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Exact SO„8… symmetry in the weakly-interacting two-leg ladder
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We revisit the problem of interacting electrons hopping on a two-leg ladder. A perturbative renormalization-
group analysis reveals that at half-filling the model scales onto an exactly soluble Gross-Neveu model for
arbitrary finite-ranged interactions, provided they are sufficiently weak. The Gross-Neveu model has an enor-
mous global SO~8! symmetry, manifest in terms of eight real Fermion fields that, however, are highly nonlocal
in terms of the electron operators. For generic repulsive interactions, the two-leg ladder exhibits a Mott
insulating phase at half-filling withd-wave pairing correlations. Integrability of the Gross-Neveu model is
employed to extract theexact energies, degeneracies, and quantum numbers ofall the low-energy excited
states, which fall into degenerate SO~8! multiplets. One SO~8! vector includes two charged Cooper pair
excitations, a neutrals51 triplet of magnons, and three other neutrals50 particle-hole excitations. Atriality
symmetry relates these eight two-particle excitations totwo other degenerate octets, which are comprised of
single-electron-like excitations. In addition to these 24 degenerate ‘‘particle’’ states costing an energy~mass!
m to create, there is a 28-dimensional antisymmetric tensor multiplet of ‘‘bound’’ states with energy)m.
Doping away from half-filling liberates the Cooper pairs, leading to quasi-long-ranged-wave pair field corre-
lations, but maintaining a gap to spin and single-electron excitations. For very low doping levels, integrability
allows one to extractexact values for these energy gaps. Enlarging the space of interactions to include
attractive interactions reveals that there arefour robust phases possible for the weak coupling two-leg ladder.
While each of the four phases has a~different! SO~8! symmetry, they are shown to all share a common SO~5!
symmetry—the one recently proposed by Zhang as a unifying feature of magnetism and superconductivity in
the cuprates.@S0163-1829~98!04028-4#
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I. INTRODUCTION

Since the discovery of the cuprate superconductors1 there
has been renewed interest in the behavior of weakly do
Mott insulators.2–4 There are two broad classes of Mott i
sulators, distinguished by the presence or absence of m
netic order. More commonly spin rotational invariance
spontaneously broken, and long-range magnetic order, t
cally antiferromagnetic, is realized.5 There are then low-
energy spin excitations, the spin-1 magnons. Alternative
in a spin-liquid Mott insulator there are no broken symm
tries, the magnetic order is short ranged and there is a ga
all spin excitations: a spin gap.

In the cuprates the Mott insulator is antiferromagnetica
ordered, but upon doping with holes the antiferromagnet
is rapidly destroyed, and above a certain level supercond
tivity occurs. Below optimal doping levels, there are expe
mental signs of a spin gap opening at temperatures
above the transition into the superconducting phase.6–8 The
apparent connection between a spin-gap and supercondu
ity has been a source of motivation to search for Mott in
lators of the spin-liquid variety.

Although spin liquids are notoriously difficult to achiev
in two dimensions,9 it was realized that quasi-one
dimensional ladders would be more promising. Particular
tention has focused on the two-leg ladder.10 At half filling
in the Mott insulator, the spin excitations can be describ
by a Heisenberg antiferromagnet, and due to the tende
PRB 580163-1829/98/58~4!/1794~32!/$15.00
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for singlet bond formation across the rungs of the ladd
spin-liquid behavior is expected.3,4,11,12 In the past sev-
eral years there have been extensive analyses of two
ladders, particularly the Hubbard13,14 and t-J models,3,15–17

both at half-filling and with doping. Based on numeric
methods, including Monte Carlo and density-matr
renormalization-group,3,4 as well as analytic approaches
weak coupling,18–25 the basic behavior is established. A
half-filling there is a spin-liquid phase with a spin gap. Up
doping, the spin gap survives, although smaller in mag
tude, and the system exhibits quasi-long-range supercond
ing pairing correlations, with approximated-wave symme-
try. This behavior is reminiscent of that seen in t
underdoped cuprate superconductors.

There are a number of experimental systems that can
described in terms of coupled two-leg ladders, which exh
a spin gap in the insulating compound.26–28 These materials
are often very difficult to dope. In one case, doping has
parently been achieved, and under a pressure of 3 GPa
perconductivity is observed below 12 K.29,30 Carbon
nanotubes31 constitute another novel material which can
modeled in terms of a two-leg ladder.32–34 Specifically, the
low-energy electronic excitations propagating down a sing
walled nanotube can be mapped onto a two-leg ladder m
with very weak interactions, inversely proportional to th
tube radius.

An obvious advantage of such low-dimensional correla
electron systems is~relative! theoretical simplicity. Indeed
1794 © 1998 The American Physical Society
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in one dimension many correlated electron models, includ
the Hubbard model, are exactly soluble.35 Unfortunately, the
Mott insulating phases of these one-dimensional mod
typically have gapless spin excitations, and upon doping
not exhibit pairing. To date, we are unaware of any exac
soluble two-leg ladder models that exhibit a gapped sp
liquid ground state.

In this paper, we revisit models of interacting electro
hopping on a two-leg ladder, focusing on the behavior n
half filling. For genericshort-range potentials, we derive
perturbative renormalization group valid for weak intera
tions, much smaller than the bandwidth.18,19 Remarkably, at
half filling the renormalization-group transformation sca
the system towards a special model with enormo
symmetry—the SO~8! Gross-Neveu~GN! model.36 Scaling
onto the GN model occursindependentof the initial interac-
tion parameters, provided they are weak and predomina
repulsive. Thus, for weakly interacting two-leg ladders
half-filling universal low-energy properties are expecte
Specifically, all properties on energy scales of order a ch
acteristic GNmass~gap! m and distance scales longer tha
or of orderv/m ~wherev is the Fermi velocity! are universal
and determined by the GN model. In terms of microsco
parameters, the GN mass is of orderm;te2t/U, wheret is
the 1d bandwidth andU is a typical interaction strength, bu
is more profitably treated, along withv, as a phenomenologi
cal parameter. The universality predicted by the renormal
tion group can be profitably exploited because the SO~8! GN
model is integrable,37–39 so that many of these univers
properties can be computed exactly. To our knowledge,
is the first integrable model for a Mott-insulating spin liqui
It describes a state we call theD-Mott phase, because th
Mott insulator has short-range pairing correlations with a
proximated-wave symmetry. We now summarize the resu
obtained from the SO~8! GN field theory.

The primary input from integrability is the complete e
citation spectrum.37–40 The excitations of the GN model ar
comprised of ‘‘particles’’ ~i.e., sharp excitations with a
single-valued energy-momentum relation! organized into
SO~8! multiplets, as well as continuum scattering states
these particles. As expected for a Mott-insulating spin liq
with no broken symmetries, each of these excitations is se
rated from the ground state by a non-zero gap. The low
lying particles come in three octets, all with massm, i.e.,
dispersing ase1(q)5Am21q2, whereq is the deviation of
the particle’s momentum from its minimum energy valu
One vector multiplet ~conveniently denoted formally by
vector of Majorana fermionshA , A51,...,8! consists en-
tirely of collective two-particle excitations: two charge62e
‘‘Cooper pairs’’ around zero momentum, a triplet of spi
one ‘‘magnons’’ around momentum~p,p!, and three neutra
spin-zero ‘‘charge-density-wave’’~or particle-hole pair! ex-
citations. SO~8! transformations rotate the components of t
vector into one another, unifying the pair, magnon, a
charge-density-wave excitations.55,56 Indeed, the SO~5! sub-
group rotating only the first five components of this vector
exactly the symmetry proposed recently by Zhang41 to unify
antiferromagnetism and superconductivity in the cupra
This vector octet, referred to as ‘‘fundamental’’ fermions
the field-theory literature, is related by a remarkabletriality
symmetry42,43 @present in the SO(N) GN model only forN
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58# to two other massm octets: spinor and isospinor mu
tiplets, called the even and odd kinks. These sixteen parti
have the quantum numbers of individual quasielectrons
quasiholes. The triality symmetry thus goes beyond
SO~8! algebra to relate single-particle and two-particle pro
erties in a fundamental way.42,43 This relation also implies
that pairing is present even in the Mott insulator: the mi
mum energy to add a pair of electrons@as a member of the
SO~8! vector multiplet# is m, reduced by abinding energyof
m from the cost of 2m needed to add two quasielectrons f
apart. At energies above the 24 mass-m states, there exists a
antisymmetric tensor multiplet of 28 particles with ma
)m. Each can be viewed as bound states of two differ
fundamental fermions~or equivalently, two even or two odd
kinks!. In this way their quantum numbers can be eas
deduced by simple addition. The tensor states contribute
ditional sharp~delta-function! peaks to various spectral func
tions, providing, for instance, the continuation of the magn
branch near momentum~0,0!. For convenience, the quantum
numbers~charge, spin, and momentum! of the vector and
tensor excitations are tabulated in Tables I and II. Fina
continuum scattering states enter the spectrum above the
ergy 2m.

Combining the excitation spectrum of the GN model w
the noninteracting spectrum and some additional argume
we have also constructed schematic forms for several co
lation functions of interest. In particular, in Sec. V we giv
detailed predictions and plots of the single-particle spec
function ~measurable by photoemission!, the spin spectral
function~measurable by inelastic neutron scattering!, and the
optical conductivity. Integrability implies, for instance, sha
magnon peaks in the spin structure factor atk5(p,p), ~0,0!,
and @6(kF12kF2),p# with minimum energym, )m, and
)m, respectively~herekF1 andkF2 are the Fermi momenta
of the noninteracting system!. Complete details can be foun
in Sec. V. The optical conductivity has three principal fe
tures: a Drude peak around zero frequency, with expon
tially small weight (;e2m/T) at low temperature, an ‘‘exci-
ton’’ peak aroundv5)m, exponentially narrow at low
temperatures, and a continuum forv*2m, due to unbound

TABLE I. Physical quantum numbers of the massm particles
labeled by their four U~1! charges. The antiparticles are obtained
changing the sign of all the quantum numbers.

(N1 ,N2 ,N3 ,N4) Q Sz Px Py

~1,0,0,0! 2 0 0 0
~0,1,0,0! 0 1 p p
~0,0,1,0! 0 0 p p
~0,0,0,1! 0 0 2kF1 0

(1,1,1,1)/2 1 1
2 kF1 p

(1,21,21,1)/2 1 2
1
2 kF1 p

(1,1,21,21)/2 1 1
2 kF2 0

(1,21,1,21)/2 1 2
1
2 kF2 0

(1,1,1,21)/2 1 1
2 2kF1 p

(1,21,21,21)/2 1 2
1
2 2kF1 p

(1,1,21,1)/2 1 1
2 2kF2 0

(1,21,1,1)/2 1 2
1
2 2kF2 0
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quasiparticle quasihole pairs. See Sec. V for more details
a figure.

Our next calculations concern the relation of these res
to a recent study of microscopically SO~5! invariant ladder
models by Scalapino, Zhang, and Hanke~SZH!.44 These au-
thors consider the strong coupling limit of a certain loca
interacting two-leg ladder model designed to exhibit ex
SO~5! symmetry. Their model has an on-site interacti
uUu@t, an intrarung interactionuVu@t, and a magnetic rung
exchange interactionJ, related to one another by the SO~5!
symmetry. In theU-V plane they derive a strong-couplin
phase diagram, including the case of attractive interacti
with U and V negative. We have analyzed general SO~5!
invariant two-leg ladder models in the opposite limit ofweak
interactions, deriving as a special case the correspond
weak-coupling phase diagram for their model. In fact,
though we have not explored the full nine-dimensional sp
completely, for all bare couplings we have considered,
cluding attractive interactions thatbreak SO~5! symmetry
explicitly, the RG scales the system into the SO~5! subspace.
When the interactions are predominantly repulsive,
SO~5! system falls into the basin of attraction of theD-Mott
phase, and the above results apply. As negative interac
are introduced, four other phases emerge: anS-Mott spin
liquid, with short-range approximates-wave pairing symme-
try, a charge-density-wave~CDW! state with long-range po
sitional order at~p,p!, a spin-Peierls phase with kinetic en
ergy modulated at~p,p!, and a Luttinger liquid~C2S2, in the
nomenclature of Ref. 18! phase continuously connected
the noninteracting system. The first two of these also oc
in the strong-coupling limit, though their positions in th
phase diagram~Fig. 10! are modified. The phase diagrams
weak and strong coupling differ in nontrivial ways, implyin
a rather complex evolution of the system with increasingU
and V. In weak coupling, all four nontrivial phases hav
distinct asymptotic SO~8! symmetries, enhanced from th
common bare SO~5!. Furthermore, critical points describin
the transitions between the various phases can also be
tified. In particular, theD-Mott to S-Mott and CDW to spin-
Peierls critical points arec51 conformal field theories
~single mode Luttinger liquids!, which in weak coupling are

TABLE II. Physical quantum numbers of the massm ~above
horizontal line! and mass)m ~below horizontal line! particles.

Label Q s Px Py

h1 ,h2 62 0 0 0
h3 ,h4 ,h5 0 1 p p
h6 0 0 p p
h7 ,h8 0 0 62kF1 0

h1h2 0 0 0 0
h7h8 0 0 0 0
hAhB , A51,2; B57,8 62 0 62kF1 0
hAh6 , A51,2 62 0 p p
h6hA , A57,8 0 0 6(kF12kF2) p
hAhB , AÞB53,4,5 0 1 0 0
hAh6 , A53,4,5 0 1 0 0
hAhB , A51,2; B53,4,5 62 1 p p
hAhB , A53,4,5; B57,8 0 1 6(kF12kF2) p
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accompanied by a decoupled massive SO~6! sector. The
S-Mott to CDW andD-Mott to spin-Peierls transitions ar
Ising critical theories (c51/2), with decoupled massive
SO~7! sectors in weak coupling. There is also a multicritic
point describing a direct transition from theD-Mott to CDW
or from theS-Mott to spin-Peierls phases, which is simply
product of thec51 andc51/2 critical points.

Our final results concern the effects of doping a sm
density of holes~or electrons! into the D-Mott spin-liquid
phase at half filling. For very small hole concentrations,
modifications of the Fermi velocities by band curvature
fects can be ignored, and the doping incorporated simply
including a chemical potential term coupled to the to
chargeQ in the GN model;Hm5H2mQ. An analogous
procedure is employed by Zhang41 in his study of the SO~5!
nonlinear sigma model. Because the chargeQ is a global
SO~8! generator, integrability of the GN model is preserve
and furthermore many of the SO~8! quantum numbers can
still be employed to label the states. We find that dop
occurs only for 2m.m, at which point Cooper pair ‘‘funda-
mental fermions’’ enter the system and effectively form
Luttinger liquid with a single gapless charge mode~with
central chargec51!. This phase~often denoted ‘‘C1S0’’!
still has a gap to spin excitations. Previous work18,20,21has
approached this phase via controlled perturbative calc
tions in the interaction strength, at fixed dopingx awayfrom
half filling. Here, we are considering a different order
limits, with fixed ~albeit weak! interactions in the small dop
ing limit, x→0. In this limit, the Cooper pairs being dilut
behave as hard-core bosons or free fermions. Although
spin gap is preserved in the doped state, it isdiscontinuousas
x→01. The discontinuity can be understood as the bind
of an inserted spin-one magnon to a Cooper pair in the s
tem to form a mass)m tensor particle, reduced by th
binding energy (22))m from its bare energy. The spin ga
thus jumps fromDs(x50)5m to Ds(x501)5()21)m
upon doping. Such binding of a pair to a magnon has b
observed numerically in both Hubbard andt-J ladders by
Scalapino and White.45 Similarly, the energy to add anelec-
tron ~for the hole-doped system! jumps from D12(x50)
53m/2 to D12(x501)5m/2, the sameas the energy to
add a single hole. When many pairs are present, we have
succeeded in obtaining exact expressions for the spin
single-particle gaps, but argue that the spin gap should
crease with increasing doping, since the added magno
attracted to an increasing density of Cooper pairs. It see
likely, however, that integrability could be exploited even
this case to obtain exact results, and hope that some ex
may explore this possibility in the future.

Finally, we briefly address the behavior of the spi
spectral function for the doped ladder at energies above
spin gap. In a recent paper SZH~Ref. 44! have argued that in
this regime the spin-spectral function for a model with ex
SO~5! symmetry should exhibit a sharp resonance at ene
2m and momentum~p,p!, the so-calledp resonance~intro-
duced originally by Zhang to explain the 42-meV neutr
scattering peak in the superconducting cuprates!. We show
that a delta-functionp resonance requires, in addition t
SO~5! symmetry, the existence of a nonzero condensate d
sity in the superconducting phase. Since condensation is
possible in one dimension, this precludes a delta-functiop
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resonance. Following a recent suggestion by Zhang,46 we
address briefly the possibility of a weaker algebraic singu
ity in the spin spectral function. Regardless of the nature
the behavior in the vicinity ofv52m, we expect spectra
weight at energies below 2m but above the spin gapDs dis-
cussed above.

The remainder of the paper is organized as follows.
Sec. II we describe the model Hamiltonian for the interact
ladder, reduce it to the continuum limit, bosonize the n
distinct interaction channels, and apply the renormalizati
group~RG! transformation. Section III details the simplifica
tions that occur upon RG scaling, presents the boson
form of the Hamiltonian in theD-Mott phase, and for com
pleteness demonstrates the short-ranged-wave correlations
found in Ref. 18. The bulk of the field-theoretic analysis
contained in Sec. IV. By refermionizing the bosoniz
Hamiltonian, we obtain the GN model exposing the ex
SO~8! symmetry, and describe why this symmetry is hidd
in the original variables. The triality symmetry is identifie
and used to understand the degeneracy between the
massm octets. To help in developing an intuition for the G
model, several approximate pictures are presented to un
stand the excitations: a mean-field theory that is asymp
cally exact forN→` in a generalized SO(N) GN model,
and a semiclassical theory based on the bosonized~sine-
Gordon-like! form of the Hamiltonian. We conclude Sec. I
by proving the uniqueness of the ground state in theD-Mott
phase and determining the quantum numbers of the 24128
552 particles. The latter task is complicated by the neces
of introducing Jordan-Wignerstrings, which are required to
preserve gauge invariance under an unphysical gauge
metry introduced in bosonization. The string operat
modify the momenta of the certain excitations by a shift
~p,p! from their naive values determined from the GN fe
mion operators. With the field-theoretic analysis comple
we go on to discuss correlation functions in Sec. V, givi
detailed predictions for the single-particle spectral functi
spin spectral function, optical conductivity, and vario
equal-time spatial correlators. Section VI describes the c
struction of general SO~5! invariant models in weak cou
pling, their phases, and the phase diagram of the Scalap
Zhang-Hanke model in weak coupling. Finally, Sec. V
describes the behavior of theD-Mott phase upon doping
including the behavior of various gaps, and a discussion
the status of the SO~5! ‘‘ p resonance’’ in one dimension
Various technical points and long equations are placed in
Appendices. Appendix A gives the full set of nine RG equ
tions at half filling, Appendix B discusses gauge redunda
and the multiplicity of the ground state in different phas
Appendix C constructs spinor and vector representation
SO~5!, Appendix D relates SO~5! and SO~8! currents, and
Appendix E gives the five RG equations in the reduc
SO~5! subspace.

II. MODEL

We consider electrons hopping on a two-leg ladder
shown in Fig. 1. In the absence of interactions, the Ham
tonian consists of the kinetic energy, which we assume c
tains only near-neighbor hopping,
r-
f

n
g
e
-

ed

t
n

ree

er-
ti-

ty

m-
s
f

,

,

n-

o-

of

e
-
y
,
of

d

s
l-
n-

H05(
x,a

$2ta1a
† ~x11!a1a~x!1~1→2!

2t'a1a
† ~x!a2a~x!1H.c.%, ~2.1!

whereal (al
†) is an electron annihilation~creation! operator

on leg l of the ladder (l 51,2), x is a discrete coordinate
running along the ladder, anda5↑,↓ is a spin index. The
parameterst and t' are hopping amplitudes along and b
tween the legs of the ladder.

Being interested in weak interactions, we first diagonal
the kinetic energy in terms of bonding and antibonding o
erators: ci ,a5@a1,a1(21)ia2,a#/&, with i 51,2. The
Hamiltonian is then diagonalized in momentum space alo
the ladder, describing two decoupled~bonding and antibond-
ing! bands. Focusing on the case at half filling with o
electron per site, both bands intersect the Fermi energy~at
zero energy! provided t',2t. Moreover, due to a particle
hole symmetry present with near-neighbor hopping only,
Fermi velocityv i in each band is the same, denoted herea
as v. It is convenient to linearize the spectrum around t
Fermi points at6kFi ~see Fig. 1!, which at half filling satisfy
kF11kF25p. Upon expanding the electron operators as

cia;cRiaeikFix1cLiae2 ikFix, ~2.2!

the effective low-energy expression for the kinetic ener
takes the formH05*dxH0 , with Hamiltonian density,

H05v(
i ,a

@cRia
† i ]xcRia2cLia

† i ]xcLia#. ~2.3!

This Hamiltonian describes Dirac fermions, with four fl
vors labeled by band and spin indices. Since all flav
propagate both to the right and left with thesamevelocity,
the model exhibits an enlarged symmetry. Specifically, if
four right ~and left! moving Dirac fermions are decompose
into real and imaginary parts,cPia5(jPia

1 1 i jPia
2 )/&,

whereP5R/L andj1,j2 are Majorana fields, the eight righ
~and left! moving Majorana fields, denotedjPA with A
51,2, . . . ,8 form an eight-component vector. The Ham
tonian density, when reexpressed in terms of these e
component vectors, takes the simple form

H05
v
2 (

A51

8

@jRAi ]xjRA2jLAi ]xjLA#, ~2.4!

FIG. 1. A two-leg ladder and its band structure. In the lo
energy limit, the energy dispersion is linearized near the Fe
points. The two resulting relativistic Dirac fermions are disti
guished by pseudospin indicesi 51,2 for the antibonding and bond
ing bands, respectively.
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which is invariant underindependentglobal SO~8! rotations
amongeither the right or left vector of Majorana fields. Thi
enlarged O(8)R3O(8)L symmetry is only present at ha
filling with particle-hole symmetry.

Electron-electron interactions scatter right-moving el
trons into left-moving electrons and vice versa, destroy
this large symmetry. For general spin-independent inte
tions the symmetry will be broken down to U~1!3SU~2!,
corresponding to total charge and spin conservation. In
following we consider general finite-ranged spi
independent interactions between the electrons hopping
the two-leg ladder. We assume the typical interact
strength,U, is weak—much smaller than the bandwidth. W
focus on the effects of the interactions toleadingnonvanish-
ing order inU. In this limit it is legitimate to keep only those
pieces of the interactions that scatter the low-energy D
fermions. Of these, only those involving four-fermions a
marginal, the rest scaling rapidly to zero under renormali
tion. Moreover, four-Fermion interactions that are chiral, s
only scattering right movers, only renormalize Fermi velo
ties and can be neglected at leading order in smallU.18,19All
of the remaining four-Fermion interactions can be con
niently expressed in terms of currents, defined as

Ji j 5cia
† cj a , Ji j 5

1
2 cia

† sabcj b ; ~2.5!

I i j 5ciaeabcj b , I i j 5
1
2 cia~es!abcj b , ~2.6!

where theR,L subscript has been suppressed. BothJ and I
are invariant under global SU~2! spin rotations, whereasJ
and I rotate as SU~2! vectors. Due to Fermi statistics, som
of the currents are~anti-!symmetrical:

I i j 5I j i , I i j 52I j i , ~2.7!

so thatI i i 50 ~no sum oni !.
The full set of marginal momentum-conserving fou

fermion interactions can be written

H I
~1!5bi j

r JRi jJLi j 2bi j
s JRi j•JLi j ,

1 f i j
r JRiiJL j j 2 f i j

s JRii•JL j j . ~2.8!

Here f i j andbi j denote the forward and backward~Cooper!
scattering amplitudes, respectively, between bandsi and j .
Summation oni , j 51,2 is implied. To avoid double count
ing, we set f i i 50 ~no sum oni !. Hermiticity implies b12
5b21 and parity symmetry (R↔L) gives f 125 f 21, so that
there are generally eight independent couplingsb11

r,s , b22
r,s ,

b12
r,s , and f 12

r,s . At half-filling with particle-hole symmetry
b115b22. Additional momentum nonconserving Umklap
interactions of the form

H I
~2!5ui j

r I Ri j
† I L ı̂ ̂2ui j

s IRi j
†

•IL ı̂ ̂1H.c. ~2.9!

are also allowed~here 1̂52, 2̂51!. Because the current
(I i j ),I i j are ~anti!symmetric, one can always chooseu12

5u21 for convenience. We also takeuii
s50 since I i i 50.

With particle-hole symmetry there are thus just three in
pendent Umklapp vertices,u11

r , u12
r , andu12

s . Together with
the six forward and backward vertices, nine independ
couplings are required to describe the most general se
-
g
c-

e

on
n

c

-
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-

-

-

nt
of

marginal nonchiral four-fermion interactions for a two-le
ladder with particle-hole symmetry at half-filling.

Since our analysis below makes heavy use of Abel
bosonization,47,35 it is convenient at this stage to consider t
bosonized form of the general interacting theory. To this e
the Dirac fermion fields are expressed in terms of bos
fields as

cPia5k iaeifPia, ~2.10!

whereP5R/L56. To ensure that the fermionic operato
anticommute the boson fields are taken to satisfy

@fPia~x!,fP jb~x8!#5 iPpd i j dab sgn~x2x8!,
~2.11!

@fRia~x!,fL j b~x8!#5 ipd i j dab . ~2.12!

Klein factors, satisfying

$k ia ,k j b%52d i j dab , ~2.13!

have been introduced so that the fermionic operators in
ferent bands or with different spins anticommute with o
another.

It will also be convenient to define a pair of conjuga
nonchiral boson fields for each flavor,

w ia[fRia1fLia , ~2.14!

u ia[fRia2fLia , ~2.15!

which satisfy

@w~x!,u~x8!#52 i4pQ~x82x!. ~2.16!

Here, and in the remainder of the paper, we denote byQ(x)
the Heaviside step function to avoid confusion with theu
fields defined in Eq.~2.15! above. The fieldu ia is a displace-
ment ~or phonon! field andw ia is a phase field.

The bosonized form for the kinetic energy Eq.~2.3! is

H05
v

8p (
i ,a

@~]xu ia!21~]xw ia!2#, ~2.17!

which describes density waves propagating in bandi and
with spin a.

This expression can be conveniently separated into ch
and spin modes, by defining

u ir5~u i↑1u i↓!/&, ~2.18!

u is5~u i↑2u i↓!/&, ~2.19!

and similarly for w. The& ensures that these new field
satisfy the same commutators, Eq.~2.16!. It is also conve-
nient to combine the fields in the two bands into a6 com-
bination, by defining

um65~u1m6u2m!/&, ~2.20!

where m5r,s, and similarly for w. It will sometimes be
convenient to employ charge-spin and flavor decoupledchi-
ral fields, defined as
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fPm65~wm61Pum6!/2, ~2.21!

with P5R/L56.
The Hamiltonian densityH0 can now be reexpressed in

charge-spin and flavor decoupled form,

H05
v

8p (
m,6

@~]xum6!21~]xwm6!2#. ~2.22!

The fieldsur1 andwr1 describe the total charge and curre
fluctuations, since under bosonization,cPia

† cPia5]xur1 /p
andvPcPia

† cPia5]xwr1 /p.
The interaction Hamiltonians can also be readily e

pressed in terms of the boson fields. The momentum c
serving terms in Eq.~2.8! can be decomposed into two co
tributions, H I

(1)5H I
(1a)1H I

(1b) , the first two involving
gradients of the boson fields,

H I
~1a!5

1

16p2 (
m6

Am6@~]xum6!22~]xwm6!2#,

~2.23!

with coefficient Ar652(c11
r 6 f 12

r ) and As652(c11
s

6 f 12
s )/2, whereas the second contribution involves cosi

of the boson fields:

H I
~1b!522Gb12

s coswr2 cosus11cosus1~2b11
s cosus2

12G f 12
s cosws2!2coswr2~Gb12

1 cosus2

1b12
2 cosws2!, ~2.24!

with b12
6 5b12

s 64b12
r . Similarly, the Umklapp interactions

can be bosonized as

H I
~2!5216Gu11

r cosur1 coswr224u12
s cosur1 cosus1

2cosur1~2u12
1 cosus212Gu12

2 cosws2!, ~2.25!

with u65u12
s 64u12

r . HereG5k1↑k1↓k2↑k2↓ is a product of
Klein factors. SinceG251, we can takeG561. Hereafter,
we will put G51.

In the absence of electron-electron interactions,
Hamiltonian is invariant under spatially constant shifts
any of the eight nonchiral boson fields,um6 andwm6 . With
interactionsfive of the eight boson fields enter as argume
of cosines, but for the remaining three—wr1 , ws1 , and
ur2—this continuous shift symmetry is still present. For t
first two fields, the conservation law responsible for th
symmetry is readily apparent. Specifically, the operat
exp(iaQ) and exp(iaSz), with Q the total electric charge an
Sz the total z component of spin, generate ‘‘translations
proportional toa in the two fieldswr1 andws1 . To see this,
we note thatQ5*dxr(x) with r(x)5]xur1 /p the momen-
tum conjugate towr1 , whereasSz can be expressed as a
integral of the momentum conjugate tows1 . Since the total
charge is conserved,@Q,H#50, the full Hamiltonian must
therefore be invariant underwr1→wr11a for arbitrary con-
stant a, precluding a cosine term for this field. Similarly
conservation ofSz implies invariance underws1→ws1

1a. The conservation law responsible for the symmetry
der shifts of the third field,us2 , is present only in the weak
coupling limit. To see this, consider the operator,P5kF1J1
t

-
n-

s

e
f

s

s

-

1kF2J2 , with Ji5(a(NRia2NLia), whereNPia is the total
number of electrons in bandi with spina and chiralityP. At
weak coupling with Fermi fields restricted to the vicinity o
kFi , this operator is essentially the total momentum. Sin
the total momentum is conserved up to multiples of 2p, one
hasDP562pn562n(kF11kF2) for integern. Moreover,
since the Fermi momentakFi are in general unequal an
incommensurate, this implies thatDJ15DJ2562n, or
equivalently thatJ12J2 is conserved at weak coupling
Since J12J25*dx j(x) with j (x)5]xwr2 /p the momen-
tum conjugate tour2 , this conservation law implies invari
ance underur2→ur21a.

The remaining five boson fields, entering as argument
various cosine terms, will tend to be pinned at the minima
these potentials. Two of these five fields,us2 andws2 , are
dual to one another so that the uncertainty principle p
cludes pinning both fields. Since there are various compe
terms in the potential seen by these five fields, minimizat
for a given set of bare interaction strengths is generally co
plicated. For this reason we employ the weak-coupling p
turbative renormalization-group transformation, derived
earlier work.18,19 Upon systematically integrating out high
energy modes away from the Fermi points and then resca
the spatial coordinate and Fermi fields, a set
renormalization-group~RG! transformations can be derive
for the interaction strengths. Denoting the nine interact
strengths asgi , the leading order RG flow equations take t
general form,] lgi5Ai jkgjgk , valid up to orderg3. For com-
pleteness the RG flow equations are given explicitly in A
pendix A. Our approach is to integrate the RG flow equ
tions, numerically if necessary, to determine which of t
nine coupling constants are growing large.

Under a numerical integration of these nine flow equ
tions it is found that some of the couplings remain sma
while others tend to increase, sometimes after a sign cha
and then eventually diverge. Quite surprisingly, though,
ratios of the growing couplings tend to approach fixed co
stants, which areindependent of the initial coupling
strengths, at least over a wide range in the nine-dimensio
parameter space. These constants can be determined b
serting the ansatz

gi~ l !5
gi0

l d2 l
~2.26!

into the RG flow equations, to obtain ninealgebraic equa-
tions quadratic in the constantsgi0 . There are various dis
tinct solutions of these algebraic equations, or rays in
nine-dimensional space, which correspond to different p
sible phases. But for genericrepulsiveinteractions between
the electrons on the two-leg ladder, a numerical integrat
reveals that the flows are essentially always attracted to
particular ray. In the next sections we shall consider
properties of this phase, which, for reasons that will beco
apparent, we denote byD-Mott.

III. D-MOTT PHASE

In the phase of interest, two of the nine coupling co
stants,b11

r and f 12
s , remain small, while the other seven gro

large with fixed ratios:
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b12
r 5 1

4 b12
s 5 f 12

r 52 1
4 b11

s ~3.1!

52u11
r 52u12

r 5 1
2 u12

s 5g.0. ~3.2!

Once the ratios are fixed, there is a single remaining coup
constant, denotedg, which measures the distance from t
origin along a very special direction~or ‘‘ray’’ ! in the nine-
dimensional space of couplings. The RG equations rev
that as the flows scale towards strong coupling, they areat-
tractedto this special direction. If the initial bare interactio
parameters are sufficiently weak, the RG flows have su
cient ‘‘time’’ to renormalize onto this special ‘‘ray,’’ before
scaling out of the regime of perturbative validity. In th
case, the low-energy physics, on the scale of energy gaps
open in the spectrum, isuniversal, depending only on the
properties of the physics along this special ray, and indep
dent of the precise values of the bare interaction strengt

To expose this universal weak-coupling physics, we
Eq. ~3.2! to replace the nine independent coupling consta
in the most general Hamiltonian with thesingleparameterg,
measuring the distance along the special ray. Doing so
veals a remarkable symmetry, which is most readily expo
in terms of a new set of boson fields, defined by

~u,w!15~u,w!r1 , ~u,w!25~u,w!s1 ,
~3.3!

~u,w!35~u,w!s2 , ~u,w!45~w,u!r2 .

The first three are simply the charge/spin and flavor fie
defined earlier. However, in the fourth pair of fields,u andw
have been interchanged. It will also be useful to consi
chiral boson fields for this new set, defined in the usual w

fPa5~wa1Pua!/2, ~3.4!

with a51,...,4, andP5R/L56 as before. The first three o
these chiral fields satisfy the commutators Eq.~2.11! and
~2.12!. But for the fourth field, sincefP45PfPr2 , the sec-
ond commutator is modified to@fR4 ,fL4#52 ip.

In terms of these new fields, the full interacting Ham
tonian density along the special ray takes an exceedin
simple form:H5H01HI , with

H05
v

8p (
a

@~]xua!21~]xwa!2#, ~3.5!

HI52
g

2p2 (
a

]xfRa]xfLa24g(
aÞb

cosua cosub .

~3.6!

We now briefly discuss some of the general physical pr
erties that follow from this Hamiltonian. In the next sectio
we will explore in detail the symmetries present in t
model, and the resulting implications.

Ground-state properties of the above Hamiltonian can
inferred by employing semi-classical considerations. Si
the fieldswa enter quadratically, they can be integrated o
leaving an effective action in terms of the four fieldsua .
Since the single coupling constantg is marginally relevant
and flowing off to strong coupling, these fields will b
pinned in the minima of the cosine potentials. Specifica
there are two sets of semiclassical ground states with alua
52nap or all ua5(2na11)p, wherena are integers. Exci-
g

al
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tations will be separated from the ground state by a fin
energy gap, since the fields are harmonically confined,
instanton excitations connecting different minima are a
costly in energy.

Since bothus6 fields are pinned, so are the spin fields
each band,u is ( i 51,2). Since]xu is is proportional to thez
component of spin in bandi , a pinning of these fields implies
that the spin in each band vanishes, and excitations w
nonzero spin are expected to cost finite energy: the spin
This can equivalently be interpreted as singlet pairing
electron pairs in each band. It is instructive to consider
pair field operator in bandi :

D i5cRi↑cLi↓5k i↑k i↓e
~ i /& !~w ir1u is!. ~3.7!

With u is'0, w ir can be interpreted as the phase of the p
field in bandi . The relative phase of the pair field in the tw
bands follows by considering the product

D1D2
†52Geius2eiwr2, ~3.8!

with G5k1↑k1↓k2↑k2↓51. Since u45wr2 the relative
phase is also pinned by the cosine potential, with a s
change in the relative pair field,D1D2

†,0, corresponding to a
D-wave symmetry. Being at half filling, the overall charg
mode,ur1 is also pinned—there is a charge gap—and
two-point pair field correlation function falls off exponen
tially with separation. We refer to this phase as a ‘‘D-Mott’’
phase, havingD-wave pairing correlations coincident with
charge gap. Upon doping theD-Mott phase away from half
filling, gapless charge fluctuations are expected in the~r1!
sector, and power-lawD-wave pairing correlations develop

It is worth noting that the fully gappedD-Mott phase has
a very simple interpretation in the strong coupling limit. Tw
electrons across each of the rungs of the two-legged lad
form singlets, of the usual formu↑,↓&2u↓,↑&, where the two
states refer to electrons on leg 1 or 2, respectively. T
two-electron state can be rewritten in the bonding antibo
ing basis, and takes the formu↑↓,2&2u2,↑↓&, where the
two states now refer to bonding and antibonding orbita
This resembles a local Cooper pair, with a relative s
change between bonding and antibonding pairs: an appr
mateD-wave symmetry.

IV. SO„8… GROSS-NEVEU MODEL

As shown above, the bosonized effective Hamiltonian
energy scales of order the gap is exceptionally simple in
D-Mott phase. In this section, we show that this simplicity
indicative of a higher symmetry, and explore its ramific
tions upon the spectrum.

A. Gross-Neveu model

An obvious symmetry of the bosonic action, Eqs.~3.5!–
~3.6!, is a permutation of the fieldsua→Pabub , wherePab is
a permutation matrix. In fact, this is only a small subset
the true invariances of the model. As is often the case, A
lian bosonization masks the full symmetry group. It can
brought out, however, by a refermionization procedure. W
define ‘‘fundamental’’ ~Dirac! fermion operatorscPa with
a51,2,3,4 via
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cPa5kaeifPa, a51,...,3

cP45Pk4eifP4, ~4.1!

andP5R, L561, as before. The Klein factors are given b

k15k2↑ , k25k1↑ , ~4.2!

k35k1↓ , k45k2↓ . ~4.3!

In the refermionization of the fourth field we have chosen
include a minus sign for the left mover. This is convenie
due to the modified commutators between the left and r
fields:@fR4 ,fL4#52 ip, in contrast to the ‘‘standard’’ form
in Eq. ~2.12!.

In these variables, the effective Hamiltonian density b
comes

H5ca
†i tz]xca2g~ca

†tyca!2, ~4.4!

whereca5(cRa ,cLa), and t is a vector of Pauli matrices
acting in theR,L space. Here, summation over repeated
dices,a51,2,...,4 is implicit. It is remarkable that the Hami
tonian can be written locally in the ‘‘fundamental’’ fermio
variables, which are themselves highlynonlocally related to
the ‘‘bare’’ electron operators.

A further simplification arises upon changing to Majora
fields,

cPa5
1

&
~hR2a1 ihR2a21!. ~4.5!

The Hamiltonian density then takes the manifestly invari
form

H5 1
2 hRAi ]xhRA2 1

2 hLAi ]xhLA1gGR
ABGL

AB , ~4.6!

where the currents are

GP
AB5 ihPAhPB , AÞB, ~4.7!

andA,B51,...,8.

B. SO„8… symmetry

Equation~4.6! is the standard form for the SO~8! Gross-
Neveu model, which has been intensively studied in
literature.36–40,42,43We first discuss its manifest symmet
properties.

The 28 currentsGP
AB generate chiral SO~8! transforma-

tions. Forg50, Eq. ~4.6! has two independent symmetrie
under separate rotations of the left- and right-moving fiel
For gÞ0, however, only simultaneous rotations of bo
chiralities are allowed. More precisely, the unitary operat

U~xAB!5eixAB*dx~GR
AB

1GL
AB

! ~4.8!

generate global orthogonal transformations of the Major
fields,

U†~x!hPAU~x!5OAB~x!hPB , ~4.9!

where the orthogonal matrixO~x! is given by

O~x!5eixABTAB. ~4.10!
,
t

-

-

t

e

.

s

a

Here theTAB (A.B) are the 28 generators of SO~8! in the
fundamental representation, with matrix elements@TAB#CD
5i (dACdBD2dADdBC)/2. Equation~4.9! indicates that the
hPA transform as SO~8! vectors. Similarly, the currentsGP

AB

are rank-2 SO~8! tensors.
It is worth noting that despite the nonlocal relation b

tween the fundamental and bare fermion operators, the SO~8!
symmetry remains local in the bare electron basis. This
lows from the fact that the chiral SO~8! currents in the two
bases are actually linearly related, i.e.,

GP
AB5M P

ABCDG̃P
CD , ~4.11!

whereG̃P
AB5 i jPAjPB , and the bare Majorana operators a

defined by

cP1↑5
1

&
~jP21 i jP1!, ~4.12!

cP1↓5
1

&
~jP41 i jP3!, ~4.13!

cP2↑5
1

&
~jP61 i jP5!, ~4.14!

cP2↓5
1

&
~jP81 i jP7!. ~4.15!

The precise forms of the tensorsM P are complicated and no
particularly enlightening. Nevertheless, theexistenceof the
linear relation between currents implies that the unitary
eratorU(x) also generates local rotations of the bare el
tron fields. In these variables, however, the SO~8! symmetry
is hidden, becauseMRÞML , which implies that different
rotations must be performed among right- and left-mov
electron operators.

Finally, it is instructive to see how the conservation
total charge and spin, corresponding to a global U~1!3SU~2!
symmetry, is embedded in the larger SO~8! symmetry. To
this end, consider the total electron charge operatorQ, which
in terms of the low-energy fields can be written as

Q52E dx(
P

cP1
† cP152E dx~GR

211GL
21!, ~4.16!

wherecP1 is a fundamental Gross-Neveu fermion. The U~1!
charge symmetry is thus seen to be equivalent to the SO~2!
symmetry of rotations in the 1-2 plane of the eigh
dimensional vector space. Similarly, the total spin operat

S5E dx@JR~x!1JL~x!#, ~4.17!

with JP(x)5JPii(x), can be reexpressed in terms of SO~8!
generators by using

JP
a ~x!5eabcGP

bc , ~4.18!

with a,b,c53,4,55x,y,z. Thus we see the equivalence b
tween the SU~2! spin rotations and SO~3! rotations in the
three-dimensional subspace 3-4-5 of the eight-dimensio
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vector space. Rotations in the five-dimensional subspac
2-3-4-5 correspond to global SO~5! rotations that unify the
charge and spin degrees of freedom.

In the absence of interactions in the Gross-Neveu mo
all of the excitations including spin remain massless. In t
case there is an independent SU~2! spin symmetry in the
right- and left-moving sectors. The spin currentsJP can then
be shown to satisfy

@JP
a ~x!,JP

b ~x8!#5d~x2x8!i eabcJP
c ~x! ~4.19!

1 i
P

2p
kdabd8~x2x8!,

~4.20!

with a,b,c5x,y,z andk52. This is referred to as an SU~2!
current algebra at level (k) two.

We conclude this subsection by answering a question
may have occurred to the alert reader: why is the symm
of the model SO~8! rather than O~8!? Based on Eq.~4.6!, it
would appear thatany transformation of the formhPA
→OABhPB would leave the Hamiltonian invariant, includin
improper rotations with detO521. The presence of suc
improper rotations means O~8!5SO~8!3Z2 , since any or-
thogonal matrix can be factored into a product of matrix w
determinant one and aparticular ~reflection! matrix, e.g.,
O AB

r 5dAB22dA1dB1 . We have already shown above th
the SO~8! symmetry is physical—i.e., the symmetry gene
tors act within the Hilbert space of the physical electrons
is straightforward to show that theZ2 reflection is, however,
unphysical. To see this, imagine performing theZ2 reflection
effected byO r above, which takeshP1→2hP1 . Using
the bosonization rules, this corresponds tou1→2u1 and
w1→2w1 . Returning to the physical fields, one finds th
the bare electron operators transform much more nont
ally:

cPia→
Z2

cPiacP1
† . ~4.21!

As we shall show in Sec. IV E 3, a single GN fermion o
erator, such ascP1

† , is unphysical. TheZ2 reflection thus
takes a physical electron operator into an unphysical o
which implies that the symmetry cannot be effected by
unitary operator within the Hilbert space of the electrons. F
this reason, the true symmetry group of the ladder mode
SO~8!.

C. Triality

Most of the above properties hold more generally for
SO(N) GN model, even forNÞ8. However, the caseN
58 is extremely special, and in fact possesses an additi
triality symmetry not found for otherN ~see Fig. 2!. Useful
references are Refs. 42, 43.

To expose the additional symmetry, we return to the si
Gordon formulation. Essentially, the triality operation trad
the original basis$ua% in the four-dimensional space of bo
son fields for either one of two other orthogonal bases.
plicitly, the two alternate choices are the even and odd fie
ua

e/o , where

u1
e/o5~u11u21u36u4!/2, ~4.22!
1-
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u2
e/o5~u11u22u37u4!/2, ~4.23!

u3
e/o5~u12u21u37u4!/2, ~4.24!

u4
e/o5~u12u22u36u4!/2. ~4.25!

Here the upper and lower signs apply to the even and
fields, respectively, and identical definitions hold for the du
wa

e/o and chiralfPa
e/o bosons. The bosonized Hamiltonian

Eqs.~3.5!, ~3.6! is invariant under either change of variable
i.e.,

H@ua#5H@ua
e#5H@ua

o#. ~4.26!

For each of these bases, an inequivalent refermionizatio
possible, analogous to the introduction of the fundamen
fermions in Eq.~4.1!. In particular, the Hamiltonian is un
changed in form when rewritten in terms of either the ev
or odd fermion operators,

cPa
e/o5ka

e/oeifPa
e/o

. ~4.27!

It should be noted that the set of even and odd fermion
erators contains all the bare electron fields. In particular,

cR1
e 5cR1↑ , cL1

o 5cL1↑ , ~4.28!

cR2
e 5cR2↑ , cL2

o 5cL2↑ , ~4.29!

cR3
e 5cR2↓ , cL3

o 5cL2↓ , ~4.30!

cR4
e 5cR1↓ , cL4

o 5cL1↓ . ~4.31!

The other eight even and odd fields~cLa
e and cRa

o ! are not
simply related, however, to the electron fields.

D. Conventional Gross-Neveu excitation spectrum

The SO(N) GN model is integrable, and the excitatio
spectrum is known exactly. To organize the presentation,

FIG. 2. Triality between GN fermions, even kinks, and o
kinks. The SO~8! GN Hamiltonian is identical in terms of thes
three sets of fermionic operators. Operators in the gray areas
physical and gauge independent~see Sec. IV E!, while the other
fermion operators must be ‘‘dressed’’ by an appropriate Jord
Wigner string to remain in the physical Hilbert space.
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divide the discussion of the excitation spectrum into t
parts. In this subsection, we summarize known results for
conventional GN model. The precise nature of the exc
tions for the two-leg ladder model, however, differs fro
those in the conventional GN model. This difference ari
from the nonlocal relation between the electron and G
fields. Excitations within the GN model must be slight
modified to satisfy gauge invariance with respect to so
unphysical degrees of freedom introduced in the mapp
These modifications and the resulting spectrum in
D-Mott phase are described in the subsequent subsectio

Within the GN model, the excitations are of course org
nized into SO(N) multiplets, but are further constrained fo
the case of interest,N58, by triality. In this subsection, we
discuss the lowest-lying states, their multiplet structures
quantum numbers, and give some useful physical picture
aid in understanding their properties.

1. Results from integrability

The lowest-lying excitations are organized into thr
SO~8! vector multiplets, which are degenerate due to trial
for a total of 24 particles. Four of the 28 global SO~8! gen-
erators may be chosen diagonal~to form the Cartan subalge
bra!. We will label the particles by the values of the fo
associated charges, denoted by the ordered quadr
(N1 ,N2 ,N3 ,N4), and defined by

Na5E dxca
†ca ~4.32!

~no sum ona!. In this notation, one SO~8! multiplet contains
the states~known asfundamental fermions! with only one of
the fourNa561, and all others equal to zero. The remaini
16 degenerate states haveNa561/2 for a51,2,3,4, which
are divided into those with an even number ofNa511/2
~the even kinks! and the remainder with an odd number
Na511/2 ~the odd kinks!. The reasons for this terminolog
will become apparent later in this section. Each particle ha
massm and disperses~due to Lorentz invariance! as e1(q)
5Am21q2, with momentumq. Since the electron band op
eratorscPia are defined relative to their Fermi momentakFi ,
the actual momenta of each particle are offset from the
model momentum,q, by some amount. We will return to
these ‘‘base’’ momenta later in this subsection, as well a
the other physical quantum numbers of the excitations.

At somewhat higher energies there is another multiple
28 ‘‘particles,’’ which transform as an antisymmetr
second-rank SO~8! tensor. This multiplet can be viewed a
two-particle bound states of the fundamental Gross-Ne
fermions, or equivalently under triality as bound even-ev
or odd-odd kinks. Indeed, of these 28 states, 24 have
zero charges and twoNa561. The other four are bound
states of a fundamental fermion with its antiparticle~an ex-
citon in the semiconductor picture, below!, so they do not
carry any of the four quantum numbers. Each of the 28 ‘‘p
ticle’’ states has a massm25)m. Finally, for energiese
.ec(q)52Am21q2/4, a two-particle continuum of~un-
bound! scattering states exists.
e
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2. Mean-field picture

It is instructive to see how these excitations arise in
mean-field treatment of the GN interaction. The mean-fi
treatment becomes exact for the SO(N) generalization of the
GN model for large evenN. To carry it out, we employ the
Dirac fermion version of the Hamiltonian, Eq.~4.4!. In the
mean-field approximation, the bilinearca

†tyca acquires an
expectation value, and the ‘‘quasiparticle’’ Hamiltonian de
sity becomes

HMF5ca
†i tz]xca2Dca

†tyca , ~4.33!

whereD52g^ca
†tyca& is a mean-field gap parameter. Th

mean-field Hamiltonian is simply that of four massive Dir
equations. It is easily diagonalized in momentum space,
ing ca(q)5exp@iV(q)tx/2#c̃a , where V(q)5cot21(vq/D),
which gives

HMF5E dq

2p
e1~q!c̃a

†tzc̃a , ~4.34!

with e1(q)5Am21q2 and the massm5D. From the diago-
nalized form it is straightforward to determine the MF es
mate,

mMF52Le2p/Ng ~4.35!

for the general SO(N) case, whereL;t is a momentum
cutoff. The exponential dependence ong can be understood
from the marginality of the interactions under the RG scal
transformation. The picture is that of a ‘‘semiconductor,’’
indicated schematically in Fig. 3. These massive Dirac p
ticles and their antiparticles may be identified with the fu
damental fermion SO~8! vector multiplet. The even and od
kinks likewise arise from applying the same decoupling
the even and odd fermion representations of the Hamilton

While Eq. ~4.33! is correct for SO~`!, it requires correc-
tions otherwise. For finiteN, the chiral ‘‘order parameter’’D
fluctuates around its vacuum value, and these fluctuat
generateattractive interactions between the GN fermion
The attractive interactions lead to the formation of tw
particle bound states, whose massm252m@12(p2/2N2)
1O(N24)# approaches twice the fermion mass forN@1,
due to the weakness of the interactions in this limit. F
SO~8!, however, the interfermion interactions are not wea
and the bound states have the strongly reduced massm2
5)m. The 28 bound states of two fermions form th
above-mentioned rank-2 tensor multiplet.A priori, one might
expect three such multiplets, arising from bound states of
three sets of fermions. We will see, however, in the n
section that this does not lead to any new particle cont
Indeed, the particles in the tensor multiplet can be equ
well viewed as bound states of fundamental, even, or
fermions.

3. Semiclassical picture

These excitations can be readily understood in the se
classical limit of the bosonized Hamiltonian. In this la
guage, particles correspond to classical solitons, in which
phase fieldsua connect different vacuum~classical minimum
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energy! values atx56`. The winding numbers of thes
solitons have a direct connection to the SO~8! charges, since
by bosonization

Dua5u~`!2u~2`!5E
2`

`

dx]xua

52pNa . ~4.36!

Thus each of the GN particles labeled by the four quant
numbers (N1 ,N2 ,N3 ,N4) can be readily transcribed into
semiclassical soliton. The fundamental fermions are th
configurations in whichone of the four phase fieldsua
changes by62p. The second type of soliton changes
four ua fields by6p, which changes cosua→2cosua , but
leaves the vacuum energy unchanged. The 24516 possible
‘‘kinks’’ form the semiclassical analog of the even and o
kink SO~8! octets.

While the even and odd kinks exist for generalN, for the
special case of SO~8!, triality implies that the kinks and fun
damental solitons are on an equal footing. This is most ea
seen using a simple graphical construction. Construct
N/2-dimensional space~for N even! with axesua . In this
space, draw a lattice consisting of a point for each vacu
configuration of the fields. All possible solitons can be re
resented on this lattice as lines connecting different point
the origin ~see Fig. 4!. The fundamental fermions are the
the line segments to the neighboring points along the a
For N58, however, there are another 16 points equidistan
the origin, which represent the even and odd kinks~for N
.8, these are further from the origin, while forN,8 they
are in fact closer!. In this case, the even or odd kink se

FIG. 3. The mean field picture of the SO(N) GN model. There
are four flavors of relativistic massive fermionsca , with dispersion
e1(q)56Am21q2. The negative energy bands are filled, while t
positve energy bands are empty. As in a semiconductor, the pos
and negative energy bands are separated by a finite gap 2m.
m
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ments form equally good orthonormal axes in this space,
viewed in this basis, the three sets of particles cyclica
exchange their roles.

One can also compose these particles by vectorial a
tion. For instance, an even and an odd kink can be adde
form a fundamental fermion. The two-particle bound sta
may also be visualized in this way, by adding, e.g., tw
different fundamental fermion vectors. From this constru
tion it is easy to see that any such two-particle state can
equally well composed from two even or two odd kink
There is thus only a single 28-fold tensor multiplet of tw
particle bound states.

E. Consequences for theD-Mott phase

We are now in a position to discuss the nature of
ground-state and excitation spectrum in theD-Mott phase,
using the technology of the GN model.

1. Gauge redundancy

To proceed, we must first describe the boundary con
tions and gauge-redundancy needed to fully specify
model. Since the phase fields were originally introduced
bosonize the~physical! electron operators, the chiral electro
phases are defined only moduli 2p,

fPia~x,t!↔fPia~x,t!12pAPia~x,t!, ~4.37!

where theAPia are integers. These integers describe a sor
gauge redundancy in the description: semiclassical ph
configurations that differ only by a different choice ofAPia
are to be treated as identical quantum states. Furthermor
for any gauge theory, physical operators must be gauge

ve

FIG. 4. The 24 massm excitations of the SO~8! GN model,
projected into the (N1 ,N2)5(Q/2,Sz) plane. Full and open circles
indicate the ‘‘fundamental’’ fermions and kinks, respectively. A
24 excitations lie on the unit sphere in the full four-dimension
Cartan space. The equivalence of a fundamental fermion and
even and odd kink can be seen graphically by simple vecto
addition, e.g. the odd kink (21,1,1,1)/2 and the even kink
2(1,1,1,1)/2 add to form the GN fermion (21,0,0,0).
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variant, i.e., unchanged under the operation in Eq.~4.37!,
which can be performedlocally.

2. Uniqueness of the ground state

From the standpoint of both the fermionic GN Ham
tonian and its bosonized sine-Gordon form, the syst
appears to exhibit broken symmetry. The conventional
model has a spontaneously broken ‘‘chiral’’ symmet
the Hamiltonian is invariant under the chiral transfo
mation ca→tzca , however, the chiral order paramet
D52g^ca

†tyca&Þ0 and changes sign under this transfo
mation. In the bosonization language, this transformat
corresponds to ua→ua1p ~for all a!, which takes
cosua→2cosua . The bosonic model appears to have ev
more broken symmetries, i.e., there is a countably infinite
of semiclassical vacua, related by the additional transfor
tions ua→ua12pna , for integerna .

On physical grounds, however, we expect that theD-Mott
phase has no broken symmetry, and consequently a un
ground state. To reconcile this apparent discrepancy,
must account for the fact that the phasesua are not gauge
invariant. Indeed apparently different vacua may repres
the same physical state in a different gauge. To establish
physical equivalence between different vacua is a rather
dious and technical exercise, although straightforward.
Appendix B we carry through this exercise and demonst
that all of the semi-classical vacua do indeed correspond
the same physical state. Thus, as expected, there are no
ken symmetries in theD-Mott phase and the ground state
unique.

3. Quantum numbers

To connect the GN results with the physical two-leg la
der system, we now consider the quantum numbers of
various excitations. Each quantum number correspond
some conserved quantity in the system. The most physic
interesting are the charge, spin, momentum along thex di-
rection, and parity~or equivalently, momentum in they di-
rection!. The charge and spin are conserved quantities co
sponding to continuous global symmetries, so we can w
directly with the Hermitian generators

Q5E dxcP ja
† cP ja , ~4.38!

S5E dxcP ja
† sab

2
cP jb . ~4.39!

Since the translational and leg-interchange symmetries
discrete, we should really speak of the unitary operat
themselves. Since right- and left-moving particles in banj
carry quasimomentum6kF j , respectively, the translatio
operator is simply

T̂x5ei ( j kF j ~NR j2NL j !, ~4.40!

whereNP j5*dx(acP ja
† cP ja is the total number of electron

in band j with chirality P. The quasimomentumPx is de-
fined byT̂x5exp(iPx). Because the antibonding~band 1! op-
erators haveky5p, the parity or translation operator in they
direction is
m
N
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T̂y5eipN1, ~4.41!

whereN15NR11NL1 .
In the weak-coupling limit,U!t,t' , there are two addi-

tional conserved quantities, the band spin differenceS12
z

5S1
z2S2

z and the relative band chiralityP125(NR12NL1

2NR21NL2)/2.
It is useful to rewrite these expressions in terms of

bosonized phase variables. Because the symmetry gener
involve spatial integrals of fermionic bilinears, they can
expressed in terms of the winding numbersDua and their
conjugates:

Dwa5E
2`

`

dx]xwa~x!5wa~`!2wa~2`!. ~4.42!

Using Eqs.~2.18!–~2.21!, we find

Q5
Du1

p
, ~4.43!

Sz5
Du2

2p
, ~4.44!

S12
z 5

Du3

2p
, ~4.45!

P125
Du4

2p
, ~4.46!

T̂x5expF i

2 S Dw11
kF12kF2

p
Du4D G , ~4.47!

T̂y5expF i

2
~Du11Dw4!G . ~4.48!

As discussed in the previous section, the winding nu
bers of theua are just the SO~8! conserved charges. Thus th
first four conserved quantities can be directly transcribed
all the GN excitations, i.e., (Q,Sz,S12

z ,P12)
5(2N1 ,N2 ,N3 ,N4). These are tabulated in the first thre
columns in Table I.

The momentum and parity of the particles are more co
plicated, however, because Eqs.~4.47!–~4.48! contain the
conjugate fieldsDw1 ,Dw4 . As such,Px andPy are not sim-
ply determined from the SO~8! chargesNa . The additional
physics required is the operator content of the original el
tron problem.

To see how this comes in, let us imagine a local opera
O †($Na%;x), which creates the particle with charges$Na%
when acting on the ground state, i.e.,

O †~$Na%;x!u0&5u$Na%;x&, ~4.49!

where u$Na%& is the quantum state with one excited$Na%
particle localized atx. Now consider the exponential of
phase fieldwa . It can be rewritten as the line integral of th
momentum conjugate toua , i.e.,

e2 iNawa~x!/25ei2pNa*x
`dxPa~x!, ~4.50!
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where Pa(x)5]xwa /(4p) is the momentum conjugate t
ua , i.e., @ua(x),Pb(x8)#5 idabd(x2x8). Since the momen-
tum Pa generates translations of the phaseua , the exponen-
tial operator creates a soliton of size 2pNa located at the
point x. In order to have the correct winding numbers, t
desired quantum operator must thus have the form

O †~$Na%;x!5L@$ua%;$Na%#e2 iNawa/2. ~4.51!

Here we have included an arbitrary functionL of the ua
fields, which does not wind the phase and thus does
affect the SO~8! charges.

To determineL, we next impose gauge invariance. Co
sider first the operators that create the fundamental fermi
with only one nonzeroNa561. The creation operator take
the form

O a
65L̃a@$ua%#e7 i ~wa1ua!/2, ~4.52!

where we have removed a factore7 iua/2 from L to define
L̃a

6 . This is desirable because the last factor~up to a Klein
factor ka! is simply the GN fermion operatorcRa

† ~cRa for
the lower sign!. Now O a

6 must be invariant under all pos
sible gauge transformations, Eq.~4.37!. It is a straightfor-
ward exercise to show that the most general form forL̃a

6 is
the same for all the fundamental fermions, and is given

L̃5Os(
$ka%

8l$ka%e
i (akaua, ~4.53!

where (8 indicates a sum over all quadruplets of intege
with (aka even, and

Os5e~ i /2!~u11u21u32u4!. ~4.54!

Note thatL̃ does notinclude a term proportional to unity
which implies that a single GN fermion is by itself not gau
invariant and hence unphysical. Instead, physical parti
have an attached operatorOs ~or its counterparts with extra
factors from the(8 term!. Os represents a Jordan-Wigne
‘‘string,’’ and can be rewritten only nonlocally in terms o
the fermion fields. It modifies the momentum and statist
of the fundamental fermions to those of the physical exc
tions.

It is now straightforward to determine the quasimome
tum and parity of the fundamental fermions using the tra
lation operators in Eqs.~4.47!–~4.48!. In particular, we must
have

T̂xO a
6T̂x

215eiPx~a!O a
6 , ~4.55!

T̂yO a
6T̂y

215eiPy~a!O a
6 . ~4.56!

The left-hand sides of Eqs.~4.55!–~4.56! can be evaluated
by employing the commutators of the Bose fields to obta

T̂xuaT̂x
215ua12pda1 , ~4.57!

T̂xwaT̂x
215wa12~kF12kF2!da4 , ~4.58!

and

T̂yuaT̂y
215ua12pda4 , ~4.59!
ot

s,

s

s

s
-

-
-

T̂ywaT̂y
215wa12pda1 . ~4.60!

Equation~4.55! can be written as a product of three terms

T̂xO a
6T̂x

215T̂xS ( 8 D T̂x
213T̂xOsT̂x

21T̂xe
7 i ~wa1ua!/2T̂x

21 .

~4.61!

Consider the first term. Using the above commutators
can readily show that the sum in Eq.~4.53! is invariant under
x translations. The string, however, carries momentumPx
5p:

T̂xOsT̂x
2152Os5eipOs . ~4.62!

This momentum must be added to the ‘‘bare’’ momentum
the GN fermion, given by the last term in Eq.~4.61!. A
similar calculation forT̂y shows that(8 is again invariant,
but Os carries transverse momentump. The resulting net
momenta of the fundamental solitons are summarized in
last two columns of Table I.

Similar manipulations hold for the kink excitations. I
particular, the even kink creation operators must obey

O a
e65(

$ka%

8 l$ka%e
i (akauae7 i ~wa

e
1ua

e
!/2, ~4.63!

and similarly for the odd kinks,

O a
o65(

$ka%

8 l$ka%e
i (akauae7 i ~wa

o
2ua

o
!/2. ~4.64!

Note that the choice to factor out the right-moving even a
GN fermions in Eqs.~4.52!, ~4.63! and left-moving odd fer-
mions in Eq.~4.64! is arbitrary. A right-mover can always b
converted to a left-mover and vice versa by absorption of
e6 iu factor into a redefinition of the ‘‘string’’ part of the
soliton creation operator. For the even and odd kinks,
above choice is particularly convenient, since the rig
moving even fields and left-moving odd fields areexactly
bare electron operators, and hence manifestly physical.
see from Eqs.~4.63!–~4.64! that the kinks have the quantum
numbers of bare electrons. A remarkable consequence of
result is that the number of single-electron degrees of fr
dom has effectivelydoubledrelative to the free Fermi gas
since each of the 16 kinks can be created with arbitrary m
mentum~relative to its base momentum of6kFi!, including
particlesbelowthe former Fermi sea and holesaboveit. The
momenta calculated from Eqs.~4.63!–~4.64! complete the
last two columns of Table I.

F. SU„2… invariance and spin multiplets

We conclude this section with a remark on SU~2! invari-
ance and the excitations with spin. In Table I, we have cl
sified the massm excitations in theD-Mott phase by the four
U~1! charges@SO~8! Cartan generators# Na . Another almost
equivalent choice is to label the particles by their char
momentum,total spin S25s(s11), and spin projectionSz.
It is fairly trivial to relabel the kinks in this way, reflecting
their natural correspondence with single-particle spin-1/2
citations. They may be grouped into doublets withs51/2
andSz561/2, e.g., the (1,1,1,1)/2 and (1,21,21,1)/2 kinks
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form a spin-1/2 doublet withQ51e and P5(kF1 ,p). For
the GN fermions, this is less trivial. The (61,0,0,0) solitons
are spin zero, and correspond to charge62e Cooper pairs
with zero momentum. Similarly, the (0,0,0,61) fermions
carry neither charge nor spin, and may be regarded
dressed particle-hole pairs carrying only momentum. The
maining four solitons are more nontrivial, however. Th
spin content may be brought out by refermionizing the to
spin operator, as in Eq.~4.17!,

S5E dx@JR~x!1JL~x!#, ~4.65!

with chiral currents,

JP
A~x!5 i eABChPBhPC , ~4.66!

with A,B,C53,4,5. Thus the three Majorana fieldshPA ,
with A53,4,5, transform as a triplet of spins51 operators,
i.e.,

@SA,hPB#52 i eABChPC . ~4.67!

The other 5 GN Majorana fields commute withS, and hence
represent spin-singlet operators.

As was shown in the previous subsection, the phys
GN excitations consist not of GN fermions but rather
quired an attached stringOs . Fortunately, the string does no
carry any spin, i.e.,

OsSO s
†5S. ~4.68!

Thus the true soliton excitations~GN fermions1strings! sat-
isfy the same transformation rules with respect to spin as
bare Majorana fermions. The four remaining solitons
61,0,0) and (0,0,61,0), which involve the four Majorana
fermionshA with A53,4,5,6, can therefore be decompos
into an s51 triplet and a spin-zero singlet@both with Q
50 andP5(p,p)#. The triplet can be regarded as a min
mum energy magnon, while the singlet can be grouped w
the (0,0,0,61) solitons as another particle-hole excitation

With the SU~2! invariance realized, we can tabulate t
particles in the GN model in a slightly different way, class
fying them by their SU~2! multiplet ~i.e., s50, 1/2 or 1!,
charge, and momentum. To label the particles classified
this way, the Abelian (N1 ,N2 ,N3 ,N4) notation is no longer
convenient, since it does not respect the SU~2! invariance.
Instead, we can schematically indicate the 8 particles in
vector multiplet byhA and the 28 in the tensor multiplet b
hAhB ~remembering thathBhA52hAhB!. For convenience
we list the 8 GN fermions and the 28 mass)m bound states
in this way in Table II ~we do not list the remaining 16
particles, since they have the quantum numbers of elect
and are easily remembered in this way!.

V. CORRELATION FUNCTIONS
AND PHYSICAL PROPERTIES

We have seen that in the weak-coupling limit, the two-l
ladder possesses an enhanced symmetry. The effe
theory in this limit is the SO~8! GN model, which is both
exactly integrable and exhibits a remarkable ‘‘triality.’’ I
as
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this section we will discuss a variety of the resulting physi
consequences.

The most remarkable consequence of triality is the equ
ity of the single-particle and two-particle gaps.42,43 The 16
kinks have the same quantum numbers as the bare elec
at the former Fermi surface. The single-particle gap, defi
as the minimum energy needed to add an electron or hol
the system, is thus simplyD15m. The 8 GN fermions, how-
ever, have chargeQ562 or Q50, and thus represent exc
tations corresponding to an even number of electrons an
holes. For instance, electron or hole pairs can be added
zero net momentum via the (61,0,0,0) solitons, while spin-1
excitations may be added with momentum~p,p! via the (0,
61,0,0) and (0,0,61,0) solitons ~more precisely theh5
state!. The gap for all 8 minimal energy two-particle excita
tions is alsoD25m.

The equality of the single-particle and two-particle gaps
in marked contrast to the behavior of other more conv
tional insulators. In a band insulator~such as the two-leg
ladder at half-filling with t'@t!, the single-particle gap is
just the band gap, while the two-particle gaps are twice
large: D252D1 . Another familiar case is the strong
interaction limitU@t. In this case, the single particle gap
huge,D1;U, while the lowest two-particle~e.g., spin! gaps
are much smallerD2;t2/U!D1 or indeed vanishing (D2
50) for ordered or quasi-long-range ordered antiferrom
nets ~e.g., d52 or single-chain Hubbard models!. The de-
tailed mathematical mapping between the GN, odd, and e
fermion fields allows us to extend the relationship betwe
the single-particle and two-particle properties beyond
values of the gaps, as we detail below.

First, we will discuss several correlation functions th
characterize the spin and charge dynamics of the system.
most interesting of these are the single-particle spectral fu
tion, measurable by electron photoemission, and the dyna
spin structure factor, which is probed by inelastic neutr
scattering. Other interesting correlators include the curre
current correlation function, which determines the conduc
ity, the density-density correlation function and pairing co
relation function, which can be measured in numeri
simulations.

A. Single-particle spectral function

First consider the single-particle Greens function,

G1~k,t!5(
lx

e2 ikyl 2 ikxxTt^0ua11 la~x,t!a1a
† ~0,0!u0&,

~5.1!

where Tt is the ~Euclidean! time-ordering symbol andk
5(kx ,ky). The right-hand side is independent ofa by spin-
rotational invariance; however, we choose to define the sp
tral function for fixeda, i.e., no sum is implied above. In
general, the single-particle spectral functions can be
tracted from G1 by Fourier transformation. Defining
G1(k,iv)5*dtG1(k,t)exp(ivt), one finds

1

p
Im G1~k,iv→v1 id!→A1p~k,v!1A1h~2k,2v!,

~5.2!
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where the particle and hole spectral functions are

A1p~k,v!5(
n

u^nua1a
† u0&u2d~k2kn!d~v2En!, ~5.3!

A1h~k,v!5(
n

u^nua1au0&u2d~k2kn!d~v2En!. ~5.4!

Here we have abbreviatedd(k)[2pd(kx)dky,0 . The task is

then to evaluateG1(k,t). In the weak-coupling limit studied
here, this is obtained in two stages. We first integrate out
electron fieldscia

† (k),cia(k), for uk2kFi u.L, which can be
accomplished perturbatively in the interactions, since the
ergy denominators are finite away from the Fermi momen
The perturbative corrections to the free-electronG1(k,t) are
therefore small in these regions. Within the cutoff region
width 2L, we must employ the full RG treatment. The R
scales the problem onto the GN model, which thus applie
the lowest energies.

For the electron spectral function, the noninteracting
sult A1p/h

0 is trivial, since single-electron states are exa
eigenexcitations. The result is

A1p
0 ~k,v!5d„v2«1~k!…u~v!, ~5.5!

A1h
0 ~k,v!5d„v1«1~k!…u~v!, ~5.6!

where «1(k)52t coskx2(t'/2)cosky . Interactions of
course modify this form somewhat, leading to some spec
weight away fromv5«1(k), and a broadening of the delta
function peak inA1p/h for some momenta. In weak-coupling
away from smallv, however, both effects are small. We w
return to them after we consider the behavior of the spec
function for small frequencies.

The low-frequency limit ofA1p is dominated by momen
tum near the Fermi points. Transforming to the slowly va
ing Luttinger fields, we have

G1~PkFi1q,kyi ;t!'E dxe2 iqx^cPia~x,t!cPia
† ~0,0!&

~5.7!

for q!1, wherekyi5(22 i )p. Unfortunately, integrability
doesnot give exact forms for the time-dependent correlati
functions in Eq.~5.7!. A considerable amount can be learne
however, from the exact excitation spectrum and from
proximate methods.

The spectrum determines thesupport of A1p/h(k,v).
From Eq.~5.3!, it is clear thatA1p/h(k,v) is nonzero only
when there exists an excitation~or more than one! with mo-
mentumk, spin s51/2, charge6e, and energyv. From
Table I, we see that the sixteen kinks have exactly the
propriate quantum numbers for all possible momenta n
the four ~i.e., two pairs! Fermi points with eitherSz561/2
and charge6e. We therefore expect thatA1p/h(k,v) first

becomes nonzero forv5A(kx2kFi)
21(ky2kyi)

21m2.
Since the kinks are isolated particles with a fixed ener
momentum relation, these excitations give a sharp de
function peak inAp/h . It is natural to identify this peak as th
continuation of the noninteracting delta function in Eq
~5.5!–~5.6! to the region near the Fermi points. At high
energies other states should contribute to the spectral we
e

n-
a.

f

at

-
t
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al

-

,
-

p-
ar

-
a-

.

ht.

A quick consideration of the quantum numbers is sufficie
to conclude that none of the mass)m bound states have th
appropriate quantum numbers~e.g., all have charge zero o
62e!. The next lowest-lying excitations with the quantu
numbers of individual electrons are in fact scattering~un-
bound! states of a kink and a GN fermion. For instance
(1,1,1,21)/2 kink and a~0,0,0,1! fermion can form a scat-
tering state with the quantum numbers of a spin-up elect
with momentum (kF11q,p), with q!1. Similarly, other
combinations of kinks with the (0,0,0,61) GN fermions
contribute to the single-particle spectral weight at (63kF1
1q,p), (6kF21q,0), and (63kF21q,0). All these form

continual withv.ec(q)52Am21(q/2)2 at each momenta
since the energy at a particular momenta can always be
creased continuously by shifting the kink and the bound-s
momenta in opposite directions. Further excitation of mo
than one (0,0,0,61) quanta leads to spectral weight at a
momenta separated by an even multiple of 2kF1 , i.e., k
5@(2n11)kF1 ,p#. The excitation gap for such a point in
creases, however, by an additional factor ofm as each GN
fermion @i.e., factor of (2kF1,0) away from the Fermi points#
is added. Furthermore, the higher harmonic contributions
the spectral function are expected to have small amplitud
as they involve multiple scatterings of the original inject
electron~see below!.

To understand the magnitude ofA1p/h(k,v) in the al-
lowed regions requires a knowledge of the matrix eleme
in Eq. ~5.3!, or of the full Green’s function in Eq.~5.7!.
Since exact results are unavailable for these quantities,
consider instead the mean-field approximation. Without l
of generality, let us consider momenta near the particu
Fermi pointk'(kF1 ,p) and spinSz511/2. Using Eq.~5.7!
and Eqs.~4.28!–~4.31!, the bare electron operators can
rewritten exactly in terms of even fermion fields,

^cR1a~x,t!cR1a
† ~0,0!&5^cR1

e ~x,t!cR1
e† ~0,0!&. ~5.8!

In the mean-field approximation, the exact eigenstates
created by the rotated operators for particlesc̃Ra

e† (k) and

holesc̃La
e (k) ~see Sec. IV D 2!, so that the above expectatio

value can be computed by a simple rotation. One finds

A1p
MF~kF11q,p,v!5

1

2 S 11
q

Aq21m2D d~v2Aq21m2!.

~5.9!

The q-dependent factor out front arises from the rotation
the c̃ spinor, and is analogous to a ‘‘coherence factor’’
superconductivity. Equation~5.9! captures a simple and ap
pealing physical effect. Although single-kink states exist
all momenta, their contribution to the spectral weight is su
pressed forq!2m by the ‘‘coherence factor’’ above. Suc
a negative momentum corresponds to the addition of an e
tron at a momentuminside the Fermi sea. Interactions de
plete the Fermi sea slightly near the Fermi points, allow
electrons to be added, but with a weight that vanishes aq
→2`, i.e., deep within the sea. Similarly, the hole spect
function has weightoutsidethe Fermi sea, since some e
cited particles exist as part of the ground state. Unfor
nately, the mean-field approximation is not sophistica
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enough to capture the continuum atv.ec(q), since thec̃
fields create exact eigenstates in this limit. Thus the c
tinuum is not present in Eq.~5.9!. On physical grounds, how
ever, we expect that it will be similarly suppressed for m
menta inside the former Fermi sea.

Having determined the behavior ofA1p/h near the Fermi
points and momenta separated from them by even multi
of (2kF1,0), we return to the question of the spectral weig
away from these points, at energies away from the nonin
acting single-particle energy«1(k). In the noninteracting
system, states with one added electronplusadditional neutral
electron-hole pairs in fact form a continuum away from t
single-particle energy. Consider, for instance,ky5p. The
lowest energy continuum of states with a single add
particle-hole pair~plus one electron! consists of those state
in which both electrons are infinitesimally above the Fer
surface (k15k25kF1) and the hole makes up the missin
momentum (k352kF12k). This begins at «2(kx ,p)5
cos(2kF12kx)2t'/2, which is below the single-particle en-
ergy~i.e.,«2,«1! for kF1,kx,3kF1 , crossing zero again a
kx53kF1 . It does not contribute to the single-particle spe
tral function, however, due to orthogonality. In an interacti
Fermi liquid, we would expect that an added electron c
scatter into these states~i.e., emit a low-energy particle-hol
pair!, and some weight would appear inA1p/h associated
with the continuum states.

In the weakly interacting ladder, an added electron aw
from the Fermi points can also scatter to create neutral e
tations, and some weight will appear in the regions near
noninteracting continuum forv*«2(k). This continuum
away from the Fermi points should merge smoothly into
continuum abovev52m at the Fermi points@and the higher
harmonics, e.g. (63kF1 ,p)#. Clearly, since the single
particle energy beginsbelow the continuum near the Ferm
momenta and it is above the continuum far away, it m
cross into the continuum at some point. Where it is below
continuum, we expect that the spectral function retain
sharp delta-function peak. Once it passes above, howe
the single-particle mode can decay into the continuum sta
and should acquire a small width. Putting this behavior
gether with the spectral function near the Fermi points a
higher harmonics, we arrive at the schematic single-part
spectral function illustrated in Fig. 5. The most dramatic fe
ture is the sharp delta-function peak near the Fermi poi
which crosses into the continuum and acquires a width
higher energies.

B. Spin structure factor

The spin spectral function can be defined in a similar w
to the single-particle one. Consider the structure function

S i j ~k,iv!5
1

2 (
l l 8x

E dte2 ikxx2 iky~ l 2 l 8!1 ivt

3Tt^0uSl
i~x,t!Sl 8

j
~0,0!u0&, ~5.10!

where the lattice spin operator isSl(x)5ala
† (sab/2)alb . The

spin spectral functionAs is obtained from this in the usua
way
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p
Im S i j ~k,iv→v1 id!→As~k,v!d i j for v.0.

~5.11!

The spectral decomposition ofAs is

As~k,v!5
1

3 (
n

u^0uSi un&u2d~k2kn!d~v2En!.

~5.12!

As for the single-particle case, we expect that the s
spectral function will be approximately equal to its noninte
acting value forv@m. A straightforward calculation for the
noninteracting problem gives

As
0~k,v!5

1

8p (
a,b561

Q~12ur u!

sin~kx/2!A12r 2

3H QFb cos
kx

2
A12r 21r sin

kx

2
1at'/2G

2QFb cos
kx

2
A12r 22r sin

kx

2

1a
t'
2

coskyG J , ~5.13!

where r 5@v1a(t'/2)(cosky21)#/(2 sinkx/2). Clearly, the
noninteracting spin spectral function is considerably m
complex than its single-particle counterpart. This is beca
the neutral spin-one excitations in the noninteracting sys
are particle-hole pairs, and thus comprise a continuous s
trum. The result in Eq.~5.13! is plotted in Fig. 6.

For ky50, the particle and hole must come from the sa
band. In this case low energy excitations exist nearkx50,
when both are taken near the same Fermi point, and n

FIG. 5. Schematic plot of the single-particle electron spec
function A1p(kx ,ky5p,v). The curve below the continuum indi
cates a sharp resonance, i.e., a delta-function peak inA1p , which
acquires a finite width once it passes inside the continuum du
the onset of decay processes. The continuum above energym
coincides with the creation of~unbound! scattering states of a singl
kink and a GN fermion.
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kx562kF1 ~kx562kF2 are equivalent to these value
modulo 2p!, when the particle and hole are taken from o
posite Fermi points~still in the same band!. Two branches of
continual~from the bonding and antibonding bands! form as
the momenta of the particles and holes are varied. Foky
5p, the particle and hole must come from opposite ban
In this case, thekx50 states have an energy of exactlyt' ,
since this requires a vertical transition. Low-energy exc
tions exist nearkx56(kF22kF1), due to particle-hole pairs
taken from two right-moving or two left-moving Ferm
points. They also exist nearkx5p, when the particle and
hole are taken from opposite sides of the Fermi surface.
tending these two branches of excitations gives the fo
shown in Fig. 6~b!.

As for the single-particle spectral function, introducin
interactions allows for additional structure, and the low-lyi
excitations are raised up to energies of orderm. In particular,
from Table II, we see that the lowest-lying neutral tripl
states are the massm GN fermionsh3,4,5 at k5(p,p). The
next highest energy neutral triplets are the mass)m bound
states. Theh3,4,5h7,8 have momenta@6(kF12kF2),p#,
while the h3,4,5h4,5,3 and h3,4,5h6 have momentum~0,0!.
Above these exist continual dispersing likeec(q)
52Am21(q/2)2 away from all the aforementioned poin
and(62kF1,0) ~the excitations at these last points arise fro
certain pairs of unbound kinks!. Since there are no shar
resonances~delta-function peaks! in the noninteracting limit,
we expect that the massm and)m peaks must broaden a
higher energies to merge into the continual found there
schematic form is shown in Fig. 7.

C. Optical conductivity

Another quantity of considerable experimental relevan
is the optical conductivity. We are interested in the real p
of the conductivity, defined by

Re s~v!5ImFP~ iv→v1 id!

v G , ~5.14!

where the (k50) current-current correlator is

P~ iv!5
1

2 (
l l 8

E dxdteivt^TtJl~x,t!Jl 8~0,0!&.

~5.15!

The electrical current operator is

Jl~x!5
e

2i
@al

†~x!al~x11!2al
†~x11!al~x!#. ~5.16!

To evaluate Eq.~5.15! only the slowly varying (k50) com-
ponent of the current is needed. Decomposing the lat
fields into their continuum components using Eq.~2.2! and
then applying the bosonization and refermionization rul
one finds the long-wavelength form

Jl;sin kF1]xf1 ~5.17!

5
sin kF1

2p
c1

†tzc1 , ~5.18!
-

s.

-

x-

A

e
rt

e

,

5
sin kF1

2p
~GR

122GL
12!. ~5.19!

From this form, the current operator clearly excites t
mass)mh1h2 bound states, as well as higher-energy co
tinuum scattering states with energies above 2m. Since Eq.
~5.14! is nothing but 1/v times the spectral function ofJ, the
zero-temperature optical conductivity is thus zero forv
,)m, has a sharp~delta-function! peak atv5)m, and a
threshold with continuous weight forv.2m. Based on the
mean-field picture, we expect the spectral weight in the tw
particle continuum to have a square root singularity~due to
the van Hove singularity at the bottom of the band—s
e.g., Ref. 48!, i.e.,

s~v!'Ad~v2)m!1BA m

v22m
Q~v22m!.

~5.20!

FIG. 6. Intensity plot of the non-interacting spin spectral fun
tion at ~a! ky50, ~b! ky5p. The darkness is proportional to th
spectral weight, white indicating regions of phase space in which
particle-hole pairs exist.
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At nonzero temperatures it is difficult to determines~v!
from the Kubo formula, Eq.~5.14!. Instead, the general fea
tures can be argued on more conventional transport grou
borrowing heavily from recent results of Damle an
Sachdev49 for spindynamics of gapped two-leg ladders. Th
important physical effect forT.0 is the presence of a non
zero equilibrium concentration (}e2m/T) of activated exci-
tations. In the semiconductor analogy, these are activ
particles and holes. In principle, all 24 massm states have
identical equilibrium concentrations; forT!m we expect
that we can neglect the much smaller activated dens
@O(e2)m/T)# of bound states.

In this case the low-frequency conductivity can be e
mated using a simple Drude argument. We focus on
charged species of massm, i.e., theh1,2 fundamental fermi-
ons and the kinks. Each of these contributes in parallel to
conductivity a term of the Drude form,

FIG. 7. Intensity plot of the interacting spin spectral function
~a! ky50, ~b! ky5p in the presence of interactions. In the low
energy portion, various gaps develop and excitations with sh
delta-function peaks are present~see Sec. V B!. Note that the mini-
mum energy spin excitations occur atk5(p,p).
ds,

ed

s

-
e

e

s~v!5
s0

11 ivt
, ~5.21!

with s05nt/m, t a scattering time, andn the density of
thermally excited carriers. Using the Boltzmann distributio
we haven;AmTe2m/T for T!m. The average separatio
between particlesl (T)51/n is thus much larger than thei
typical wavelengthl(T);2p/p;1/AmT, obtained by equi-
partition. The particles thus behave essentially classically
cept during a collision, when they scatter strongly@as known,
e.g., from the exactS matrices for the SO(N) GN model#,
and their scattering time is determined simply by the tim
between collisions:t; l (T)m/p;T21em/T. The exponential
dependences in the dc conductivity thus cancel, ands0

;1/AmT @the same result is obtained from the Einstein
lation s05(]n/]m)D#. In principle, the dimensionless nu
merical prefactor in this relation could be obtained using
methods of Ref. 49, but we content ourselves here sim
with the scaling form. Note that although the height of t
Drude peak diverges asT→0, its width shrinks much more
rapidly ~exponentially!, and the weight atv50 is negligible
at low temperatures.

Turning to the higher-frequency features~for v')m
andv*2m!, we expect that scattering between theinjected
bound states or particle-hole pairs and the thermally exc
carriers will occur on the same characteristic timescalet.
These peaks therefore also acquire exponentially sm
widths @O(1/t)# for T!D. Since the overall spectral weigh
in Res(v) must be conserved, we expect the heights of th
features to diverge much more strongly than the Drude pe
i.e., s(v5)m,T);t;em/T and s(v52m,T);At
;em/2T.

Indeed, the optical conductivity presumably satisfies u
versal scaling forms near these points, i.e.,

Re s~v!;H tS1@~v2)m!t#, uv2)mu!m

AtS2@~v22m!t# uv22mu!m
~5.22!

for T!m, whereS1 andS2 are universal scaling functions
A schematic illustration of the optical conductivity at finit
temperature is given in Fig. 8.

D. Equal-time spatial correlators

Numerous other correlators can be measured at e
times in numerical simulations, and sometimes experim
tally ~e.g., static structure factors!. The properties of essen
tially any such correlator can be deduced from the GN sp
trum, as summarized in Table II. Due to the Loren
invariance of the GN model, intermediate states with a fin
energye give rise to exponentially decayingspatial correla-
tion functions with the corresponding lengthje5v/e.

For completeness, we quote two examples here. The p
field correlator, defined byD(x)5a1↑(x)a2↓(x) has the cor-
relation function

^D~x!D†~0!&;A1e2muxu/v1@A2~21!x1A3ei2kF1x

1A4e2 i2kF1x#e2)muxu/v1¯ ~5.23!

t
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for uxu@1. Here the first term comes from the massm ‘‘Coo-
per pairs’’ and the second from the corresponding bou
states. In the prefactors to the exponentials,Aj , we have
neglected subdominant spatial dependences, which gene
will have power-law forms. For example, due to the on
dimensional van Hove singularity for adding a pair above
threshold energym, one expectsA1(x);x21/2 for large x.
Similarly, the real-space density-density correlation funct
is

^nl~x!n1~0!&;@B1~21!x1 l1B2 cos~2kF1x!#e2muxu/v

1@B31B4~21! l cos~kF12kF2!x#e2)muxu/v

1¯ . ~5.24!

Herenl(x)5ala
† (x)ala(x)21. The real-space spin-spin co

relation function has an identical form, except withB250.

VI. GENERIC INTERACTIONS AND SO „5… SYMMETRY

In the previous sections, we focused on the propertie
the D-Mott phase, which occurs with generic predominan
repulsive interactions in the two-leg ladder. In weak coupl
this phase exhibits a remarkable SO~8! symmetry with dra-
matic physical consequences for both two-particle a
single-particle properties. As remarked in the Introducti
there exists an SO~5! subalgebra of the full SO~8! group
whose vector representation ‘‘unifies’’ superconductivity a
antiferromagnetism. Thus all the consequences of this SO~5!
symmetry, proposed by Zhang as a phenomenological m
for the cuprates, are shared by theD-Mott phase. A number
of authors have proposedexactly SO~5! invariant lattice
models including, in a recent paper by Scalapino, Zhang,
Hanke~SZH!, a two-leg ladder model.44 SZH derived a com-
plex phase diagram for this model in the strong-coupl
limit in a space including both repulsive and attractive int

FIG. 8. Optical conductivity at finite temperature. At low tem
peratures, all the features become exponentially sharp, with a w
dv;e2m/T. In this limit, the ‘‘exciton’’ peak atv5)m retains a
nonzero weight, sharpening into a delta function, and the peak
v52m is also exponentially high. By contrast, the Drude peak
v50 has vanishing weight at low temperatures, its height dive
ing only ass0;1/AmT.
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actions. In this section, we will develop the necessary te
nology and study in weak-coupling both the SZH model a
other generic SO~5! invariant two-leg ladder systems.50,51

In fact, the focus on SO~5! invariant models is less restric
tive than might be naively expected. Indeed, in our numer
studies of the full RG equations at half filling,all weak cou-
pling two-leg ladder models we have studied~including
those with attractive interactions! scale under the RG onto
the SO~5! invariant manifold.Within this manifold, we have
observed five attractors, including theD-Mott phase and a
Luttinger liquid ~C2S2! phase continuously connected to th
noninteracting Fermi liquid, in which all the elementary e
citations remain gapless. The remaining three attractors
all massive phases, and comprise anS-Mott phase similar to
the D-Mott phase but with approximate ‘‘s-wave’’ pair cor-
relations, acharge-density-wave~CDW! phase with a den-
sity wave atk5(p,p), and aspin-Peierls~SP! phase with-
out a density wave but with kinetic energy modulated at
same wave vector. We group theD-Mott with the latter three
to form four dominant phases. We will see that~in weak
coupling! while all of these dominant phases share Zhan
SO~5! symmetry, each one possesses adistincthigher SO~8!
symmetry. The different SO~8! symmetries are related in
rather simple ways that have ramifications for the critic
points between the different dominant phases.

A. SO„5… symmetry

We begin by reviewing some basic properties of t
SO~5! symmetry, demonstrating in the process the relation
the SO~8! symmetry already discussed. The SO~5! algebra
was originally designed to rotate the five-componentvector
containing the real and imaginary parts of theD-wave pair
field and the three components of the staggered magne
tion. A set of operators that performs this function was
troduced by Zhang41—these are the 10 generators of SO~5!,
which are conveniently grouped into the antisymmetric m
trix

KAB5F 0

Qp 0

Re Px 2Im Px 0

Re Py 2Im Py Sz 0

Re Pz 2Im Pz 2Sy Sx 0

G , ~6.1!

whereA,B51,...,5 spans the matrix of generators andKAB
52KBA . The various components are defined as bilinear
electron operators,

Qp5
1

2 (
k

@aa
†~k!aa~k!21#, ~6.2!

S5
1

2 (
k

aa
†~k!sabab~k!, ~6.3!

P5
1

2 (
k

fkaa~2k1N!~sys!abab~k!, ~6.4!

where N5(p,p) is the ‘‘nesting’’ vector andQp is the
charge measured in the number ofpairs of electrons relative
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to half filling. Here aa(k) is the Fourier transform of the
lattice electron operator and a spin sum is implicit. To s
that the SO~5! symmetry is just the first subgroup of SO~8!,
we need simply take the continuum limit of Eq.~6.1!.
Straightforward but lengthy decomposition of the latti
electron fields into their slowly varying components~as in
Sec. II! and consequent bosonization and refermionizat
~as in Sec. IV! gives the exceedingly simple result

KAB5E dx~GR
AB1GL

AB!, ~6.5!

where theGP
AB are precisely the SO~8! generators introduced

in Sec. IV. Since only the five-dimensional upper-left blo
of the full matrix of SO~8! generators enter in Eq.~6.5!, the
SO~5! symmetry rotates the first five Majorana fermionshA ,
A51,...,5. As discussed in Sec. IV, the first five compone
of this vector representation contain both the pair fie
(;h1,2) and the staggered magnetization (;h3,4,5).

B. Microscopically SO„5… invariant models and SO„5… spinors

We now turn to a discussion ofmicroscopicallySO~5!
invariant ladder Hamiltonians. A particular example is t
SZH model, which is the most general SO~5! symmetric
two-leg ladder Hamiltonian with nearest-neighbor hopp
and only intrarung two-body interactions. The interacti
terms on each rung of the ladder take the form

H int5U(
l

$~nl↑2
1
2 !~nl↓2

1
2 !%1V~n121!~n221!

1JS1•S2 , ~6.6!

wherel 51,2 refer to the two legs. SO~5! symmetry requires
a single constraint on the three couplings:J54(U1V). For
U,V@t,t' the hoppingt can be treated perturbatively, an
SZH have determined the~quite complex! phase diagram in
theU-V plane. With the weak-coupling RG, we can attem
to complete the phase diagram by exploring the oppo
limit, U,V!t,t' . ~One can hope to determine the behav
at intermediate couplingU,V;t,t' by interpolation.! Fur-
ther, we can explore the generic behavior of other wea
interacting SO~5! invariant two-leg ladder systems that co
tain, for example, inter-rung interactions.

To do so, we need a means ofconstructingSO~5! invari-
ant models in weak coupling. For lattice models, such c
structions have been discussed by Henley52 and Rabello
et al.,53 and applied by SZH to the two-leg ladder. Here w
generalize these methods to thechiral fermions operators
that appear in the linearized continuum model obtained in
weakly interacting limit. Since the Hamiltonian is built from
electron operators, we need to introducespinor representa-
tions of SO~5!. We begin with the lattice construction o
Rabelloet al.,53 defining the four-component spinor as

C~k!5S aa~k!

fkaa
†~2k1N! D , ~6.7!

whereN5(p,p) is the nesting vector of the Fermi surfac
To avoid double counting, the allowed momentumk in the
spinor only runs in the ‘‘folded’’ Brillouin zone, whose siz
is half of the original one, as shown in Fig. 9. For the two-l
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ladder model, in which the only transverse momenta areky
50,p, it is possible to specify the folded Brillouin zone b
simply settingky50 in the above spinor. The factorfk
~which in the general two-dimensional case is a nontriv
function with absolute value one! can be taken to be unity
with this convention. Re-expressing the spinor in terms
the band electron operators and Fourier transforming giv

C~x!5E dkxC~kx,0!eikxx5S c2a~x!

~21!xc1a
† ~x! D . ~6.8!

In the continuum limit valid for weak coupling at low ene
gies, a chiral decomposition is possible:

C~x!'CReikF2x1CLe2 ikF2x, ~6.9!

with chiral spinors defined by

CP~x!5S cP2a~x!

cP1a
† ~x! D . ~6.10!

To obtain Eq.~6.10!, the (21)x factor in Eq.~6.8! was can-
celed using the relationkF11kF25p.

The advantage of the spinor basis over the electron b
operatorscPia is that they transform simply under SO~5!. In
particular, under a unitary transformation generated by
operator

U~uAB!5exp~ iuABKAB!, ~6.11!

whereA,B51,...,5, the spinorsCP transform according to

CPa8 5U†~u!CPaU~u!5@T~u!#abCPb , ~6.12!

where the spinor indices a,b51,...,4, and T(u)
5exp(iuABG

AB) is the rotational matrix for a spinor. Her
GAB5 i @GA,GB#/4 where theGA are five generalized~4 by 4!

FIG. 9. The folded Brillouin zone for the SO~5! spinor. The
allowed momenta are chosen to be in the grey area. For a two
model, the transverse momentumky takes two values 0,p. In our
convention, onlyky50 excitations are inside the folded Brilloui
zone.
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Dirac matrices, discussed in detail in Appendix C. They s
isfy the usual Clifford algebra

$GA,GB%52dAB . ~6.13!

Using the spinors, we can break down all fermion bili
ears into irreducible representations of SO~5!, i.e., general-
ized currents. Three ‘‘normal’’ sets, which involve oneC†

and oneC spinor, carry net momentum zero or~p,p!:

JP[CPa
† CPa , ~6.14!

J P
A[CPa

† ~GA!abCPb , ~6.15!

J P
AB[CPa

† ~GAB!abCPb . ~6.16!

The three currents in Eqs.~6.14!–~6.16! transform as an
SO~5! scalar, vector, and rank-2 antisymmetric tensor,
spectively. A second set of currents~and their Hermitian
conjugates! appear ‘‘anomalous,’’ and carry net momentu
(62kF2,0) or (p62kF2 ,p):

IP[CPaRabCPb , ~6.17!

I P
A[CPa~RGA!abCPb . ~6.18!

These two currents, which transform as a scalar and a ve
under SO~5!, require the introduction of the matrix

R5S 0 1

21 0D , ~6.19!

where 1 is the two by two identity matrix. Note that it is
straightforward to show that the matricesRGAB are symmet-
ric, so that a nonvanishing anomalous tensor current ca
be defined. A simple counting verifies that the above se
currents completely spans the space of electron biline
There are 115110516 currents in Eqs.~6.14!–~6.16!, and
an additional 23(115)512 currents in Eq.~6.17!–~6.18!
and their complex conjugates, for a total of 2858(7/2) in-
dependent bilinears.

In weak coupling, we must generically consider all He
mitian products of two bilinears which are~1! invariant un-
der SO~5! and ~2! conserve quasimomentum. Neglectin
purely chiral terms~which, as in Sec. II, only renormaliz
velocities!, there are then five allowed couplings. The inte
action Hamiltonian density takes the form

Hint5gsJRJL1gvJR
AJ L

A1gtJR
ABJ L

AB1hs$IRIL1H.c.%

1hv$IR
AI L

A1H.c.%. ~6.20!

Note that momentum conservation forbids forming a qua
interaction from one normal and one anomalous current.

The above Hamiltonian represents the most general SO~5!
invariant ladder theory with weak interactions. The five co
pling constants (gs ,gv ,gt ,hs ,hv) specify a five-dimensiona
manifold within the more general nine-dimensional space
U~1!3SU~2! symmetric theories. This manifold is dete
mined explicitly by a set of linear equations, given in A
pendix D, which relate the five SO~5! invariant couplings to
the 9 U~1!3SU~2! couplings that were introduced in Sec.
Because the SO~5! manifold possesses higher symmetry,
t-
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closes under an RG transformation. The five RG equati
describing the flowswithin the SO~5! manifold are given
explicitly in Appendix E.

C. SZH model and four dominant phases

The weak coupling phase diagram for the SZH model c
now be obtained by numerical integration of the SO~5! in-
variant RG flow equations@Eqs. ~E1!–~E5!#. The initial
~bare! values of the SO~5! coupling constants are obtained b
taking the continuum limit of the SZH model. Foreachini-
tial set of bare parameters, the phase is determined
bosonizing those couplings that grow large under the
transformation, as described in Sec. II. The resulting we
coupling phase diagram is shown in Fig. 10.

Four new phases appear in addition to theD-Mott phase,
which occurs for predominantly repulsive interactions. In t
‘‘C2S2’’ region in Fig. 10, all five couplings scale to zer
under the RG. ThisLuttinger liquidphase thus retains all th
gapless modes~2 charge and 2 spin, hence C2S2! of the
original noninteracting electron system, and thereby has~an
approximate! chiral SO~8! symmetry.

We group the other three states together with theD-Mott
as fourdominant phases. In the S-Mott phase, the interac
tions diverge in the same way as in theD-Mott case, given
by Eqs. ~3.2!, with the modificationb12

r ,b12
s ,u11

r →2b12
r ,

2b12
s ,2u11

r . In the SO~5! invariant notation, this corre-
sponds to changing the sign ofhs and hv . Semiclassically,
the only change in the behavior is that^wr2&S-Mott
5^wr2&D-Mott1p5p. The us6 and ur1 fields are unaf-
fected, so that theS-Mott phase still has short-range pairin
It is, however, of approximates-wave symmetry, with
D1D2

†.0 due to the shift inwr2 , as can be seen from Eq
~3.8!. It is interesting that the strong-coupling ‘‘s wave’’
paired state on a rung,u↑↓,2&1u2,↑↓& is identical in the
ladder leg and band bases, and corresponds to anon-site
pairing or singlet state. In contrast, pairing in the stron
coupling D-Mott state is across the rung of the ladder,
depicted schematically in Fig. 11.

In the SP and CDW phases, the ratios of diverging c
plings are somewhat different. In particular,b11

s ,b11
r are ir-

relevant and

f 12
r 52

1

4
f 12

s 5~7 !b12
r 5~6 !

1

4
b12

s ~6.21!

5
1

2
u12

s 522u12
r 5~6 !2u11

r 5g.0,

~6.22!

where the upper and lower signs hold in the SP and CD
phases, respectively. These modifications imply a fairly d
matic change in the behavior relative to theD-Mott and
S-Mott states. In fact, the SP and CDW aredual to the
D-Mott and S-Mott, respectively, in the following sense
each is obtained from its dual counterpart by interchang
ws2 and us2 . Because of this interchange, the pair fiel
fluctuate wildly even locally, and̂ D1D2

†&SP5^D1D2
†&CDW

50. Instead, these two phases break discreteZ2 symmetries.
To explore this in detail, consider the order parameter
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Bl~x!5 1
2 @ala

† ~x11!ala~x!1H.c.#, ~6.23!

nl~x!5ala
† ~x!ala~x!21. ~6.24!

The field Bl(x) is the local kinetic energy, whilenl(x) is
the local electron density relative to half filling. The tw
order parameters differ in symmetry sinceBl(x) is even
andnl(x) is odd under aZ2 particle-hole symmetryala(x)
→(21)l 1xala

† (x). Using the usual relations to rewriteBl

andnl in terms of chiral operators, bosonizing, and applyi
the semiclassical results~common to both the SP and CDW
phases! ^ur1&5^us1&5^ws2&50, one obtains

^Bl~x!&;~21!x1 l^cos~ 1
2 wr2!&, ~6.25!

^nl~x!&;~21!x1 l^sin~ 1
2 wr2!&. ~6.26!

Since^wr2&50,p in the SP and CDW phases, respective
we find ^Bl&SP;(21)x1 l , ^nl&SP50, and ^Bl&CDW50,
^nl&CDW;(21)x1 l . The SP phase thus breaks only the d
crete symmetry under translations by one lattice spacing~the

FIG. 10. Phase diagram of the SO~5! symmetric SZH model
plotted in theU-V plane withJ54(U1V) andU,V!t5t' .

FIG. 11. Schematic illustration of the four dominant phas
drawn for simplicity in the strong-coupling limit. In theD-Mott and
S-Mott phases, neighboring rungs contain essentially decou
pairs. Adjacent rungs are highly correlated in the SP and CD
phases, which furthermore break parity symmetry.
,

-

translation in they direction is, of course, equivalent to pa
ity!, while the CDW phase breaksboth translational symme-
try and theZ2 particle-hole symmetry. These broken sym
metries can be depicted easily in the strong coupling limit
shown in Fig. 11.

D. SO„8… symmetries and degeneracies
of the S-Mott, SP, and CDW phases

Since the four dominant phases appear on essent
equal footing, one might suspect that theS-Mott, SP, and
CDW phases exhibit SO~8! symmetries similar to that of the
D-Mott phase. We shall see that this is indeed the case,
that the SO~8! algebras aredifferent in each state.

Consider first theS-Mott. In the previous subsection,
was shown that theS-Mott is related to theD-Mott by a p
shift in wr2 . It follows that if we define

ua
S5H ua , a51,2,3

wr21p, a54,
~6.27!

andwa
S5wa , the bosonized Hamiltonian in theS-Mott phase

takes the form of Eqs.~3.5!–~3.6! ~with ua ,wa replaced by
ua

S,wa
S!. Consequently, a refermionization into the GN for

is again possible. In particular, upon defining

hPA
S 5H hPA , A51...6

PhPA , A57,8,
~6.28!

theS-Mott Hamiltonian takes the ‘‘canonical’’ GN form@Eq.
~4.6!# in terms of thehPA

S . The sign changes in Eq.~6.28!
imply that the generators of the SO~8! symmetry in the
S-Mott phase are different from those of theD-Mott phase.
For instance,GS

715GR
712GL

71, whose spatial integral is no
an SO~8! generator in theD-Mott case. However, since th
Majorana fermions for the two phases are equal forA
51,...,6, theD-Mott andS-Mott do share a common SO~6!
subalgebra.

Similar constructions can be performed for the SP a
CDW phases. Recalling the duality of the previous subs
tion, we choose

ua
SP5H ua , a51,2

ws2 , a53

wr2 , a54,

wa
SP5H wa , a51,2,4

us2 , a53

~6.29!

for the SP phase. Similarly for the CDW, we take

ua
CDW5H ua , a51,2

ws2 , a53

wr21p, a54

~6.30!

and wa
CDW5wa

SP. As before, the GN form can be retaine
The appropriate Majorana fermions in these cases are

hPA
SP5H hPA , A51,...,5,7,8

PhP6 , A56
~6.31!

and

,

d
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hPA
CDW5H hPA , A51...5

PhPA , A56,7,8
. ~6.32!

Like theD-Mott andS-Mott, the SP and CDW phases sha
a common SO~6! symmetry. Moreover, theD-Mott and SP
share an SO~7! symmetry, as do theS-Mott and CDW.

A final calculation is possible now that the appropria
bosonized variables have been established. In Sec. IV
Appendix B, the uniqueness of theD-Mott ground state was
established. We also expect a unique ground state for
S-Mott phase, but have yet to establish it. In the SP a
CDW phases, discrete symmetries are broken, and one
pects at least a twofold degeneracy in the thermodyna
limit. Using the techniques applied earlier~gauge equiva-
lence of semiclassical solutions! to the D-Mott, we can de-
termine these degeneracies. Details can be found in Ap
dix B. The result of such an analysis is that theS-Mott
indeed has a unique ground state, while the SP and C
ground states are each exactly twofold degenerate.

E. Full set of SO„5… fixed points

Because of the relative simplicity of the SO~5! invariant
manifold ~5 coupling constants versus 9 for the gene
case!, it is possible to perform an exhaustive determinat
of the possible asymptotic scaling trajectories under the R
To do so, we insert the power-law ansatz of Eq.~2.26! into
the SO~5! RG equations, Eqs.~E1!–~E5!. This set of five
coupled algebraic equations can be solved exactly, in c
trast to the corresponding set of nine U~1!3SU~2! equations,
which have proved intractable. One finds fourteen solutio
delineated in Table III. Five represent the states discusse
far: the gapless C2S2 and four dominant SO~8! symmetric
phases.

Of the remainder, five represent critical points. Consi
first the D-Mott↔S-Mott transition. Taking the values in
Table III, one finds that semiclassically the fieldsur1 , us1 ,
andus2 are pinned as in theD-Mott andS-Mott states, but
that neither theur2 nor thewr2 field appears in the interac
tion Hamiltonian. There is thus a single gapless~central
chargec51! bosonic mode at the critical point. That this
indeed the critical point between theD-Mott and S-Mott
phases can be seen by perturbing slightly away from
scaling trajectory. If the perturbations are small, those te
involving the gapped degrees of freedom will have a ne
gible effect, and we need only include the couplings invo
ing ther-fields. As argued in Sec. II, cosnur2 terms are not
allowed by translational invariance. The low-energy Ham
tonian density near the critical point~after integrating out the
massive fields! thus has the form

HD↔S
eff. 5

1

8p
@~]xwr2!21~]xur2!2#2l coswr2 .

~6.33!

For l.0, the semiclassical minimum occurs forwr250,
describing theD-Mott phase, while forl,0, the minimum
shifts towr25p, yielding theS-Mott phase. We expect tha
the general form of this low-energycritical Hamiltonian will
remain valid even in strong coupling, though the Lutting
stiffness and velocity of the criticalwr2 mode will shift in
this case. What are the critical properties of this transitio
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The correlation length exponent is determined by the sca
dimension of coswr2 . In a general strong-coupling situation
this is acontinuously variableexponent. In weak coupling
however, it is determined. In particular, refermionization im
plies coswr2;c4

†tyc4, which acts as a Dirac mass and h
scaling dimension one. In this limit then, the correlati
length j;ulu2n, with n51. In both strong and weak cou
pling, the dynamical exponentz51, as determined by the
quadratic bosonic kinetic energy. This type ofc51 continu-
ously variable critical point is known as a Gaussian mod
as shown in Fig. 11. Of course, in neglecting the mass
modes, we have thrown out additional universal physics
the weak-coupling limit. In particular, these massive mod
have a large SO~6! symmetry, which can be seen by rewri
ing the critical interaction Hamiltonian density using Tab
III and Eqs.~D11!–~D12!,

HD↔S
int. ~l50!5g (

A,B51

6

GR
ABGL

AB . ~6.34!

The full weak-coupling critical symmetry is thus U(1)R
3U(1)L3SO(6). It mayseem surprising that this critica
point haslower symmetry than the massive dominant phas
which enjoy SO~8! invariance. This is a result unique to th
weak-coupling limit. With stronger interactions, correctio
to the weak-coupling scaling will break the SO~8! symmetry,
while leaving the U(1)R3U(1)L critical symmetry~which
results from truly infinite-wavelength physics! intact.

Having understood theD-Mott↔S-Mott transition, it is
clear that the SP↔CDW transition is essentially identica
The Hamiltonian in this case differs only via the interchan
of us2 and ws2 , which in any case are massive at th
critical point.

The next two critical points are somewhat different. F
concreteness, consider theD-Mott↔SP transition. As be-
fore, three of the bosonic fields are massive, in this c
ur1 ,us1 ,ur2 . These can be integrated out, leaving thes-
fields critical. However, hereboth us2 and the dualws2

appear, so a semiclassical analysis is not tenable. Instead
refermionize this single remaining bosonic field and its int

TABLE III. Fourteen algebraic solutions of the SO~5! RG equa-
tions.

48gs 48gv 48gt 48hs 48hv Phase

0 0 0 0 0 C2S2

22 2 4 1 21 D-Mott
22 2 4 21 1 S-Mott
22 22 4 21 21 SP
22 22 4 1 1 CDW

0 3 6 0 0 D-Mott↔S-Mott
0 23 6 0 0 SP↔CDW

2(12/5) 0 (24/5) 0 2(6/5) D-Mott↔SP
2(12/5) 0 (24/5) 0 (6/5) S-Mott↔CDW

0 0 8 0 0 Multicritical

212 0 8 66 0 SO~5!3SO~3! GN
212 0 0 66 0 SO~5! WZW

3SO~3! GN
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actionsafter integrating out the three massive bosons~i.e.,
setting them to their semiclassical minima!. The reduced
Hamiltonian density in this case is

HD↔SP
int,eff 5gihR5hL51l̃ ihR6hL6 . ~6.35!

Hereg is the finite coupling along the scaled RG trajecto
andl̃ is a deviation from the critical trajectory similar tol in
the Gaussian model above. Sinceg is nonzero, thehP5 Ma-
jorana fermion acquires a gap, and only the singlehP6 Ma-
jorana fermion is gapless at the critical point. This is a c
tral chargec51/2 critical point, which uniquely identifies i
as an Ising transition. Indeed, the Ising nature of this tra
tion is very physical, given the discreteZ2 parity symmetry
broken in the SP phase. This also explains the duality
tween theD-Mott and SP phases found earlier: this duality
nothing but the usual Kramers–Wannier duality of the Is
model. As before, we expect the Ising critical behavior to
robust to corrections to the weak-coupling RG, so these t
sitions should be in the same universality class even w
strong interactions. In the weak-coupling limit, the mass
degrees of freedom again have higher symmetry, in this c
including the hP5 Majorana fermion coming from thes-
fields. The full weak-coupling critical theory is thusZ2
3SO(7), where theZ2 theory is the conformally invarian
Ising model, as indicated in Fig. 11.

Not surprisingly, theS-Mott↔CDW transition is also of
the Ising variety. The ‘‘multi-critical point’’ in Table III de-
scribes the case when all four phases come together
point, i.e., when two transition lines cross. It is simply
direct product of the two critical theories above, i.e.,
Gaussian model and an Ising theory. It is possible that th
theories actually become coupled if one reintroduces inte
tions that were irrelevant at the noninteracting Fermi fix
point, but we do not explore this possibility here.

The remaining four ‘‘fixed points’’ of the SO~5!-invariant
RG describe more exotic situations. We have not obser
any microscopic Hamiltonians attracted to these phases
some of these may perhaps occur for some choices of
interactions. We suspect that these ‘‘phases’’ are unsta
and hence spurious for physically relevant situations. Nev
theless, we discuss them briefly for completeness. They
most easily understood by using the representations in
~D10!–~D14!. The form of the SO~5!3SO~3! case is then
easily seen from the interaction Hamiltonian density~taking
the positive sign forhs for simplicity!

HSO~5!3SO~3!GN
int ;gF (

A,B51

5

GR
ABGL

AB13 (
A,B56

8

GR
ABGL

ABG .

~6.36!

These interactions are precisely those of an SO~5!3SO~3!
GN model. Both of the constituent GN models are mass
so this represents another gapped phase. The solution
the opposite sign forhs can be converted into the same for
by the canonical transformationhR6→2hR6 , so it is also a
gapped phase of this sort. The remaining two phases ca
understood similarly. Note that in these cases only the sc
interactionsgs andhs are nonzero. This implies that the fir
five and last three Majoranas are decoupled. Furthermor
this case sincegv5gt50, the first five Majorana fermions
,
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are noninteracting. They comprise a gapless SO~5! Wess-
Zumino-Witten ~WZW! model with central chargec55/2,
while the last three Majorana fermions combine to form
SO~3! GN model. The interaction Hamiltonian density
thus simply

HSO~5!WZW3SO~3!GN
int ;g (

A,B56

8

GR
ABGL

AB . ~6.37!

VII. DOPING THE D-MOTT PHASE

In this section we briefly consider the effects of dopi
away from half filling in the two-leg ladder. In the wea
coupling limit of interest and with nearest-neighbor hoppi
in the kinetic energy, the ladder at half-filling was argued
scale onto the soluble Gross-Neveu model, which posse
an exact global SO~8! symmetry. Generally, doping awa
from half-filling will break down this large symmetry, leav
ing only charge and spin conservation, with the mu
smaller U~1!3SU~2! symmetry. This can already be antic
pated for the noninteracting problem: When the Fermi
ergy moves away from zero~half-filling! the Fermi velocities
in the bonding and antibonding bands will in general beco
unequal due to curvature in the energy/wavevector disp
sion. For weak doping, however, this effect is small. Inde
in the relativistic model derived in Sec. II where the dispe
sion was linearized about the Fermi points, the small cur
ture is ignored entirely. In the following we focus on th
very low doping limit (x512n!1), where the difference
between the two Fermi velocities can be safely ignored.
thus continue to employ the linearized relativistic mod
Nevertheless, as we shall see, even within this limit dop
away from half filling breaks down the global SO~8! sym-
metry of the Gross-Neveu model, although in a rath
straightforward manner.

To dope we consider adding a chemical potential term
the Gross-Neveu Hamiltonian,H, with Hm5H2mQ, where
Q is the total electron charge. This charge can be written

Q52E dx~cR1
† cR11cL1

† cL1!52E dx~GR
211GL

21!.

~7.1!

SinceQ is a global SO~8! generator, it commutes with th
full interacting Hamiltonian:@Q,H#50. Thus, even form
Þ0 the states can still be labeled byQ, which, along with all
the generatorsGAB with A,B53,...,8, remains a good quan
tum number. The SO~8! multiplets will of course be split by
the presence of a nonzerom, lowering the energy of posi-
tively charged excitations and raising the negatively char
ones.

The splitting of the SO~8! multiplets can be conveniently
visualized in the large-N ‘‘semiconductor’’ picture. Of the
four fermionic particle-hole excitations of the fundamen
GN fermions, only the first one is charged and is shifted
energy. Specifically, employing the semiclassical notati
the excitations (61,0,0,0) carry chargeQ562, and are
shifted by an energyDEm572m, as depicted schematicall
in Fig. 12. Provided this shift is smaller than the energy g
2m,2m,m, the ground state remains unaltered: The



he
e

li

,

fo
l b

a
r
f

th

of
ar
fr
ld

th
sa
t
r

he
in

er

-
e
e
w

s
st

air
wn

m
ced
-

oo-

ral
-

per-
an

es
wo-

ing
air.

ith
ink

-

to

e

of

l
um

ng

ith
ter-
in-
ing
of

bly
he

eu

he

ion
(
due

l.
e.

1818 PRB 58HSIU-HAU LIN, LEON BALENTS, AND MATTHEW P. A. FISHER
negative energy ‘‘valence’’ bands remain filled and t
‘‘conduction’’ bands empty. In terms of electrons, the ladd
remains at half filling.

Similarly, the energies of the 16 kink excitations are sp
into 8 with energym1m and 8 with energym2m. Of the 28
~two-fermion bound! states with energy)m, 16 are neutral
and unshifted by the chemical potential. Of the others
have charge 2 and are shifted up in energy by 2m and the
other 6 down by22m.

The situation is more interesting when 2m.m. In this
case, the energy of the states in the ‘‘conduction’’ band
Cooper pairs drops below zero, and the ground state wil
radically altered. In the large-N limit the new ground state
will consist of filling up the negative energy states with
Fermi sea of Cooper pairs, as depicted in Fig. 12. FoN
58 the pair excitations willnot be describable in terms o
free Fermions, but one still anticipates the general picture
a conducting sea of Cooper pairs to remain valid. Since
Fermions interact for finiteN, this conducting sea will be
more correctly described as a Luttinger liquid. In the limit
very low doping, however, the Cooper pairs will be very f
apart and well described in terms of hard-core bosons or
fermions. In this limit, the Luttinger liquid parameters shou
approach those of free fermions. It is probable that theN
58 Gross-Neveu model remains integrable even in
doped case, since the states can still be labeled by the
good quantum numbers, so that exact statements abou
doped Mott insulator can be made. In the following we a
less ambitious, using known results from integrability for t
undoped case to infer the behavior in the very low dop
limit.

A. Excitations with one pair present

When 2m.m the energy is lowered by adding Coop
pairs to the system. Here we consider first the case 2m5m
101, so that the concentration of pairs, denotedx/2, is in-
finitesimal. In this limit it is sufficient to consider the prop
erties in the presence of asingleCooper pair. The presenc
of even this one pair modifies the spectrum of oth
excitations—such as the spin or single-particle gaps—as
now briefly discuss.

Consider first the spin-gap, i.e., the energy of the lowe
lying spin s51 excitation. In the undoped case, the lowe
lying triplet states are theh3,4,5 fundamental fermions, with

FIG. 12. Mean-field picture of the doped SO~8! GN model.
Only the first band~with Q52! is shifted by the chemical potentia
For 2m.m, Cooper pairs are added to the original ground stat
r
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momentum~p,p! and energym. As known from integrabil-
ity, these excitations interact via anattractive interaction
with the other GN fermions, including the single Cooper p
present due to doping. Indeed, the binding energy is kno
exactly and given byEb5(22))m. With the single Coo-
per pair present, ans51 magnon can be added to the syste
into a bound state with the Cooper pair, costing a redu
energym2Eb5()21)m. Thus the spin gap at infinitesi
mal dopingx501 is reduced from the undoped value ofm
down to ()21)m. There are, of course, also unbounds
51 excitations that can be created well away from the C
per pair, with energym. In fact, forx→0 the energym spin
excitations will dominate the spectral weight. The spect
weight for the lower energys51 bound states will presum
ably vanish linearly withx. It is worth emphasizing that the
discontinuity in the spin gap at infinitesimal dopingx501 is
a general feature due to the presence of a magnon/Coo
pair bound state in the undoped Mott insulator, and is not
artifact of weak coupling. If such a bound state surviv
strong coupling, as suggested by numerical RG on the t
leg ladder, a discontinuity should be present.

It is also instructive to consider the energy gap for add
single electrons in the presence of the single Cooper p
Adopting a convention whereQ.0 corresponds to ‘‘hole’’
doping, consider the energy to add a single electron w
charge21. A single electron can be created by adding a k
excitation, for example, an even kink with (21,21,21,
21)/2 in the semiclassical notation. Whenm50 this costs
an energym, but is shiftedup in energy for nonzero chemi
cal potential:E15m1m, as depicted in Fig. 13. When 2m
5m101 and the single Cooper pair is added, the energy
add the electron can be lowered fromE15(3/2)m by bind-
ing the kink to the~1,0,0,0! Cooper pair. This forms a charg
Q51 hole state: an odd kink with (1,21,21,21)/2. The
associated binding energy equalsm, as follows directly from
triality ~at m50!. Thus, at infinitesimal~hole! doping the
energy to add an electron drops bym, down tom/2. As for
the case of the spin excitations, one expects a continuum
unbound single electron excitations, at energies above 3m/2.

B. Excitations with many pairs

For 2m.m the ‘‘conduction band’’ for Cooper pairs wil
be partially occupied. In this case, one expects a continu
of low-energy particle/hole excitations created by exciti
pairs across the Fermi ‘‘surface.’’ For the SO~8! Gross-
Neveu model the Cooper pairs will presumably interact w
one another, so that the semiconductor picture of a nonin
acting Fermi sea will not be quite correct. Rather, the sp
less gas of Cooper pairs will presumably form an interact
Luttinger liquid. In any event, one expects a continuum
low-energy excitations in the Cooper pair fluid, presuma
with a linear dispersion relation. One might hope that t
velocity of this mode as a function of dopingx might be
accessible from integrability of the doped Gross-Nev
model.

It would also be very interesting to study the energy of t
spin-one excitations withfinite doping. An s51 magnon
added to the system will interact via an attractive interact
with the sea of Cooper pairs. For infinitesimal dopingx
501) the corresponding spin-gap energy was lowered
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to the formation of a magnon/Cooper-pair bound state. W
many pairs present, this energy will presumably be furt
lowered, as depicted schematically in Fig. 12.

Finally, we consider briefly the spin-one excitations
energies above threshold. These states would contribu
the spin spectral function, accessible via inelastic neut
scattering in the doped ladder. Generally, we expect a c
tinuum of states above threshold, corresponding, for
ample, to adding a magnon at~p,p! and simultaneously ex
citing multiple ‘‘particle-hole’’ pairs in the~Cooper-pair!
Fermi sea. This continuum should contribute to the s
spectral function at any given momentum. For example
momentum~p,p!, multiple particle-hole pairs with zero ne
momentum will contribute spectral weight at all energ
above threshold. Due to this continuum of states, we do
expect any delta functions in the energy dependence of
spin spectral function in the doped ladder.

This expectation runs contrary to arguments put forw
by Zhang for the existence of a sharpp resonance in the spin
spectral function in the superconducting phase of mod
which exhibit an exact SO~5! symmetry. Zhang’s argumen
has recently been applied to the doped~power-law! super-
conducting phase of the two-leg ladder by Scalapino, Zha
and Hanke.44 Below, we briefly reconsider Zhang’s argu
ment for the sharpp resonance, and show that in addition
SO~5! symmetry, it relies on the existence of acondensatein
the superconducting phase. Being one dimensional, howe
a true condensate does not exist in the ‘‘superconducti
phase of the two-legged ladder. In our view, this invalida
the argument for a sharp delta-functionp resonance in the
doped ladders, even in the presence of exact SO~5! symme-
try.

Zhang’s argument for thep resonance rests on the fa
that thep operators, defined in Eq.~6.4!, being global SO~5!
@and SO~8!# generators, are exact eigenoperators even w
nonzero chemical potential:

@Hm ,Pa#52mPa , ~7.2!

where Hm5H2mQ and the subscripta labels the three
components of thep operators. This implies that for an
eigenstateHmuE&5EuE& with energyE, the triplet of states

FIG. 13. Spin gap as a function of dopingx. The spin gap is
discontinuous atx50 due to the formation of magnon-Cooper-pa
bound states.
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PauE& are also exact eigenstates, but with energyE12m,
provided they are nonvanishing. Denote the exact gro
state of the doped ladder withN Cooper pairs asuN&, which
satisfy HmuN&50. Adding an additional Cooper pair is ac
complished with the operatorO 1

1(x)5Os(x)c1
†(x). The

zero-momentum Fourier transform of this operator,O 1
1(k

50), creates a state withN11 pairs, which can be decom
posed as

O 1
1~k50!uN&5cuN11&1¯ , ~7.3!

where the dots denote excited states withN11 pairs present.
Following Zhang, we can use thep operators to rotate Coo
per pairs at zero momentum into a triplet of magnons
momentum~p,p!, since

@Pa ,c1
†~x!#5&ha~x!, ~7.4!

with a53,4,5. Acting with theP operator on Eq.~7.3! and
using the above commutation relation and the fact thatOs
commutes withPa , one obtains

Oa~k50!uN&5
c

&
PauN11&1¯ , ~7.5!

whereOa(x)5Os(x)ha(x). The left-hand side is a spin-1
triplet of states with momentum~p,p!, built by adding a
magnon to theN-pair ground state. Due to the SO~5! sym-
metry, the states on the right side,PauN11&, are exact
eigenstates with energy 2m. As argued by Zhang, the equa
ity between the left and right sides implies that the triplet
magnons will contribute a delta peak in the spin-spec
function at energy 2m—the p resonance.

However, this conclusion rests on the assumption o
nonvanishing overlap betweenOauN& andPauN11&. But in
the thermodynamic limit, the squared overlap,ucu2, is simply
the ~Bose! condensate density, since

c5^N11uO 1
1~k50!uN&. ~7.6!

While nonzero in a 2d superconductor, for the two-leg lad
der the condensate density is zero, and the argument f
delta-functionp resonance is invalid. The vanishing conde
sate density is a general property of 1d systems which fol-
lows from the Mermin-Wagner theorem in the thermod
namic limit. For finiteN at fixed pair density, we expectc to
decay like an inverse power of the system lengthL.

For this reason, we expect that afinite length SO~5! in-
variant 1D model exhibits ad(v22m) peak in the spin
spectral function at momentum~p,p! with weight ~coeffi-
cient! decreasing as some powerL2a. Zhang has suggested46

that the spin spectral function may have a correspond
algebraic singularityin frequencyin an infinite system. To
address the fate of this finite-size peak in the thermodyna
limit, we consider now an approximate calculation of t
dopedspin-spectral function in the infinite system.

To this end, we must determine the GN operator cont
of the lattice spin operator. Using the techniques of Sec.
it straightforward to show that the decomposition ofSl

1(x)
contains a term

Sl
1~x!;~21! l 1xOs~x!c2R

† 1¯ . ~7.7!
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Of course, many other operators are also present, but
either negligible or identical contributions to the spect
function in the regime of interest. In theD-Mott phase, the
string Os has negligible qualitative effects in correlatio
functions, since the bosonic fieldsua are all locked~i.e., only
weakly fluctuating! aroundua50 in that case. In the dope
system, however, there is an important modification to theu1
field. Since the derivative of this field is just the pair dens
@Eq. ~4.43!#, its average value has a mean slope^u1(x)&
522kFx, wherekF5p(12n)/2 is the Fermi wave vecto
for the sea of Cooper pairs; recall that 12n is the concen-
tration of holes in the system. Furthermore, there will
fluctuations ofu1 around this mean value, corresponding
the density and phase waves of the Cooper-pair fluid in
C1S0 state.

To account for both these effects, we redefineu1(x)
→22kFx1u1(x), treating the shifted~zero mean! u1 field
as a free Bose field, as appropriate for a free Fermi
Luttinger-liquid system. The remaining three (u2 ,u3 ,u4)
fields remain locked, and we therefore set these to zero
side the Jordan-Wigner stringOs . This gives

Sl
1~x!;ei ~p2kF!x1 ip leiu1/2c2R

† . ~7.8!

As carried out for the undoped case in Sec. V, the spin sp
tral function can be extracted from the analytically continu
Fourier transform of the imaginary time spin-spin correlati
function

Sl l 8~x,t![^Sl
2~x,t!Sl 8

1
~0,0!&. ~7.9!

Using Eq.~7.8!, one then finds

Sl l 8~x,t!;e2 i ~p2kF!x2 ip~ l 2 l 8!

3^e2~ i /2!~u1~x,t!2u1~0,0!!c2R~x,t!c2R
† ~0,0!&.

~7.10!

To proceed, we require a calculation of the above exp
tation value. The simplest natural approximation, which w
be our first attempt, is to decouple the charge~1! and spin~2!
sectors, calculating theu1 correlator as appropriate for a Lu
tinger liquid ~i.e., from a free Bose theory! and thec2 cor-
relator using the ‘‘semiconductor’’ free-fermion operators.
particular, one finds

^e2~ i /2!~u1~x,t!2u1~0,0!!&;~x21t2!2K/4, ~7.11!

whereK is the Luttinger parameter of the Cooper-pair flu
K51 corresponds to free fermions, as is appropriate for v
low dopings. Here we have set the Fermi velocity of t
Cooper pair sea to one. The fundamental fermion correl
is approximately

^c2R~x,t!c2R
† ~0,0!&MF;E dp

2p
eipx2e1~p!tQ~t!,

~7.12!

where Q is the Heaviside step function. To simplify Eq
~7.12!, we have neglected to include the mean-field ‘‘coh
ence factors.’’ Because these are nonsingular, their neg
only modifies the final result by an overall smoo
momentum-dependent amplitude factor. Multiplying the tw
ve
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ct

terms in Eqs.~7.11!–~7.12!, performing the Fourier trans
form and analytically continuing to real frequencies gives
spin spectral function

As
MF~p2k,p;v!

;Im E dxdpdt
e2 ipx1@v2e1~p1k2kF!1 id#t

~x21t2!K/4 Q~t!,

~7.13!

where d501 is a positive infinitesimal. Singular behavio
can only arise from the largex,t power-law behavior of the
denominator. For largex, the oscillating exponential implies
that the integral is dominated byp'0, so that the dispersion
e1 can be linearized around this point. Doing so, thep andx
integrals can be readily performed. Up to an overall const
prefactor, one finds

As
MF~p2k,p;v!;Im E

0

`

dtt2K/2e@v2e1~k2kF!1 id#t.

~7.14!

This integral can be related to a Gamma function by anal
continuation. Carrying this out carefully gives the fin
mean-field result

As
MF~p2k,p;v!;uv2e1~k2kF!u211K/2

Q@v2e1~k2kF!#. ~7.15!

As suggested above, Eq.~7.15! indeed exhibits an alge
braic singularity. For momentum~p,p!, k50 above, and the
Fermi-level conditione1(k)52m for the Cooper-pair fluid
indeed implies the singularity is located atv52m, identify-
ing it with the putative ‘‘pi resonance.’’ Note, however, th
within this approximation identical ‘‘resonances’’ appear
all momenta, including alower-energy oneat k5kF . More-
over, the resonance becomes more singular when the
tinger parameterK decreases, approaching a delta functi
asK→0, whereas the pi resonance should approach a d
function in the opposite limit ofK→` where the Cooper-
pair fluid develops off-diagonal long-ranged order. Thus, i
unclear whether the above resonance for the 1d model has
any connection with the two-dimensional pi resonance.

Moreover, further reflection on the nature of the mea
field approximation used above, leads us to question the
lidity of the singular behavior at finite frequency. While
might well be correct for theO(N5`) GN model, the fun-
damental fermions, e.g., Cooper pairs and magnons,
strongly interactingfor the N58 case of interest, as evi
denced, e.g., by theO(1) binding energy for the mass)m
bound states and the degeneracy of the fundamental ferm
and kink excitations in theD-Mott phase. While interactions
will not significantly modify theu1 correlator above~since
the Cooper-pair fluid remains a Luttinger liquid!, they would
appear to have a drastic effect upon thec2 Green’s function.
In general, this Green’s function describes the propagatio
a single massive injected particle into and interacting wit
Luttinger liquid. Similar problems have been extensive
studied,54 and one finds that the massive particle will gen
ally radiate both energy and momentum into the Lutting
liquid, decaying in the process. From such decay proces
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we generally expect a finite lifetime and hence broadening
the algebraic singularity above. For largeN, the interaction
and hence the broadening would be small, but we see
reason for this to be the case forN58. Furthermore, one
might naively expect that the minimum energy singularity
k5kF would survive, since it is at the bottom of thec2 band
and thus naively has no states to decay to. The mean-
approximation, however, misses the existence of bo
states, including the Cooper pair-magnon bound state, w
lies below the band minima at very low doping. In gener
we expect that even thek5kF fundamental fermion can de
cay into this bound state~radiating excitations in the Lut
tinger liquid! in the interacting system, washing out the a
gebraic singularity even here.

In summary, the above argument suggests that ab
threshold the spin-spectral function at finite doping will
smooth as a function of energy, with no singularities. Sin
this conclusion is based on a number of physical argum
and approximations, we cannot rule out the possibility
some high-energy singular structure. Certainly singular
havior atv52m would be a remarkable phenomenon. On
much firmer standing is the spin-gap threshold energy, wh
is presumably a universal function of dopingx for the Gross-
Neveu model. One might hope that the precise functio
form for this energy gap is accessible via integrability.

ACKNOWLEDGMENTS

We are grateful to Anton Andreev, Natan Andrei, Dav
Gross, Victor Gurarie, Charlie Kane, Andreas Ludw
Chetan Nayak, Joe Polchinski, Hubert Saleur, Doug Sc
pino, and Shou-Cheng Zhang for illuminating conversatio
This work has been supported by the National Science Fo
dation under Grant Nos. PHY94-07194, DMR-9400142, a
DMR-9528578.

APPENDIX A: RG EQUATIONS

For the weakly interacting two-leg ladder with particl
hole symmetry at half-filling there are nine marginal no
chiral four fermion interactions, as discussed in detail in S
II. The leading-order renormalization group~RG! flow equa-
tions for the corresponding nine interaction strengths are

ḃ11
r 52~b12

r !22 3
16 ~b12

s !214~u12
r !21 3

4 ~u12
s !2, ~A1!

ḃ11
s 522b12

r b12
s 2 1

2 ~b12
s !22~b11

s !228u12
r u12

s 22~u12
s !2,

~A2!

ḃ12
r 522b11

r b12
r 2 3

8 b11
s b12

s 12b12
r f 12

r 1 3
8 b12

s f 12
s 116u12

r u11
r ,

~A3!

ḃ12
s 522b11

r b12
s 22b12

r b11
s 2b12

s b11
s 116u11

r u12
s 12 f 12

r b12
s

12b12
r f 12

s 2b12
s f 12

s , ~A4!

ḟ 12
r 5~b12

r !21 3
16 ~b12

s !2116~u11
r !214~u12

r !21 3
4 ~u12

s !2,
~A5!

ḟ 12
s 52b12

r b12
s 2

1

2
~b12

s !22~ f 12
s !218u12

r u12
s 22~u12

s !2,

~A6!
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t

ld
d
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,
a-
.
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d

-
c.

u̇11
r 52b12

r u12
r 14 f 12

r u11
r 1

3

8
b12

s u12
s , ~A7!

u̇12
r 52b11

r u12
r 2

3

8
b11

s u12
s 14b12

r u11
r 12 f 12

r u12
r 1

3

8
f 12

s u12
s ,

~A8!

u̇12
s 522b11

s u12
r 12b11

r u12
s 2b11

s u12
s 14b12

s u11
r 12 f 12

s u12
r

12 f 12
r u12

s 2 f 12
s u12

s . ~A9!

Hereġ[2pvdg/dl with b5edl the dimensionless rescalin
length of the RG transformation. The last three flow equ
tions describe the renormalization of momentum nonc
serving Umklapp processes.

APPENDIX B: GAUGE REDUNDANCY

The bosonized sine-Gordon form for the SO~8! Gross-
Neveu model appears to have a highly degenerate gro
state. In terms of the four boson fieldsua , the semiclassica
ground states correspond to spatially uniform values cho
to minimize the potentialV(u)52g(aÞb cos(ua)cos(ub).
Solutions includeua52pna as well asu52pna1p for ar-
bitrary integersna . But as we shall see, in most situation
these multiple solutions actually correspond to the sa
physicalstate. To see which solutions are physically equiv
lent, it is necessary to relate theua and their dual fieldswa to
the original boson fields,fPia , introduced when the electro
fermion operators were bosonized. Local gauge transfor
tions,fpia→fpia12pNpia(x,t) for integerNPia leave the
electron operators invariant, and so do not change the ph
cal state. Thus, any shift inua andwa which corresponds to
an integer shift in fPia/2p is redundant, and leaves th
physical state unchanged.

To establish whether or not two different semiclassi
solutions,ua and ua8 , are actually physically equivalent w
proceed as follows. For the given~spatially constant! shift
dua5(ua2ua8)/2p, we ask whether it is possible to choos
appropriate~spatially constant! shifts dwa so that the chiral
fields fPia/2p are changed by integers. The choice fordwa
is unconstrained, since the full interacting Hamiltonian
invariant underarbitrary spatially constant shifts in the fou
wa fields. If it is possible, then the two semiclassical so
tions are physically equivalent. For physically inequivale
states, it will not be possible to choosedwa to give the re-
quired integer shifts.

To implement the above procedure we need an expres
relating the bare chiral fieldsfPia to ua andwa . This can be
obtained from

fPia5 1
4 ~wr11aws12qaws22qwr2!

1 1
4 P~ur11aus12qaus22qur2!, ~B1!

whereq5(21)i51,21 for bonding and antibonding band
respectively. For theD-Mott phase the relation betwee
ua ,wa and the fieldsum6 ,wm6 is given explicitly in Eq.
~3.3!. In the S-Mott phase, the equivalence ofu45wr2 is
modified to beu4

S5wr21p, but thisp difference does not
effect theshifts dua betweendifferent semiclassical states
Thus the ground-state degeneracies in theD-Mott and



B
u
as
-

o

f

nd
ns

ns

ly
e

nt

m

ns

r

be-
the

are

the

ons
by

of
odd

rs

er

1822 PRB 58HSIU-HAU LIN, LEON BALENTS, AND MATTHEW P. A. FISHER
S-Mott phases must necessarily be the same. In Sec.
below we show that both of these phases have unique gro
states. It is necessary to consider the SP and CDW ph
separately~in subsection B2 below!, since there is a non
trivial modification in the relation betweenua ,wa and the
fields um6 ,wm6 . As we shall show, in these latter tw
phases the ground state istwofold degenerate—
corresponding physically to the spontaneous breaking o
discrete parity symmetry~see Sec. VI!.

1. D-Mott and S-Mott phases

In the D-Mott and S-Mott phases, shifts in the fieldsua
andwa induce shifts in the chiral fields,dfPia , of the gen-
eral form

dfPia5 1
4 P~AP!abdub1 1

4 ~AP!abdwb , ~B2!

wherea51↑,1↓,2↑,2↓ labels the band and spin indices a
b51,...,4labels the four flavors of the sine-Gordon boso
Here and below, all shifts will be measured in units of 2p, so
that, for example,df5(f2f8)/2p. The matricesAP can
be explicitly constructed by using Eqs.~B1!, ~3.3!,

~AP!ab5S 1 1 1 P

1 21 21 P

1 1 21 2P

1 21 1 2P

D . ~B3!

It will be convenient to separate out the two contributio
coming from the shifts inua andfa , respectively, by defin-
ing

dQPa5P~AP!abdub , dFPa5~AP!abdwb . ~B4!

Comparing two semiclassical solutions,ua andua8 , deter-
mines the shiftsdQPa . These two solutions are physical
equivalent, provided shiftsdwa can be chosen so that th
following eight constraint equations are satisfied:

QPa1dFPa54NPa , ~B5!

with integer NPa . In this case, all eight shiftsdfPia are
integers, and the electron fields are left unchanged.

Since the four shifts,dwa , determineboth right and left
vectors,dFRa ,dFLa , these two vectors are not independe
and similarly for theu shifts. Indeed one can see that

dFRa5
1
2 ~M!abdFLb , ~B6!

dQRa52 1
2 ~M!abdQLb , ~B7!

with M52ARAL
21 or

~M!ab5S 1 21 1 1

21 1 1 1

1 1 1 21

1 1 21 1

D . ~B8!

We can now use the eight constraint equations to eli
nate dF and arrive at four equations fordQ. To this end,
upon multiplying byM on the left sector of Eq.~B5!, one
1
nd
es

a

.

,

i-

obtainsdFRa2dQRa54(M)abNLa . Upon combining with
the right sector of Eq.~B5! one obtains

dQRa52NRa2~M!abNLb . ~B9!

Two semiclassical solutions~which determinedQRa! are
then physically equivalent provided these four equatio
have solutions forinteger NPa .

All of the semiclassical solutions take the formua
52nap or ua5(2na11)p with arbitrary integersna . It is
straightforward to show that forany two of these solutions
the differencedua corresponds todQRa , which are either
even integer for alla51, . . . ,4 or all oddintegers. When
they are even integers, Eq.~B9! can be solved for intege
NRa by takingNLa50. For odd integerdQRa a solution with
integer NRa is also possible by taking, for example,NLa
5da1 .

We have thereby established the physical equivalence
tween all of the semiclassical solutions. This implies that
D-Mott andS-Mott ground states are unique.

2. SP and CDW phases

In the SP and CDW phases, the relation betweenua ,wa
and um6 ,wm6 are changed, so the above conclusions
modified. In particular, one has

u3
SP5ws2 , w3

SP5us2 , ~B10!

in the SP phase andu3
CDW5u3

SP1p, w3
CDW5u3

SP in the CDW
phase. Because the boson fields are defined differently,
matrix AP which relates the two sets of fields in Eq.~B2! is
modified. The appropriate matrix in this case, denotedÃP , is
given by

~ÃP!ab5S 1 1 P P

1 21 2P P

1 1 2P 2P

1 21 P 2P

D . ~B11!

Notice thatÃR5AR , although the left matrices differ in the
third column. Similarly, the matrixM is also modified, be-
coming

~M̃!ab5S 0 0 2 0

0 0 0 2

2 0 0 0

0 2 0 0

D . ~B12!

Physical equivalence between two semiclassical soluti
for the SP or CDW phases is, once again, established
finding a solution of Eq.~B9! with integerNPia , except with
M replacingM. As before, the difference between any two
the semiclassical solutions leads to either even integer or
integer dQRa . For even integerdQRa a solution is again
possible by takingNLa50 and choosing appropriate intege
for NRa . However, a solution in the integers isnot possible
for two semiclassical solutions differing by an odd integ
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shift vectordQRa ~sinceM̃abNLb is always odd!. Two such
semiclassical solutions would thus correspond to physic
distinct phases.

The fact that the ground state is actually twofold deg
erate can be established as follows. Consider two spe
semiclassical solutions,ua

150 and ua
252pda1 . One can

readily show that the shift vectordQa
12 connecting these two

states is an odd integer vector, so that these two states
physically distinct. Next consider an arbitrary third semicla
sical solution,ua

3 . If the relative shift vector between the firs
and third solutions,dQa

13, is even then the physical states a
equivalent. If, on the other hand,dQa

13 is an odd integer, then
dQa

23 is necessarily even, and the second and third solut
describe the same physical state. It is thus clear that ther
only two physically distinct ground states in the SP a
CDW phases. As discussed in Sec. VII this twofold deg
eracy corresponds to a spontaneous breaking of a dis
parity symmetry.

APPENDIX C: GAMMA MATRICES AND SPINOR
REPRESENTATIONS

In this appendix, we discuss some technical details
gamma matrices and spinor representations of SO~5!. In gen-
eral, there are two types of representations for SO(N). The
first are tensors, which transform like products of vecto
Irreducible representations are then found by taking symm
ric and antisymmetric combinations~Young tableaux!. How-
ever, to describe how~complex! fermions transform unde
rotations, the second representation, the spinor one, is ne
sary. It has already been used in constructing invariant
Sec. VI, but here we review the mathematics in somew
more technical detail, in order to allow the reader to perfo
concrete calculations if he or she so desires. To explain
spinor representation, let us introduce a set ofN generalized
Dirac matrices that obey the Clifford algebra,

$GA,GB%52dAB , ~C1!

where A,B51,2,...,N. We then construct theN(N21)/2
generators defined as commutators between all pairs of t
Dirac matrices,

GAB5
i

4
@GA,GB#. ~C2!

It is easy to show that these generators satisfy the SON)
commutation relations

@GAB,GCD#5 i ~dADGBC2dACGBD2dBDGAC1dBCGAD!.

~C3!

For N55, we choose a specific set of matrices to repres
the SO~5! group. The minimum dimension of a set of fiv
matrices that satisfy the Clifford algebra is 434. Our par-
ticular choice is

G15S 0 isy

2 isy 0 DG25S 0 sy

sy 0 DG3,4,55S 2s 0

0 2s* D .

~C4!
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A useful property of the spinor representation is its ‘‘r
ality.’’ This means that the conjugate representati
2(Gab)* also obeys the algebra, and is equivalent unde
unitary transformation to the original representation. T
follows because it is always possible to find a matrixR
which satisfies the properties

R2521, R215R†5Rt52R,
~C5!

R21GABR52~GAB!* , R21GAR5~GA!* .

For N55 with our particular choice of Dirac matrices in Eq
~C4!, the matrixR is simply

R5S 0 1

21 0D , ~C6!

where1 is the two by two identity matrix. The matrixR is
useful in constructing irreducible representations of SO~5!.

As we have seen in Sec. VI, these abstract matrices ca
elevated to physical operators by sandwiching them betw
two spinors. The useful details are already given in the te
of Sec. VI. Here we provide some reasoning and motivat
for the choice of spinor taken there. For convenience,
copy the spinor definition from Eq.~6.7!:

C~k!5S aa~k!

fkaa
†~2k1N! D , ~C7!

whereN5(p,p). Herefk is a complex function with abso
lute value one, chosen by Rabelloet al.53 to haveD-wave
symmetry in two dimensions. As discussed in Sec. VI, t
factor plays no role in the case of the two-leg ladder, and
be set to unity. At first blush, the particular choice of spin
appears rather arbitrary. It is not, for several reasons. At
filling, the system is particle-hole symmetric. For every ho
excitation at momentumk created bya(k), there is a particle
excitation counterpart at momentumk2N created bya†(k
2N). Parity symmetry implies there is also a particle ex
tation at the opposite momentum2k1N. Because these ex
citations occur symmetrically, they are chosen as upper
lower components in the spinor. The use of the parity sy
metry is not essential. However, it is rather convenient
later analysis in weak coupling because, by such a const
tion, all components have the same chirality, i.e., act on
same side of the Fermi surface. Since the four-compon
spinorC(k) contains excitations at bothk and2k1N, the
momentumk is only allowed to run over half of the Brillouin
zone. The halved region in momentum space is also kno
as the folded Brillouin zone~shown in Fig. 9!. Finally, one
would like the spinor to obey canonical anticommutation
lations so that it annihilates or creates fermionic excitatio
This is the origin of the constraint onfk : direct calculation
verifies that, providedufku251, the canonical anticommuta
tion relation is satisfied,

$Ca~k!,Cb
†~k8!%5~2p!ddabd~k2k8!. ~C8!

Further straightforward algebra demonstrates that when
spinor satisfies canonical anti-commutators, the current
Eqs. ~6.14!–~6.18! satisfy appropriate Kac-Moody algebra
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This exercise, which we do not reproduce here, verifies
these currents are indeed SO~5! scalars, vectors, and tensor
as indicated in Sec. VI.

We conclude this Appendix by obtaining expressions t
relate the 28 SO~5! currents defined in Sec. VI, to the 2
SO~8! currents,GP

AB , introduced in Sec. IV. These relation
can be determined by bosonizing the SO~5! currents, rewrit-
ing in terms of the GN bosonsua and wa and the Klein
factors, refermionizing, and finally changing from Dirac
Majorana fermions. For example,

J P
215

1

2p
]xfPr15cPr1

† cPr15 ihP2hP15GP
21. ~C9!

The general relations can be conveniently presented in
following form:

GP
AB5F TP 2VP

t

VP SP
G

AB

. ~C10!

The 535 antisymmetric tensor matrixTP
AB5J P

AB for AÞB
and it is zero forA5B. The 335 vector matrix is

VP
CB5

1

2 S J P
B

2Im I P
B

P ReI P
B
D

C

. ~C11!

Finally, the 333 antisymmetric scalar matrix is

SP52
1

2 S 0

ReIP 0

P Im IP PJP 0
D . ~C12!

APPENDIX D: SO„5… CURRENTS IN SU„2…3U„1…
AND SO„8… NOTATION

In Sec. VI the most general set of SO~5! invariant inter-
actions for the weak-coupling two-leg ladder were expres
as products of right and left-moving SO~5! currents; see Eq
~6.20!. Here we reexpress these five interactions in terms
charge and spin currents with lower U~1!3SU~2! symmetry,
which were introduced in Sec. II. The products of SO~5!
scalar, vector, and tensor currents are re-expressed as

JRJL5~JR112JR2222!~JL112JL2222!, ~D1!

JR
AJ L

A54~JR112JR22!~JL112JL22!12~ I R12
† I L211I L21

† I R12!,

~D2!

JR
ABJ L

AB5
1

2
~JR111JR2222!~JL111JL2222!12~JR11

1JR22!~JL111JL22!24~ IR12
† IL211IL21

† IR12!.

~D3!

Notice that these three interactions conserve the numbe
particles in each band. The remaining two SO~5! invariant
interactions, involving anomalous scalars and vectors, sc
particles from one band to the other. In terms of t
U~1!3SU~2! charge and spin currents, they are
at

t

he

d

of

of

ter

IRIL1IR
†I L

†54~JR21JL211JR12JL12!, ~D4!

IR
AI L

A1IR
A†I L

A†516~JR21JL211JR12JL12!22~ I R11
† I L22

1I R22
† I L111I L11

† I R221I L22
† I R11!. ~D5!

For a given set of five SO~5! invariant interaction param
eters, these operator identities enable us to obtain the co
sponding values of the nine forward, backward and Umkla
scattering amplitudes;

b11
r 5gs1

1

2
gt , b11

s 524gv22gt , ~D6!

b12
r 54hs , b12

s 5216hv , ~D7!

f 12
r 52gs1

1

2
gt , f 12

s 54gv22gt , ~D8!

u11
r 522hv , u12

r 5gv , u12
s 52gt . ~D9!

From these, and the nine RG flow equations in Appendix
one can obtain a closed set of five RG flow equations for
five SO~5! invariant coupling constants, given explicitly i
Appendix E.

It is also instructive to reexpress the five SO~5! invariant
interactions in terms of the SO~8! currents—specifically the
28 SO~8! generatorsGAB5 ihAhB , comprising the vector
~fundamental! representation of SO~8!. For the first three
SO~5! interactions one finds

JRJL524GR
78GL

78, ~D10!

JR
AJ L

A54 (
A51

5

GR
A6GL

A6 , ~D11!

JR
ABJ L

AB5 (
A,B51

5

GR
ABGL

AB . ~D12!

As expected, these expressions show thatG78, GA6, andGAB

~for A,B51,..,5! transform under SO~5! rotations as scalar
vector, and~rank-two! tensor, respectively. The remainin
two anomalous SO~5! invariant interactions can similarly b
reexpressed as

IRIL1IR
†I L

†58~GR
67GL

671GR
68GL

68!, ~D13!

IR
AI L

A1IR
A†I L

A†528 (
A51

5

~GR
A7GL

A71GR
A8GL

A8!.

~D14!

It is clear thatG67,68 andGA7,A8 transform as SO~5! scalars
and vectors, respectively.

APPENDIX E: SO„5… RG EQUATIONS

For the weakly interacting two-leg ladder at half filling
requiring SO~5! symmetry reduces the number of margin
four-fermion interactions from nine down to five. Due
symmetry, one expects the RG flow equations to close in
manifold of SO~5! invariant models. This closure can b
demonstrated explicitly by combining the expressions
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tained in Appendix D that specify the five-dimension
SO~5! invariant manifold with the general RG flow equatio
in Appendix A. When reexpressed in terms of the SO~5!
couplings, the nine RG flow equations are seen to
redundant—only 5 are independent. Thus confined to
SO~5! invariant manifold, the set of independent RG flo
equations can be written as

ġs5216hs
2280hv

2 , ~E1!
ng

r-
o
h

et

et

et

s.

.

l

e
e

ġv58gvgt232hshv , ~E2!

ġt58gv
216gt

2164hv
2 , ~E3!

ḣs524gshs220gvhv , ~E4!

ḣv524gvhs24gshv18gthv . ~E5!
.
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