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Transport of surface states in the bulk quantum Hall effect
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The two-dimensional surface of a coupled multilayer integer quantum Hall system consists of an anisotropic
chiral metal. This unusual metal is characterized by ballistic motion transverse and diffusive motion parallel

( ẑ) to the magnetic field. Employing a network model, we calculate numerically the phase coherent two-
terminal z-axis conductance and its mesoscopic fluctuations. Quasi-one-dimensional localization effects are
evident in the limit of many layers. We consider the role of inelastic dephasing effects in modifying the
transport of the chiral surface sheath, discussing their importance in the recent experiments of Druistet al.
@S0163-1829~97!04847-9#
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I. INTRODUCTION

In a two-dimensional incompressible quantized Hall sta
the low-energy excitations are confined to the edge of
sample. These edge states provide a simple way to un
stand transport in both integer and fractional quantum H
systems.1 For the integer quantum Hall effect with one fille
Landau level, there is a single edge mode, describabl
terms of a free chiral fermion. Edge states in the fractio
quantum Hall effect~FQHE! are believed to be~chiral! Lut-
tinger liquids, and have been probed via tunneling spect
copy in several recent experiments.2

In recent years there has been much interest in multila
quantum Hall systems. In double-layer systems the layer
dex plays the role of a pseudospin, and these systems
revealed a number of new surprises. In the opposite extr
with many layers, the samples become three dimensio
and a number of new features are expected. In such
samples with interlayer tunneling smaller than the Land
level spacing, the~integer! quantized Hall effect in each
layer should survive, and the sample exhibit a 3d quantum
Hall phase. Chalker and Dohmen3 have recently discusse
the phase diagram in such a system, in a model of nonin
acting electrons with disorder. In the absence of disorder,
Landau levels will be broadened into bands in the prese
of interlayer tunnelingt. Disorder further broadens thes
bands. Near the band centers a diffusing three-dimensi
~3D! metallic state is expected. In the tails of the Land
bands, the bulk states are localized, but current carrying e
states nevertheless lead to a quantum Hall effect. For one
Landau level, each layer has a single chiral free Ferm
edge state, which together comprise a 2D subsystem—a
ral surface sheath.3,4 This surface phase forms a novel 2
chiral metal system, which has been analyzed theoretic
by a number of authors.5–10 In the presence of impurity sca
tering, the transport is predicted to be very anisotropic, w
560163-1829/97/56~24!/15814~8!/$10.00
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ballistic in-plane motion and diffusive motion parallel to th
magnetic field. Vertical transport in such a multilayer sam
was first investigated experimentally in Ref. 11, and has
cently been revisited by Druistet al.12 The latter experiment
provides striking evidence of the novel behavior characte
tic of the chiral metal.

Most of the theoretical work on the chiral metal phase h
focused on the mesoscopic regime, with the sample assu
smaller than the phase breaking lengths. The predicted
havior for such phase-coherent transport is very rich, w
three different possible regimes~see Fig. 2! connected by
universal crossovers.4–6,8

The purpose of this paper is twofold. First, we revisit t
phase-coherent regime and study in detail the conducta
and its fluctuations. Performing numerical transfer mat
calculations on a directed network model for the chiral me
enables us to extract the conductance and its fluctuation
the various regimes, and compare directly with earlier a
lytic approaches. We then address the important role
phase breaking processes, which have been ignored in ea
theoretical discussions.

The paper is organized as follows. In Sec. II we brie
review the existing theoretical predictions for the phase
herent transport. In Sec. III we describe the network mod
and extract numerically the phase-coherent conductanc
the various regimes. Section IV is devoted to a discussion
dephasing processes, and Sec. V to prospects and co
sions.

II. PHASE-COHERENT REGIME

For one full Landau level, there is a single free chir
Fermion edge mode in each layer, as depicted in Fig. 1
the presence of an interlayer tunneling amplitudet ~assumed
much smaller than\vc), these chiral edge modes disper
along thez axis, and form one-half of an open 2D Ferm
15 814 © 1997 The American Physical Society
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56 15 815TRANSPORT OF SURFACE STATES IN THE BULK . . .
surface. Impurities cause electrons to scatter about the F
surface, as in any dirty metal. Due to the chiral nature,
in-plane motion remains ballistic with velocityv, even in the
presence of impurities. However, the~interlayer! motion par-
allel to the field becomes diffusive, with diffusion consta
D. Easier to measure than the ballistic velocity or diffusi
constant is thez axis~2D sheet! conductivityszz related tov
andD via an Einstein relation4

szz5e2rD5
D

va

e2

h
, ~2.1!

wherea is the interlayer~lattice! spacing andr51/hva the
density of states. It will be convenient to introduce a dime
sionlessz-axis conductivity viaszz5(e2/h)s.

For a mesoscopic sample with finite circumferenceC and
number of layers,N5L/a, there are several important tim
scales. For ballistic motion with velocityv, an electron cir-
cumnavigates the sample in a timetc5C/v. In a time
tL5L2/D an electron will diffuse from the bottom to the to
of the sample. The transport will be phase coherent provi
the dephasing timetf is much longer than bothtc andtL .
In principle, this mesoscopic regime exists for any sample
sufficiently low temperatures, since the dephasing time
verges asT→0 (tf;\/kBT in the quasi-one-dimensiona
limit of interest!. Here we focus on the fully coherent regim
returning to dephasing effects in Sec. V.

For a sample with finite circumferenceC, there are two
important length scales along thez axis, which demarcate th
boundaries between three regimes~see Fig. 2!.4,5,8 Upon cir-
cumnavigating the sample once, an electron will diffu
along thez axis a distanceL05ADtc, which can be ex-
pressed in terms of the measurablez-axis conductivitys as

L05~asC!1/2. ~2.2!

For finite C with L→` the system is one dimensional, an
localization along thez axis is expected. The~typical! local-
ization lengthj for such a quasi-1D system is proportional
the ~dimensionless! 1D conductivity,j;s1D , which can be
written as

j52sC. ~2.3!

FIG. 1. Geometry of a multilayer quantum Hall system with
interlayer hopping amplitudet allowing vertical transport. WithN
layers the system has heightL5Na, and a circumferenceC52pr .
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Thus bothL0 andj depend only on geometrical paramete
and the measurablez axis conductivity s. Notice that
(j/a)52(L0 /a)2, so that providedL0@a one hasj@L0.

As the heightL of the sample varies, three regimes a
possible~see Fig. 2!. For L,L0!j, an electron typically
diffuses from the bottom to the top of the sample befo
circumnavigating the sample once. In this 2Dchiral metal
regime, an electron suffers dephasing in the leads before
cling the sample. ForL0!L!j, the electron circles the
sample many times, and phase-coherent processes aroun
sample are important. The system behaves like a ph
coherentquasi-1D metal. Finally, for L@j 1D localization
effects dominate, and the system is a1D ~localized! insula-
tor.

The predicted behavior for the phase-coherentz-axis con-
ductance and its mesoscopic fluctuations depends sensit
on which regime the system is in. Consider first the~dimen-
sionless! mean two-terminal conductance along thez axis,
Ḡ, where the overbar denotes an average over disorder
izations. In both the 2D chiral metal and the 1D metal
gimes, Ohmic behavior is predicted with8

Ḡ5
C

L
s1O~L/j!. ~2.4!

The usual ‘‘weak localization’’ corrections, which are of o
der (L/j)0, are absent due to the breaking of time-rever
invariance. In the 1D insulating regime strong localization
operative, and the mean conductance is predicted to fall
exponentially with a universal form13 ~for L@j)

Ḡ52~pj/2L !3/2exp~2L/2j!. ~2.5!

Conductance fluctuations are also of interest, which
be characterized by the variance,dG2, wheredG5G2Ḡ. In
the 2D chiral metal and 1D metal regimes, Gruzberg, Re
and Sachdev10 have shown that the variance can be writt
as

dG25F~L/L0!1O~L/j!, ~2.6!

where F(X) is a universal scaling function that smooth
connects the two regimes. Deep within the 1D metal regi
the variance approaches a universal number well known
quasi-1D metals:F(L/L0→`)51/15. In the 2D chiral metal
regime, F(L/L0);(L0 /L)2 for L/L0 small. The conduc-
tance fluctuations are large in this limit, since the sam

FIG. 2. Three different regimes of the phase-coherent trans
of the surface sheath of a sample with heightL and circumference
C. BothL0, the typical distance an electron diffuses along thez axis
upon circling the sample once, andj, the 1D localization length,
can be deduced from the measurablez-axis conductivity and geo-
metrical parameters, as discussed in the text.
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15 816 56SORA CHO, LEON BALENTS, AND MATTHEW P. A. FISHER
effectively breaks up intotc /tL5(L0 /L)2 incoherent re-
gions, which add independently to the conductance and
fluctuations. Gruzberg, Read, and Sachdev10 have obtained
the full universal scaling functionF(X), which interpolates
between these two limits. In the 1D localized regime,
conductance is expected to be very broadly distributed, w
an approximate log-normal distribution.

III. NUMERICS

A. Network model

Following Chalker and Dohmen,3 we employ a simple
network model to study phase-coherent transport of the
face sheath. The network model consists of directed li
carrying electron current, connected via node parameter
depicted in Fig. 3. All links carry current in thex direction,
as appropriate for the chiral surface sheath. Scattering a
nodes is characterized by a~real and dimensionless! trans-
mission amplitudet0 for tunneling in thez direction between
edge states in neighboring layers. For a given node thS
matrix relating incoming to outgoing amplitudes is given e
plicitly by

S wout

vout
D 5S r 0 t0

t0 2r 0
D S win

v in
D , ~3.1!

with t0
21r 0

251. By construction, this matrix conserves th
current,uwinu21uv inu25uwoutu21uvoutu2. To model the disor-
der, the electrons are assumed to acquire a random p
along each link connecting adjacent nodes, taken for simp
ity to be independent and uniformly distributed on the int
val @0,2p#.

Periodic boundary conditions are taken in the ballisticx
direction, with the circumferenceC52bNc , whereb is the
length of a single link in thex direction andNc is the total
number of interlayer tunneling nodes connecting adjac
edge modes~see Fig. 4!. The network consists ofN edge
modes, with spacinga and a total ‘‘height’’ ofL5Na.

The conductance along thez axis is obtained by comput
ing the transmission of electrons from the bottom to the
of the sample. Specifically, we use the two-terminal Lan
auer formula to relate the~dimensionless! conductanceG to
the transmission matrixt:14

FIG. 3. Network model for the surface sheath. HereN5L/a54
chiral edge modes are interconnected with dimensionless tunn

t0, with periodic boundary conditions taken in thex̂ direction of
circumferenceC. The z-axis conductance is computed by emplo
ing a transfer matrix acting in thez direction.
its
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G5tr@ t1t#. ~3.2!

The matrix elementst i j are the amplitudes for an electro
incident into channel~or node! i on the bottom edge to be
transmitted into channelj on the top edge. HereNc is the
number of channels.

The transmission matrix is computed numerically by ite
ating a transfer matrix from the bottom to the top of t
sample. This involves reexpressing each node in a form
lating the amplitudes in one edge mode to the amplitude
the adjacent edge mode:

S win

wout
D 5S r 0 /t0 1/t0

1/t0 r 0 /t0
D S v in

vout
D . ~3.3!

We study a range of system sizes with the channel num
Nc54,8,16,32 and the layer numberN58,10,12,16. Being
interested in conductance fluctuations, it is necessary
evaluate the conductance exactly for each given disorde
alization. The self-averaging Lyapunov exponents for
sample withL→` cannot be used to extract the sample
sample fluctuations in a finite system. This restriction i
poses rather serious constraints on the accessible sy
sizes.

Since the microscopic parameters of the network mod
t0 andb, are not experimentally meaningful quantities, it
useful to relate them to a macroscopic observable, nam
the measurablez-axis sheet conductivity of the surfac
sheaths. As shown by Chalker and Dohmen,3 this is pos-
sible for the network model, by summing the Feynman pa
analytically. Specifically, consider paths that connect the
cident electrons on the bottom edge to the transmitted e
trons on the top edge. ForC→` these paths donot fully
circumnavigate the sample so that the interference betw
paths wrapping around the sample a different number
times—possible for finiteC—is completely absent. In the
absence of such interference the ensemble-averaged con
tance reduces to a sum of classical probabilities: any
paths that pass through a different sequence of directed l
will have a random relative phase, so that the interferen
term will vanish upon ensemble averaging. To sum the c
sical probabilities of these nonwinding paths we follo
Chalker and Dohmen,3 and consider the transmission pro
ability for an electron incident in one channel~say i ) to be
transmitted throughN layers:TN5( j ut i j u2. One can then ex-

ng
FIG. 4. The single node inside the circle in Fig. 3~redrawn in a

more conventional way! represented by the matrix in Eq.~3.3!. The
transfer matrix progresses from bottom to top.
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56 15 817TRANSPORT OF SURFACE STATES IN THE BULK . . .
pressTN11 in terms ofTN and the single-layer transmissio
probability,T15t0

2, as a geometric sum:

TN115 (
n50

`

TN~R1RN!nT1 , ~3.4!

whereRN512TN is the reflection probability ofN layers.
Carrying out this geometric sum gives the recursion relat

1

TN11
5

12T1

T1
1

1

TN
, ~3.5!

which can be readily solved forTN . The average conduc
tance in the absence of interference between paths win
around the sample is simplyḠ05NcTN , with Nc the number
of channels. It is given exactly by

Ḡ05
Nc

N

t0
2

12t0
2~121/N!

, ~3.6!

as obtained by Chalker and Dohmen3 for 1/N→`. The
z-axis sheet conductivity follows from Ohm’s law
s5LḠ0 /C, which in the limitC,L→` becomes

s5
a

2b

t0
2

12t0
2 . ~3.7!

Having related the conductivity to the network paramete
the mesoscopic crossover lengthsL0 and j for a finite size
network model can be readily obtained from Eqs.~2.2! and
~2.3!.

The exact result for the conductance Eqs.~3.6! in the
absence of interference between winding paths should
valid even for finite circumference, providedC is large
enough so that winding paths are rare. The condition for
validity of ignoring the interference between winding pat
is that L!sC;j, so that the sample is in the 2D chir
metal or 1D metal regimes.

Notice thatḠ0 in Eq. ~3.6! is well defined even ast0→1.
In this limit, the motion along thez axis also becomes ba
listic ~for finite N), and each channel is perfectly transmitt
with Ḡ0→Nc . It will be convenient to define an Ohmic con
ductance,

GOhm[Cs/L5j/2L, ~3.8!

which coincides withḠ0 when L is large enough that the
z-axis motion is diffusive. As defined,GOhm diverges withs
as t0→1. The crossover from diffusive to ballisticz-axis
motion occurs whenGOhm'Nc .

The 2D chiral metal regime requires thatL!L0, or
equivalentlyN!GOhm. However, to avoid a crossover int
the ballistic regime of the network model requir
GOhm,Nc . Thus 2D chiral metal behavior is expected f
N!Nc . Since this limit is difficult to access numerically, w
focus below primarily on the 1D metallic and localized r
gimes.

B. Results

In Fig. 5 we show results for the ensemble-averaged t
terminal conductanceḠ computed numerically from the ne
n

ng

,

be

e

-

work model, plotted versus the tunneling parametert0
2 for

various channel numbersNc at fixed heightN512. The solid

lines are the ‘‘classical’’ conductanceḠ0, Eq. ~3.6!, valid in
the absence of interference between winding paths, and
dashed lines the ‘‘Ohmic conductance,’’GOhm5Cs/L. No-

tice thatḠ0 gives a good fit to the numerical data, except

the low conductance regime,Ḡ,1, where 1D localization
effects are expected. The deviations from the classical
havior in this regime can be seen more easily in Fig.
where we plot the same data for the conductance, but n
normalized byḠ0. Strong deviations are seen for smallt0

2,
where the system enters into the 1D localized regime
interference between winding paths is critical.

In order to study the crossover from the 1D metallic
localized regime, we plot in Fig. 7 the mean conductance
N512, normalized byGOhm52j/L, versus 2L/j. The data
show a crossover from a 1D metallic regime with Ohm
behavior, Ḡ'GOhm, to a 1D localized regime where th
conductance vanishes exponentially forL@j. The solid line
is the prediction from Mirlin, Muller-Groeling, and
Zirnbauer13 for the mean conductance of a quasi-1D meta
wire obtained using supersymmetry methods. The agreem
is reasonable, but our numerics deviate from the unive
form of Mirlin, Muller-Groeling, and Zirnbauer13 at both
large and smallL/j. The deviations at largeL/j are presum-
ably due to lattice cutoff effects, since in this regime t
localization length along thez axis is comparable to the ne
work model lattice spacinga. The deviations for smallL/j
are probably due to finite-size effects. Indeed, as the cha
numberNc increases, the agreement improves. Notice t
Ḡ/GOhm vanishes asL/j→0 ~rather than approaching unity!

FIG. 5. The meanz-axis conductanceḠ with fixed height
N512 for several different circumferences, plotted vs the dim
sionless interlayer tunneling probabilityt0

2. The solid lines areG0

given by Eq.~3.6!, and the dashed lines are the Ohmic condu
tancesGOhm5j/2L given in Eqs.~3.7! and ~3.8!.
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15 818 56SORA CHO, LEON BALENTS, AND MATTHEW P. A. FISHER
due to ballistic behavior in the network model: in this lim
t0→1 andGOhm diverges whereasḠ saturates at the~finite!
channel numberNc .

In addition to the mean conductance, we have compu
the sample-to-sample conductance fluctuations. In Fig. 8
have plotteddG2 versus 2L/j, for heightN516 and various
different channel numbers. The solid curve is the univer
prediction for the variance of the conductance of a quasi

FIG. 6. The mean conductanceḠ from Fig. 5 replotted after

normalizing byG0. The ratioḠ/G0 deviates from one as the syste
becomes localized.

FIG. 7. The mean conductance normalized byGOhm5j/2L vs
2L/j. For each sample size the points correspond to different va
of the hopping probabilityt0

2. The solid line is the mean conduc
tance computed analytically for a quasi-1D system taken from
per of Mirlin, Muller-Groeling, and Zirnbauer.
d
e

al
D

wire, obtained by Mirlin, Muller-Groeling, and Zirnbauer.13

This curve shows the crossover from the 1D metallic regi
at smallL/j, where the variance approaches the well-kno
universal value,dG251/15, to the 1D localized regime
where the fluctuations vanish exponentially forL@j. The
agreement between our numerical data and the Mir
Muller-Groeling, and Zirnbauer13 theory is quite striking.
Again, the deviations forL/j→0 are due to the ballistic
regime in the network model fort0→1 ~with finite N),
where the conductance fluctuations vanish. ForL@j the lo-
calization length approaches the lattice spacing. The num
ics and theory agree very well near the peak in the crosso
regime.

Finally, we mention briefly our effort to extract numer
cally the conductance in the 2D chiral metal regime. T
regime requires thatL!L0, or equivalentlyN!GOhm. How-
ever, to avoid the ballistic regime whent0→1, we must re-
quire that GOhm,Nc , so that we needN!Nc . We have
focused on the conductance fluctuations in this regime, s
these are predicted to behave very differently than in the
metal, diverging withL/L0→0 asdG2;(L0 /L)2. In Fig. 9
the variance of the conductance is shown for ‘‘short’’ a
‘‘wide’’ samples, with heightN58 and widthNc516,32,64,
plotted versusL/L0 whereL05AasC. For each widthNc ,
we have varied the tunneling probabilityt0

2 to get the set of
data points. The solid line is the analytic prediction fro
Gruzberg, Read, and Sachdev10 for the conductance varianc
in the crossover regime between the 1D and 2D chiral me
Unfortunately, the agreement with the analytic result is qu
poor, although the agreement improves for the widest sam
with Nc564. Indeed, the large enhancement in the varia
for the sample withNc564 in the range 1,L/L0,3 is con-
sistent with the theoretical expectations. The sharp drop
the conductance fluctuations for smallerL/L0 is due to the

es

a-

FIG. 8. Variance of the conductance for different sample si
and hopping amplitudest0

2, all plotted vs 2L/j. The solid line is the
variance of the conductance for a quasi-1D sample, computed
lytically by Mirlin, Muller-Groeling, and Zirnbauer.
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56 15 819TRANSPORT OF SURFACE STATES IN THE BULK . . .
crossover from diffusive to ballistic motion in the netwo
model. The local maxima forNc516 atL/L0'4 is the same
maxima as in Fig. 8, and indicates a crossover into the
localized regime for largerL/L0, where the Gruzberg, Read
and Sachdev results do not apply.

IV. INELASTIC EFFECTS

The above results for the phase coherent transport
dramatically modified in the presence of phase breaking
fects. Dephasing effects can be characterized by a ph
breaking time, denotedtf , which is the time an electron ca
propagate before having its phase randomized by interact
with other electrons or phonons. In the extreme anisotro
limit of the surface sheath with vanishing interlayer tunn
ing, t50, an electron propagating in one edge state will
teract via Coulomb forces with electrons in neighbori
edges states, and can suffer phase-breaking inelastic sc
ing events. Being in 1D, the scattering rate, evaluated
leading order in the interactions strengthu, is linear in tem-
perature: 1/tf5c(ulB/2p\v)2kBT/\, with c an order one
constant,l B the magnetic length, andv the edge velocity. In
practice, the dimensionless ratioulB /\v is itself also of or-
der one, so that 1/tf;kBT/\. For nonzero but small inter
layer tunneling, the dephasing rate will probably cross o
to a two-dimensionalT2 dependence at very low temper
tures.

Associated with the dephasing time are two dephas
lengths:~i! l f5vtf , the distance an electron propagates
the ballistic x direction before dephasing and~ii !
Lf5ADtf5Asalf, the distance an electron diffuses par
lel to the field in timetf . Consider the transport geometry

FIG. 9. Variance of the conductance vsL/L0 for three different
‘‘short’’ and ‘‘wide’’ samples at various values oft0

2. The solid line
is the conductance variance computed analytically by Gruzb
Read, and Sachder in the universal crossover regime betwee
1D and 2D chiral metals. The dashed line is atdG251/15—the
value in the 1D metal regime.
D

re
f-
se-

ns
ic
-
-

ter-
to

r

g

-

Fig. 1, in which metallic contacts are applied atz50 and
z5L. For Lf@L, an electron diffuses between the two co
tacts before being dephased. In this case, transport ismeso-
scopic, and the above phase-coherent results apply.

For Lf!L, however, inelastic scattering occurs within th
sample, and we must reconsider transport properties. T
are two such importantincoherentregimes, depending upo
the relative magnitude ofl f andC. For l f!C, the electron
doesnot fully circumnavigate the sample before suffering
phase-breaking collision. In this situation, electron paths t
wind a different number of times around the sample do
interfere. As a result the system cannot explore the th
phasecoherentregimes discussed in Secs. II and III. Instea
the system is appropriately described as a phase-incohe
2D chiral metal. Nevertheless, there are~small! mesoscopic
fluctuations expected even in this limit, which we discu
below. In the opposite extreme ofł f@C, the electron can
propagate many times around the sample before phase b
ing. In this case, the one-dimensional motion parallel to
field is phase coherent up to a length scaleLf . The system
should behave like an incoherent quasi-1D wire, withLf the
appropriate~1D! dephasing length, as we discuss further b
low.

To describe the transport behavior in these incoherent
gimes, we employ arguments first applied in Ref. 15. T
important observation is that the sample can be subdivi
into ‘‘patches,’’ whose size is the maximum area over whi
an electron diffuses in timetf . Each such region effectively
acts as a classical resistor, and the whole sample then
random resistor network, the properties of which are w
understood.

First considerl f!C. Then the patches have dimensio
l f by Lf , and form an array of sizeC/ l f by L/Lf . Denot-
ing by gi the ~dimensionless! conductance~along the
z2axis! of the i th patch, Ohm’s law gives an average pat
conductance ofḡ i5g05s l f /Lf . The conductance fluctua
tions in each patch,dgi5gi2g0, are of order one—being
equivalent to the conductance fluctuations of a fully coher
network at the boundary between the 1D and 2D metal
gimes. Since the mean conductance can be written
g05Lf /a, provided the patch size is larger than the latti
spacing,Lf@a, the conductance fluctuations in each pat
are much smaller than the mean conductance:dgi!g0. In
this limit, both the total conductanceḠ and its variance,
dG25G22(Ḡ)2, can be easily evaluated. A simple estima
is to imagine connecting the resistors~patches! only verti-
cally ~an approximation that gives the correct result for t
conductance fluctuations up to an order one prefactor!. Then
for each column, the patch resistances add, so
dGcol

2 '(Lf /L)3, which is independent ofg0. Contributing
in parallel, the conductances of theNcol5C/ l f columns add,
so that the variance of thetotal conductance is simply
dG25NcoldGcol

2 . This can be written in the form

dG2

Ḡ2
'

a2

CLF 1

s

l f

a G1/2

, ~4.1!

with Ḡ5Cs/L. Notice that the conductance fluctuation
have an appreciable temperature dependence ente
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throughl f , growing in magnitude at low temperatures. T
mean conductance, however, remains temperature inde
dent.

Consider next the 1D incoherent limit withl f@C, in
which the electron propagates many times around the sam
before dephasing. In this limit, theL/Lf classical patch re-
sistors form a one-dimensional random chain, and have
mensionsC by Lf . Due to 1D localization effects, the con
ductance of each such segment will depend strongly on
length Lf , and hence on the temperatureT. For example,
whenLf is much smaller than the 1D localization lengthj,
the ~mean! conductance of each segment is given by

Gseg~Lf!5~sC/Lf!2
2

45

Lf

j
1O~Lf /j!2, ~4.2!

where the first term is Ohm’s law, and the second term
flects the leading 1D localization corrections within the u
tary ensemble. In the opposite limit,Lf@j, one expects a
stronger length ~and temperature! dependence
Gseg(Lf);exp(2Lf/2j). The total conductance follows b
simply adding the series resistances of each of theL/Lf
segments. In the 1D metallic regime withLf!j, this gives

Ḡ5
sC

L
2

2

45

Lf

L

Lf

j
1•••, ~4.3!

which depends on temperature throughLf(T).
Experimentally, such conductance fluctuations are usu

observed not by looking at different samples, but by vary
the applied magnetic field in such a way as to change
phases accumulated by interfering electrons and thereb
fectively change the disorder. The conductance fluctuati
in this context are characterized not only by their amplitu
discussed above, but also by a characteristic field scaledBf .
This scale is defined by the amount the applied field mus
changed in order that the conductance of a fixed sample
comes uncorrelated with its previous value. Physically,
conductance fluctuations arise from constructive interfere
of two paths enclosing an area of the phase-coherent p
size. The total change in phase shift around this loop in u
of 2p is simply the change in magnetic flux through this ar
divided by the flux quantumf05hc/e. The characteristic
field dBf , which changes the phase around the loop
O(p), is thus simply the field that puts, say, half a flu
quantum through this coherent area. Assuming the magn
field has a non-negligible angle to the surface sheath~which
we believe to be the case in the experiments of Dru
et al.12!, this gives

dBf'H f0 / l fLf , l f!C

f0 /CLf , l f@C
~4.4!

in the two incoherent regimes. Note that sincel f and Lf
increase as temperature is lowered, the conductance v
very rapidly with field at low temperatures.

V. CONCLUSIONS

We conclude with a comparison of these theoretical
sults to the experimental data of Druistet al.12 Druist et al.
have measured thez-axis transport in a series of multilaye
en-
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quantum Hall samples. Specifically, the samples consiste
50 layers of 150-Å GaAs layers alternating with 150
Al0.1Ga0.9As barriers doped at their centers with silicon. T
vertical separation between each of the 50 2D electron g
is a5300 Å. A simple Kronig-Penney analysis gives an e
timate for thez-axis bandwidth oft50.12 meV. When the
applied magnetic field was tuned onto an integer quan
Hall plateau, the z-axis conductance—dropping wit
temperature—was found to saturate below about 200 m
Since the low-temperaturez-axis conductance scaled linear
with the circumference~perimeter! of the samples, which
was in the range 400mm<C<7 mm, Druistet al. argued
that the conduction was being dominated by the 2D ch
surface sheath. The resulting sheetconductivityalong thez
axis was found to bes'431024 on then51 plateau, and
about a factor of three larger forn52.

A theoretical estimate for thez-axis conductivity of the
surface sheath at one full Landau level can be obtained fr4

s'
al0

\2v2 t2, ~5.1!

wherel 0 is an elastic mean free path for edge scattering
v is the~ballistic! edge velocity. Unfortunately, bothv andl 0
are difficult to estimate reliably, depending on the detai
slope and irregularities of the edge confining potential. Ho
ever, we expect that in the limit of large magnetic fie
l 0* l B , wherel B is the magnetic length (l 0 may grow much
longer thanl B as the edge is made cleaner!. Moreover, we
expectv to be bounded above by the edge velocity for
hard-wall confining potential, so thatv&vcl B/2p, with vc
the cyclotron frequency. Putting in these~rough! bounds, we
obtain

s*
~2p!2t2a

\2vc
2l B

. ~5.2!

Using the parameters appropriate for the Druistet al. experi-
ment, this givess*631025, about an order of magnitud
smaller than the experimental value. Given the uncertain
in v and l 0, as well as possible shifts int due to interaction
effects, this level of agreement is reasonable.

Taking now themeasuredvalue ofs, we can estimate the
two length scales that determine the system behavior in
mesoscopic limit. The samples studied by Druistet al. had a
range of circumferences 400mm<C<7 mm, which corre-
spond to lengths 2<L0 /a<10 and 10<j/a<200, upon us-
ing Eqs. ~2.2!–~2.3!. Since N5L/a550 in these experi-
ments, in themesoscopiclimit these samples should span th
quasi-1D metal and 1D localized regimes. At low tempe
tures, we would therefore expect a strong suppression of
conductivity and significant temperature and circumferen
dependence, especially in the smaller samples. That suc
fects are not observed must be attributed toinelasticeffects.
Indeed, as shown below, estimates for the in-plane depha
lengthl f give l f!C even at the lowest temperatures and
the smallest sample. In this limit, mesoscopic effects
greatly suppressed, and the system is best thought of a
incoherent2D chiral metal. This accounts naturally for th
observed low-temperature saturation of the conductivity@it
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remains to be seen whether the weak residual tempera
dependence at lowT can be fitted to the expected4 form
s(T)2s(0)}T2#.

We can attempt to estimate the dephasing lengthl f via

l f5AS hv
ulB

D 2 hv
kBT

, ~5.3!

however, there is considerable uncertainty in t
parameters—particularly the edge velocityv. As a crude es-
timate we takeA51, a dimensionless interaction strength
unity ulB /hv51 and an edge velocity estimated for a ha
wall confining potentialv5vcl B/2p. In the 10 T field used
by Druist et al. in the n51 plateau and at the lowest tem
peratures studied ofT550 mK this gives the rough estimat
l f;20 mm.

Fortunately, one can also extract estimates forl f directly
from the experimentally measured conductance fluctuatio
In fact, this can be done in two ways, thereby providing
consistency check. One determination is from theamplitude
of the fluctuations. Solving Eq.~4.1! gives

l f'Ã
CN3

Ḡ3
~dG2!2. ~5.4!

Because the fourth power ofdG appears above and the am
plitudeÃ is unknown, there is again considerable uncertai
in l f . For the Druistet al. experiments, we obtainl f'26
mm, consistent with the above theoretical estimate.

A second determination comes from the magnetic fi
scale of the conductance fluctuations. From the above
mates, we see thatLf5Asalf&a ~using the measured
s5431024). This is close to the ‘‘incoherent tunneling
limit, and we expect it is appropriate to replaceLf→a in Eq.
~4.4!, giving
a
t

m

rd

s

re

e

f
-

s.

y

d
ti-

l f'
f0

adBf
. ~5.5!

For the Druistet al. experiment, this givesl f'3 mm at
T5100 mK, somewhat smaller than the first estimate. In t
case there are also considerable uncertainties due prim
to incomplete knowledge of the degree of interlayer flux pe
etration. However, all three of the above estimates g
l f!C.

In summary, the experiments so far are consistent with
picture of anincoherent 2D chiral metal. Several opportuni-
ties exist for further theoretical and experimental stud
Samples with smaller circumferences in the range of 10–
mm would be highly desirable, since the mesoscopic reg
would then be accessible below several hundred mK. In
limit, the rich and varied crossovers between the three m
soscopic regimes could be accessed experimentally. T
retically, a more quantitative study of inelastic scattering a
dephasing lengths would be desirable in order to achiev
precise comparison with experiment. Particularly interest
from both points of view is the temperature dependence
1/tf , which we believe should exhibit linear scaling wit
temperature over a broad range. A field-theoretic treatm
of dephasing effects could be useful in providing the desi
tighter link with experiments.
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