of the surface

with t3+r3=1. By construction, this matrix conserves the sheatho. As shown by Chalker and Dohmérthis is pos-
current, |Win| 2+ [vin| 2= |Woul >+ |voud 2. To model the disor-  sible for the network model, by summing the Feynman paths
der, the electrons are assumed to acquire a random phasnalytically. Specifically, consider paths that connect the in-
along each link connecting adjacent nodes, taken for simpliceident electrons on the bottom edge to the transmitted elec-
ity to be independent and uniformly distributed on the inter-trons on the top edge. F&L—« these paths dmot fully
val [0,27]. circumnavigate the sample so that the interference between

Periodic boundary conditions are taken in the balligtic paths wrapping around the sample a different number of
direction, with the circumferenc€=2bN., whereb is the  times—possible for finiteC—is completely absent. In the
length of a single link in thex direction andN, is the total absence of such interference the ensemble-averaged conduc-
number of interlayer tunneling nodes connecting adjacentance reduces to a sum of classical probabilities: any two
edge modegsee Fig. 4 The network consists ol edge paths that pass through a different sequence of directed links
modes, with spacing and a total “height” ofL=Na. will have arandomrelative phase, so that the interference

The conductance along tlzeaxis is obtained by comput- term will vanish upon ensemble averaging. To sum the clas-
ing the transmission of electrons from the bottom to the topsical probabilities of these nonwinding paths we follow
of the sample. Specifically, we use the two-terminal Land-Chalker and Dohmehand consider the transmission prob-
auer formula to relate th@imensionlessconductances to  ability for an electron incident in one channshyi) to be
the transmission matrik** transmitted througi\ layers:Ty=2|t;;|%. One can then ex-
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pressTy. 4 in terms of Ty and the single-layer transmission
probability, T1=t(2), as a geometric sum:

[

TN+1=n20 Tn(RiRY)"Ty, (3.9

whereRy=1—Ty is the reflection probability oN layers.
Carrying out this geometric sum gives the recursion relation

1

1 1-T,
+_)
Tn

Thir Ty
which can be readily solved foFy. The average conduc-
tance in the absence of interference between paths windin

around the sample is simp,=N_Ty, with N, the number
of channels. It is given exactly by

(3.9

O:

Ne 15

N 1—t5(1—1N)’
as obtained by Chalker and Dohniefor 1/N—o. The
z-axis sheet conductivity follows from Ohm’s law,
o=LG,/C, which in the limitC,L—c becomes

(3.6

_a g .
2b1-t5 S
Having related the conductivity to the network parameters,
the mesoscopic crossover lengthg and ¢ for a finite size
network model can be readily obtained from E&2) and
(2.3.

The exact result for the conductance E¢3.6) in the
absence of interference between winding paths should
valid even for finite circumference, provide@ is large
enough so that winding paths are rare. The condition for th

b
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FIG. 5. The meanz-axis conductances with fixed height

N=12 for several different circumferences, plotted vs the dimen-
sionless interlayer tunneling probabilitﬁ. The solid lines areﬁ_o
given by Eq.(3.6), and the dashed lines are the Ohmic conduc-
tancesGopm= &/2L given in Egs.(3.7) and(3.8).

work model, plotted versus the tunneling parameﬁefor
various channel numbebs; at fixed heighiN=12. The solid
lines are the “classical” conductan@o, Eg.(3.6), valid in
fhie absence of interference between winding paths, and the
gashed lines the “Ohmic conductanceion=Co/L. No-

validity of ignoring the interference between winding pathstice thatG, gives a good fit to the numerical data, except in
is that L<oC~¢, so that the sample is in the 2D chiral the low conductance regim&<1, where 1D localization

metal or 1D metal regimes.

Notice thatG, in Eq. (3.6) is well defined even ag— 1.
In this limit, the motion along the axis also becomes bal-
listic (for finite N), and each channel is perfectly transmitted

with Go— N, It will be convenient to define an Ohmic con-
ductance,

Gonmi=CalL=¢/2L, (3.9
which coincides withG, whenL is large enough that the
z-axis motion is diffusive. As define@ g, diverges witho
asto—1. The crossover from diffusive to ballistz-axis
motion occurs whes g~ N .

The 2D chiral metal regime requires that<L,, or
equivalentlyN<Ggy,,,- However, to avoid a crossover into
the ballistic regime of the network model requires.
Gonm<N.. Thus 2D chiral metal behavior is expected for
N<N,. Since this limit is difficult to access numerically, we
focus below primarily on the 1D metallic and localized re-
gimes.

B. Results

effects are expected. The deviations from the classical be-
havior in this regime can be seen more easily in Fig. 6,
where we plot the same data for the conductance, but now

normalized byG,. Strong deviations are seen for sm@]
where the system enters into the 1D localized regime and
interference between winding paths is critical.

In order to study the crossover from the 1D metallic to
localized regime, we plot in Fig. 7 the mean conductance for
N=12, normalized byGq,,=2¢/L, versus 2/£. The data
show a crossover from a 1D metallic regime with Ohmic

behavior, G=Ggn,, to a 1D localized regime where the
conductance vanishes exponentially for £. The solid line

is the prediction from Mirlin, Muller-Groeling, and
Zirnbauet® for the mean conductance of a quasi-1D metallic
wire obtained using supersymmetry methods. The agreement
is reasonable, but our numerics deviate from the universal
form of Mirlin, Muller-Groeling, and Zirnbauéf at both
large and small/¢. The deviations at large/ ¢ are presum-
ably due to lattice cutoff effects, since in this regime the
localization length along the axis is comparable to the net-
work model lattice spacing. The deviations for small/¢

are probably due to finite-size effects. Indeed, as the channel

In Fig. 5 we show results for the ensemble-averaged twonumberNC increases, the agreement improves. Notice that

terminal conductancé computed numerically from the net-

G/Gc,hm vanishes at/&—0 (rather than approaching unijty
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FIG. 6. The mean conductan& from Fig. 5 replotted after FIG. 8. Variance of the conductance for different sample sizes
and hopping amplituda%, all plotted vs 2./£. The solid line is the

normalizing byGo. The ratioG/G, deviates from one as the system variance of the conductance for a quasi-1D sample, computed ana-
becomes localized. . L . ;
lytically by Mirlin, Muller-Groeling, and Zirnbauer.

due to ballistic behavior in the network model: in this limit
to—1 andGoyy, diverges wherea6 saturates at théinite) ~ Wire, obtained by Mirlin, Muller-Groeling, and Zirnbautt.
channel numbeN, . This curve shows the crossover from the 1D metallic regime
In addition to the mean conductance, we have computedt smallL/&, where the variance approaches the well-known
the sample-to-sample conductance fluctuations. In Fig. 8 weniversal value,6G?=1/15, to the 1D localized regime
have plottedSG2 versus 2./¢, for heightN= 16 and various Where the fluctuations vanish exponentially fo-¢. The
different channel numbers. The solid curve is the universapgreement between our numerical data and the Mirlin,

prediction for the variance of the conductance of a quasi-1DMuller-Groeling, and Zirnbaué? theory is quite striking.
Again, the deviations folL/é—0 are due to the ballistic

regime in the network model fotp—1 (with finite N),
where the conductance fluctuations vanish. Est¢ the lo-
calization length approaches the lattice spacing. The numer-
ics and theory agree very well near the peak in the crossover
regime.

Finally, we mention briefly our effort to extract numeri-
cally the conductance in the 2D chiral metal regime. This
regime requires thdt<<L y, or equivalentyN<Ggy,,,. How-
ever, to avoid the ballistic regime wheg— 1, we must re-
quire thatGop<N., so that we needN<N.. We have
focused on the conductance fluctuations in this regime, since
these are predicted to behave very differently than in the 1D
metal, diverging withL/L,—0 as8G2~(Lo/L)2. In Fig. 9
the variance of the conductance is shown for “short” and
“wide” samples, with heightN=_8 and widthN.=16,32,64,
plotted versud /L, whereLy=+aoC. For each width\_,
we have varied the tunneling probabiliitﬁ(to get the set of
i data points. The solid line is the analytic prediction from
o e e Gruzberg, Read, and Sachd&for the conductance variance
2L/¢ in the crossover regime between the 1D and 2D chiral metal.

Unfortunately, the agreement with the analytic result is quite

FIG. 7. The mean conductance normalized@y,,=&/2L vs  Poor, although the agreement improves for the widest sample
2L/¢. For each sample size the points correspond to different valueith N.=64. Indeed, the large enhancement in the variance
of the hopping probabilite?. The solid line is the mean conduc- for the sample wittN.=64 in the range ¥L/L,<3 is con-

tance computed analytically for a quasi-1D system taken from pasistent with the theoretical expectations. The sharp drop in
per of Mirlin, Muller-Groeling, and Zirnbauer. the conductance fluctuations for smallefl is due to the
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Fig. 1, in which metallic contacts are applied zt0 and
z=L. ForL4>L, an electron diffuses between the two con-
tacts before being dephased. In this case, transponeso-
scopic and the above phase-coherent results apply.

ForL 4,<L, however, inelastic scattering occurs within the
sample, and we must reconsider transport properties. There
are two such importarihcoherentregimes, depending upon
the relative magnitude df, andC. Forl ,<C, the electron
doesnot fully circumnavigate the sample before suffering a
phase-breaking collision. In this situation, electron paths that
wind a different number of times around the sample do not
interfere. As a result the system cannot explore the three
. phasecoherentregimes discussed in Secs. Il and Ill. Instead,
. the system is appropriately described as a phase-incoherent
. ] 2D chiral metal. Nevertheless, there d@senal) mesoscopic
. | fluctuations expected even in this limit, which we discuss
¢ . below. In the opposite extreme bf>C, the electron can

1 propagate many times around the sample before phase break-
ol—e . ing. In this case, the one-dimensional motion parallel to the
field is phase coherent up to a length sdajg The system
L/L, should behave like an incoherent quasi-1D wire, iththe
appropriatg1D) dephasing length, as we discuss further be-

FIG. 9. Variance of the conductance WA, for three different
“short” and “wide” samples at various values @f. The solid line
is the conductance variance computed analytically by Gruzber
Read, and Sachder in the universal crossover regime between
1D and 2D chiral metals. The dashed line is&@2=1/15—the
value in the 1D metal regime.

Ww.
To describe the transport behavior in these incoherent re-
gg(iemes, we employ arguments first applied in Ref. 15. The
important observation is that the sample can be subdivided
into “patches,” whose size is the maximum area over which
an electron diffuses in time, . Each such region effectively
acts as a classical resistor, and the whole sample then as a

crossover from diffus_ive to ballistic motion in_ the network rondom resistor network, the properties of which are well
model. The local maxima fdl.= 16 atL/L,~4 is the same | ,nderstood.

maxima as in Fig. 8, and indicates a crossover into the 1D rjrst consider
localized regime for largelt/L,, where the Gruzberg, Read
and Sachdev results do not apply.

+»+<C. Then the patches have dimensions

" 14 by Ly, and form an array of siz€/1 4 by L/L 4. Denot-
ing by g; the (dimensionless conductance(along the
z—axis) of theith patch, Ohm’s law gives an average patch

IV. INELASTIC EFFECTS conductance ofjj=go=ol,/L,. The conductance fluctua-
tions in each patchdg;=g;—go, are of order one—being
The above results for the phase coherent transport argquivalent to the conductance fluctuations of a fully coherent
dramatically modified in the presence of phase breaking efnetwork at the boundary between the 1D and 2D metal re-
fects. Dephasing effects can be characterized by a phasgimes. Since the mean conductance can be written as
breaklng tlme, denote-dd) ,-Wh|Ch is the t|me. an EIEC-tron Can do= Ld)/a’ provided the patch size is |arger than the lattice
propagate before having its phase randomized by interactiongpacing,L ,>a, the conductance fluctuations in each patch
with other electrons or phonons. In the extreme anisotropigre much smaller than the mean conductarfg=<go. In
limit of the surface sheath with vanishing interlayer tunnel—,[his limit. both the total conductanc® and its variance

ing, t=0, an electron propagating in one edge state will in-__,  — =~ —, . . _
teract via Coulomb forces with electrons in neighboring®G = G”~(G)®, can be easily evaluated. A simple estimate

edges states, and can suffer phase-breaking inelastic scatt-{0 imagine connecting the resistajsatches only verti-
ing events. Being in 1D, the scattering rate, evaluated t&ally (an approximation that gives the correct result for the

leading order in the interactions strengthis linear in tem- conductance fluctuations up to an order one prefactgren
perature: 17‘¢=C(U|B/27Tﬁv)2kBT/h, with ¢ an order one forzeach collsjmn,. thg patch resistances adq, so that
constant) 5 the magnetic length, and the edge velocity. In  9Cco=(L/L)", which is independent of,. Contributing
practice, the dimensionless ratidg /7iv is itself also of or- N parallel, the conductances of thig,=C/1,, columns add,

der one, so that ¥,~kgT/#. For nonzero but small inter- SO Zthat the yanance of théotal conductance is simply
layer tunneling, the dephasing rate will probably cross ovel®G”=NcodGgy - This can be written in the form

to a two-dimensionall?> dependence at very low tempera-

tures. 562 a2 1 I
Associated with the dephasing time are two dephasing —~_ ] , 4.7
(Y — ; ; G2 Cljo a
lengths:(i) | y=v 7y, the distance an electron propagates in

the ballistic x direction before dephasing andii) o
L,=VDr,=oal,, the distance an electron diffuses paral-with G=Co/L. Notice that the conductance fluctuations
lel to the field in timer, . Consider the transport geometry in have an appreciable temperature dependence entering
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throughl ,, growing in magnitude at low temperatures. The quantum Hall samples. Specifically, the samples consisted of
mean conductance, however, remains temperature indepeb@ layers of 150-A GaAs layers alternating with 150 A
dent. Al 1Ga JAs barriers doped at their centers with silicon. The
Consider next the 1D incoherent limit with,>C, in  vertical separation between each of the 50 2D electron gases
which the electron propagates many times around the sampig a=300 A. A simple Kronig-Penney analysis gives an es-
before dephasing. In this limit, the/L , classical patch re- timate for thez-axis bandwidth ot =0.12 meV. When the
sistors form a one-dimensional random chain, and have diapplied magnetic field was tuned onto an integer quantum
mensionsC by L ,. Due to 1D localization effects, the con- Hall plateau, the z-axis conductance—dropping with
ductance of each such segment will depend strongly on iteemperature—was found to saturate below about 200 mK.
lengthL,, and hence on the temperatufe For example, Since the low-temperatuzeaxis conductance scaled linearly
whenL , is much smaller than the 1D localization length ~ with the circumferenceperimetey of the samples, which
the (mean conductance of each segment is given by was in the range 40@m=<C=<7 mm, Druistet al. argued
that the conduction was being dominated by the 2D chiral
surface sheath. The resulting sheehductivityalong thez
axis was found to be~4x 10 * on thevy=1 plateau, and

) . , about a factor of three larger for=2.
where the first term is Ohm's law, and the second term re- o theoretical estimate for the-axis conductivity of the

flects the leading 1D Iocalizaf[ion'corrections within the uni- g, face sheath at one full Landau level can be obtainedrom
tary ensemble. In the opposite limit,,> ¢, one expects a

stronger length (and temperatuje dependence, |

Gsed L 4) ~€Xp(—L4/2£). The total conductance follows by o~ %tz, (5.1)
simply adding the series resistances of each of lthe, h

segments. In the 1D metallic regime with,<¢, this gives

2Ly 2
Gseg(L¢)=(UC/L¢)—4—5?+O(L¢,/§), 4.2

wherel is an elastic mean free path for edge scattering and

— oC 2 L,L, v is the(ballistic) edge velocity. Unfortunately, bothandl,
L T4 L ? (4.3 are difficult to estimate reliably, depending on the detailed
slope and irregularities of the edge confining potential. How-
which depends on temperature through(T). ever, we expect that in the limit of large magnetic field,

Experimentally, such conductance fluctuations are usually =I5, wherelg is the magnetic lengthl §{ may grow much
observed not by looking at different samples, but by varyindonger thanlz as the edge is made cleapevloreover, we
the applied magnetic field in such a way as to change thexpectv to be bounded above by the edge velocity for a
phases accumulated by interfering electrons and thereby efrard-wall confining potential, so that< w¢l g/27, with o,
fectively change the disorder. The conductance fluctuationghe cyclotron frequency. Putting in the§eugh bounds, we
in this context are characterized not only by their amplitude gptain
discussed above, but also by a characteristic field
This scale is defined by the amount the applied field must be (2m)%t2a
changed in order that the conductance of a fixed sample be- o= ———.
comes uncorrelated with its previous value. Physically, the hfwcle
conductance fluctuations arise from constructive interference ] )
of two paths enclosing an area of the phase-coherent patd#ising the parameters appropriate for the Dreisal. experi-
size. The total change in phase shift around this loop in unit§"ent, this givesr=6x10">, about an order of magnitude
of 277 is simply the change in magnetic flux through this area_smaller than the experlmen_tal valge. G|ven thg uncert_amues
divided by the flux quantump,=hcle. The characteristic NV andlq, as well as possible §h|fts indue to interaction
field B,, which changes the phase around the loop byaffects., this level of agreement is reasonable. _

O(), is thus simply the field that puts, say, half a flux Taking now themeasured/all_Je ofo, we can estimate t_he
quantum through this coherent area. Assuming the magnetf0 length scales that determine the system behavior in the
field has a non-negligible angle to the surface shéatiich ~ Mesoscopic limit. The samples studied by Dreistl. had a

we believe to be the case in the experiments of Druisfange of circumferences 4Q0m<C<=7 mm, which corre-
et all?), this gives spond to lengths £ L,/a<10 and 16<¢/a<200, upon us-

ing Egs. (2.2—(2.3. Since N=L/a=50 in these experi-
dollgly, 14<C ments, in thanesoscopitimit these samples should span the
By~ (4.4  quasi-1D metal and 1D localized regimes. At low tempera-
$o/CLy, 14,>C )
tures, we would therefore expect a strong suppression of the
in the two incoherent regimes. Note that sirgeand L 4 conductivity and significant temperature and circumference

increase as temperature is lowered, the conductance variégpendence, especially in the smaller samples. That such ef-
very rapidly with field at low temperatures. fects are not observed must be attributedhlastic effects.

Indeed, as shown below, estimates for the in-plane dephasing
lengthl , givel ,<C even at the lowest temperatures and for
the smallest sample. In this limit, mesoscopic effects are
We conclude with a comparison of these theoretical regreatly suppressed, and the system is best thought of as an
sults to the experimental data of Druistal? Druistet al.  incoherent2D chiral metal. This accounts naturally for the
have measured theaxis transport in a series of multilayer observed low-temperature saturation of the conductilitty

(5.2

V. CONCLUSIONS



56 TRANSPORT OF SURFACE STATES IN THE BULK ... 15821

remains to be seen whether the weak residual temperature do
dependence at low can be fitted to the expectédorm Lo~ 258 (5.5
o(T)— a(0)=T2]. ¢

We can attempt to estimate the dephasing lengtiia For the Druistet al. experiment, this gives ,~3 um at

ho \2 ho T=100 mK, somewhat smaller than the first estimate. In this

l 4= ( ) kT (5.3 case there are also considerable uncertainties due primarily
B ) .
to incomplete knowledge of the degree of interlayer flux pen-

however, there is considerable uncertainty in theetration. However, all three of the above estimates give
parameters—particularly the edge veloaityAs a crude es- 1 ,<C.
timate we takeA= 1, a dimensionless interaction strength of  In summary, the experiments so far are consistent with the
unity ulg/hv =1 and an edge velocity estimated for a hard-picture of anincoherent 2D chiral metalSeveral opportuni-
wall confining potentiab = w.lg/27. In the 10 T field used ties exist for further theoretical and experimental study.
by Druistet al. in the v=1 plateau and at the lowest tem- Samples with smaller circumferences in the range of 10—20
peratures studied df=50 mK this gives the rough estimate um would be highly desirable, since the mesoscopic regime
| 5~20 um. would then be accessible below several hundred mK. In this

Fortunately, one can also extract estimates fodirectly  limit, the rich and varied crossovers between the three me-
from the experimentally measured conductance fluctuationsoscopic regimes could be accessed experimentally. Theo-
In fact, this can be done in two ways, thereby providing aretically, a more quantitative study of inelastic scattering and
consistency check. One determination is from dineplitude  dephasing lengths would be desirable in order to achieve a
of the fluctuations. Solving Eq4.1) gives precise comparison with experiment. Particularly interesting
from both points of view is the temperature dependence of
| K 5G62)? 1/7,, which we believe should exhibit linear scaling with

¢ ﬁ( ). (5.4) temperature over a broad range. A field-theoretic treatment
of dephasing effects could be useful in providing the desired
Because the fourth power @G appears above and the am- tighter link with experiments.
plitudeA is unknown, there is again considerable uncertainty
in I,. For the Druistet al. experiments, we obtaih,~26
wmm, consistent with the above theoretical estimate.

A second determination comes from the magnetic field We thank David Druist and Elizabeth Gwinn for gener-
scale of the conductance fluctuations. From the above estbusly sharing their experimental data. It is a pleasure to ac-
mates, we see that,=oal,<a (using the measured knowledge fruitful conversations with llya A. Gruzberg,
o=4x10"%. This is close to the “incoherent tunneling” Nick Read, and Hsiu-Hau Lin. We are grateful to the Na-
limit, and we expect it is appropriate to repldcg—a in Eq.  tional Science Foundation for support, under Grant No.
(4.4), giving PHY94-07194, DMR-9400142, and DMR-9528578.
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