PHYSICAL REVIEW B VOLUME 58, NUMBER 4 15 JULY 1998-II
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We revisit the problem of interacting electrons hopping on a two-leg ladder. A perturbative renormalization-
group analysis reveals that at half-filling the model scales onto an exactly soluble Gross-Neveu model for
arbitrary finite-ranged interactions, provided they are sufficiently weak. The Gross-Neveu model has an enor-
mous global S@) symmetry, manifest in terms of eight real Fermion fields that, however, are highly nonlocal
in terms of the electron operators. For generic repulsive interactions, the two-leg ladder exhibits a Mott
insulating phase at half-filling witld-wave pairing correlations. Integrability of the Gross-Neveu model is
employed to extract thexactenergies, degeneracies, and quantum numbeedl dhe low-energy excited
states, which fall into degenerate @D multiplets. One S@) vector includes two charged Cooper pair
excitations, a neutrad=1 triplet of magnons, and three other neusal0 particle-hole excitations. #iality
symmetry relates these eight two-particle excitationsao other degenerate octets, which are comprised of
singleelectron-like excitations. In addition to these 24 degenerate “particle” states costing an emergg/

m to create, there is a 28-dimensional antisymmetric tensor multiplet of “bound” states with evidngy
Doping away from half-filling liberates the Cooper pairs, leading to quasi-long-rdrgave pair field corre-
lations, but maintaining a gap to spin and single-electron excitations. For very low doping levels, integrability
allows one to extracexactvalues for these energy gaps. Enlarging the space of interactions to include
attractive interactions reveals that there fmar robust phases possible for the weak coupling two-leg ladder.
While each of the four phases hasdiffereny SO(8) symmetry, they are shown to all share a commori530
symmetry—the one recently proposed by Zhang as a unifying feature of magnetism and superconductivity in
the cuprates[S0163-18208)04028-4

I. INTRODUCTION for singlet bond formation across the rungs of the ladder,
spin-liquid behavior is expectetf:1%1? In the past sev-
Since the discovery of the cuprate superconduttivesre  eral years there have been extensive analyses of two-leg
has been renewed interest in the behavior of weakly dopelhdders, particularly the Hubbdrt* andt-J models®*>-1’
Mott insulators>~ There are two broad classes of Mott in- both at half-filling and with doping. Based on numerical
sulators, distinguished by the presence or absence of magiethods, including Monte Carlo and density-matrix
netic order. More commonly spin rotational invariance isrenormalization-group; as well as analytic approaches at
spontaneously broken, and long-range magnetic order, typiweak coupling®=2° the basic behavior is established. At
cally antiferromagnetic, is realiz€dThere are then low- half-filling there is a spin-liquid phase with a spin gap. Upon
energy spin excitations, the spin-1 magnons. Alternativelydoping, the spin gap survives, although smaller in magni-
in a spin-liquid Mott insulator there are no broken symme-tude, and the system exhibits quasi-long-range superconduct-
tries, the magnetic order is short ranged and there is a gap tog pairing correlations, with approximattwave symme-
all spin excitations: a spin gap. try. This behavior is reminiscent of that seen in the
In the cuprates the Mott insulator is antiferromagneticallyunderdoped cuprate superconductors.
ordered, but upon doping with holes the antiferromagnetism There are a number of experimental systems that can be
is rapidly destroyed, and above a certain level superconduaescribed in terms of coupled two-leg ladders, which exhibit
tivity occurs. Below optimal doping levels, there are experi-a spin gap in the insulating compouffti?® These materials
mental signs of a spin gap opening at temperatures wekre often very difficult to dope. In one case, doping has ap-
above the transition into the superconducting pfia8&he  parently been achieved, and under a pressure of 3 GPa su-
apparent connection between a spin-gap and superconductiperconductivity is observed below 12 R Carbon
ity has been a source of motivation to search for Mott insu-nanotube¥ constitute another novel material which can be
lators of the spin-liquid variety. modeled in terms of a two-leg ladd®3* Specifically, the
Although spin liquids are notoriously difficult to achieve low-energy electronic excitations propagating down a single-
in two dimensions, it was realized that quasi-one- walled nanotube can be mapped onto a two-leg ladder model
dimensional ladders would be more promising. Particular atwith very weak interactions, inversely proportional to the
tention has focused on the two-leg ladd®At half filling tube radius.
in the Mott insulator, the spin excitations can be described An obvious advantage of such low-dimensional correlated
by a Heisenberg antiferromagnet, and due to the tendenasiectron systems igelative theoretical simplicity. Indeed,
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in one dimension many correlated electron models, including TABLE I. Physical quantum numbers of the massparticles
the Hubbard model, are exactly soluBfeUnfortunately, the labeled by their four (1) charges. The antiparticles are obtained by
Mott insulating phases of these one-dimensional model§hanging the sign of all the quantum numbers.

typically have gapless spin excitations, and upon doping dg

not exhibit pairing. To date, we are unaware of any exactl\le’Nz'N@N“) Q s Px Py
soluble two-leg ladder models that exhibit a gapped spin¢1,0,0,0 2 0 0 0
liquid ground state. (0,1,0,0 0 1 - -
In this paper, we revisit models of interacting electronsg g 1 g 0 0 - -
hopping on a two-leg ladder, focusing on the behavior neafy 00,9 0 0 K 0
- A . . Y,y F1
half filling. For genericshort-range potentials, we derive a
perturbative renormalization group valid for weak interac-(1,1,1,1)/2 1 3 Ke1 77
tions, much smaller than the bandwidfh® Remarkably, at  (1,—1,-1,1)/2 1 -1 Kes -
half filling the renormalization-group transformation scales(1,1,-1,—1)/2 1 1 Keo 0
the system towards a special model with enormougi —1,1-1)/2 1 -1 Ko 0
symmetry—the S(B) Gross-NeveulGN) model®® Scaling
onto the GN model occuisdependentf the initial interac-  (1,1,1-1)/2 1 3 LG 7T
tion parameters, provided they are weak and predominantl{l,—1,—1,—1)/2 1 -3 —Keq T
repulsive. Thus, for weakly interacting two-leg ladders at(1,1,-1,1)/2 1 1 —Ke» 0
half-filling universal low-energy properties are expected. (1,—1,1,1)/2 1 -1 Keo 0

Specifically, all properties on energy scales of order a char
acteristic GNmass(gap m and distance scales longer than
or of orderv/m (wherev is the Fermi velocityare universal =8] to two other massn octets: spinor and isospinor mul-
and determined by the GN model. In terms of microscopidiplets, called the even and odd kinks. These sixteen particles
parameters, the GN mass is of oraer-te /Y, wheret is  have the quantum numbers of individual quasielectrons and
the 1d bandwidth andJ is a typical interaction strength, but quasiholes. The triality symmetry thus goes beyond the
is more profitably treated, along with as a phenomenologi- SQO(8) algebra to relate single-particle and two-particle prop-
cal parameter. The universality predicted by the renormalizaerties in a fundamental way:*® This relation also implies
tion group can be profitably exploited because thé 8GN  that pairing is present even in the Mott insulator: the mini-
model is integrable®’~*° so that many of these universal mum energy to add a pair of electrofes a member of the
properties can be computed exactly. To our knowledge, thiSQ(8) vector multiplet is m, reduced by dinding energyof
is the first integrable model for a Mott-insulating spin liquid. m from the cost of 2n needed to add two quasielectrons far
It describes a state we call th2-Mott phase, because the apart. At energies above the 24 masstates, there exists an
Mott insulator has short-range pairing correlations with ap-antisymmetric tensor multiplet of 28 particles with mass
proximated-wave symmetry. We now summarize the resultsv3m. Each can be viewed as bound states of two different
obtained from the S@) GN field theory. fundamental fermiongor equivalently, two even or two odd
The primary input from integrability is the complete ex- kinks). In this way their quantum numbers can be easily
citation spectruni’~*° The excitations of the GN model are deduced by simple addition. The tensor states contribute ad-
comprised of “particles” (i.e., sharp excitations with a ditional sharp(delta-function peaks to various spectral func-
single-valued energy-momentum relationrganized into tions, providing, for instance, the continuation of the magnon
SQ(8) multiplets, as well as continuum scattering states oforanch near momentu®,0). For convenience, the quantum
these particles. As expected for a Mott-insulating spin liqguidnumbers(charge, spin, and momentymof the vector and
with no broken symmetries, each of these excitations is sepdensor excitations are tabulated in Tables | and Il. Finally,
rated from the ground state by a non-zero gap. The lowestontinuum scattering states enter the spectrum above the en-
lying particles come in three octets, all with mass i.e., ergy 2m.
dispersing as:;(q) = Vm?+q?, whereq is the deviation of Combining the excitation spectrum of the GN model with
the particle’s momentum from its minimum energy value.the noninteracting spectrum and some additional arguments,
One vector multiplet (conveniently denoted formally by a we have also constructed schematic forms for several corre-
vector of Majorana fermionsy,, A=1,...,8 consists en- lation functions of interest. In particular, in Sec. V we give
tirely of collective two-particle excitations: two charge2e detailed predictions and plots of the single-particle spectral
“Cooper pairs” around zero momentum, a triplet of spin- function (measurable by photoemissiorthe spin spectral
one “magnons” around momentufar,7), and three neutral function(measurable by inelastic neutron scatteyjragnd the
spin-zero “‘charge-density-wave(or particle-hole pajrex-  optical conductivity. Integrability implies, for instance, sharp
citations. S@8) transformations rotate the components of themagnon peaks in the spin structure factok at(, ), (0,0),
vector into one another, unifying the pair, magnon, andand[ = (kg;—Kg,), 7] with minimum energym, v3m, and
charge-density-wave excitatioPs*® Indeed, the S(®) sub-  v3m, respectively(herekg; andkg, are the Fermi momenta
group rotating only the first five components of this vector isof the noninteracting systemComplete details can be found
exactly the symmetry proposed recently by ZH¥rig unify  in Sec. V. The optical conductivity has three principal fea-
antiferromagnetism and superconductivity in the cupratestures: a Drude peak around zero frequency, with exponen-
This vector octet, referred to as “fundamental” fermions in tially small weight (~e~™T) at low temperature, an “exci-
the field-theory literature, is related by a remarkatoiality ton” peak aroundw=v3m, exponentially narrow at low
symmetry?*3 [present in the S@{) GN model only forN  temperatures, and a continuum ek 2m, due to unbound
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TABLE II. Physical quantum numbers of the mass(above  accompanied by a decoupled massive(®Gsector. The
horizontal ling and mass/3m (below horizontal ling particles. S-Mott to CDW andD-Mott to spin-Peierls transitions are
Ising critical theories ¢=1/2), with decoupled massive

Label Q S Px Py SQ(7) sectors in weak coupling. There is also a multicritical
Ty 72 +2 0 0 0 point describing a direc_t tran;ition from tIﬁbMptt t_o C_DW
D32 a7 0 1 - T or from theS-Mott to spm—PelerI§ phase;, which is simply a
76 0 0 - - product of thec=1 andc=1/2 critical points.
— 0 o0 + 2Ky 0 Our final results concern the effects of doping a small
density of holes(or electrong into the D-Mott spin-liquid
7172 0 O 0 0 phase at half filling. For very small hole concentrations, the
N77g 0 O 0 0 modifications of the Fermi velocities by band curvature ef-
name, A=1,2;B=7,8 2 0 +2Kkgq 0 fects can be ignored, and the doping incorporated simply by
7ane, A=1,2 +2 0 T T including a chemical potential term coupled to the total
nena, A=7,8 0 0 =*(kei—kgp) 7 chargeQ in the GN model;H,=H—uQ. An analogous
7ams, A#B=345 0 1 0 0 procedure is employed by Zhéftgn his study of the S(5)
7ame, A=3,4,5 0o 1 0 0 nonlinear sigma model. Because the chafds a global
nang, A=1,2;B=345 +2 1 o - SQ(8) generator, integrability of the GN model is preserved,
7a7s, A=3,45:B=7,8 0 1 =(kei—kep) and furthermore many of the $8 quantum numbers can

still be employed to label the states. We find that doping
occurs only for 2.>m, at which point Cooper pair “funda-
guasiparticle quasihole pairs. See Sec. V for more details antiental fermions” enter the system and effectively form a
a figure. Luttinger liquid with a single gapless charge mo@eth

Our next calculations concern the relation of these resultsentral chargec=1). This phase(often denoted “C1S0Y
to a recent study of microscopically $8) invariant ladder still has a gap to spin excitations. Previous w8"?* has
models by Scalapino, Zhang, and Har{&ZH).** These au- approached this phase via controlled perturbative calcula-
thors consider the strong coupling limit of a certain locally tions in the interaction strength, at fixed dopixgwayfrom
interacting two-leg ladder model designed to exhibit exachalf filling. Here, we are considering a different order of
SQ(5) symmetry. Their model has an on-site interactionlimits, with fixed (albeit weal interactions in the small dop-
|U|>t, an intrarung interactiofV/|>t, and a magnetic rung- ing limit, x— 0. In this limit, the Cooper pairs being dilute
exchange interactiod, related to one another by the @D behave as hard-core bosons or free fermions. Although the
symmetry. In theU-V plane they derive a strong-coupling spin gap is preserved in the doped state, dissontinuouss
phase diagram, including the case of attractive interactions—0". The discontinuity can be understood as the binding
with U and V negative. We have analyzed general(®50 of an inserted spin-one magnon to a Cooper pair in the sys-
invariant two-leg ladder models in the opposite limivedak  tem to form a mass/3m tensor particle, reduced by the
interactions deriving as a special case the correspondingoinding energy (2-v3)m from its bare energy. The spin gap
weak-coupling phase diagram for their model. In fact, al-thus jumps fromA(x=0)=m to A(x=0")=(v3—1)m
though we have not explored the full nine-dimensional spac&pon doping. Such binding of a pair to a magnon has been
completely, for all bare couplings we have considered, inobserved numerically in both Hubbard atd ladders by
cluding attractive interactions thatreak SO(5) symmetry  Scalapino and Whité Similarly, the energy to add aglec-
explicitly, the RG scales the system into the(Sfubspace. tron (for the hole-doped systemjumps from A;_(x=0)
When the interactions are predominantly repulsive, the=3m/2 to A;_(x=0")=m/2, the sameas the energy to
SQO(5) system falls into the basin of attraction of tbeMott  add a single hole. When many pairs are present, we have not
phase, and the above results apply. As negative interactiorssicceeded in obtaining exact expressions for the spin and
are introduced, four other phases emerge:SaMott spin  single-particle gaps, but argue that the spin gap should de-
liquid, with short-range approximatewave pairing symme- crease with increasing doping, since the added magnon is
try, a charge-density-wau&€DW) state with long-range po- attracted to an increasing density of Cooper pairs. It seems
sitional order af(w, ), a spin-Peierls phase with kinetic en- likely, however, that integrability could be exploited even in
ergy modulated atm,7r), and a Luttinger liquidC2S2, in the  this case to obtain exact results, and hope that some experts
nomenclature of Ref. J8phase continuously connected to may explore this possibility in the future.
the noninteracting system. The first two of these also occur Finally, we briefly address the behavior of the spin-
in the strong-coupling limit, though their positions in the spectral function for the doped ladder at energies above the
phase diagrantFig. 10 are modified. The phase diagrams atspin gap. In a recent paper SZRef. 44 have argued that in
weak and strong coupling differ in nontrivial ways, implying this regime the spin-spectral function for a model with exact
a rather complex evolution of the system with increadihg SQO(5) symmetry should exhibit a sharp resonance at energy
and V. In weak coupling, all four nontrivial phases have 2u and momentunis, ), the so-calledr resonanceintro-
distinct asymptotic S@) symmetries, enhanced from the duced originally by Zhang to explain the 42-meV neutron
common bare S®). Furthermore, critical points describing scattering peak in the superconducting cuppatéée show
the transitions between the various phases can also be idetfrat a delta-functions resonance requires, in addition to
tified. In particular, theD-Mott to S-Mott and CDW to spin- SQ(5) symmetry, the existence of a nonzero condensate den-
Peierls critical points arec=1 conformal field theories sity in the superconducting phase. Since condensation is not
(single mode Luttinger liquids which in weak coupling are possible in one dimension, this precludes a delta-function
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resonance. Following a recent suggestion by ZH4nge E
address briefly the possibility of a weaker algebraic singular-
ity in the spin spectral function. Regardless of the nature of
the behavior in the vicinity ofiv=2u, we expect spectral t_._l ] I | | IL| IR k
weight at energies belowg2but above the spin gapg dis- t 2L 2R
cussed above.

The remainder of the paper is organized as follows. In
Sec. Il we describe the model Hamiltonian for the interacting
ladder, reduce it to the continuum limit, bosonize the nine FIG. 1. A two-leg ladder and its band structure. In the low-
distinct interaction channels, and apply the renormalizationenergy limit, the energy dispersion is linearized near the Fermi
group(RG) transformation. Section Il details the simplifica- points. The two resulting relativistic Dirac fermions are distin-
tions that occur upon RG scaling, presents the bosonize_@“iShed by pseudo_spin indices 1,2 for the antibonding and bond-
form of the Hamiltonian in théd-Mott phase, and for com- N9 bands, respectively.
pleteness demonstrates the short-radggave correlations
found in Ref. 18. The bulk of the field-theoretic analysis is

Ho=2, {—tal (x+1)a;(x)+(1—2)

contained in Sec. IV. By refermionizing the bosonized )
Hamiltonian, we obtain the GN model exposing the exact :
SQ8) symmetry, and describe why this symmetry is hidden —t a,(X)ag.(x)+H.c}, (2.9

in the original variables. The triality symmetry is identified, i o )
and used to understand the degeneracy between the thré8€rea, (a;) is an electron annihilatiofcreation operator
massm octets. To help in developing an intuition for the GN ©n legl of the ladder (=1,2), x is a discrete coordinate
model, several approximate pictures are presented to undeidnning along the ladder, and=1,| is a spin index. The
stand the excitations: a mean-field theory that is asymptotiParameters andt, are hopping amplitudes along and be-
cally exact forN—c in a generalized SO{) GN model, tween the legs of the ladder. _ o .
and a semiclassical theory based on the bosonizete- Being interested in weak interactions, we first diagonalize
Gordon-like form of the Hamiltonian. We conclude Sec. [V the kinetic energy in terms of bonding and antibonding op-
by proving the uniqueness of the ground state indhblott  €rators: ¢; ,=[a;,+(—1)'az,]/v2, with i=12. The
phase and determining the quantum numbers of the 284 Hamiltonian is th_er_1 diagonalized in momentum space along
— 52 particles. The latter task is complicated by the necessit{e ladder, describing two decoupléabnding and antibond-
of introducing Jordan-Wignestrings which are required to N9 bands. Focusing on the case at half filling with one
preserve gauge invariance under an unphysical gauge syrlectron per site, both bands intersect the Fermi eneagy
metry introduced in bosonization. The string operatorsZ€r0 energy providedt, <2t. Moreover, due to a particle-
modify the momenta of the certain excitations by a shift ofnole symmetry present with near-neighbor hopping only, the
(w,m) from their naive values determined from the GN fer- Fermi velocityv; in each band is the same, denoted hereafter
mion operators. With the field-theoretic analysis complete@sv. It is convenient to linearize the spectrum around the
we go on to discuss correlation functions in Sec. V, givingFermi points at-kg; (see Fig. 1, which at half filling satisfy
detailed predictions for the single-particle spectral functionKr1+Kr2= . Upon expanding the electron operators as
spin spectral function, optical conductivity, and various ‘ ,
equal-time spatial correlators. Section VI describes the con- Cia™ Cria€'F¥+Cyj & FF, (2.2
struction of general SG) invariant models in weak cou-
pling, their phases, and the phase diagram of the Scalapin
Zhang-Hanke model in weak coupling. Finally, Sec. VII
describes the behavior of tHe-Mott phase upon doping,
including the behavior of various gaps, and a discussion of _ T PN ,
the status of the SG) “ 7 resonance” in one dimension. Ho U% [CRial xCria™ CLial dxCLicl- @23
Various technical points and long equations are placed in the
Appendices. Appendix A gives the full set of nine RG equa- This Hamiltonian describes Dirac fermions, with four fla-
tions at half filling, Appendix B discusses gauge redundancyors labeled by band and spin indices. Since all flavors
and the multiplicity of the ground state in different phases propagate both to the right and left with teamevelocity,
Appendix C constructs spinor and vector representations cthe model exhibits an enlarged symmetry. Specifically, if the
SQ5), Appendix D relates S@) and S@8) currents, and four right (and lefy moving Dirac fermions are decomposed
Appendix E gives the five RG equations in the reducednto real and imaginary parts;/fpmz(§éia+i§§,ia)/\0,
SQ(5) subspace. whereP=R/L and&t, &2 are Majorana fields, the eight right
(and lef) moving Majorana fields, denotedp, with A
=1,2,...,8 form an eight-component vector. The Hamil-
Il. MODEL tonian density, when reexpressed in terms of these eight

. . component vectors, takes the simple form
We consider electrons hopping on a two-leg ladder as P P

shown in Fig. 1. In the absence of interactions, the Hamil- 8
tonian consists of the kinetic energy, which we assume con- H _v ig — &0 2.4
tains only near-neighbor hopping, 02 AZl [ral IxEraELal xELal, 49

g]e effective low-energy expression for the kinetic energy
takes the formHy= fdxH,, with Hamiltonian density,
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which is invariant undemdependenglobal SA8) rotations  marginal nonchiral four-fermion interactions for a two-leg

amongeitherthe right or left vector of Majorana fields. This ladder with particle-hole symmetry at half-filling.

enlarged O(83x0(8),. symmetry is only present at half Since our analysis below makes heavy use of Abelian

filling with particle-hole symmetry. bosonizatiorf,*®it is convenient at this stage to consider the
Electron-electron interactions scatter right-moving elec-bosonized form of the general interacting theory. To this end,

trons into left-moving electrons and vice versa, destroyinghe Dirac fermion fields are expressed in terms of boson

this large symmetry. For general spin-independent interacfields as

tions the symmetry will be broken down to(1xXSU(2), ,

corresponding to total charge and spin conservation. In the Cpia= Kiq€ ?Pic, (210

following we consider general finite-ranged spin- -~ _ L

independent interactions between the electrons hopping Ovh/hereP—R/L— *. To ensure that the ferm|0n_|c operators

. . ® _“anticommute the boson fields are taken to satisfy

the two-leg ladder. We assume the typical interaction

strengthU, is weak—much smaller than the bandwidth. We , VT —i Y oy

focus on the effects of the interactionsléadingnonvanish- [ia(X), Ppjp(x")]=1P TS Oup SGMX—XT), 2.19)

ing order inU. In this limit it is legitimate to keep only those '

pieces of the interactions that s_catter_ the Iow—ene_rgy Dirac [Bria(X), b (X )= 78S (2.12

fermions. Of these, only those involving four-fermions are

marginal, the rest scaling rapidly to zero under renormalizaKlein factors, satisfying

tion. Moreover, four-Fermion interactions that are chiral, say

only scattering right movers, only renormalize Fermi veloci- {Kia,KjB}ZZ(Sij Oap s (2.13

ties and can be neglected at leading order in skaif*° Al

of the remaining four-Fermion interactions can be conve

niently expressed in terms of currents, defined as

have been introduced so that the fermionic operators in dif-
ferent bands or with different spins anticommute with one

another.
J.=clec J.=1c! o4, (2.5 It will also be convenient to define a pair of conjugate
G nonchiral boson fields for each flavor,
= _ =1 _
IIJ Cia€apCip, II] 2C|a(60')aﬁcjﬁu (2.6 Gia=Drint BLia (2.14
where theR,L subscript has been suppressed. Bbtnd|
are invariant under global SB) spin rotations, wheread 0, = DRia— PLia> (2.195
and| rotate as S(P) vectors. Due to Fermi statistics, some . .
of the currents aréanti-symmetrical: which satisfy
L=ty lj=—1;, 2.7 [o(X),0(X")]=—147O (X' —X). (2.1
so thatl;;=0 (no sum oni). Here, and in the remainder of the paper, we denot® by)
The full set of marginal momentum-conserving four- the Heaviside step function to avoid confusion with the
fermion interactions can be written fields defined in Eq(2.15 above. The field;, is a displace-
ment (or phonon field and ¢, , is a phase field.
H|<1>:birﬂjJRijJLij — b Irij i The bosonized form for the kinetic energy Eg.3) is
o v
IR iR 28 Ho=g- 2 (08" + (hepia)?], (217
Heref;; andb;; denote the forward and backwaf@oopej '
scattering amplitudes, respectively, between bandsad j. which describes density waves propagating in barehd
Summation ori,j=1,2 is implied. To avoid double count- with spin «.
ing, we setf;;=0 (no sum oni). Hermiticity implies b, This expression can be conveniently separated into charge

=b,, and parity symmetry R—L) givesf;,=f,;, so that and spin modes, by defining
there are generally eight independent couplibg§s , b5, ,

b2, and f2 . At half-filing with particle-hole symmetry 0ip=(0i1+6;)1v2, (2.18
bi1=b,,. Additional momentum nonconserving Umklapp
interactions of the form 0io= (61— 6;)1V2, (2.19

and similarly for ¢. The v2 ensures that these new fields
satisfy the same commutators, Eg.16). It is also conve-
nient to combine the fields in the two bands inta-acom-
bination, by defining

2)_ T an T an
HP=ub 1 k5= ufl ke 1+ H.c (2.9

are also allowedhere 1=2, 2=1). Because the currents
(Iij),1j; are (ant)symmetric, one can always choose,
=u,, for convenience. We also take=0 sincel;;=0.
With particle-hole symmetry there are thus just three inde-
pendent Umklapp verticesy,, uf,, anduf,. Together with where u=p,o, and similarly for ¢. It will sometimes be
the six forward and backward vertices, nine independentonvenient to employ charge-spin and flavor decoupled
couplings are required to describe the most general set @l fields, defined as

0,-=(01,= 0,)1V2, (2.20
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b= (@, +PO,.)I2, (2.21) +KgoJdy, with JizEa(NRia_— N_Lia), _vvhereNpia_ is _the total
_ number of electrons in baridwith spin« and chiralityP. At
with P=R/L=*. , . weak coupling with Fermi fields restricted to the vicinity of
The Hamiltonian densit, can now be reexpressed in a . this operator is essentially the total momentum. Since
charge-spin and flavor decoupled form, the total momentum is conserved up to multiples of @ne
v hasAP=+2mn=*=2n(kg;+kg,) for integern. Moreover,
Ho==— 2 [(3x9Mi)2+(0x€0#¢)2]- (2.22 since the Fermi momenth;; are in general unequal and
87 = incommensurate, this implies thatJ;=AJ,=*2n, or

The fields6,, ande,, describe the total charge and Curremequwalently thatJ, —J, is conserved at weak coupling.

fluctuations, since under bosonizatiah; ,Cpin=dx0, /™ Since J; —J;=fdxj(x) with j(X)=0xp,- /7 the momen-
+ N tum conjugate t@,_, this conservation law implies invari-
andvPCp;,Cpio= ¢, /7. P

The interaction Hamiltonians can also be readil ex_ance undew, - — 6, +a.
. . y The remaining five boson fields, entering as arguments of
pressed in terms of the boson fields. The momentum con;4

: . : rious cosine terms, will tend to be pinned at the minima of
Serving terms(1|)n qu.)S) ca?llge decomposed into two con- these potentials. Two of these five fields,. and ¢ are
. . _ a - . - . — o—
tributions, H{™'="{"+H "7, the first two involving 45| to one another so that the uncertainty principle pre-
gradients of the boson fields,

cludes pinning both fields. Since there are various competing
terms in the potential seen by these five fields, minimization
H(la)_i E A, [(0,0,.)%—(d 2 for a given set of bare interaction strengths is generally com-
| _16’772 - wx xYux qu,ut) ]i . K X
e plicated. For this reason we employ the weak-coupling per-
(223 turbative renormalization-group transformation, derived in
with coefficient A,.=2(c,+f4) and A,.=—(c} earlier work!*®® Upon systematical_ly integrating out high—.
nergy modes away from the Fermi points and then rescaling
he spatial coordinate and Fermi fields, a set of
renormalization-grougRG) transformations can be derived
for the interaction strengths. Denoting the nine interaction
strengths ag; , the leading order RG flow equations take the

+f7,)/2, whereas the second contribution involves cosine
of the boson fields:

H (™' =—2Tb, cos¢,  cosb,,+cosb,,(2b], cosb,

+2I'f{, cose,_)—cose¢,_(I'by, cosb,_ general formg,g; = A 9,0k, valid up to ordeig®. For com-
~ pleteness the RG flow equations are given explicitly in Ap-
+by, cose, ), (2.24  pendix A. Our approach is to integrate the RG flow equa-

tions, numerically if necessary, to determine which of the
nine coupling constants are growing large.

Under a numerical integration of these nine flow equa-
tions it is found that some of the couplings remain small,
while others tend to increase, sometimes after a sign change,

—c0sf,,(2uj, cosd, +2Tug, cose, ), (2.29 and then eventually diverge. Quite surprisingly, though, the
ratios of the growing couplings tend to approach fixed con-
with u™ =uf,*4uf,. Herel'= k1, k1 ko1 k2 is @ product of  stants, which areindependentof the initial coupling
Klein factors. Sincd?>=1, we can takd" =+ 1. Hereafter, strengths, at least over a wide range in the nine-dimensional
we will put T'=1. parameter space. These constants can be determined by in-

In the absence of electron-electron interactions, theserting the ansatz
Hamiltonian is invariant under spatially constant shifts of
any of the eight nonchiral boson fields,. and¢,,. . With Jio
interactionsfive of the eight boson fields enter as arguments gil)= |d__| (2.26
of cosines, but for the remaining threess , ¢, , and
6, —this continuous shift symmetry is still present. For theinto the RG flow equations, to obtain nirmégebraic equa-
first two fields, the conservation law responsible for thistions quadratic in the constant,. There are various dis-
symmetry is readily apparent. Specifically, the operatorsinct solutions of these algebraic equations, or rays in the
exp(aQ) and expiaS), with Q the total electric charge and nine-dimensional space, which correspond to different pos-
S, the totalz component of spin, generate “translations” sible phases. But for generiepulsiveinteractions between
proportional ta in the two fieldsp,, ande,, . To see this, the electrons on the two-leg ladder, a numerical integration
we note thaQ= [dxp(x) with p(x) =446, /= the momen- reveals that the flows are essentially always attracted to one
tum conjugate tap,, , whereasS, can be expressed as an particular ray. In the next sections we shall consider the
integral of the momentum conjugate ¢q., . Since the total properties of this phase, which, for reasons that will become
charge is conservedQ,H]=0, the full Hamiltonian must apparent, we denote Hy-Mott.
therefore be invariant under, . — ¢, +a for arbitrary con-
stanta, precluding a cosine term for this field. Similarly, m
conservation ofS, implies invariance underp,,— ¢,
+a. The conservation law responsible for the symmetry un- In the phase of interest, two of the nine coupling con-
der shifts of the third fieldg,_ , is present only in the weak stantsbf, andf7,, remain small, while the other seven grow
coupling limit. To see this, consider the operatBrkg1J;  large with fixed ratios:

with b,=b{,+4b%,. Similarly, the Umklapp interactions
can be bosonized as

H{?'=—16l'uf, cos @, COS¢, —4uj,cosh,, coSb,,

. D-MOTT PHASE
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bf,=tby,=ff,=—1bJ, (3.1 tations will bel separateq from the groun_d state by a finite
energy gap, since the fields are harmonically confined, and
=2uf,=2uf,=tuf,=g>0. (3.2) instanton excitations connecting different minima are also

) ) ) ) . . costly in energy.
Once the ratios are fixed, there is a single remaining coupling gjnce bothd,.. fields are pinned, so are the spin fields in
constant, denoted, which measures the distance from the g5ch bandg;, (i=1,2). Sinced,;, is proportional to the
origin along a very special directiofor “ray” ) in the nine-  component of spin in banid a pinning of these fields implies
dimensional space of couplings. The RG equations reveghat the spin in each band vanishes, and excitations with
that as the flows scale towards strong coupling, theya&re nonzero spin are expected to cost finite energy: the spin gap.
tractedto this special direction. If the initial bare interaction This can equivalently be interpreted as singlet pairing of

p_ararrle_ters” are sufficiently weak, the RG ﬂ?WS ’r]ave suffiglectron pairs in each band. It is instructive to consider the
cient “time” to renormalize onto this special “ray,” before pair field operator in banit

scaling out of the regime of perturbative validity. In this

case, the low-energy physics, on the scale of energy gaps that

open in the spectrum, igniversal depending only on the

properties of the physics along this special ray, and indeperWith ¢,,~0, ¢;, can be interpreted as the phase of the pair

dent of the precise values of the bare interaction strengthsfield in bandi. The relative phase of the pair field in the two
To expose this universal weak-coupling physics, we usdands follows by considering the product

Eq. (3.2 to replace the nine independent coupling constants . .

in the most general Hamiltonian with tisengleparameteq, AAY=—Tell-el % (3.9

measuring the distance along the special ray. Doing so re- ) )

veals a remarkable symmetry, which is most readily exposeWith I'=«ki1x1 ko162 =1. Since 6,=¢,_ the relative

Aj=crireyi = iy VP Gt o), (3.7

in terms of a new set of boson fields, defined by phase is also pinned by the cosine potential, with a sign
change in the relative pair field,lA§< 0, corresponding to a
(0,0)1=(0,0)p4, (0,0)2=(0,0)5+, D-wave symmetry. Being at half filling, the overall charge
(3.3 . | .
mode, 6, is also pinned—there is a charge gap—and the
(0,0)3=(0,0)5—, (0,0)4=(¢,0),—. two-point pair field correlation function falls off exponen-

The first three are simply the charge/spin and flavor fielddially with separation. We refer to this phase as@-Mott”
defined earlier. However, in the fourth pair of fieldsand ~ Phase, havin@-wave pairing correlations coincident with a

have been interchanged. It will also be useful to considefharge gap. Upon doping ttie-Mott phase away from half

chiral boson fields for this new set, defined in the usual way/1liNg. gapless charge fluctuations are expected in(the)
sector, and power-law-wave pairing correlations develop.

Dpa=(0a+P8,y)12, (3.9 It is worth noting that the fully gappe-Mott phase has

a very simple interpretation in the strong coupling limit. Two
electrons across each of the rungs of the two-legged ladder
_ , form singlets, of the usual forrf, | )—|],1), where the two
(2.12. But for the fourth field, sinceéps=P¢p, -, the S€C-  giateg refer to electrons on leg 1 or 2, respectively. This

ond commutator is modifieq ©bra, dral :,_”T' , . two-electron state can be rewritten in the bonding antibond-
In terms of these new fields, the full interacting Hamil- ing basis, and takes the forf|,—)—|—, 1), where the

tonian density along the special ray takes an exceedinglyy, states now refer to bonding and antibonding orbitals.
simple form:H="o+H, , with This resembles a local Cooper pair, with a relative sign
change between bonding and antibonding pairs: an approxi-

HOZSU_W ; [(940,)%+ (d502)2], (3.5 mateD-wave symmetry.

with a=1,...,4, andP=R/L= = as before. The first three of
these chiral fields satisfy the commutators E2.11) and

IV. SO(8) GROSS-NEVEU MODEL

g
M=-5 g &X‘ﬁRa‘?X‘ﬁLa_‘lggb COS 6 COS By As shown above, the bosonized effective Hamiltonian on
(3.6 energy scales of order the gap is exceptionally simple in the

) ) ) D-Mott phase. In this section, we show that this simplicity is
We now briefly discuss some of the general physical propjngicative of a higher symmetry, and explore its ramifica-
erties that follow from this Hamiltonian. In the next sections jigns upon the spectrum.

we will explore in detail the symmetries present in the
model, and the resulting implications.

Ground-state properties of the above Hamiltonian can be
inferred by employing semi-classical considerations. Since An obvious symmetry of the bosonic action, E(R.5)—
the fields¢, enter quadratically, they can be integrated out,(3.6), is a permutation of the field$,— P .6, , whereP, is
leaving an effective action in terms of the four fieldg. a permutation matrix. In fact, this is only a small subset of
Since the single coupling constagtis marginally relevant the true invariances of the model. As is often the case, Abe-
and flowing off to strong coupling, these fields will be lian bosonization masks the full symmetry group. It can be
pinned in the minima of the cosine potentials. Specifically,brought out, however, by a refermionization procedure. We
there are two sets of semiclassical ground states witlh,all define “fundamental” (Dirac) fermion operators/p, with
=2n,m or all 6,=(2n,+1)m, wheren, are integers. Exci- a=1,2,3,4 via

A. Gross-Neveu model
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Ypa=kK,€ %P2, a=1,..3 Here theT g (A>B) are the 28 generators of &) in the
_ fundamental representation, with matrix elemeitsg]cp
Wpa= Pk, e ?P4, (4.1)  =i(Sacdsp— Sapdac)/2. Equation(4.9) indicates that the

npa transform as S(@) vectors. Similarly, the curren@éB

are rank-2 S@8) tensors.

(4.2) It is worth noting that despite the nonlocal relation be-
tween the fundamental and bare fermion operators, tH&8SO

4.3 symmetry remains local in the bare electron basis. This fol-

lows from the fact that the chiral S8) currents in the two
In the refermionization of the fourth field we have chosen topases are actually linearly related, i.e.,

include a minus sign for the left mover. This is convenient,

andP=R, L= =1, as before. The Klein factors are given by
K1= K21, K2=Kip,

K3:K1l’ K4:K21.

due to the modified commutators between the left and right GpB=MABCPGEP, (4.11)
fields:[ ¢pra, P 4]= —i7r, in contrast to the “standard” form -
in Eq. (2.12. WhereG’SB:igpAng, and the bare Majorana operators are
In these variables, the effective Hamiltonian density be-defined by
comes .
H=yli P, = 9P ), (4.4 Cpay =5 (épatiter), (4.12

where ;= (¥ra,¥La), and 7 is a vector of Pauli matrices

acting in theR,L space. Here, summation over repeated in- 1 .

dices,a=1,2,...,4 is implicit. It is remarkable that the Hamil- CPll:‘E(§P4+'§P3)' (4.13
tonian can be written locally in the “fundamental” fermion

variables, which are themselves highlgrocally related to

the “bare” electron operators. szT=i(§pe+i§p5), (4.14
A further simplification arises upon changing to Majorana 2
fields,
1 .
1 _ Cpp=—(&pgTi1ép7). (4.19
¢Pa:‘72( NrR2at 1 MR2a—1)- (4.5 V2

The precise forms of the tensdvk, are complicated and not
The Hamiltonian density then takes the manifestly invarianiparticularly enlightening. Nevertheless, thgistenceof the
form linear relation between currents implies that the unitary op-
. . L ABAAB eratorU(y) also generates local rotations of the bare elec-
H= 3 7rAl OxTRA— 2 MLAT Ix LAt IGR GL™, (4.6 tron fields. In these variables, however, the(§Gymmetry
is hidden becauseMg# M, which implies that different

where the currents are X ) .
rotations must be performed among right- and left-moving

AB_; electron operators.
Co™=1neanpa, AZB, @9 Finally, it is instructive to see how the conservation of
andA,B=1,...,8. total charge and spin, corresponding to a glob@l)x SU(2)
symmetry, is embedded in the larger @8Dsymmetry. To
B. SO(8) symmetry this end, consider the total electron charge oper@towhich

Equation(4.6) is the standard form for the S8 Gross- in terms of the low-energy fields can be written as

Neveu model, which has been intensively studied in the
literature®6-404243\We first discuss its manifest symmetry Q=2f dX; wEll/fp1=2f dx(G&'+ G2, (4.16
properties.

The 28 currentsGR® generate chiral S@) transforma-  whereyyp, is a fundamental Gross-Neveu fermion. ThelU
tions. Forg=0, Eq. (4.6) has two independent symmetries charge symmetry is thus seen to be equivalent to ths50
under separate rotations of the left- and right-moving fieldssymmetry of rotations in the 1-2 plane of the eight-
For g#0, however, only simultaneous rotations of bothdimensional vector space. Similarly, the total spin operator
chiralities are allowed. More precisely, the unitary operators

U(XAB):eiXAdeX(G£B+GﬁB) 4.8 S=J dX[Ir(X)+ I (X)], (4.17
generate global orthogonal transformations of the Majoran&ith Jp(x)=Jp;i(x), can be reexpressed in terms of 8D
fields, generators by using

UT(X) 7paU (X) = Oas(X) 708, (4.9 B(x) =GP, (4.18
where the orthogonal matri®(y) is given by with a,b,c=3,4,5=x,y,z. Thus we see the equivalence be-

' tween the SIR) spin rotations and S@) rotations in the
O(x)=e'XreTrg, (4.10 three-dimensional subspace 3-4-5 of the eight-dimensional
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vector space. Rotations in the five-dimensional subspace 1- 92/0:(91+ 0,— 035 0,)12, (4.23

2-3-4-5 correspond to global $8) rotations that unify the

charge and spin degrees of freedom. 93/0:(91_ 0,+ 03 60,)12, (4.29
In the absence of interactions in the Gross-Neveu model,

all of the excitations including spin remain massless. In this 92/02(91_ 0,— 03+ 60,)12. (4.25

case there is an independent (8JUspin symmetry in the .
right- and left-moving sectors. The spin curredgscan then ~ Here the upper and lower signs apply to the even and odd
be shown to satisfy fields, respectively, and identical definitions hold for the dual

©2'° and chiral¢? bosons. The bosonized Hamiltonian in
[J3(x),d3(x")]= 8(x—x")i €P%I(x) (4.19 Egs.(3.5), (3.6) is invariant under either change of variables,
ie.,

P
5 Kdapd' (x=x1), HI 6,]=H[ 65]=H[ 62]. (4.26

(4.20 For each of these bases, an inequivalent refermionization is
with a,b,c=x,y,z andk=2. This is referred to as an $2) possible, analogous to the introduction of the fundamental
current algebra at levek] two. fermions in Eqg.(4.2). In particular, the Hamiltonian is un-

We conclude this subsection by answering a question th&hanged in form when rewritten in terms of either the even
may have occurred to the alert reader: why is the symmetr@r odd fermion operators,
of the model S@) rather than @B)? Based on Eq4.6), it oo
would appear thatany transformation of the formzypa Ypa= kg e'Pa, (4.27)
— Oapnpp Would leave the Hamiltonian invariant, including
improper rotations with detD=—1. The presence of such
improper rotations means(8=SQ(8)X Z,, since any or-

It should be noted that the set of even and odd fermion op-
erators contains all the bare electron fields. In particular,

thogonal matrix can be factored into a product of matrix with Yai=Crir, Y1=Ci1t, (4.28
determinant one and particular (reflection matrix, e.g.,

O = 5AB—25A1531: We h.ave a]ready shown above that YRo=Crars ¥2=Ciay, (4.29
the SA8) symmetry is physical—i.e., the symmetry genera-

tors act within the Hilbert space of the physical electrons. It Yei=c yPa=c (4.30
is straightforward to show that th&, reflection is, however, Ra—TR2l Le kel

unphysical To see this, imagine performing ti#® reflection YRra=Cr1|, Yla=CuL1,- (4.31)

effected by ©O" above, which takespp;— —7p;. Using

the bosonization rules, this corresponds éip——6; and ~ The other eight even and odd fielg, and y%,) are not
¢1— —¢;. Returning to the physical fields, one finds thatsimply related, however, to the electron fields.

the bare electron operators transform much more nontrivi-

ally: D. Conventional Gross-Neveu excitation spectrum
2, The SON) GN model is integrable, and the excitation
Chia— Cpiallby.- (4.21)  spectrum is known exactly. To organize the presentation, we

As we shall show in Sec. IV E 3, a single GN fermion op-
erator, such asbLl, is unphysical. TheZ, reflection thus
takes a physical electron operator into an unphysical one,
which implies that the symmetry cannot be effected by a
unitary operator within the Hilbert space of the electrons. For Wu WRa
this reason, the true symmetry group of the ladder model is

SQ@8).

GN Fermions
(two-particle)

C. Triality

Most of the above properties hold more generally for the
SO(N) GN model, even forN#8. However, the casé®l ) . .
=8 is extremely special, and in fact possesses an additional -—
triality symmetry not found for othel (see Fig. 2. Useful WL“ WR” WL“ l//l;
references are Refs. 42, 43.

To expose the additional symmetry, we return to the sine-
Gordon formulation. Essentially, the triality operation trades
the o_riginal bagiqea} in the four-dimensional space of bo- FIG. 2. Triality between GN fermions, even kinks, and odd
son fields for either one of two other orthogonal bases. Exginks, The s@8) GN Hamiltonian is identical in terms of these
plicitly, the two alternate choices are the even and odd fieldgyree sets of fermionic operators. Operators in the gray areas are
92/0, where physical and gauge independdsee Sec. IV E while the other

elo fermion operators must be “dressed” by an appropriate Jordan-
01" =(01+ 02+ 3% 64)/2, (4.22  \igner string to remain in the physical Hilbert space.

Odd Kinks Even Kinks

(single-particle) (single-particle)
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divide the discussion of the excitation spectrum into two 2. Mean-field picture
parts. In this subsection, we summarize known results for the |1 is instructive to see how these excitations arise in a

conventional GN model. The precise nature of the excitamean-field treatment of the GN interaction. The mean-field
tions for the two-leg ladder model, however, differs from yreatment becomes exact for the $(generalization of the
those in the Conventional GN mOdel. ThIS difference arise%N mode' for |arge eveN_ To Carry |t Out, we emp'oy the
from the nonlocal relation between the electron and GNDirac fermion version of the Hamiltonian, E¢.4). In the
fields. Excitations within the GN model must be slightly mean-field approximation, the bilinear. 'y, acquires an

modified to satisfy gauge invariance with respect to somexpectation value, and the “quasiparticle” Hamiltonian den-
unphysical degrees of freedom introduced in the mappingsity becomes

These modifications and the resulting spectrum in the

D-Mott phase are described in the subsequent subsection. Hore= i 2ot — Al 43
Within the GN model, the excitations are of course orga- we= Yal T0xa AT Y, (433

nized into SON) multiplets, but are further constrained for where A =2g(y!7 y,) is a mean-field gap parameter. The

the case of intereshl=8, by triality. In this subsection, we mean-field Hamiltonian is simply that of four massive Dirac

discuss the |0W€St'|y|ng states, their multlplet structures anéquations_ Itis eas”y diagona"zed in momentum space, us-

guantum numbers, and give some useful physical pictures _ ; ~ — i1
aid in understanding their properties. @ﬁicﬁaé?v)esexmﬂ(qw/z] W, where Q(q)=cot Y(vg/A),

1. Results from integrability

dqg ~p o~
Hue= | =— 17, 4.3
The lowest-lying excitations are organized into three MF f 27761(@%7 Va (4.34

SQO(8) vector multiplets, which are degenerate due to triality, _

for a total of 24 particles. Four of the 28 global @Dgen- ~ With €,(q)=ym“+q“ and the massm=A. From the diago-
erators may be chosen diagofi form the Cartan subalge- nalized form it is straightforward to determine the MF esti-
bra). We will label the particles by the values of the four mate,

associated charges, denoted by the ordered quadruplet

(N;,N,,N3,N,), and defined by Mye=2Ae” "N (4.39

for the general SQN) case, whereA~t is a momentum
cutoff. The exponential dependence @itan be understood
N,= f dxil g, (4.32  from the marginality of the interactions under the RG scaling
transformation. The picture is that of a “semiconductor,” as
indicated schematically in Fig. 3. These massive Dirac par-

(no sum orm). In this notation, one S@) multiplet contains ticles and their antiparticles may be identified with the fun-

the stategknown asfundamental fermionswith only one of ~ damental fermion S@®) vector multiplet. The even and odd
the fourN,= + 1, and all others equal to zero. The remainingXinks likewise arise from applying the same decoupling to
16 degenerate states haMg=+1/2 for a=1,2,3,4, which the even and odd fermion representations of the Hamiltonian.

are divided into those with an even number Nf= +1/2 While Eq. (4.33 is correct for S@), it requires correc-

(the even kinks and the remainder with an odd number of tions otherwise. Fo_r finit&l, the chiral “order parameterA _
N, =+ 1/2 (the odd kink3. The reasons for this terminology fluctuates aroulnd .|ts vacuum value, and these fluctgatlons
will become apparent later in this section. Each particle has §enerateattractive interactions between the GN fermions.
massm and disperse&ue to Lorentz invariandeas e, (q) The_ attractive interactions lead to the formatlog of2 two-
= Jm%+g?, with momentunyg. Since the electron band op- part|clg4bound states, whose masg=2m[1—(m"/2N)
eratorscp;, are defined relative to their Fermi momekia, +O(N™")] approaches twice the fermion mass tée1,

the actual momenta of each particle are offset from the G ue to the Weaknes§ of the'|nte'ract|on.s in this limit. For
model momentumg, by some amount. We will return to Q(8), however, the interfermion interactions are not weak,

these “base” momenta later in this subsection, as well as t@nd the bound states have the strongly reduced nmmgss

the other physical quantum numbers of the excitations. =vim. The_ 28 bound states of two fe_rm?ons for_m the
: : 1above-ment|oned rank-2 tensor multiplatpriori, one might

28 “particles,” which transform as an antisymmetric expect three such multiplets, arising from bound states of the

second-rank S@®) tensor. This multiplet can be viewed as threg sets of fermlons. we will see, however, n the next
two-particle bound states of the fundamental Gross—NeverFeCt'On that this does not lead to any new particle content.

fermions, or equivalently under triality as bound even-everi"d€€d; the particles in the tensor multiplet can be equally
or odd-odd kinks. Indeed, of these 28 states, 24 have tw ell _V|ewed as bound states of fundamental, even, or odd
zero charges and twbl,==1. The other four are bound ermions.
states of a fundamental fermion with its antipartiGe ex-

citon in the semiconductor picture, belgwso they do not

carry any of the four quantum numbers. Each of the 28 “par- These excitations can be readily understood in the semi-
ticle” states has a mas®,=v3m. Finally, for energiese  classical limit of the bosonized Hamiltonian. In this lan-
>e.(q)=2Vm?+q?%4, a two-particle continuum ofun-  guage, particles correspond to classical solitons, in which the
boungd scattering states exists. phase field9), connect different vacuurftlassical minimum

3. Semiclassical picture
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1
,i'j)

(1,0,0,0)

(0,-1,0,0)

FIG. 4. The 24 massn excitations of the S@) GN model,
projected into the i, ,N,)=(Q/2,S,) plane. Full and open circles
indicate the “fundamental” fermions and kinks, respectively. All
24 excitations lie on the unit sphere in the full four-dimensional

FIG. 3. The mean field picture of the S GN model. There Cartan space. The equivalence of a fundamental fermion and an
are four flavors of relativistic massive fermiogig, with dispersion  even and odd kink can be seen graphically by simple vectorial
e(q)== JmZ+g2. The negative energy bands are filled, while the addition, e.g. the odd kink {£1,1,1,1)/2 and the even kink
positve energy bands are empty. As in a semiconductor, the positive (1,1,1,1)/2 add to form the GN fermion—(1,0,0,0).
and negative energy bands are separated by a finite gap 2

ments form equally good orthonormal axes in this space, and
energy values atx=*xc. The winding numbers of these viewed in this basis, the three sets of particles cyclically
solitons have a direct connection to the (8charges, since exchange their roles.
by bosonization One can also compose these particles by vectorial addi-
tion. For instance, an even and an odd kink can be added to

o form a fundamental fermion. The two-particle bound states

A= 0(00)—0(—oo)zﬁwdxaxea may also be visualized in this way, by adding, e.g., two
different fundamental fermion vectors. From this construc-

=2mN,. (4.36  tion it is easy to see that any such two-particle state can be

equally well composed from two even or two odd kinks.
Thus each of the GN patrticles labeled by the four quantunThere is thus only a single 28-fold tensor multiplet of two-
numbers N.,N,,N3,N,) can be readily transcribed into a particle bound states.
semiclassical soliton. The fundamental fermions are those
configurations in whichone of the four phase field9,
changes by+2#. The second type of soliton changes all ) - )
four 6, fields by =, which changes cog,——cosé,, but We are now in a pos_ltlon to dlscuss the nature of the
leaves the vacuum energy unchanged. The 26 possible grc_)und—state and excitation spectrum in feMott phase,
“kinks” form the semiclassical analog of the even and oddYSing the technology of the GN model.
kink SQ(8) octets.

While the even and odd kinks exist for geneXal for the 1. Gauge redundancy

special case of S@), triality implies that the kinks and fun- To proceed, we must first describe the boundary condi-
damental solitons are on an equal footing. This is most easilyjons and gauge-redundancy needed to fully specify the
seen using a simple graphical construction. Construct amodel. Since the phase fields were originally introduced to
N/2-dimensional spacéfor N even with axesf,. In this  bosonize théphysica) electron operators, the chiral electron
space, draw a lattice consisting of a point for each vacuunphases are defined only modulir2
configuration of the fields. All possible solitons can be rep-
resent_ed on this _Iattice as lines connecting different points to Gpia(X, 7)o Ppin(X, 7) + 27 Api (X, T), (4.37)
the origin (see Fig. 4. The fundamental fermions are then
the line segments to the neighboring points along the axesvhere thedp,, are integers. These integers describe a sort of
ForN=8, however, there are another 16 points equidistant tgauge redundancy in the description: semiclassical phase
the origin, which represent the even and odd kifks N configurations that differ only by a different choice 4df;,,
>8, these are further from the origin, while fof<<8 they are to be treated as identical quantum states. Furthermore, as
are in fact closer In this case, the even or odd kink seg- for any gauge theory, physical operators must be gauge in-

E. Consequences for thé-Mott phase



PRB 58 EXACT SQO(8) SYMMETRY IN THE WEAKLY -. .. 1805

variant, i.e., unchanged under the operation in &g37), T —el™: (4.41)
which can be performebbcally. y ’
whereN;=Ng;+ N ;.
2. Unigueness of the ground state In the weak-coupling limitU<t,t, , there are two addi-

From the standpoint of both the fermionic GN Hamil- tional conserved quantities, the band spin differe®e
tonian and its bosonized sine-Gordon form, the systentSi—S; and the relative band chirality;,= (N1 — Ny
appears to exhibit broken symmetry. The conventional GN— N2+ N 2)/2.
model has a spontaneously broken “chiral” symmetry: It is useful to rewrite these expressions in terms of the
the Hamiltonian is invariant under the chiral transfor- bosonized phase variables. Because the symmetry generators
mation y,—7,, however, the chiral order parameter involve spatial integrals of fermionic bilinears, they can be
A=Zg<¢;ﬂry¢a>¢0 and changes sign under this transfor_exp_ressed in terms of the winding numbéxg, and their
mation. In the bosonization language, this transformatiorfonjugates:
corresponds to#,—6,+7 (for all a), which takes .
cosf,——cosb,. The bosonic model appears to have even A%:f AX0y@a(X) = @a(0) — @a( —).  (4.42)
more broken symmetries, i.e., there is a countably infinite set o
of semiclassical vacua, related by the additional transform
tions 8,— 6,+27n,, for integern,.

al_Jsing Egs.(2.18—-(2.21), we find

On physical grounds, however, we expect thath®lott A6,
phase has no broken symmetry, and consequently a unique Q=—-, (4.43
ground state. To reconcile this apparent discrepancy, we ™
must account for the fact that the phasgsare not gauge
invariant. Indeed apparently different vacua may represent Sz:% (4.44)
the same physical state in a different gauge. To establish the 27’
physical equivalence between different vacua is a rather te-
dious and technical exercise, although straightforward. In , Abs
Appendix B we carry through this exercise and demonstrate 127 5 (4.4
that all of the semi-classical vacua do indeed correspond to
the same physical state. Thus, as expected, there are no bro- A6,
ken symmetries in th®-Mott phase and the ground state is P12=Z, (4.46
unique.

3. Quantum numbers ?XIGXF{%<A¢1+ kFlkaZAe“”, 447

To connect the GN results with the physical two-leg lad-
der system, we now consider the quantum numbers of the .
various excitations. Each quantum number corresponds to T =eXF{I—(A 0,+Ag,)|. (4.48
some conserved quantity in the system. The most physically Y 2

interesting are the charge, spin, momentum alongxtlae- i ) ) ) e

rection, and parityor equivalently, momentum in thg di- As discussed in the previous section, the winding num-
rection). The charge and spin are conserved quantities corre€rs of thed, are just the SG) conserved charges. Thus the
sponding to continuous global symmetries, so we can worlirst four conserved quantities can be directly transcribed for

directly with the Hermitian generators all the GN excitations, ie., @Q,SS[;,Py)
=(2N4,N,,N3,N,). These are tabulated in the first three

+ columns in Table I.
Q:f dXCpjCpja (4.38 The momentum and parity of the particles are more com-
plicated, however, because Edg.47—(4.48 contain the
t Oap conjugate field\ ¢1,A¢4. As such,P, andP, are not sim-
S:f dXCPjaTCPj,B- (439 ply determined from the S@) chargesN,. The additional
physics required is the operator content of the original elec-
Since the translational and leg-interchange symmetries aigon problem.
discrete, we should really speak of the unitary operators To see how this comes in, let us imagine a local operator
themselves. Since right- and left-moving particles in band O T({N_};x), which creates the particle with charggN,}
carry quasimomentumtkeg;, respectively, the translation when acting on the ground state, i.e.,
operator is simply
OT({Na};x)[0)={Na};x), (4.49

where |[{N,}) is the quantum state with one excit¢t,}
Whereij=fdeaC$janja is the total number of electrons particle localized a. Now consider the exponential of a
in bandj with chirality P. The quasimomentur®, is de-  phase fieldp,. It can be rewritten as the line integral of the
fined by T,=exp(P,). Because the antibondirigand 2 op-  mMomentum conjugate t6,, i.e.,
erators havé, =, the parity or translation operator in tige _ _ .
direction is e*'Na%(X)/Z: e|27-rNandxHa(x)’ (4_50)

T,= e Zikri(NRj=NLj) (4.40
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whe_re Ha(x):&x<pa/(4rr)_ is the momentum conjugate to 1—y¢a1-;1:¢a+2775a1_ (4.60
0., i.e.,[0(X),IIp(X")]=1684,6(x—x"). Since the momen- . _

tum I, generates translations of the phaige the exponen- Equation(4.595 can be written as a product of three terms:
tial operator creates a soliton of sizerR, located at the

point x. In order to have the correct Wlndmg numbers, the § o *7— -]-X(E/ )-”rxlx-i-xos-i-xli-xe+i(qoa+ b2} 1
desired quantum operator must thus have the form .61

O"({Na}ix) = A[{6a}i{Na}Je~Na%a". (459 Consider the first term. Using the above commutators one
Here we have included an arbitrary functidn of the 6,  can readily show that the sum in E4.53) is invariant under
fields, which does not wind the phase and thus does not translations. The string, however, carries momentn
affect the S@) charges. =1
To determineA, we next impose gauge invariance. Con- L .
sider first the operators that create the fundamental fermions, TXOST;1= —0,=¢€""0;. (4.62
with only one nonzerdN,= = 1. The creation operator takes

the form This momentum must be added to the “bare” momentum of

the GN fermion, given by the last term in E¢.61. A
O =A[{0,)]e7 (¢at0a)2 (4.52  similar calculation for'Ary shows that=' is again invariant,

. ] but Og carries transverse momentum The resulting net
where we have removed a facter '’ from A to define  momenta of the fundamental solitons are summarized in the
A . This is desirable because the last fadigp to a Klein  last two columns of Table I.
factor «,) is simply the GN fermion operataf;, (¥ra for Similar manipulations hold for the kink excitations. In
the lower sigi. Now O, must be invariant under all pos- particular, the even kink creation operators must obey
sible gauge transformations, E@L.37. It is a straightfor-
ward exercise to show that the most general formXgr is 0% =>" Ny }eiiakaﬁae?wg* 012, (4.63
the same for all the fundamental fermions, and is given by {k 2

~ ' and similarly for the odd kinks,
A= Osz ,)\{ka}e'iakaﬁa, (4.53

{kat 0o = S M€ el Zakalag™i(eq—02)/2 (4.64)
where X’ indicates a sum over all quadruplets of integers tka}

with 22k, even, and Note that the choice to factor out the right-moving even and

O, = e(12(01+ 62+ 03=04) (4.54 GN fermions in Eqs(4.52), (4.63 and left-moving odd fer-
mions in Eq.(4.64) is arbitrary. A right-mover can always be
Note thatA does notinclude a term proportional to unity, converted to a left-mover and vice versa by absorption of an
which implies that a single GN fermion is by itself not gaugee-'a factor into a redefinition of the “string” part of the
invariant and hence unphysical. Instead, physical particlesoliton creation operator. For the even and odd kinks, the
have an attached operatox, (or its counterparts with extra above choice is particularly convenient, since the right-
factors from theX’ term). O represents a Jordan-Wigner moving even fields and left-moving odd fields asractly
“string,” and can be rewritten only nonlocally in terms of bare electron operators, and hence manifestly physical. We
the fermion fields. It modifies the momentum and statisticssee from Eqs(4.63—(4.64) that the kinks have the quantum
of the fundamental fermions to those of the physical excitanumbers of bare electrons. A remarkable consequence of this
tions. result is that the number of single-electron degrees of free-
It is now straightforward to determine the quasimomen-dom has effectivelydoubledrelative to the free Fermi gas,
tum and parity of the fundamental fermions using the transsince each of the 16 kinks can be created with arbitrary mo-
lation operators in Eqg4.47)—(4.48. In particular, we must mentum(relative to its base momentum ¢afkg;), including

have particlesbelowthe former Fermi sea and holaboveit. The
. . _ momenta calculated from Eq$4.63—(4.64) complete the
T,0, T =eP@0 (4.55 last two columns of Table I.
T,0, T, =07, (4.56 F. SU(2) invariance and spin multiplets

The left-hand sides of Eq$4.55—(4.56) can be evaluated =~ We conclude this section with a remark on @Winvari-
by employing the commutators of the Bose fields to obtain ance and the excitations with spin. In Table I, we have clas-
sified the masa excitations in théd-Mott phase by the four

Ti0. T, 1= 0,+276,1, (457  U(1) charge§SO8) Cartan generatofd\, . Another almost
equivalent choice is to label the particles by their charge,
Too. T =+ 2(Kei—Keo) Bass 4.5 momentum_otal spin $=s(s+1), and spin projectiors*.
xPalx = Pat 2Kr1~ke2) bas (459 It is fairly trivial to relabel the kinks in this way, reflecting
and their natural correspondence with single-particle spin-1/2 ex-

A alg citations. They may be grouped into doublets with 1/2
TybaTy "= 0,275, (459  andS*==*1/2, e.g., the (1,1,1,1)/2 and (11,—1,1)/2 kinks
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form a spin-1/2 doublet wittQ=1e and P=(kg,,7). For this section we will discuss a variety of the resulting physical
the GN fermions, this is less trivial. The-(1,0,0,0) solitons Consequences. S
are spin zero, and correspond to charg@e Cooper pairs The most remarka}ble consequence of tr|aI|ty3|s the equal-
with zero momentum. Similarly, the (0,0:01) fermions Ity of the single-particle and two-particle gaffs®® The 16
carry neither charge nor spin, and may be regarded adnks have the same guantum numbers as t_he bare ele(_:trons
dressed particle-hole pairs carrying only momentum. The re@! the former Fermi surface. The single-particle gap, defined
maining four solitons are more nontrivial, however. Their &S the minimum energy needed to add an electron or hole to
spin content may be brought out by refermionizing the totalth® System, is thus simply; =m. The 8 GN fermions, how-
spin operator, as in Eq4.17), ever, have charg@_= +2 orQ=0, and thus represent exci-
tations corresponding to an even number of electrons and/or
holes. For instance, electron or hole pairs can be added with
S= f dx[Jr(X)+IL(X)], (4.65  zero net momentum via the1,0,0,0) solitons, while spin-1
excitations may be added with momentum) via the (0O,
with chiral currents, +1,0,0) and (0,6:1,0) solitons(more precisely theys
statg. The gap for all 8 minimal energy two-particle excita-
Jo(x)=i "B np7pc, (4.66  tions is alsoA,=m.

_ ) i The equality of the single-particle and two-particle gaps is
with A,B,C=3,4,5. Thus the three Majorana fieldga.  in marked contrast to the behavior of other more conven-
with A=3,4,5, transform as a triplet of sps¥1 operators, tjonal insulators. In a band insulatgsuch as the two-leg
1.e., ladder at half-filling witht, >t), the single-particle gap is

A . ABC just the band gap, while the two-particle gaps are twice as
[S" 7pe]l=—1€""npc. (4.67) large: A,=2A;. Another familiar case is the strong-

The other 5 GN Majorana fields commute w&hand hence interaction limitU>t. In this case, the single particle gap is

represent spin-singlet operators. huge,A;~U, while the 2Iowest two—particlée.g., _spi_r) gaps
As was shown in the previous subsection, the physicaf'® Mmuch smalled;~t/U<A, or indeed vanishing A,
GN excitations consist not of GN fermions but rather re-=0) for ordered or quasi-long-range ordered antiferromag-

quired an attached strin§s. Fortunately, the string does not nets (e.g.,d=2 or single-ghain Hubbard modglsThe de-
carry any spin, i.e., tailed mathematical mapping between the GN, odd, and even

fermion fields allows us to extend the relationship between

0.sot=s (4.69 the single-particle and two-particle properties beyond the
TS values of the gaps, as we detail below.
Thus the true soliton excitatiof&N fermionststring9 sat- First, we will discuss several correlation functions that

isfy the same transformation rules with respect to spin as theharacterize the spin and charge dynamics of the system. The
bare Majorana fermions. The four remaining solitons (0,most interesting of these are the single-particle spectral func-
+1,0,0) and (0,0:1,0), which involve the four Majorana tion, measurable by electron photoemission, and the dynamic

fermions 7, with A=3,4,5,6, can therefore be decomposedspin structure factor, which is probed by inelastic neutron
into ans=1 triplet and a spin-zero singléboth with Q  scattering. Other interesting correlators include the current-

=0 andP=(,)]. The triplet can be regarded as a mini- current correlation function, which determines the conductiv-

mum energy magnon, while the singlet can be grouped witfity, the density-density correlation function and pairing cor-

the (0,0,0£ 1) solitons as another particle-hole excitation. relation function, which can be measured in numerical

With the SU?2) invariance realized, we can tabulate the Simulations.

particles in the GN model in a slightly different way, classi-

fying them by their SW2) multiplet (i.e., s=0, 1/2 or 1, A. Single-particle spectral function

charge, and momentum. To label the particles classified in

this way, the Abelian;,N,,N3,N,) notation is no longer

convenient, since it does not respect the(ZUnvariance.

Instead, we can schematically in(;licate the 8 partiqles inthe G,(k,7)=>, e MTXT (0lay,.(x, 7)al,(0,0)0),

vector multiplet byz, and the 28 in the tensor multiplet by Ix

nane (remembering thag 7a= — 7a7g). FOr convenience, (5.9

we list the 8 GN fermions and the 28 ma&ksm bound states here T. is the (Euclidean time-orderi bol andk

in this way in Table Il(we do not list the remaining 16 Vi’ ere I, 1S the (Euciidean ime-ordering Symbol an:

particles, since they have the quantum numbers of eIectronE(k>f ,ky)..The_nght-.hand side is mdependentcﬂby spin-

and are easily remembered in this way rotauonall invariance; hov_vever, we chc_)os_e to.deflne the spec-
tral function for fixed e, i.e., no sum is implied above. In

general, the single-particle spectral functions can be ex-

V. CORRELATION FUNCTIONS tracted from G, by Fourier transformation. Defining

AND PHYSICAL PROPERTIES Gy(k,iw)=[d7G;(k, 7)expfw7), one finds

We have seen that in the weak-coupling limit, the two-leg 1
ladder possesses an enhanced symmetry. The effective + o his) L
theory in this limit is the SC8) GN model, which is both 7 '™ Cilkio= o8 = Ak 0)+Ap(—k ~ ),
exactly integrable and exhibits a remarkable “triality.” In (5.2

First consider the single-particle Greens function,
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where the particle and hole spectral functions are A quick consideration of the quantum numbers is sufficient
to conclude that none of the magdm bound states have the
_ T 2 S0l _ appropriate quantum numbefs.g., all have charge zero or
Asp(k ) ; (nlare/0)*k=k) (@ =E,), (5.3 +2e). The next lowest-lying excitations with the quantum
numbers of individual electrons are in fact scatteriog-
bound states of a kink and a GN fermion. For instance, a
(1,1,1-1)/2 kink and a(0,0,0,1 fermion can form a scat-
tering state with the quantum numbers of a spin-up electron
Here we have abbreviate#(k)=2md(k,) éi ,0- The taskis  with momentum Kg;+q,7), with g<1. Similarly, other
then to evaluat&;(k, 7). In the weak-coupling limit studied combinations of kinks with the (0,0,81) GN fermions
here, this is obtained in two stages. We first integrate out theontribute to the single-particle spectral weight at3kg,
electron ﬁeldsciTa(k),cia(k), for |k—Kgi|>A, whichcanbe +q,7), (=kg+q,0), and ¢3kg,+0,0). All these form

accomplished perturbatively in the interactions, since the encontinual withw> e.(q) =2vVm?+(q/2)? at each momenta,
ergy denominators are finite away from the Fermi momentasince the energy at a particular momenta can always be in-
The perturbative corrections to the free-elect®i(k,7) are  creased continuously by shifting the kink and the bound-state
therefore small in these regions. Within the cutoff region ofmomenta in opposite directions. Further excitation of more
width 2A, we must employ the full RG treatment. The RG than one (0,0,8;1) quanta leads to spectral weight at all
scales the proble.m onto the GN model, which thus applies ahomenta separated by an even multiple &2 i.e., k
the lowest energies. _ _ _ =[(2n+1)kg;,7]. The excitation gap for such a point in-
For the electron spectral function, the noninteracting rexreases, however, by an additional factomofas each GN
sult Agp/h is triViaI, since Single'electron states are eXathermion[i_e_1 factor of (2<Fl!0) away from the Fermi poin}s
eigenexcitations. The result is is added. Furthermore, the higher harmonic contributions to
the spectral function are expected to have small amplitudes,
A(l)p(k’“’): S(w—e1(k))0(w), (5.9 a5 thgy involve multiple sc:tterings of the original irﬁ}ected
electron(see below.
Atk 0) = 8w+ e1(k) B(w), (5.6 To understand the magnitude 8f,n(k,w) in the al-
where &;(k)=—t cosk,—(t,/2)cosk,. Interactions of lowed regions requires a knowledge of the matrix elements
course modify this form somewhat, ieading to some spectrdn Ed. (5.3, or of the full Green’s function in Eq(5.7).
weight away fromw=¢,(k), and a broadening of the delta- Since exact results are unavailable for these quantities, we
function peak inA; ,;, for some momenta. In weak-coupling, consider instead the mean-field approximation. Without loss
away from smalkw, however, both effects are small. We will of generality, let us consider momenta near the particular
return to them after we consider the behavior of the spectrdférmi pointk~ (kg1 , ) and spinS*= +1/2. Using Eq(5.7)
function for small frequencies. and Egs.(4.28—(4.3)), the bare electron operators can be
The low-frequency limit ofA,, is dominated by momen- rewritten exactly in terms of even fermion fields,
tum near the Fermi points. Transforming to the slowly vary-
ing Luttinger fields, we have (CR1a(X: T)CE14(0,0) = (YR (X, ) ¥Z1(0,0)). (5.8

Alh(k,w>=§ [(n|a14|0)|28(k—k,) S(0—E,). (5.4)

_ i " In the mean-field approximation, the exact eigenstates are
Gl(PkF‘qu’kyi’T)%f dxe(cpia(X,7)Cpia(0.0)) created by the rotated operators for particligs,(k) and
(5.7 holesy?,(k) (see Sec. IV D 2 so that the above expectation

for q<1, whereky;=(2—i). Unfortunately, integrability value can be computed by a simple rotation. One finds
doesnot give exact forms for the time-dependent correlation

functions in Eq(5.7). A considerable amount can be learned, . 1 q S
however, from the exact excitation spectrum and from ap- Atp (Kea+ 0,7 0) =5 1+ S(o=~g=+m").
proximate methods.

JeEme
i (5.9

The spectrum determines theupport of A;,u(K, ).
From Eq.(5.3), it is clear thatA;,n(k,w) is nonzero only  The g-dependent factor out front arises from the rotation to
when there e>§ists an excitatigar more than onewith mo- the 3 spinor, and is analogous to a “coherence factor” in
mentumk, spin s=1/2, charge*e, and energyw. From  gyperconductivity. Equatiofb.9) captures a simple and ap-
Table I, we see that the sixteen kinks have exactly the apyealing physical effect. Although single-kink states exist for
propriate quantum numbers for all possible momenta neag|| momenta, their contribution to the spectral weight is sup-
the four (i.e., two pair$ Fermi points with eitheS*= i_1/2 pressed fog<—m by the “coherence factor” above. Such
and chargete. We therefore expect tha,pn(k, o) first 3 negative momentum corresponds to the addition of an elec-
becomes nonzero forw= \/(kx—kFi)2+(ky—kyi)2+ m?. tron at a momentuninside the Fermi sea. Interactions de-
Since the kinks are isolated particles with a fixed energyplete the Fermi sea slightly near the Fermi points, allowing
momentum relation, these excitations give a sharp deltaelectrons to be added, but with a weight that vanisheg as
function peak imA, . Itis natural to identify this peak as the — —, i.e., deep within the sea. Similarly, the hole spectral
continuation of the noninteracting delta function in Egs.function has weighbutsidethe Fermi sea, since some ex-
(5.5—(5.6) to the region near the Fermi points. At higher cited particles exist as part of the ground state. Unfortu-
energies other states should contribute to the spectral weightately, the mean-field approximation is not sophisticated
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enough to capture the continuum @t>e,(q), since theys @ ,
fields create exact eigenstates in this limit. Thus the con-
tinuum is not present in E@45.9). On physical grounds, how-
ever, we expect that it will be similarly suppressed for mo-
menta inside the former Fermi sea.

Having determined the behavior 8f,, near the Fermi
points and momenta separated from them by even multiples
of (2kg1,0), we return to the question of the spectral weight
away from these points, at energies away from the noninter-
acting single-particle energgq(k). In the noninteracting
system, states with one added electptus additional neutral 2m
electron-hole pairs in fact form a continuum away from the
single-particle energy. Consider, for instangg= . The
lowest energy continuum of states with a single added I m

particle-hole pairplus one electronconsists of those states k

in which both electrons are infinitesimally above the Fermi ' ' | *%
surface k;=k,=kg;) and the hole makes up the missing 0 ke, 3k,

momentum ks;=2kg;—K). This begins ates(ky,7)=

cos(Xr1—k)—t,/2, which is below the single-particle en- FIG. 5. Schematic plot of the single-particle electron spectral

ergy(i.e., e,<eg;) for ke; <k,<3Kg;, crossing zero again at function A (k, ,ky= ). _The curve below _the contir_1uum_indi-
ke=3Kg;. It does not contribute to the single-particle spec-cates a sharp resonance, i.e., a delta-function pedk jn which
tral function, however, due to orthogonality. In an interacting@cauires a finite width once it passes |nS|FIe the continuum due to
Fermi liquid, we would expect that an added electron carihe onset of decay processes. The continuum above energy 2
scatter into these statéise., emit a low-energy particle-hole coincides with the creation ¢finbound scattering states of a single
pair), and some weight would appear iy, associated kink and a GN fermion.
with the continuum states. 1
In the weak_ly interacting ladder, an added electron away = | Si(Kiw—w+id)—Alk o) for »>0.

from the Fermi points can also scatter to create neutral exci- =
tations, and some weight will appear in the regions near the (5.1
noninteracting contlnuum fow=e,(k). This contlnL_Jum The spectral decomposition @, is
away from the Fermi points should merge smoothly into the
continuum aboves=2m at the Fermi point§and the higher 1 o
harmonics, e.g. £3kg;,7)]. Clearly, since the single- As(k,w)=§; (0] S'[n)|“8(k—kp,) 8(w—Ey).
particle energy beginbelowthe continuum near the Fermi

e X . (5.12
momenta and it is above the continuum far away, it must
cross into the continuum at some point. Where it is below the  As for the single-particle case, we expect that the spin

continuum, we expect that the spectral function retains &pectral function will be approximately equal to its noninter-

sharp delta-function peak. Once it passes above, howevecting value forw>m. A straightforward calculation for the
the single-particle mode can decay into the continuum stategoninteracting problem gives

and should acquire a small width. Putting this behavior to-
gether with the spectral function near the Fermi points and o 1 O(1-]r))
higher harmonics, we arrive at the schematic single-particle As(K,0)= z— T
spectral function illustrated in Fig. 5. The most dramatic fea- 87 ab=1 sin(kyd2)1-r
ture is the sharp delta-function peak near the Fermi points,

which crosses into the continuum and acquires a width at X

Ky Ky
b cos— 1—re+r S|n5+atl/2
higher energies.

0

Ky Ky
—0|b cos= V1-r2—r sin—
B. Spin structure factor 2 2
The spin spectral function can be defined in a similar way t,
to the single-particle one. Consider the structure function +a- cosky |, (5.13
) 1 - . whgrer=[(f)+a(t+/2)(cosky—l)]/(2_ sinkX/2). Qlearly, the
Sl(kjiw)== 2 dre ikex—iky(=1")+ior noninteracting spin spectral function is considerably more
2 7 complex than its single-particle counterpart. This is because
- » the neutral spin-one excitations in the noninteracting system
. j
XTA0]S(x,7)S,(0,0]0), (5.10 are particle-hole pairs, and thus comprise a continuous spec-
trum. The result in Eq(5.13 is plotted in Fig. 6.
where the lattice spin operator$x) =af'a(oaﬁ/2)a|ﬁ. The Fork,=0, the particle and hole must come from the same

spin spectral functio\ is obtained from this in the usual band. In this case low energy excitations exist nigar O,
way when both are taken near the same Fermi point, and near
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k,==*2kg; (ky==*2kg, are equivalent to these values (a)
modulo 27), when the particle and hole are taken from op-

posite Fermi pointgstill in the same band Two branches of )
continual(from the bonding and antibonding bandsrm as

the momenta of the particles and holes are varied. kgor
=1, the particle and hole must come from opposite bands.
In this case, th&k,=0 states have an energy of exadily,
since this requires a vertical transition. Low-energy excita-
tions exist neak,= = (kg,—Kg4), due to particle-hole pairs
taken from two right-moving or two left-moving Fermi
points. They also exist ned =, when the particle and
hole are taken from opposite sides of the Fermi surface. Ex-
tending these two branches of excitations gives the form
shown in Fig. €b).

As for the single-particle spectral function, introducing
interactions allows for additional structure, and the low-lying
excitations are raised up to energies of onalerin particular,
from Table Il, we see that the lowest-lying neutral triplet
states are the mass GN fermionsz; 45 atk=(m, 7). The
next highest energy neutral triplets are the méds bound
states. Thenz 45778 have momental = (kg;—Kgp), 7],
while the 73457453 and 73 4515 have momentun0,0).
Above these exist continual dispersing like.(q)
=2m?+(q/2)? away from all the aforementioned points
and (= 2kg4,0) (the excitations at these last points arise from
certain pairs of unbound kinksSince there are no sharp
resonance&elta-function peaksn the noninteracting limit,
we expect that the mass andv3m peaks must broaden at
higher energies to merge into the continual found there. A
schematic form is shown in Fig. 7.

C. Optical conductivity

Another quantity of considerable experimental relevance
is the optical conductivity. We are interested in the real part
of the conductivity, defined by

1 J kx
, (5.14 0 key ke T

Hiw—w+id)
1)

Reo(w)=1Im

FIG. 6. Intensity plot of the non-interacting spin spectral func-
tion at (a) k,=0, (b) ky==. The darkness is proportional to the
spectral weight, white indicating regions of phase space in which no

H(iw)— E dXdTe"”<T 31(%,73,:(0,0)). particle-hole pairs exist.
n'

where the k=0) current-current correlator is

sink
(5.19 =5 (GE-GP). (5.19

The electrical current operator is i )
From this form, the current operator clearly excites the

massv3my, 7, bound states, as well as higher-energy con-
J|(x)— [aI (x)a(x+1)—af(x+1)a(x)]. (5.1 tinuum scattering states with energies above BSince Eq.
(5.149 is nothing but 1 times the spectral function df, the
zero-temperature optical conductivity is thus zero fer
<v3m, has a sharfdelta-function peak atw=v3m, and a
ﬁwreshold with continuous weight fas>2m. Based on the
mean-field picture, we expect the spectral weight in the two-
particle continuum to have a square root singulafiiye to
the van Hove singularity at the bottom of the band—see,
e.g., Ref. 48 i.e.,

To evaluate Eq(5.15 only the slowly varying k=0) com-
ponent of the current is needed. Decomposing the lattic
fields into their continuum components using E2.2) and
then applying the bosonization and refermionization rules
one finds the long-wavelength form

J|"‘Sin k,:lﬂxgbl (517)
m
Csinkgp o(w)~Ad(w—v3m)+B/ _2m®(w—2m).
= 17, (5.18 @ (5.20
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Og
1+iwr’

(5.2)

o(w)=

with op=n7/m, 7 a scattering time, and the density of
thermally excited carriers. Using the Boltzmann distribution,
we haven~mTe ™T for T<m. The average separation
between particle$(T)=1/n is thus much larger than their
typical wavelength\ (T) ~2#/p~ 1/J/mT, obtained by equi-
partition. The particles thus behave essentially classically ex-
cept during a collision, when they scatter stronglg known,
e.g., from the exac® matrices for the SAY) GN model,
and their scattering time is determined simply by the time
between collisionsr~ | (T)m/p~T ™. The exponential
dependences in the dc conductivity thus cancel, apd
~1/\JmT [the same result is obtained from the Einstein re-
lation o= (dn/du)D]. In principle, the dimensionless nu-
merical prefactor in this relation could be obtained using the
methods of Ref. 49, but we content ourselves here simply
with the scaling form. Note that although the height of the
Drude peak diverges 86— 0, its width shrinks much more
rapidly (exponentially, and the weight ab=0 is negligible
at low temperatures.

Turning to the higher-frequency featur¢®r w~v3m
and w=2m), we expect that scattering between thgcted
bound states or particle-hole pairs and the thermally excited
carriers will occur on the same characteristic timescale,
These peaks therefore also acquire exponentially small
widths[O(1/7)] for T<<A. Since the overall spectral weight
in Re o(w) must be conserved, we expect the heights of these
features to diverge much more strongly than the Drude peak,
e, o(o=v3mT)~7~e™" and o(w=2mT)~ 7

~em/2T.
Indeed, the optical conductivity presumably satisfies uni-
versal scaling forms near these points, i.e.,
| J X
0 ke k T N 2q[(0—vV3m)7], |0—v3m|<m
F2 "“F1 Re o(w)
Vi2o[(w—2m)7]  |w—2m|<m
FIG. 7. Intensity plot of the interacting spin spectral function at (5.22

(@ ky=0, (b) ky=m in the presence of interactions. In the low- _ _ _
energy portion, various gaps develop and excitations with sharfor T<<m, where2; andX., are universal scaling functions.
delta-function peaks are preséaee Sec. V R Note that the mini- A schematic illustration of the optical conductivity at finite
mum energy spin excitations occurlat (7, ). temperature is given in Fig. 8.

At nonzero temperatures it is difficult to determioéw) ) )
from the Kubo formula, Eq(5.14). Instead, the general fea- D. Equal-time spatial correlators
tures can be argued on more conventional transport grounds, Numerous other correlators can be measured at equal
borrowing heavily from recent results of Damle andtimes in numerical simulations, and sometimes experimen-
Sachdef{” for spindynamics of gapped two-leg ladders. Thetally (e.g., static structure factgrsThe properties of essen-
important physical effect fof >0 is the presence of a non- tially any such correlator can be deduced from the GN spec-
zero equilibrium concentratiorede™™T) of activated exci- trum, as summarized in Table Il. Due to the Lorentz
tations. In the semiconductor analogy, these are activateitivariance of the GN model, intermediate states with a finite
particles and holes. In principle, all 24 massstates have energye give rise to exponentially decayirgpatial correla-
identical equilibrium concentrations; for<m we expect tion functions with the corresponding length=1uv/e.
that we can neglect the much smaller activated densities For completeness, we quote two examples here. The pair-
[O(e "*™T)] of bound states. field correlator, defined by (x) =a;;(x)a, (x) has the cor-

In this case the low-frequency conductivity can be esti-relation function
mated using a simple Drude argument. We focus on the
charged spec_ies of mass i.e., then,, f_undam_ental fermi- (A(X)AT(0))~ A MXY L[ Ay(—1)%+ AgeiZkFiX
ons and the kinks. Each of these contributes in parallel to the
conductivity a term of the Drude form, + A e Zkrx]emVAmIXIo . (5.23
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Re {O'(CO)} actions. In this seption, we will Qevelop the necessary tech-
N nology and _study in wea_k—couplmg both the SZH model and
| other generic S(®) invariant two-leg ladder system%>!
I In fact, the focus on S@) invariant models is less restric-
: tive than might be naively expected. Indeed, in our numerical
| studies of the full RG equations at half fillingll weak cou-
I pling two-leg ladder models we have studigidicluding
: those with attractive interactionsscale under the RG onto
| the S@5) invariant manifold Within this manifold, we have
[ observed five attractors, including tfie-Mott phase and a
: Luttinger liquid (C2S2 phase continuously connected to the
| noninteracting Fermi liquid, in which all the elementary ex-
[ citations remain gapless. The remaining three attractors are
: all massive phases, and compriseSaWott phase similar to
[ the D-Mott phase but with approximates-wave” pair cor-
. > (D relations, acharge-density-wavéCDW) phase with a den-
0 \/3_171 2m sity wave atk= (7, 7), and aspin-Peierls(SP phase with-
out a density wave but with kinetic energy modulated at the
FIG. 8. Optical conductivity at finite temperature. At low tem- same wave vector. We group tBeMott with the latter three
peratures, all the features become exponentially sharp, with a widttp form four dominant phaseswe will see that(in weak
Sw~e~™T. In this limit, the “exciton” peak atw=v3mretains a  coupling while all of these dominant phases share Zhang’s
nonzero weight, sharpening into a delta function, and the peak neagy5) symmetry, each one possessedistinct higher S@8)
w=2m is also exponentially high. By contrast, the Drude peak atsymmetry. The different S@) symmetries are related in
»=0 has vanishing weight at low temperatures, its height divergyather simple ways that have ramifications for the critical
ing only asoo~1/ymT. points between the different dominant phases.

for |x|> 1. Here the first term comes from the mas$Coo-

per pairs” and the second from the corresponding bound
states. In the prefactors to the exponentidls, we have We begin by reviewing some basic properties of the
neglected subdominant spatial dependences, which generalBQ(5) symmetry, demonstrating in the process the relation to
will have power-law forms. For example, due to the one-the S8) symmetry already discussed. The (SDalgebra
dimensional van Hove singularity for adding a pair above thevas originally designed to rotate the five-componesttor
threshold energyn, one expects;(x)~x~ 2 for large x. containing the real and imaginary parts of thewave pair
Similarly, the real-space density-density correlation functiorfield and the three components of the staggered magnetiza-

A. SO(5) symmetry

is tion. A set of operators that performs this function was in-
" —_ troduced by Zharf}—these are the 10 generators of (SO
(M (X)N1(0))~[By(—1)**'+ B, cog 2kgx)Je™ X" which are conveniently grouped into the antisymmetric ma-
+[Ba+By(—1)" cogke; —kep)x]ev3milre trix
T (5.24 [0 |
Here n|(x)=af'a(x)a,a(x)— 1. The real-space spin-spin cor- Qp 0
relation function has an identical form, except with=0. Kag=| Rell, —ImlIl, O , (6.0
Rell, —ImIIl, S, O
VI. GENERIC INTERACTIONS AND SO (5) SYMMETRY | Rell, —ImTI, _Sy S, 0]

In the previous sections, we focused on the properties Qf here A B=1.... 5 spans the matrix of generators a6k
the D-Mott phase, which occurs with generic predominantly _ _  The various components are defined as bilinears in
repulsive interactions in the two-leg ladder. In weak couplindg|actron operators

this phase exhibits a remarkable @8Dsymmetry with dra-

matic physical consequences for both two-particle and 1

single-particle properties. As remarked in the Introduction, Qp=§ > [al(k)a,(k)—11], (6.2
there exists an S@) subalgebra of the full S@) group K
whose vector representation “unifies” superconductivity and
antiferromagnetism. Thus all the consequences of thi&s50 S=
symmetry, proposed by Zhang as a phenomenological model

for the cuprates, are shared by theMott phase. A number
of authors have proposedxactly SO5) invariant lattice
models including, in a recent paper by Scalapino, Zhang, and = 2 Ek br@a(—k+N)(ay0) 4pap(k), 6.4
Hanke(SZH), a two-leg ladder modéft SZH derived a com-

plex phase diagram for this model in the strong-couplingwhere N=(m,) is the “nesting” vector andQ, is the
limit in a space including both repulsive and attractive inter-charge measured in the numberpafirs of electrons relative

2k al(K) o,za5(K), (6.3

N| =

[
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to half filling. Here a,(k) is the Fourier transform of the ky
lattice electron operator and a spin sum is implicit. To see

that the S@) symmetry is just the first subgroup of &), O
we need simply take the continuum limit of E@6.1). 1R
Straightforward but lengthy decomposition of the lattice
electron fields into their slowly varying componers in
Sec. ) and consequent bosonization and refermionization
(as in Sec. IV gives the exceedingly simple result

Kag= f dx(GAB+G/B), (6.5 2L 2R

where theG’QB are precisely the S@) generators introduced

in Sec. IV. Since only the five-dimensional upper-left block
of the full matrix of SA8) generators enter in E@6.5), the
SO(5) symmetry rotates the first five Majorana fermions,
A=1,...,5. As discussed in Sec. IV, the first five components
of this vector representation contain both the pair field
(~ 71,2 and the staggered magnetization 43 45). 1L

\J

B. Microscopically SO(5) invariant models and SQ(5) spinors FIG. 9. The folded Brillouin zone for the S6) spinor. The

We now turn to a discussion ahicroscopically SO(5) allowed momenta are chosen to be in the grey area. For a two-leg
invariant ladder Hamiltonians. A particular example is themodel, the transverse momentue takes two values &, In our
SZH model, which is the most general &D symmetric ~ convention, onlyk,=0 excitations are inside the folded Brillouin
two-leg ladder Hamiltonian with nearest-neighbor hopping?°®ne-

and only intrarung two-body interactions. The interaction ) .
terms on each rung of the ladder take the form ladder model, in which the only transverse momentakgre
=0,m, it is possible to specify the folded Brillouin zone by

simply settingk,=0 in the above spinor. The factap,

Hint:UZI {3 =3)(n =)+ V(n —1)(n—1) (which in the general two-dimensional case is a nontrivial
function with absolute value ohean be taken to be unity
+JS,- S, (6.6) with this convention. Re-expressing the spinor in terms of

. the band electron operators and Fourier transforming gives
wherel =1,2 refer to the two legs. S symmetry requires P g9

a single constraint on the three couplinds: 4(U +V). For . Conl(X)

U,V>t,t, the hoppingt can be treated perturbatively, and ‘If(x)=f de\F(kX,O)e'kxX=((_1)xCT (x)

SZH have determined thiguite complex phase diagram in la

the U-V plane. With the weak-coupling RG, we can attemptin the continuum limit valid for weak coupling at low ener-

to complete the phase diagram by exploring the oppositgies, a chiral decomposition is possible:

limit, U,V<t,t, . (One can hope to determine the behavior _ _

at intermediate couplingJ,V~t,t, by interpolation) Fur- P (x)~WgekrX+ ¥ e~ kr2X| (6.9

ther, we can explore the generic behavior of other weakly . . . .

interacting S@6) invariant two-leg ladder systems that con- with chiral spinors defined by

tain, for example, inter-rung interactions. Copu(X)
To do so, we need a meansadnstructingSQ(5) invari- \pr(x)=( ?2“ ) (6.10

ant models in weak coupling. For lattice models, such con- Cp1a(X)

structions have been discussed by Hetflegnd Rabello To obtain Eq.(6.10, the (- 1)* factor in Eq.(6.8) was can-
et al,”® and applied by SZH to the two-leg ladder. Here we g g using the relatioke, + ke, = 1.

generalize these methods to tbhiral fermions operators e 5qvantage of the spinor basis over the electron band
that appear in the linearized continuum model obtained in th%peratorsnpia is that they transform simply under €. In

weakly interacting limit. Since th_e Hamlltqman is built from particular, under a unitary transformation generated by the
electron operators, we need to introdws@nor representa-

. (6.8

operator
tions of S@5). We begin with the lattice construction of P
Rabelloet al,> defining the four-component spinor as U(0ag) = expi OasK ap), (6.11
a, (k) whereA,B=1,...,5, the spinor¥', transform according to
PO=] pal(—k+ N))’ (-7

r it _
whereN= (, ) is the nesting vector of the Fermi surface. Feam U (O p (A =[T(A)a¥rs, (812
To avoid double counting, the allowed momentknn the  where the spinor indicesa,b=1,...,4, and T(0)
spinor only runs in the “folded” Brillouin zone, whose size =exp(fsl™*?) is the rotational matrix for a spinor. Here
is half of the original one, as shown in Fig. 9. For the two-legI'*B=i[T'* I'B]/4 where thd™* are five generalizet# by 4
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Dirac matrices, discussed in detail in Appendix C. They satcloses under an RG transformation. The five RG equations
isfy the usual Clifford algebra describing the flowswithin the S@5) manifold are given
explicitly in Appendix E.

(TATBl=26,5. (6.13
Using the spinors, we can break down all fermion bilin- C. SZH model and four dominant phases
ears into irreducible representations of (SQi.e., general- The weak coupling phase diagram for the SZH model can
ized currents. Three “normal” sets, which involve oNe' now be obtained by numerical integration of the (SQ0in-
and oneV spinor, carry net momentum zero @,): variant RG flow equation§Egs. (E1)—(E5)]. The initial
" (bare values of the S(®) coupling constants are obtained by
Tp=¥p¥pa, (6.149  taking the continuum limit of the SZH model. Feachini-
tial set of bare parameters, the phase is determined by
Tp=VL (T ¥ py, (6.19  bosonizing those couplings that grow large under the RG
AB ot transformation, as described in Sec. Il. The resulting weak
TeP=W] (T"8) yWpp. (6.1  coupling phase diagram is shown in Fig. 10.

Four new phases appear in addition to BrVott phase,
which occurs for predominantly repulsive interactions. In the
*C2S2” region in Fig. 10, all five couplings scale to zero
under the RG. Thiguttinger liquid phase thus retains all the

The three currents in Eq46.14—(6.16 transform as an

SQ(5) scalar, vector, and rank-2 antisymmetric tensor, re

spectively. A second set of currentand their Hermitian

conjugates appear “anomalous,” and carry net momentum gapless mode¢2 charge and 2 spin, hence C3S# the

(%2ke2,0) or (7% 2kep, m): original noninteracting electron system, and thereby (aas
_ approximatg chiral SQ8) symmetry.

Zp="WpaRap¥po, .17 We group the other three states together withDhdott
as fourdominant phasedn the S-Mott phase, the interac-
tions diverge in the same way as in tBeMott case, given
These two currents, which transform as a scalar and a vectdy Egs. (3.2), with the modificationbf,,b7,,uf;— —bf,,
under S@5), require the introduction of the matrix —b7,,—uf;. In the S@5) invariant notation, this corre-

sponds to changing the sign bf andh,. Semiclassically,
0 1 the only change in the behavior is thdtp,_)s ot
R= -1 0/’ (6.19 =(¢@,-)p-Mort 7=7. The 6,. and 6, fields are unaf-
fected, so that th&Mott phase still has short-range pairing.
where 1 is the two by two identity matrix. Note that it is |t is, however, of approximates-wave symmetry, with
straightforward to show that the matricB§*® are symmet-  A,A1>0 due to the shift inp, , as can be seen from Eq.

ric, so that a nonvanishing anomalous tensor current canngg g) |t is interesting that the strong-couplings‘wave”

be defined. A simple counting verifies that the above set of4jred state on a rundl |,—)+|—,11) is identical in the
currents completely spans the space of electron bilineargaqger leg and band bases, and corresponds torasite
There are ¥ 5+10=16 currents in Eqs(6.14—(6.18, and  pairing or singlet state. In contrast, pairing in the strong-
an additional 2(1+5)=12 currents in Eq(6.17—~(6.18  ¢oupling D-Mott state is across the rung of the ladder, as
and their complex conjugates, for a total of=28(7/2) in-  gepicted schematically in Fig. 11.

dependent bilinears. In the SP and CDW phases, the ratios of diverging cou-

In weak coupling, we must generically consider all Her- plings are somewhat different. In particuldy, ,b?, are ir-
mitian products of two bilinears which arfé) invariant un- relevant and

der S@5) and (2) conserve quasimomentum. Neglecting

purely chiral terms(which, as in Sec. Il, only renormalize 1 1

velocitieg, there are then five allowed couplings. The inter- f0,=— —f0,=(F)b,=(=)-b?, (6.2))
action Hamiltonian density takes the form 4 4

Tp="Tpo(RT*) s ¥pp,. (6.18

Hine= 95T+ 9, ToI L+ TR T o+ h{ TR +H.c} 1 ) )
=-uj,=—2uf,=(=%)2uf,=g>0,
+h,{TATP+H.c). (6.20 271 2 H

(6.22

Note that momentum conservation forbids forming a quartic
interaction from one normal and one anomalous current. Wwhere the upper and lower signs hold in the SP and CDW

The above Hamiltonian represents the most generghSO phases, respectively. These modifications imply a fairly dra-
invariant ladder theory with weak interactions. The five cou-matic change in the behavior relative to tBeMott and
pling constantsds,g, ,9: ,hs,h,) specify a five-dimensional S-Mott states. In fact, the SP and CDW ageal to the
manifold within the more general nine-dimensional space oD-Mott and S-Mott, respectively, in the following sense:
U(1)xXSU(2) symmetric theories. This manifold is deter- €ach is obtained from its dual counterpart by interchanging
mined explicitly by a set of linear equations, given in Ap- ¢, and ¢,_. Because of this interchange, the pair fields
pendix D, which relate the five 36) invariant couplings to  fluctuate wildly even locally, andA;A})sp=(A1AD cow
the 9 U1)xXSU(2) couplings that were introduced in Sec. Il. =0. Instead, these two phases break discg&teymmetries.
Because the S(B) manifold possesses higher symmetry, it To explore this in detail, consider the order parameters
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translation in they direction is, of course, equivalent to par-
ity), while the CDW phase breakmth translational symme-
try and theZ, particle-hole symmetry. These broken sym-
metries can be depicted easily in the strong coupling limit, as
shown in Fig. 11.

D. SO(8) symmetries and degeneracies
of the S-Mott, SP, and CDW phases

Since the four dominant phases appear on essentially
equal footing, one might suspect that tBeMott, SP, and
CDW phases exhibit S@) symmetries similar to that of the
D-Mott phase. We shall see that this is indeed the case, but
that the S@) algebras ardlifferentin each state.

Consider first theS-Mott. In the previous subsection, it
was shown that th&-Mott is related to theD-Mott by a 7
shift in ¢, . It follows that if we define
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FIG. 10. Phase diagram of the &) symmetric SZH model a

¢, t+m, a=4,
plotted in theU-V plane withJ=4(U+V) andU,V<t=t, .

andgo§= ¢4, the bosonized Hamiltonian in tf&Mott phase

Bi(x)=1[a] (x+1)a,(x)+H.c], (6.23 taskessthe form of Eqd.3.5)—(3.6)_ (vv_ith Oa:®a replaced by
03 .¢5). Consequently, a refermionization into the GN form
n(X)=al,(x)a(x)— 1. (6.24 s again possible. In particular, upon defining
The field B|(x) is the local kinetic energy, while,(x) is s 7pa, A=1.6
the local electron density relative to half filling. The two TPAT  py A=78 (6.28
PA> 1

order parameters differ in symmetry sin€(x) is even
andn,(x) is odd under a2, particle-hole symmetrg, ,(x) the S-Mott Hamiltonian takes the “canonical” GN forifEq.
—(—1)""a/ (x). Using the usual relations to rewri®,  (4.6)] in terms of thez3,. The sign changes in E¢6.29
andn, in terms of chiral operators, bosonizing, and applyingimply that the generators of the $&) symmetry in the
the semiclassical resulfsommon to both the SP and CDW S-Mott phase are different from those of tBeMott phase.

phases(6,,)=(0,.)=(¢,-)=0, one obtains For instanceG4'=GL'—G[*, whose spatial integral is not
an SQ@8) generator in théd-Mott case. However, since the
<B|(x)>~(—1)”'(005{%%,)), (6.25 Majorana fermions for the two phases are equal Aor
=1,...,6, theD-Mott and S-Mott do share a common 36)
<n|(X)>~(_1)X+I<Sin(%(ﬁp_)>. (626) SUbaIQEbra.

Similar constructions can be performed for the SP and
Since(¢,_)=0,7 in the SP and CDW phases, respectively, CDW phases. Recalling the duality of the previous subsec-
we find (Bj)sp~(—1)*"', (n))sp=0, and (Bj)cpw=0, tion, we choose
() cow~ (—1)**!. The SP phase thus breaks only the dis-

crete symmetry under translations by one lattice spaithng 04, a=1.2 ae124
HgFL: Po—H a= 3 quFL: ®a: ,,

D-Mott S-Mott & |0,., a=3
A Gaussian Pp—» AT
-— (6.29
OO0 ™ 066
v for the SP phase. Similarly for the CDW, we take
IsingI I Ising 0 12
a;:
. ar ’
multi c. p. GCDW: P a=3 (6 3@
1 a 7 B :
; +— Gaussian Q- a= 4
CDW_ _SP
and ¢ "=¢; . As before, the GN form can be retained.
SP CDW

The appropriate Majorana fermions in these cases are

FIG. 11. Schematic illustration of the four dominant phases,
drawn for simplicity in the strong-coupling limit. In th2-Mott and sp_ | TPA: A=1,..57.8
S-Mott phases, neighboring rungs contain essentially decoupled PA= Pyps, A=6
pairs. Adjacent rungs are highly correlated in the SP and CDW
phases, which furthermore break parity symmetry. and

(6.30
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7 A=1..5 TABLE lIl. Fourteen algebraic solutions of the $8) RG equa-
cow_ | TPAs ;
Mpa = . (6.32 tions.

P’r]pA, A:6,7,8
Like the D-Mott andS-Mott, the SP and CDW phases share 489s 483, 48y, 48 48, Phase
a common S@) symmetry. Moreover, th®-Mott and SP 0 0 0 0 0 C252
share an S@) symmetry, as do th&Mott and CDW.

A final calculation is possible now that the appropriate -2 2 4 1 -1 D-Mott
bosonized variables have been established. In Sec. IV and -2 2 4 -1 1 S-Mott
Appendix B, the uniqueness of tiiz-Mott ground state was -2 =2 4 -1 -1 SP
established. We also expect a unique ground state for the -2 -2 4 1 1 CDW
S-Mott phase, but have yet to establish it. In the SP and
CDW phases, discrete symmetries are broken, and one ex- 8 —3? (63 8 8 D_'\/;OFELZDSV':/AOH
pects at least a twofold degeneracy in the thermodynamic
limit. Using the techniques applied earliégauge equiva- (129 0 (24/5) 0 —(6/5  D-Mott—SP
lence of semiclassical solutiont® the D-Mott, we can de- (125 0 (24/5) 0 (6/5 S -Mott—CDW
termine these degeneracies. Details can be found in Appen- 0 0 8 0 0 Multicritical
dix B. The result of such an analysis is that tBeMott —12 0 8 +6 0 SQ5xSO3) GN
indeed has a unique ground state, while the SP and CDW _ 5 0 0 +6 0 SQ5) WZW
ground states are each exactly twofold degenerate. XSO(3) GN

E. Full set of SQ(5) fixed points
Because of the relative simplicity of the 88) invariant T_he cor_relanon length exponent is determmed_ by the sc_:almg
dimension of cogp, . In a general strong-coupling situation,

manifold (5 coupling constants versus 9 for the generalth_ . y | bl O] K i
case, it is possible to perform an exhaustive determination IS IS acontinuously variableexponent. In weak coupling,

of the possible asymptotic scaling trajectories under the RGIOWEVer, itis deTtermmed_. In particular, refermionization im-
To do so, we insert the power-law ansatz of E2j26 into  PlieS 0S¢, ~yu7'yy, which acts as a Dirac mass and has
the SA5) RG equations, EqEL)—(ES). This set of five scaling d|me_nS|on_ one. In this limit then, the correlation
coupled algebraic equations can be solved exactly, in cof€ngth é~[A[™*, with v=1. In both strong and weak cou-
trast to the corresponding set of ninéllx SU(2) equations,  Pling, the dynamical exponert=1, as determined by the
which have proved intractable. One finds fourteen solutionsguadratic bosonic kinetic energy. This typecsf 1 continu-
delineated in Table IIl. Five represent the states discussed &SIy variable critical point is known as a Gaussian model,
far: the gapless C2S2 and four dominant(8Csymmetric @S shown in Fig. 11. Of course, in neglec_:tlng the massive
phases. modes, we hav_e th_rO\_Nn out ac_idltlonal universal _physws in
Of the remainder, five represent critical points. Considefth® weak-coupling limit. In particular, these massive modes
first the D-Mott—S-Mott transition. Taking the values in have a large S®) symmetry, which can be seen by rewrit-

Table IIl, one finds that semiclassically the fielels, , 6, ing the critical interaction Hamiltonian density using Table
and 6, are pinned as in thB-Mott and S-Mott states, but !l and Egs.(D11)—(D12),

that neither thed, nor thee, field appears in the interac- 6

tion Hamiltonian. There is thus a _s_ingle gaple(sentral _ H:;r;f;s()\ZO):g Z GéBGﬁB_ (6.34)
chargec=1) bosonic mode at the critical point. That this is AB=1

indeed the critical point between tH2-Mott and S-Mott . o, weak-coupling critical symmetry is thus U)

phases can be seen by perturbing slightly away from th%< U(1) X SO(6). It mayseem surprising that this critical

scaling trajectory. If the perturbations are small, those terms$ has han th ive domi h
involving the gapped degrees of freedom will have a negli-pomt aslower symmetry than the massive dominant phases,

. X : . which enjoy S@8) invariance. This is a result unique to the
gible effect, and we need only include the couplings involv- K ling limi ith ; X .
ing the p-fields. As argued in Sec. II, ¢ terms are not  Veak-coupling imit. With stronger interactions, corrections

: . ) S P . to the weak-coupling scaling will break the 8psymmetry,
allowed by translational invariance. The low-energy Hamil- " - X " .
. . " ; ; . while leaving the U(13XU(1), critical symmetry(which
tonian density near the critical poisfter integrating out the L .
massive fieldsthus has the form results'from truly infinite-wavelength phys)cmtap_t. -
Having understood th®-Mott— S-Mott transition, it is
clear that the SP-CDW transition is essentially identical.

Hgﬁgs=8i[(ax¢p_)2+(axep_)z]—)\ Cose,_ . The Hamiltonian in this case differs only via the interchange
77 6.33 of_ = ar_1d ¢s—, Which in any case are massive at this
' critical point.
For A>0, the semiclassical minimum occurs fer,_ =0, The next two critical points are somewhat different. For

describing theD-Mott phase, while fol <0, the minimum  concreteness, consider thi@Mott«—SP transition. As be-
shifts tog,_ = 7, yielding theS-Mott phase. We expect that fore, three of the bosonic fields are massive, in this case
the general form of this low-energyitical Hamiltonian will 6, ,6,, ,6,_ . These can be integrated out, leaving the
remain valid even in strong coupling, though the Luttingerfields critical. However, herdoth 6, and the dualp,
stiffness and velocity of the criticap, . mode will shift in  appear, so a semiclassical analysis is not tenable. Instead, we
this case. What are the critical properties of this transition?efermionize this single remaining bosonic field and its inter-
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actionsafter integrating out the three massive bosdhe.,  are noninteracting. They comprise a gaplesy33QVess-
setting them to their semiclassical minimahe reduced Zumino-Witten (WZW) model with central charge=>5/2,

Hamiltonian density in this case is while the last three Majorana fermions combine to form an
_ B SO3) GN model. The interaction Hamiltonian density is
HE- L= gi 7rs s+ Ni MRe L6 (6.35  thus simply
Hereg is the finite coupling along the scaled RG trajectory, 8
andX is a deviation from the critical trajectory similar xoin Hié]&s)WZWqu:’,)GN”gA;:G GRPGP®.  (6.37

the Gaussian model above. Singés nonzero, theyps Ma-
jorana fermion acquires a gap, and only the singlg Ma-
jorana fermion is gapless at the critical point. This is a cen-
tral chargec=1/2 critical point, which uniquely identifies it
as an Ising transition. Indeed, the Ising nature of this transi- In this section we briefly consider the effects of doping
tion is very physical, given the discret®, parity symmetry away from half filling in the two-leg ladder. In the weak
broken in the SP phase. This also explains the duality becoupling limit of interest and with nearest-neighbor hopping
tween theD-Mott and SP phases found earlier: this duality isin the kinetic energy, the ladder at half-filing was argued to
nothing but the usual Kramers—Wannier duality of the Isingscale onto the soluble Gross-Neveu model, which possesses
model. As before, we expect the Ising critical behavior to bean exact global S@) symmetry. Generally, doping away
robust to corrections to the weak-coupling RG, so these trarfrom half-filling will break down this large symmetry, leav-
sitions should be in the same universality class even witling only charge and spin conservation, with the much
strong interactions. In the weak-coupling limit, the massivesmaller U1)xSU(2) symmetry. This can already be antici-
degrees of freedom again have higher symmetry, in this cageated for the noninteracting problem: When the Fermi en-
including the 7ps Majorana fermion coming from the~  ergy moves away from zeidalf-filling) the Fermi velocities
fields. The full weak-coupling critical theory is thus, in the bonding and antibonding bands will in general become
X SO(7), where theZ, theory is the conformally invariant unequal due to curvature in the energy/wavevector disper-
Ising model, as indicated in Fig. 11. sion. For weak doping, however, this effect is small. Indeed,
Not surprisingly, theS-Mott—CDW transition is also of in the relativistic model derived in Sec. Il where the disper-
the Ising variety. The “multi-critical point” in Table Ill de- sion was linearized about the Fermi points, the small curva-
scribes the case when all four phases come together attare is ignored entirely. In the following we focus on this
point, i.e., when two transition lines cross. It is simply avery low doping limit x=1—n<1), where the difference
direct product of the two critical theories above, i.e., abetween the two Fermi velocities can be safely ignored. We
Gaussian model and an Ising theory. It is possible that thesus continue to employ the linearized relativistic model.
theories actually become coupled if one reintroduces interadNevertheless, as we shall see, even within this limit doping
tions that were irrelevant at the noninteracting Fermi fixedaway from half filling breaks down the global $8) sym-
point, but we do not explore this possibility here. metry of the Gross-Neveu model, although in a rather
The remaining four “fixed points” of the S(®)-invariant  straightforward manner.
RG describe more exotic situations. We have not observed To dope we consider adding a chemical potential term to
any microscopic Hamiltonians attracted to these phases, btie Gross-Neveu Hamiltoniahi, with H ,=H—uQ, where
some of these may perhaps occur for some choices of bar@ is thetotal electron charge. This charge can be written as
interactions. We suspect that these “phases” are unstable,
and hence spurious for physically relevant situations. Never-
theless, we discuss them briefly for completeness. They are Q=2f AX( Yy Prrat ¢[1¢L1):2f dx(GE+G{.
most easily understood by using the representations in Egs. 7.
(D10)—(D14). The form of the S(b)XSQ(3) case is then

easily seen from the interaction Hamiltonian densigking  SinceQ is a global SO(8) generator, it commutes with the

VIl. DOPING THE D-MOTT PHASE

the positive sign foihs for simplicity) full interacting Hamiltonian]Q,H]=0. Thus, even foru
5 8 #0 the states can still be labeled @y which, along with all
int _ ABAAB ABA~AB the generator&”® with A,B=3,...,8, remains a good quan-
Hsoexsazen~9 Aﬁzzl GrGL +3ABE:6 GrGL } tum number. The S@) multiplets will of course be split by

(6.36  the presence of a nonzepg lowering the energy of posi-
tively charged excitations and raising the negatively charged
These interactions are precisely those of aiBRSO(3) ones.

GN model. Both of the constituent GN models are massive, The splitting of the SC8) multiplets can be conveniently
so this represents another gapped phase. The solution witlisualized in the largéN “semiconductor” picture. Of the
the opposite sign folng can be converted into the same form four fermionic particle-hole excitations of the fundamental
by the canonical transformationgs— — 7gs, SO it is also a GN fermions, only the first one is charged and is shifted in
gapped phase of this sort. The remaining two phases can lemergy. Specifically, employing the semiclassical notation,
understood similarly. Note that in these cases only the scaldhe excitations ¢1,0,0,0) carry charg€d==*=2, and are
interactionsys andhg are nonzero. This implies that the first shifted by an energpE,=+2u, as depicted schematically
five and last three Majoranas are decoupled. Furthermore, im Fig. 12. Provided this shift is smaller than the energy gap,
this case sinceg,=g,=0, the first five Majorana fermions —m<2u<m, the ground stateremains unaltered: The
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g:g momentum(r,7) and energym. As known from integrabil-
ity, these excitations interact via aattractive interaction
\\/ with the other GN fermions, including the single Cooper pair
present due to doping. Indeed, the binding energy is known
exactly and given b¥,=(2—v3)m. With the single Coo-
per pair present, as=1 magnon can be added to the system
into a bound state with the Cooper pair, costing a reduced
energym—E,=(v3—1)m. Thus the spin gap at infinitesi-
mal dopingx=0" is reduced from the undoped value rof
down to (/3—1)m. There are, of course, also unbousd
v, %‘ =1 excitations that can be created well away from the Coo-
per pair, with energyn. In fact, forx—0 the energym spin
FIG. 12. Mean-field picture of the doped 8D GN model.  excitations will dominate the spectral weight. The spectral
Only the first bandwith Q= 2) is shifted by the chemical potential. weight for the lower energg=1 bound states will presum-
For 2u>m, Cooper pairs are added to the original ground state. ably vanish linearly withx. It is worth emphasizing that the
discontinuity in the spin gap at infinitesimal dopirg 0™ is
negative energy “valence” bands remain filled and thea general feature due to the presence of a magnon/Cooper
“conduction” bands empty. In terms of electrons, the ladderpair bound state in the undoped Mott insulator, and is not an
remains at half filling. artifact of weak coupling. If such a bound state survives
Similarly, the energies of the 16 kink excitations are splitstrong coupling, as suggested by numerical RG on the two-
into 8 with energym+ x and 8 with energyn— . Of the 28  leg ladder, a discontinuity should be present.
(two-fermion boung states with energy3m, 16 are neutral It is also instructive to consider the energy gap for adding
and unshifted by the chemical potential. Of the others, Gingle electrons in the presence of the single Cooper pair.
have charge 2 and are shifted up in energy byahd the  Adopting a convention wher®>0 corresponds to “hole”
other 6 down by—2u. doping, consider the energy to add a single electron with
The situation is more interesting wheru2m. In this  charge— 1. A single electron can be created by adding a kink
case, the energy of the states in the “conduction” band forexcitation, for example, an even kink with—(@1,—1,—1,
Cooper pairs drops below zero, and the ground state will be-1)/2 in the semiclassical notation. When=0 this costs
radically altered. In the larght limit the new ground state an energym, but is shiftedup in energy for nonzero chemi-
will consist of filling up the negative energy states with acal potential:E;=m+ u, as depicted in Fig. 13. When.2
Fermi sea of Cooper pairs, as depicted in Fig. 12. Ror =m+0" and the single Cooper pair is added, the energy to
=8 the pair excitations wilhot be describable in terms of add the electron can be lowered frdd=(3/2)m by bind-
free Fermions, but one still anticipates the general picture ofing the kink to the(1,0,0,0 Cooper pair. This forms a charge
a conducting sea of Cooper pairs to remain valid. Since th@=1 hole state: an odd kink with (£,1,—1,—1)/2. The
Fermions interact for finiteN, this conducting sea will be associated binding energy equais as follows directly from
more correctly described as a Luttinger liquid. In the limit of triality (at x=0). Thus, at infinitesimalhole) doping the
very low doping, however, the Cooper pairs will be very far energy to add an electron drops try down tom/2. As for
apart and well described in terms of hard-core bosons or fregie case of the spin excitations, one expects a continuum of
fermions. In this limit, the Luttinger liquid parameters should ynbound single electron excitations, at energies abow 3
approach those of free fermions. It is probable that khe
=8 Gross-Neveu model remains integrable even in the
doped case, since the states can still be labeled by the same
good quantum numbers, so that exact statements about the For 2u>m the “conduction band” for Cooper pairs will
doped Mott insulator can be made. In the following we arebe partially occupied. In this case, one expects a continuum
less ambitious, using known results from integrability for theof low-energy particle/hole excitations created by exciting
undoped case to infer the behavior in the very low dopingpairs across the Fermi “surface.” For the D Gross-
limit. Neveu model the Cooper pairs will presumably interact with
one another, so that the semiconductor picture of a noninter-
acting Fermi sea will not be quite correct. Rather, the spin-
less gas of Cooper pairs will presumably form an interacting
When 2u>m the energy is lowered by adding Cooper Luttinger liquid. In any event, one expects a continuum of
pairs to the system. Here we consider first the cage-th low-energy excitations in the Cooper pair fluid, presumably
+0%, so that the concentration of pairs, denos, is in-  with a linear dispersion relation. One might hope that the
finitesimal. In this limit it is sufficient to consider the prop- velocity of this mode as a function of doping might be
erties in the presence ofsingle Cooper pair. The presence accessible from integrability of the doped Gross-Neveu
of even this one pair modifies the spectrum of othermodel.
excitations—such as the spin or single-particle gaps—as we It would also be very interesting to study the energy of the
now briefly discuss. spin-one excitations witHinite doping. An s=1 magnon
Consider first the spin-gap, i.e., the energy of the lowestadded to the system will interact via an attractive interaction
lying spins=1 excitation. In the undoped case, the lowest-with the sea of Cooper pairs. For infinitesimal doping (
lying triplet states are theys 45 fundamental fermions, with =07) the corresponding spin-gap energy was lowered due

0
0

B. Excitations with many pairs

A. Excitations with one pair present
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As 4 IT1,|E) are also exact eigenstates, but with enelgy2u,
provided they are nonvanishing. Denote the exact ground

state of the doped ladder witth Cooper pairs afN), which

satisfy H ,|[N)=0. Adding an additional Cooper pair is ac-

me complished with the operato® ; (x)=0g(x) w}(x). The
zero-momentum Fourier transform of this operator; (k
=0), creates a state with+ 1 pairs, which can be decom-
(V3-1)mc¢ posed as

O7(k=0)|Ny=c|N+1)+---, (7.3

where the dots denote excited states Wth 1 pairs present.

Following Zhang, we can use the operators to rotate Coo-

per pairs at zero momentum into a triplet of magnons at
X momentum(r, ), since

- T —
FIG. 13. Spin gap as a function of dopig The spin gap is [Ha, ¢1(3)]=v274(x), 7.4
discontinuous ax=0 due to the formation of magnon-Cooper-pair \yith a=3.4.5. Acting with thell operator on Eq(7.3) and
bound states. using the above commutation relation and the fact that

. . ..commutes withlI,, one obtains
to the formation of a magnon/Cooper-pair bound state. With a

many pairs present, this energy will presumably be further c
lowered, as depicted schematically in Fig. 12. Ou(k=0)|Ny= —TI4N+1)+---, (7.5
Finally, we consider briefly the spin-one excitations at V2

energies above threshqld. These .states' Wpuld cqntrlbute Where 0.(X) = OLX) na(x). The left-hand side is a spin-1
the spin spectral function, accessible via inelastic neutron’. . . .
Lot triplet of states with momentungs,#), built by adding a
scattering in the doped ladder. Generally, we expect a €O anon to theN-pair around state. Due to the ) sym-
tinuum of states above threshold, corresponding, for eXFnetgr the stateg ongthe riaht siaH IN+1), are ezact
ample, to adding a magnon @) and simultaneously ex- ei er):,states with ener Asgar ued ?) Zhar,1 the equal-
citing multiple “particle-hole” pairs in the(Cooper-paiy it gbetween the left ar?gﬂr? ht sidges im )I/ies thagt’the triqlet of
Fermi sea. This continuum should contribute to the spin y ; ; 9 PlI€ © Inp
agnons will contribute a delta peak in the spin-spectral

spectral function at any given momentum. For example, al |nction at ener 2—the 7 resonance
momentum(sr,7), multiple particle-hole pairs with zero net "ay 7 : .
However, this conclusion rests on the assumption of a

momentum will contribute spectral weight at all energles‘r%onvanishing overlap betwe@,|N) and I[N+ 1). But in
t

above threshold. Due to this continuum of states, we do no o DA
expect any delta functions in the energy dependence of th e thermodynamic limit, the_ squ_ared overlag?, is simply
spin spectral function in the doped ladder. e (Bosg condensate density, since
This expectation runs contrary to arguments put forward _ ol —
by Zhang for the existence of a sharfresonance in the spin c=(N+1]0; (k=0)|N). (7.6
spectral function in the superconducting phase of modelgvhile nonzero in a @ superconductor, for the two-leg lad-
which exhibit an exact S@G) symmetry. Zhang's argument der the condensate density is zero, and the argument for a
has recently been applied to the dop@dwer-law super-  delta-functions resonance is invalid. The vanishing conden-
conducting phase of the two-leg ladder by Scalapino, Zhangsate density is a general property af $ystems which fol-
and Hanke Below, we briefly reconsider Zhang's argu- lows from the Mermin-Wagner theorem in the thermody-
ment for the sharpr resonance, and show that in addition to namic limit. For finiteN at fixed pair density, we expectto
Sq5) Symmetry, it relies on the existence ofandensatén decay like an inverse power of the System |ength
the superconducting phase. Being one dimensional, however, For this reason, we expect thatfiaite length S@5) in-
a true condensate does not exist in the “superconducting’ariant 1D model exhibits a(w—2u) peak in the spin
phase of the tWO-Iegged ladder. In our view, this invalidate%pectra| function at momentu[ﬁ?ﬂ'w) with We|ght (Coeffi-
the argument for a sharp delta-functianresonance in the cjenp decreasing as some power?. Zhang has suggest¥d
doped ladders, even in the presence of exad556ymme-  that the spin spectral function may have a corresponding
try. algebraic singularityin frequencyin an infinite system. To
Zhang's argument for ther resonance rests on the fact address the fate of this finite-size peak in the thermodynamic
that thew operators, defined in E¢6.4), being global ST5)  |imit, we consider now an approximate calculation of the
[and S@8)] generators, are exact eigenoperators even withjopedspin-spectral function in the infinite system.
nonzero chemical potential: To this end, we must determine the GN operator content
of the lattice spin operator. Using the techniques of Sec. IV,
[H, Ha]=2pull,, (7.2 it straightforward to show that the decompositionSf(x)

where H,=H—uQ and the subscript labels the three contains a term
components of ther operators. This implies that for any . ix "
eigenstateH ,|E) = E|E) with energyE, the triplet of states ST (X)~(=1) T O«(X) hopt- - . (7.7
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Of course, many other operators are also present, but givierms in Eqgs.(7.10)—(7.12, performing the Fourier trans-
either negligible or identical contributions to the spectralform and analytically continuing to real frequencies gives the
function in the regime of interest. In tH2-Mott phase, the spin spectral function

string Os has negligible qualitative effects in correlation

functions, since the bosonic fieldg are all lockedi.e., only A (7K, ;)

weakly fluctuating aroundf,=0 in that case. In the doped e iPxH[o—e(prk—kp)+id]r
system, however, there is an important modification toéhe ~Im f dxdpdr T (),
field. Since the derivative of this field is just the pair density (x*+7%)

[Eq. (4.43)], its average value has a mean slagh(x)) (7.13

=—2kgX, wherexg=m(1—n)/2 is the Fermi wave vector ) o ) )
for the sea of Cooper pairs; recall that-h is the concen- where §=0" is a positive infinitesimal. Singular behavior
tration of holes in the system. Furthermore, there will becan only arise from the large, 7 power-law behavior of the
fluctuations off; around this mean value, corresponding todenominator. For large, the oscillating exponential implies
the density and phase waves of the Cooper-pair fluid in théhat the integral is dominated lp~0, so that the dispersion
C1S0 state. €, can be linearized around this point. Doing so, phandx

To account for both these effects, we redefifigx) integrals can be readily performed. Up to an overall constant
——2keX+ 0,(x), treating the shiftedzero mean 6, field  Prefactor, one finds
as a free Bose field, as appropriate for a free Fermi or

Luttinger-liquid system. The remaining thre,(0,6,) AYF (K, 7 @) ~Im fmdﬂ;K/ze[Wq(kaF)ﬂa]T_
fields remain locked, and we therefore set these to zero in- ~ ° Y 0
side the Jordan-Wigner strin@;. This gives (7.19
S (x)~el(mxE)xctimlgl 91/2¢'2rR_ (7.9 This integral can be related to a Gamma function by analytic

continuation. Carrying this out carefully gives the final
As carried out for the undoped case in Sec. V, the spin speanean-field result
tral function can be extracted from the analytically continued
Fourier transform of the imaginary time spin-spin correlation AQ"F(w— K, w)~|o— e (k—kg)| ~1TK?

function
[w_El(k_KF)]. (713
- +
S N=(§ (%13 (0.0). 79 As suggested above, E(Z.15 indeed exhibits an alge-
Using Eq.(7.8), one then finds braic singularity. For momentuifar, ), k=0 above, and the
Fermi-level conditione,(«x)=2u for the Cooper-pair fluid
Sy (X, 7)~e (T rkpx=ia(i=1") indeed implies the singularity is located@t= 2, identify-
D81, 1)~ 81(0D) N ing it with the putative “pi resonance.” Note, however, that
X(e WA Yor(X, 7) P12r(0,0)). within this approximation identical “resonances” appear at

(7.10 all momenta, including éower-energy onatk= «g. More-
over, the resonance becomes more singular when the Lut-
To proceed, we require a calculation of the above expectinger parameteK decreases, approaching a delta function
tation value. The simplest natural approximation, which willasK—0, whereas the pi resonance should approach a delta
be our first attempt, is to decouple the chaffjeand spin(2)  function in the opposite limit oK—o where the Cooper-
sectors, calculating th@, correlator as appropriate for a Lut- pair fluid develops off-diagonal long-ranged order. Thus, it is
tinger liquid (i.e., from a free Bose theonand they, cor-  unclear whether the above resonance for tdeniodel has
relator using the “semiconductor” free-fermion operators. Inany connection with the two-dimensional pi resonance.

particular, one finds Moreover, further reflection on the nature of the mean-
_ field approximation used above, leads us to question the va-
(e~ =01000) — (x24 72)=KI4 " (7.11)  Jidity of the singular behavior at finite frequency. While it

whereK is the Luttinger parameter of the Cooper-pair fluid; might well be correct for th© (N =) C.;N model, the fun-
damental fermions, e.g., Cooper pairs and magnons, are

K=1 corresponds to free fermions, as is appropriate forver}étrongly interactingfor the N=8 case of interest, as evi-

low dopings. Here we have set the Fermi velocity of the L
Cooper pair sea to one. The fundamental fermion correlatogencﬁd’ €.9., bydthhé(}j) binding ene].:r%y ffor t(:]e masé?T .
is approximately ound states and the degeneracy of the fundamental fermion
and kink excitations in th®-Mott phase. While interactions
dp . will not significantly modify thed, correlator abovedsince
(or(X,T) z//;R(O,O))MF~f py ePaPre(r), the Cooper-pair fluid remains a Luttinger liquidhey would
& (7.12 appear to have a drastic effect upon theGreen’s function.
' In general, this Green’s function describes the propagation of
where O is the Heaviside step function. To simplify Eq. a single massive injected particle into and interacting with a
(7.12, we have neglected to include the mean-field “coher-Luttinger liquid. Similar problems have been extensively
ence factors.” Because these are nonsingular, their neglestudied® and one finds that the massive particle will gener-
only modifies the final result by an overall smooth ally radiate both energy and momentum into the Luttinger
momentum-dependent amplitude factor. Multiplying the twoliquid, decaying in the process. From such decay processes,
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we generally expect a finite lifetime and hence broadening of ) 3

the algebraic singularity above. For larje the interaction ufy= 27U+ 417U+ gbi'zu‘fz, (A7)

and hence the broadening would be small, but we see no

reason for this to be the case fbd=8. Furthermore, one . 3 3

might naively expect that the minimum energy singularity at  uf,=2b%,uf,— gb‘l’lui‘er 4bfuf,+2 fhuf,+ gfi'zu‘{z,

k= k¢ would survive, since it is at the bottom of tlfg band (A8)

and thus naively has no states to decay to. The mean-field

approximation, however, misses the existence of bound ;o _ _5po 0 P |0 OO o P o P

st?a[ies, including the Cooper pair-magnon bound state, which 12 2bi,uly+ 2bi,Ury— biilizp+ 4baihy 2 T,

lies below the band minima at very low doping. In general, +2 ful,— fluss,. (A9)

we expect that even the= k fundamental fermion can de- : ] al _ _ _

cay into this bound statéradiating excitations in the Lut- Hereg=2mvdg/dl with b=e" the dimensionless rescaling

gebraic singularity even here. tions describe the renormalization of momentum noncon-
In summary, the above argument suggests that abov@erving Umklapp processes.

threshold the spin-spectral function at finite doping will be

smooth as a function of energy, with no singularities. Since APPENDIX B: GAUGE REDUNDANCY

this conclusion is based on a number of physical arguments

and approximations, we cannot rule out the possibility of

ﬁgmgr gggfgzr%aloj:gg&a; f;rrl;gtrlg}blg Sﬁzlnncl))r/nzwgﬁ'lgnb}tate. In terms of the four boson fjelﬂg, the semiclassical

much firmer standing is the spin-gap threshold energy, whicﬁ’m“f?d_ st_ates correspon_d to spatially uniform values chosen

is presumably a universal function of dopirdor the Gross- to minimize the potentialV(#) = =02, COSE,)COS(E).

Neveu model. One might hope that the precise functionaﬁom'Ons included, =2mn, as well asy=2mn,+ m for ar-

form for this energy gap is accessible via integrability. itrary integersn, . B.ut as we shall see, in most situations
these multiple solutions actually correspond to the same

physicalstate. To see which solutions are physically equiva-
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To establish whether or not two different semiclassical
APPENDIX A: RG EQUATIONS solutions, 6, and 6, are actually physically equivalent we

_ ' . ' proceed as follows. For the givespatially constantshift
For the weakly interacting two-leg ladder with particle- 59,=(9,— 6,)/2m, we ask whether it is possible to choose
hole symmetry at half-filling there are nine marginal non-appropriate(spatially constantshifts 5o, so that the chiral
chiral four fermion interactions, as discussed in detail in Secfig|ds épi,/27 are changed by integers. The choice &ar,
II. The leading-order renormalization grolRG) flow equa- s ynconstrained, since the full interacting Hamiltonian is
tions for the corresponding nine interaction strengths are  jnyariant undemrbitrary spatially constant shifts in the four
p 2 3 ,n0n2 2,3, 012 @, fields. If it is possible, then the two semiclassical solu-
b11= —(b12) "~ 15 (DT + AU+ 2 (U, (AD) tions are physically equivalent. For physically inequivalent
- - - . - - states, it will not be possible to choo$g, to give the re-
b11: - 2b’{2b12— %(blz 2_(bll 2—8u’1’2u12— 2(“12)2* quired integer shifts. :
(A2) To implement the above procedure we need an expression
. Lo oo relating the bare chiral fieldgp;, to 6, ande, . This can be
bf,= — 2bf b, — §bT b7+ 2b0,f 1o+ FbT,f 1o+ 16ufuly, obtained from : : :
(A3) 1
s o o T WO o o ¢P'a:Z((P ++a‘P(r+_qa’(Pa—_Q<P 7)
1= —2b{;bT,— 2b7,bT;— bT,bT;+ 16ufui,+2 f1,bT, I L pP( . ) ) ? 6.) (61
+3z tab,.—qab,-—q6,-),
+ 207, 15— b1t 1o, (A4) . e ) _ _ ’ .
whereq=(—1)'=1,—1 for bonding and antibonding bands,
fll’zz(bliz)2+ 2 (07,)%+16(u8)) %+ 4(u8,) 2+ 2 (ud,)?, respectively. For theD-Mott phase the relation between
(A5) 0a,¢, and the fieldsd,. ¢, is given explicitly in Eq.
(3.9. In the S-Mott phase, the equivalence &f=¢,_ is
: 1 modified to beé5= ¢ ,_ -+, but this 7 difference does not
o _ PO _ (RO \2__ (§0\2 P T _ Tg\2 4 P ’
2= 20175~ 5 (012"~ (T1) "+ Bul Uz 2(U)", effect theshifts 66, betweendifferent semiclassical states.
(A6)  Thus the ground-state degeneracies in eMott and
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S-Mott phases must necessarily be the same. In Sec. B dbtains 0P g,— 60 ra=4(M)a,N,a. Upon combining with
below we show that both of these phases have unique grounge right sector of Eq(B5) one obtains

states. It is necessary to consider the SP and CDW phases

separately(in subsection B2 beloyy since there is a non- 80 ra=2Nra— (M) 2N p - (B9)
trivial modification in the relation betwee#fi,, ¢, and the

fields 6,-,¢,~. As we shall show, in these latter two Two semiclassical solutionéwhich determines®g,) are
phases the ground state idwofold degenerate— then physically equivalent provided these four equations
corresponding physically to the spontaneous breaking of &ave solutions fointeger N-.

discrete parity symmetrisee Sec. Al of the semiclassical solutions take the form,
=2n,m or 8,=(2n,+ 1)7 with arbitrary integers,. It is

1. D-Mott and S-Mott phases straightforward to show that foeiny two of these solutions

the differencesd, corresponds t@¥®y,, which are either

In the D-Mott and S-Mott phases, shifts in the field,
and ¢, induce shifts in the chiral fieldsj¢p;,, of the gen-
eral form

even integer for alla=1,...,4 or all oddintegers. When
they are even integers, E¢B9) can be solved for integer
NRga by takingN, ,=0. For odd integeb® g, a solution with
Sbpin=2P(Ap)apdfp+ (Ap)and@p (B2) integerNg, is also possible by taking, for examplbl, ,
o . = 5&1 .
wherea=17,1|,27,2| labels the band and spin indices and e have thereby established the physical equivalence be-

b=1,...,4labels the four flavors of the sine-Gordon bosons.tween all of the semiclassical solutions. This implies that the
Here and below, all shifts will be measured in units @20 p-Mott and S-Mott ground states are unique.

that, for exampled¢p=(p— ¢')/27r. The matricesAp can

be explicitly constructed by using Eq®1), (3.3), 2. SP and CDW phases

11 1 P In the SP and CDW phases, the relation betwégnp,

1 -1 -1 P and ¢,. ,¢,. are changed, so the above conclusions are
(Ap)ap= 1 1 -1 —-p (B3) modified. In particular, one has

1 - 1 1 - P 0§P: (p"__ , (ngz 00__ s (Blo)

It will be convenient to separate out the two contributions. DW_ ,SP CDW__ .SP:
) o . i the SP phase anéf®V= 65"+, ¢3°V=65" in the CDW
icnogmmg from the shifts i, and ¢, respectively, by defin- phase. Because the boson fields are defined differently, the

matrix Ap which relates the two sets of fields in E®2) is
80 pa=P(Ap)356,, Pp,=(Ap)®5¢,. (B4)  modified. The appropriate matrix in this case, dendigd is

given by
Comparing two semiclassical solutiors, and ¢, , deter-
mines the shifts$®,,. These two solutions are physically 1 1 P P
equivalent, provided shiftdo, can be chosen so that the 1 -1 -p P
following eight constraint equations are satisfied: (Ap) ap= 11 5 5 (B11)
®Pa+ 5(I)pa:4Npa, (B5) 1 -1 P —P

with integer No,. In this case, all eight shift$¢p;, are -

integers, and the electron fields are left unchanged. Notice thatAg=Ag, although the left matrices differ in the
Since the four shiftsge,, determineboth right and left third. column. Similarly, the matriM is also modified, be-

vectors,6®r,, 6P 5, these two vectors are not independent,coming

and similarly for thed shifts. Indeed one can see that

. 0 0 2 0
M) .= B12
50 a=— (M)3530 1, ®7) M= 2 0 0 0 (12
with M=2AzA * or 0200
1 -1 1 1 Physical equivalence between two semiclassical solutions
1 1 for the SP or CDW phases is, once again, established by
(M) p= (Bg) finding a solution of Eq(B9) with integerNp;, , except with
11 1 -1 M replacingM. As before, the difference between any two of
1 1 -1 1 the semiclassical solutions leads to either even integer or odd

integer 60g,. For even integed®g, a solution is again
We can now use the eight constraint equations to elimipossible by takindN, ,=0 and choosing appropriate integers
nate &b and arrive at four equations fa¥®. To this end, for Ng,. However, a solution in the integersrist possible
upon multiplying byM on the left sector of Eq(B5), one  for two semiclassical solutions differing by an odd integer
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A useful property of the spinor representation is its “re-
semiclassical solutions would thus correspond to physicall)il%ab);r r;ISso mogzgs trrgaélg;hbera Cg:éu%afquir\?:reiie&t]zté?na

distinct phases. N ) » - . .
The fact that the ground state is actually twofold degen-unltary transformgnpn to ihe orlglnal representation. This
follows because it is always possible to find a matix

erate can be established as follows. Consider two specifi@ ) o ;
semiclassical solutionsg:=0 and #2=275,,. One can which satisfies the properties

readily show that the shift vect@i® 2 connecting these two R2=—-1 R l1=R'=R'=-R

states is an odd integer vector, so that these two states are ’ ’ (CH
physically distinct. Next consider an arbitrary third semiclas- _ _

sical solution 3. If the relative shift vector between the first RTTHR=—(T*)*, RTT*R=T"".

and third solutions$@3, is even then the physical states are For N=5 with our particular choice of Dirac matrices in Eq.
equivalent. If, on the other handP.’is an odd integer, then (C4), the matrixR is simply

6023 is necessarily even, and the second and third solutions

describe the same physical state. It is thus clear that there are 0 1
only two physically distinct ground states in the SP and R=(_1 0),
CDW phases. As discussed in Sec. VIl this twofold degen-

eracy corresponds to a spontaneous breaking of a discrefghere1 is the two by two identity matrix. The matriR is

shift vector 80 g, (sinceM N, ;, is always odil Two such

(C6)

parity symmetry. useful in constructing irreducible representations of 30
As we have seen in Sec. VI, these abstract matrices can be
APPENDIX C: GAMMA MATRICES AND SPINOR elevated to physical operators by sandwiching them between
REPRESENTATIONS two spinors The useful details are already given in the text

. ) ] ) ~of Sec. VI. Here we provide some reasoning and motivation
In this appendix, we discuss some technical details ofor the choice of spinor taken there. For convenience, we
eral, there are two types of representations for I$0O(The

first are tensors, which transform like products of vectors.
Irreducible representations are then found by taking symmet- ¥ (k)=
ric and antisymmetric combinatiori¥oung tableaux How-
ever, to describe howcomplex fermions transform under whereN= (r, 7). Here , is a complex function with abso-
rotations, the second representation, the spinor one, is nec§gte value one, chosen by Rabetit al®® to haveD-wave
sary. It has already been. used in construc;ing.invariants igymmetry in two dimensions. As discussed in Sec. VI, this
Sec. VI, but here we review the mathematics in somewhaf; o plays no role in the case of the two-leg ladder, and can
more technical d‘?‘a"' n order to allow the_ reader to per_formoe set to unity. At first blush, the particular choice of spinor
concrete calculations if he or she so desires. To explain thg,hears rather arbitrary. It is not, for several reasons. At half
spinor representation, let us introduce a seNajeneralized  fjjjing, the system is particle-hole symmetric. For every hole
Dirac matrices that obey the Clifford algebra, excitation at momenturk created bya(k), there is a particle
excitation counterpart at momentukt- N created bya'(k
—N). Parity symmetry implies there is also a particle exci-
tation at the opposite momentuik+ N. Because these ex-
citations occur symmetrically, they are chosen as upper and
Tower components in the spinor. The use of the parity sym-
metry is not essential. However, it is rather convenient for
i later analysis in weak coupling because, by such a construc-
AB—_[TA 8. (c2)  tion, all components have the same chirality, i.e., act on the
4 same side of the Fermi surface. Since the four-component
spinor ¥ (k) contains excitations at bothand —k+ N, the
momentunk is only allowed to run over half of the Brillouin
zone. The halved region in momentum space is also known
as the folded Brillouin zonéshown in Fig. 9. Finally, one
[TABTCPT=i(Sapl B~ acl B — 8gpl "+ 65 I™P). would like the spinor to obey canonical %nticommaltation re-
(C3) lations so that it annihilates or creates fermionic excitations.
n‘{'his is the origin of the constraint o#h, : direct calculation
verifies that, providedd,|?=1, the canonical anticommuta-
tion relation is satisfied,

(C7)

a,(K)
@al(—k+ N))'

{TATB}=26,5, (C1

where A,B=1,2,..,N. We then construct thé&(N—1)/2
generators defined as commutators between all pairs of the
Dirac matrices,

It is easy to show that these generators satisfy theNSO(
commutation relations

For N=5, we choose a specific set of matrices to represe
the S@5) group. The minimum dimension of a set of five
matrices that satisfy the Clifford algebra is<x4.. Our par-
ticular choice is

{Wa(k), WK} =(2m) 80(k—K').  (C8)
rie 0 oy r2— 0 oy [345_ —o 0 Further straightforward algebra demonstrates that when the
—ioy O o, 0 0 -0/ spinor satisfies canonical anti-commutators, the currents in

(C9 Eqgs.(6.14—-(6.18 satisfy appropriate Kac-Moody algebras.
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This exercise, whiqh we do not reproduce here, verifies that IRI + T LT =4(3ro1di 21+ Iridi 1), (D4)

these currents are indeed &Dscalars, vectors, and tensors,

as indicated in Sec. V. . . . TRIP+ IR I = 16(Irodi o1+ Jradi12) — 2(1 sl 122
We conclude this Appendix by obtaining expressions that

relate the 28 S®) currents defined in Sec. VI, to the 28 ool L1+ 1 1l root 1 ool R11). (D)

SO8) currents,GAE, introduced in Sec. IV. These relations
can be determined by bosonizing the (SCcurrents, rewrit-
ing in terms of the GN bosong, and ¢, and the Klein
factors, refermionizing, and finally changing from Dirac to
Majorana fermions. For example,

For a given set of five S@) invariant interaction param-
eters, these operator identities enable us to obtain the corre-
sponding values of the nine forward, backward and Umklapp
scattering amplitudes;

1
1 , bfi=gs+ >0, bf=—49,- 29, D6
j'%l:EQXQ"Pw:'//Eﬁ Ypps =i7p27p1=Gp'. (C9) 1= 9T 50 1 9y~ 20 (D6)
The general relations can be conveniently presented in the bi,=4hs, bi,=—16h,, (D7)
following form: L
f0,=— 0t 50 T5=40,—20;, D8
s | TP —V4 12~ 9T 50t 12— 49 Ot (D8)
G-y s (C10
" A2 u=-2h,, uh=g,, uf=2¢. (D9
; ; AB_ 7AB
The 5x5 antisymmetric tensor matriXp"=Jp" for A#B  From these, and the nine RG flow equations in Appendix A,
and it is zero forA=B. The 3x5 vector matrix is one can obtain a closed set of five RG flow equations for the
5 five SQ5) invariant coupling constants, given explicitly in
T 5 Appendix E.
VSB=_| —-ImZp| . (C1) It is also instructive to reexpress the five GDinvariant
P ReZ} c interactions in terms of the §8) currents—specifically the

28 SA8) generatorsG*B=iny,ng, comprising the vector
Finally, the 3<x 3 antisymmetric scalar matrix is (fundamentdl representation of S@). For the first three
SQ(5) interactions one finds

0
1 - _ 78~ 78
S=—3 ReZp 0 , (C12 JRIL=—4GRrG", (D10
PimZ» PJ» O 5
ThTA=42, GREGP®, (D11)
A=1
APPENDIX D: SO(5) CURRENTS IN SU(2)xU(1)
AND SO(8) NOTATION B AB 25: ABAB
= Gr G| ". D12
In Sec. VI the most general set of & invariant inter- RIS 40 CRGL (b12)

actions for the weak-coupling two-leg ladder were expresse . 78 ~AG AB
as products of right and left-moving $®&) currents; see Eq. g‘s expected, these expressions show @& G*°, andG

(6.20. Here we reexpress these five interactions in terms o?for A,B=1,...5 transform under S@) rotations as scalar,

charge and spin currents with lowef1yx SU(2) symmetry, }[/ector, ano:(ranlgtcs\{;c)' tensor,t r etspec;[ilwrally. T:eir;e”mﬁmg\g
which were introduced in Sec. Il. The products of (SO WO anomalous Invariant interactions can similarly be

scalar, vector, and tensor currents are re-expressed as reexpressed as

TrIL=(Ir11— Ir22—=2) (11— J22— 2), (DY) TeI + TRI{=B(GRGY+ GRGL), (b13
TRIt=4(Ir1—Ire2) (IL11—Iu20) + 2( ol Laat 1 il reo). TATA+TAITAT= _g i (GATGAT+ GASGA®),
(D2) A (D14)
TRBT = % (Jr11t Ira2=2) (111 J122—2) +2(JR11 gnlj sleegg:g,a:(s;;:;?cgﬁmm wansform as S scalars
+3r22) (Juart Ji20) 4l kel Lot il o). APPENDIX E: SO(5) RG EQUATIONS
(D3)

For the weakly interacting two-leg ladder at half filling,
Notice that these three interactions conserve the number oéquiring S@5) symmetry reduces the number of marginal
particles in each band. The remaining two (SOinvariant  four-fermion interactions from nine down to five. Due to
interactions, involving anomalous scalars and vectors, scattaymmetry, one expects the RG flow equations to close in the
particles from one band to the other. In terms of themanifold of SQ@5) invariant models. This closure can be
U(1)XSU(2) charge and spin currents, they are demonstrated explicitly by combining the expressions ob-
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tained_ in Appendix D that specify the five-dimensipnal QU=89v9t—3mshv' (E2)

SQ(5) invariant manifold with the general RG flow equations

in Appendix A. When reexpressed in terms of the (90 .

couplings, the nine RG flow equations are seen to be 9,=89>+697 +64n?, (E3

redundant—only 5 are independent. Thus confined to the

SQ5) invariant manifold, the set of independent RG flow o _

equations can be written as hs=—4gshs—20g,h, , (E4)
gs=—16hZ—80h2, (ED) h, = — 4g,h.— 4g.h, + 8g;h, . (E5)
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