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We introduce and study the nodal liquid, a novel zero-temperature quantum phase obtained by
quantum-disordering a d-wave superconductor. It has numerous remarkable properties which lead
us to suggest it as an explanation of the pseudo-gap state in underdoped high-temperature super-
conductors. In the absence of impurities, these include power-law magnetic order, a T -linear spin
susceptibility, non-trivial thermal conductivity, and two- and one-particle charge gaps, the latter evi-
denced, e.g. in transport and electron photoemission (which exhibits pronounced fourfold anisotropy
inherited from the d-wave quasiparticles). We use a 2+1-dimensional duality transformation to de-
rive an effective field theory for this phase. The theory is comprised of gapless neutral Dirac particles
living at the former d-wave nodes, weakly coupled to the fluctuating gauge field of a dual Ginzburg-
Landau theory. The nodal liquid interpolates naturally between the d-wave superconductor and the
insulating antiferromagnet, and our effective field theory is powerful enough to permit a detailed
analysis of a panoply of interesting phenomena, including charge ordering, antiferromagnetism, and
d-wave superconductivity. We also discuss the zero-temperature quantum phase transitions which
separate the nodal liquid from various ordered phases.

I. INTRODUCTION

The discovery of the cuprate high-temperature super-
conductors in 19861 was a watershed in the recent history
of condensed matter physics, an event which stimulated
intense experimental and theoretical activity. As sample
quality and experimental precision have advanced, these
materials’ rich phase diagram and phenomenology have
come into focus.2 However, many theoretical efforts have
not reached fruition because of a serious obstacle, namely,
that these materials are apparently in a strongly-coupled,
non-perturbative regime. To put it more bluntly: there
is no obvious small parameter which facilitates an expan-
sion about a tractable model. In this paper, we promul-
gate the existence of a weakly-coupled ‘dual’ description
of a particularly exotic region of the phase diagram. This
description paves the way for controlled calculations of
experimentally measurable quantities.

Before plunging into our exegesis of this dual descrip-
tion and its consequences, let us briefly review the phe-
nomena which we wish to explain. The phase diagram as
a function of temperature T and doping x (the nature of
the doping varies from material to material, but is gener-
ally believed to be proportional to the effective hole con-
centration in each CuO2 layer) is indicated schematically
in Fig. 1. Best understood and in many cases very well
characterized are the undoped (x = 0) materials, which
are insulating antiferromagnets (AFs) below the Néel
temperature TN . At moderate dopings (0.1 <∼ x <∼ 0.3)
and low temperatures (T < Tc(x)), superconductivity
occurs. For many phenomenological purposes the super-
conducting phase is adequately described by the same
Ginzburg-Landau and London theory standard for con-
ventional superconductors (SCs).3 One important dis-

tinction between the high-Tc and conventional SCs, sus-
pected for many years and now generally accepted after
a number of beautiful and compelling experiments,4,5 is
their dx2−y2 (d-wave) pairing symmetry. This pairing
symmetry is a crucial ingredient in a zero-temperature
quantum description. In particular, d-wave symmetry
leads to gapless quasiparticles residing at the four nodes
of the pair wavefunction.

X

T

T*(x)

DSC
AF

Pseudo-Gap

Fig. 1: Schematic phase diagram of a high-temperature
superconductor as a function of doping x and tempera-
ture T .

Recent studies have revealed puzzling behavior
in the underdoped region between the AF and
SC. Below the high-temperature dotted line (T ∗(x))
in Fig. 1, angle-resolved photoemission (ARPES),6,7

transport,8 NMR,9,10 optical conductivity,11,12 and other
measurements2 indicate a dramatic reduction of low-
energy (single-)electronic and spin degrees of freedom.
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Furthermore, the ability of ARPES measurements to re-
solve wavevector dependence exposes an angular varia-
tion similar to that of d-wave quasiparticles in the SCing
phase6,7. This portion of the phase diagram is commonly
called the pseudo-gap region. The ultimate nature of the
corresponding underlying quantum ground state is an in-
triguing theoretical puzzle, and a principal subject of this
paper.

To proceed, we look to the experiments for guidance.
They indicate three types of excitations which are im-
portant below the dotted line in Fig. 1: the ordering
fields related to antiferromagnetism and superconductiv-
ity, and d-wave quasiparticles near the four nodes. Con-
spicuously absent from this list are electrons and holes at
an ordinary Fermi-surface. The physics of this omission
is that pairing occurs (due to unspecified strong interac-
tion physics) at the high energy T ∗(x). Given these in-
gredients, one natural theoretical strategy is to attempt
to approach the pseudo-gap state by increasing x from
the AF at half-filling. Many researchers have already
attempted this approach, but it remains inconclusive.

We, instead, tackle the pseudo-gap state from the
right, literally. To do this, we must contemplate
quantum-disordering the d-wave superconductor. For
simplicity, we will assume for the moment a purely two-
dimensional model of a single CuO2 plane. We imagine
that pairing establishes a local superconducting d-wave
order parameter ∆(~x, t) = |∆|eiϕ, where ~x is the two-
dimensional coordinate and t is time. The experimen-
tal properties of the pseudo-gap state can be interpreted
as an indication that |∆| is large in this region, so that
quantum fluctuations of the phase of the order-parameter
ϕ must be responsible for the lack of off-diagonal long-
range-order (〈∆〉 = 0), even as T → 0. The important
long-distance dephasing is accomplished by vortex loops
and lines, around which ϕ winds by ±2π. To destroy
the long-range correlations in ∆, we must unbind vortex
loops of arbitrarily large size, just as vortex-antivortex
pairs unbind above the Kosterlitz-Thouless transition
temperature in a two-dimensional superfluid. To imple-
ment this unbinding, it is extremely helpful to use the
2 + 1-dimensional duality13,14 relating an XY-model for
∆ and a Ginzburg-Landau model with complex field Φ
(“disorder parameter”) interacting with a gauge field a.
The duality interchanges Cooper pairs and vortices, so
that the desired quantum disordered d-wave state is the
ordered (condensed) phase, 〈Φ〉 6= 0, of the Ginzburg-
Landau theory. The imaginary-time effective action for
this dual theory is nothing but the Ginzburg-Landau free
energy functional for a three-dimensional superconductor
at finite-temperature.

The fate of the d-wave quasiparticles in this construc-
tion requires particular care, since these are strongly cou-
pled to the fluctuating pair field. In Sec. II A, we show
how the quasiparticles can be treated by extracting the
U(1) phase from the bare electron operators. Once the
phase is extracted, one is left with a set of gauge-invariant
fermion operators which create electrically neutral (but

spin-ful) quanta we call nodons. In the dual variables,
the fundamental Lagrangian of our model is

L = ψ†
1[i∂t − vF τ

zi∂x − v∆τ
xi∂y]ψ1 + (1 ↔ 2, x↔ y)

+
κµ
2
|(∂µ − iaµ)Φ|2 − VΦ(|Φ|)

+aµǫµνλ∂ν(Aλ − κ−1
λ Jλ) +

1

2κ0
(e2j − b2)

+2λJ0 + LN . (1.1)

In the sections which follow, we will elucidate the physics
of this Lagrangian in some detail, so we restrict our-
selves, in this introduction, to a whirlwind tour. The

fields ψ†
j , ψj , j = 1, 2 are the nodon creation and anni-

hilation operators at the two antipodal pairs of nodes.
Jλ is a bilinear in the nodon operators which has an in-
terpretation in the d-wave superconducting phase as the
quasiparticle electrical 3-current. Φ is the complex scalar
field representing the vortices, and aµ is the gauge field
which is dual to the phase of the superconducting or-
der parameter. The term proportional to λ describes the
effects of particle/hole asymmetries, and the LN term de-
scribes the coupling of the nodons to antiferromagnetism,
which we will return to presently.

A remarkable result of calculations with Eq. 1.1 is that
gapless nodons survive the quantum disordering of the
SC! The nodons are like the smile of the Cheshire cat:
the dx2−y2 order parameter is gone, but the nodes re-
main. The consequent Nodal Liquid (NL) described by
Eq. 1.1 is a distinct and novel zero-temperature quan-
tum phase with a number of fascinating properties. For
simplicity, consider first a hypothetical NL phase at half-
filling in the absence of impurities. The possibility of AF
ordering will be included later via LN . We hypothesize
that antiferromagnetism might be avoided and the NL
achieved in a half-filled square lattice model by adjusting
an attractive nearest-neighbor interaction and second-
neighbor electron hopping amplitude. The NL is a nomi-
nally insulating state, with non-zero gaps ∆1 and ∆2 for
adding both individual electrons/holes and Cooper pairs,
respectively. Gapless nodons with anisotropic ballistic
dispersion (ω ∼ k), however, persist, and can carry both
spin and current. With particle/hole symmetry (λ = 0
in Eq. 1.1), we expect power law (∼ 1/|x|4) spin cor-
relations at (0, 0), (π, π), (π, 0), and symmetry-related
points in the Brillouin zone. Scaling arguments lead us
to expect a weak dissipative dynamic contribution to the
conductivity which, in the presence of particle/hole sym-
metry, would vary as Reσ(ω, T = 0) ∼ ω6. Nodons
also contribute a quadratic specific heat Cnodon ∼ aT 2.
Despite the similarity of the nodons to d-wave quasipar-
ticles, the single-particle spectral function is predicted to
show a gap at the Fermi energy in the NL. We expect,
however, this gap to be strongly angle-dependent: of or-
der the pairing scale T ∗ away from (±π/2,±π/2) and
reduced to ∆1 ≪ T ∗ at these special points. A parti-
cle/hole asymmetric NL should exhibit similar behavior,
but with singularities shifted from (±π/2,±π/2) in mo-
mentum space, and an even smaller contribution to the
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low-frequency dissipative conductivity which, in the ab-
sence of umklapp scattering and impurities must come
from interactions with phonons.

Consider next doping the NL. Naively, this can be
modeled via an increase in the in-plane hole concentra-
tion, although the actual transfer of charge to the CuO2

layers may be not be complete. In the grand canonical
ensemble, charge is added by increasing µ = A0/2. In
the dual theory (see Eq. 1.1), this chemical potential acts
like an external magnetic field h = 2µ in the Ginzburg-
Landau theory (but, unlike a magnetic field, it of course
does not break time-reversal invariance). For small µ, the
system remains in the Meissner phase, and no dual flux
penetrates – i.e. no charge is added to the system within
the charge gap. Following the analogy with Ginzburg-
Landau theory,3 we expect that the nature of doping de-
pends upon the Abrikosov parameter κv = λv/ξv, where
λv and ξv are effective dual penetration and coherence
lengths, respectively. For κv >∼ 1/

√
2, type II doping

occurs, and the “field” penetrates first for µ > µc1 in
a dual flux lattice. Dual flux tubes are in fact Cooper
pairs, so this is a paired Wigner crystal (PWC) state.
We show in Sec. III that gapless nodons survive the dop-
ing and coexist with the PWC. We generally expect the
displacements of the Wigner crystal to be pinned either
by the periodic lattice potential or disorder (either is ef-
fective when arbitrarily weak), so that this phase remains
insulating. As doping increases from zero, the character-
istic nodon momenta shift further from (±π/2,±π/2).
Continued doping to µ > µc2 leads to another transi-
tion into the “normal” state of the dual theory, which is
nothing but the d-wave SC. Neglecting disorder, and with
weak lattice effects, quantum fluctuations are expected to
drive this 2+1-dimensional flux lattice melting transition
weakly first order. For κ <∼ 1/

√
2, one has instead type I

doping at a single “critical field” µc. This is a first order
transition, accompanied by a jump in the hole concentra-
tion from 0 to xc at µ = µc. In the canonical ensemble
with fixed 0 < x < xc, one expects two-phase coexis-
tence, i.e a “mixed” phase in the dual Ginzburg-Landau
theory. Taking into account long-range Coulomb inter-
actions, one arrives at the frustrated phase separation
physics discussed at length by Emery and Kivelson,15 and
all the consequent issues. Crude arguments (see Sec. III)
suggest κ ∼ 1 − 3, in the weakly type II limit, but close
enough to the threshhold value to allow for different sce-
narios in different materials. Regardless, type II and
some type I schemes imply NL phases at finite doping
before the onset of superconductivity.

An intermediate NL phase is extremely appealing from
the theoretical point of view, as it offers a compelling
interpolation between the undoped AF and the d-wave
superconductor. Consider the following three important
energies : the single-particle gap, ∆1, the minimum en-
ergy required to add a charge ±e and spin s = 1/2 to the
system; the two-particle gap, ∆2, the minimum energy
to add charge ±2e and spin s = 0; and the spin gap, ∆s,
the energy required to add spin s = 1 but no charge. In

the AF, both single- and two-particle gaps are non-zero,
but the spin gap vanishes due to low frequency magnons.
In the d-wave superconductor, the two-particle gap van-
ishes, since the pairs have condensed, but spin and single-
particle gaps are “almost” non-zero (which we call “0+”),
since only the quasiparticles carry these quantum num-
bers, and their density of states vanishes with the energy.
Passing from the SC to the NL, ∆2 changes from zero to
non-zero, and ∆1 changes from 0+ to a true gap. The
transition to the AF occurs then simply by developing a
non-zero staggered magnetization.

This transition and other magnetic physics is discussed
in Sec. IV, using the Néel Lagrangian density

LN =
Kµ

2
|∂µN|2 − VN (|N |)

+g[N · ψ†τzσyσψ† + h.c.], (1.2)

where g measures the strength of the coupling between
the Néel order parameter and the nodons. Eq. 1.2 can
be obtained by introducing a 2kF density-density interac-
tions between the nodons and decoupling the antipodal
terms with the Néel vector N. Let us once again con-
sider first the case of half-filling with particle/hole sym-
metry. For sufficiently strong interaction g, or when the
quadratic coefficient rN in VN (N) is negative, one obtains
an AF phase with 〈N〉 6= 0. In this phase the nodons
develop a gap and low-energy spin quanta are carried en-
tirely by spin waves. Depending upon the “mass” rΦ of
VΦ, this is either a simple AF or AF order coexisting with
a d-wave SC. Decreasing g or increasing rN destroys the
long-range AF order and liberates the nodons. This inter-
esting phase transition is discussed in Sec. IV. Increasing
rΦ results in a further transition to the d-wave super-
conductor, which we believe is in the three-dimensional
inverted-XY universality class. Tuning rΦ = rN = 0 de-
scribes a multicritical point connecting directly the AF
and d-wave SC phases.

Without particle/hole symmetry, λ 6= 0, and another
possible phase exists: the coexisting AF and Nodal
Liquid (AF/NL), with long-range AF order at (π, π)
and power-law spin-density-wave correlations from the
nodons at incommensurate wavevectors. This phase may
be difficult to distinguish experimentally from the pure
AF, and it seems possible that some of the well-studied
undoped cuprate materials might well be in the AF/NL
phase rather than the pure AF. In any event, the model of
Eqs. 1.1,1.2 provides a simple basis for understanding the
suppression of Néel order upon doping. To see this, as-
sume that at half-filling rN > 0. Agreement with experi-
ment then requires that g be sufficiently strong to induce
AF order. As the chemical potential µ is increased above
the charge gap to induce holes into the system, the hole
density or dual “internal field” becomes non-zero. From
Eq. 1.1, this creates an effectively larger particle/hole
asymmetry λeff − λ ∼ x. This presents a competition.
By ordering the Néel vector the system can create a gap
for the nodons and reduce their kinetic energy. However,
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at finite λeff the nodon Dirac point would prefer to move
away from (±π/2,±π/2), which reduces the gain in ki-
netic energy. As x increases, therefore, we may expect
to drive transitions from the AF to AF/NL and pure
NL phases. Of course, there are in fact many different
scenarios for type I and type II doping, small or large in-
trinsic λ, etc. These are discussed in Sec. IV. Once mag-
netism has been discussed, we conclude with a summary
of the main points of the paper, open issues, relations to
other work, and a brief discussion of experimental impli-
cations. Finally, two appendices include technical details
of microscopic and ǫ-expansion calculations.

II. D-WAVE AND DUALITY

A. Model and Symmetries

Consider a tight binding model of electrons hopping
on a square lattice, with a local Hamiltonian satisfying
certain general symmetries. We will assume the system is
both U(1) and SU(2) invariant (i.e. we neglect spin-orbit
coupling), and has time-reversal, reflection, and four-fold
rotational symmetry. Sometimes it will also be conve-
nient to specialize to models which possess an additional
discrete particle/hole symmetry. We denote lattice elec-
tron creation and annihilation operators as c†α(~x) and
cα(~x), where ~x is the two-dimensional coordinate in the
frame with x = x1 and y = x2 parallel to the a and b
crystalline axes (i.e. to the Cu–O bonds). Here α is a
spin label. In momentum space the kinetic energy takes
the usual form,

H0 =
∑

kα

ǫkc
†
kαckα, (2.1)

and at this stage we allow for general electron interac-
tions:

Hint =
∑

k,q,k′

V (k, q, k′)c†−k+q,αc
†
kβc−k′+q,βck′,α. (2.2)

A discrete particle/hole transformation is implemented
by

cα(~x)
p/h−→ ei~π·~xc†α(~x), (2.3)

with ~π = (π, π). Many common models (e.g. the Hub-
bard and t-J) are invariant under a particle/hole trans-
formation at half-filling. Invariance of the kinetic energy
implies that ǫk = −ǫk+~π, a form valid with near neigh-
bor hopping. However, a second neighbor hopping term
violates particle/hole symmetry.

As discussed in the introduction, we wish to describe
the physics below the relatively strong d-wave pairing
scale T ∗, in order to approach the pseudo-gap phase from
the superconducting side. To do so, we imagine introduc-
ing a d-wave order parameter

∆k(~q) =
∑

k′

V (k, q, k′)〈c−k′+q↓ck′↑〉. (2.4)

BCS theory16 can be implemented in terms of the spa-
tially varying pair field, obtained via Fourier transfor-
mation, ∆k(~x). The self-consistent gap equation is usu-
ally solved for a spatially uniform order parameter, with
∆k ≡ ∆k(~x). Singlet pairing implies ∆k = ∆−k, and in a

d-wave superconductor ∆k has four zero’s or nodes as ~k
varies around the Fermi surface. Our strategy will be to
obtain an effective field theory which has a local d−wave
gap function, determined by strong coupling physics be-
low some length scale Λ−1 of say 5-10 lattice spacings,
but which can fluctuate quantum mechanically on longer
spatial scales. These longer length scale quantum fluc-
tuations will be responsible for quantum disordering the
d-wave superconductor, and will allow us to access a new
phase – the nodal liquid. As we shall see, an important
role is played by the d−wave quasiparticles, which survive
the quantum disordering. To implement this approach,
we first briefly recapitulate the properties of quasiparti-
cles in the d−wave superconductor.

B. Quasiparticles

With spatially uniform d-wave order given by ∆k,
the effective Hamiltonian for the quasiparticles is H =
H0 +H1, with H0 the kinetic energy and

H1 =
∑

k

[∆kc
†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑]. (2.5)

Since ∆k = ∆−k for singlet pairing, it is natural to break
sums into positive and negative ky. To do so, consider a

four component fermion field, Υaα(~k), at each wavevector
with ky > 0 positive:

Υaα(~k) =







Υ11

Υ21

Υ12

Υ22






=











ck↑
c†−k↓
ck↓

−c†−k↑











. (2.6)

In the second column vector the minus sign has been
introduced so that Υaα transforms like a spinor un-
der an SU(2) rotation, i.e. as Υaα → UαβΥaβ. Here
U = exp(iθ · σ) is a global spin rotation with Pauli ma-
trices σαβ .

In these variables, the quasiparticle Hamiltonian be-
comes

Hqp =
∑

k

′
Υ†(~k)[τzǫk + τ+∆k + τ−∆∗

k]Υ(~k), (2.7)

where the prime on the summation denotes over ky pos-
itive, only, and we have introduced a vector of Pauli ma-
trices, ~τab acting in the particle/hole subspace. Also, we
are employing the notation τ± = (τx ± iτy)/2.
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Fig. 2: The wavevectors ~Ki, qx, qy in relation to the
a,b axes. The dotted line represents the putative Fermi
surface.

With approximate particle/hole symmetry, the d-wave

nodes are located near the special wavevectors ± ~Kj, with
~K1 = (π/2, π/2) and ~K2 = (−π/2, π/2). Since our aim
is to obtain an effective description at low energies and
long lengthscales, it is sufficient to focus on the gapless
modes near these points, integrating out the electrons far
away in the Brillouin zone. It is then convenient to intro-
duce two continuum fields Ψj, one for each pair of nodes,

expanded around ± ~K1,± ~K2:

Ψjaα(~q) = Υaα( ~Kj + ~q). (2.8)

Here, the wavevectors ~q are assumed to be small, within a
circle of radius Λ around the origin. With this definition,
the particle/hole transformation is extremely simple,

Ψ → Ψ†. (2.9)

For this reason it is convenient to always define the con-

tinuum fields Ψ around ± ~Kj, and account for deviations
of the node momenta from these values by a particle/hole
symmetry-breaking parameter λ.

Once we have restricted attention to the momenta near
the nodes, it is legitimate to linearize in the quasiparticle
Hamiltonian. The resulting continuum theory is more
conveniently written in coordinates perpendicular and
parallel to the Fermi surface, so we perform the rota-
tion via x → (x − y)/

√
2 and y → (x + y)/

√
2, cor-

respondingly transforming the momenta qx and qy (see
Fig. 2). Linearizing near the nodes, we put ǫK1+q = vF qx
where vF is the Fermi velocity and ∆K1+q = ∆̃qy, where

∆̃ has dimensions of a velocity. An identical lineariza-
tion is possible around the second pair of nodes, except
with qx ↔ qy. Upon Fourier transforming back into real
space, Ψj(~q) → Ψj(~x), we arrive at a compact form for
the Hamiltonian density of the quasiparticle excitations
in the d-wave superconductor: Hqp = HΨ + Hλ with

HΨ = Ψ†
1[vF τ

zi∂x + (∆̃τ+ + ∆̃∗τ−)i∂y]Ψ1

+(1 ↔ 2;x↔ y), (2.10)

and the particle/hole symmetry breaking term,

Hλ = λΨ†
jτ
zΨj. (2.11)

The quasiparticle Hamiltonian takes the form of (four)
Dirac equations, and can be readily diagonalized giving
a dispersion relation for the first pair of nodes,

E1(~q) = ±
√

(vF qx + λ)2 + |∆̃|2q2y , (2.12)

and a similar expression with qx and qy exchanged for
the second pair. Notice that non-zero λ indeed shifts the
positions of the nodes.

C. Quantum Fluctuations

Up to this point, we have taken a spatially constant
gap function ∆̃(~x). To disorder the d-wave supercon-
ductor it is necessary to allow for quantum fluctuations
of this order parameter. It is tempting to uniformly
suppress the complex order parameter, and simply put
∆̃ = 0. But doing so recovers the conventional metallic
state with a Fermi surface. Our task is trickier, since we
are searching for an intermediate phase, which has strong
local d−wave pairing (which destroys the Fermi surface)
but with longer length scale quantum fluctuations de-
stroying the superconducting phase coherence. Our task
is similar to the problem of describing the hexatic phase
in a classical two-dimensional triangular solid,17 which is
intermediate between the crystalline and liquid phases.
Guided by this example and the principle of pairing be-
low T ∗, we want to fix the magnitude of the complex pair
field, and introduce fluctuations of its phase.

Pursuant to this goal, we write

∆̃ → v∆e
iϕ, (2.13)

where v∆ is real and ϕ can be interpreted as the phase of
the complex superconducting order parameter. The BCS
gap equation has a degenerate manifold of solutions, for
arbitrary phase ϕ. This degeneracy is responsible for the
Goldstone modes, wherein ϕ varies slowly in both space
and time. Our goal is to obtain an effective theory for
the space and time dependence of ϕ, similar in spirit to
the non-linear sigma models “derived” for localization.18

Specifically, we focus on spatial variations of ϕ(~x) on
scales longer than Λ−1. Since ϕ can vary spatially, care
is needed in introducing it into the quasiparticle Hamil-
tonian:

∆̃τ+i∂y → v∆τ
+eiϕ/2(i∂y)e

iϕ/2. (2.14)

This symmetric form leads to an hermitian Hamiltonian,
physical currents, and respects the symmetries of the
problem. A careful derivation of Eq. 2.14 is given in
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Appendix A. With this prescription, the quasiparticle
Hamiltonian becomes

Hqp =
∑

s=±

Ψ†
1[vF τ

zi∂x + v∆τ
seisϕ/2(i∂y)e

isϕ/2]Ψ1

+(1 ↔ 2;x↔ y). (2.15)

Since ϕ can also fluctuate with time, it will convenient to
consider the time dependence via a Lagrangian formula-
tion. The Lagrangian density is

Lqp = Ψ†
ji∂tΨj −Hqp. (2.16)

The appropriate Lagrangian for the phase of the d-
wave order parameter is simply

Lϕ =
1

2
κµ(∂µϕ)2, (2.17)

where the Greek index µ runs over time and two spatial
coordinates: µ = 0, 1, 2 = t, x, y. Here κ0 is equal to the
compressibility of the condensate and κj = −v2

cκ0 (for
j = 1, 2 = x, y) with vc the superfluid sound velocity. We
expect that the pair compressibility κ0 is approximately
one half the electron compressibility of the original elec-
tron model – in the absence of interactions. If the pairing
is electronic in origin, one expects that the scale for the
“charge velocity” vc is the Fermi velocity.

As discussed in the introduction, treatment of quan-
tum phase fluctuations is complicated by the mixing of
particle and hole variables via the complex gap function.
To isolate the uncertain charge, we therefore perform a
change of variables, defining a new set of fermion fields
ψj via

ψj = exp(−iϕτz/2)Ψj. (2.18)

In the superconducting phase, and in the absence of
quantum flucutations of the order-paramater phase, one
can set ϕ = 0, and these new fermions are simply the
d-wave quasiparticles. However, when the field ϕ is dy-
namical and fluctuates strongly this change of variables
is non-trivial. In particular, the new fermion fields ψ are
electrically neutral, invariant under a global charge U(1)
transformation. As we shall see, when the d-wave super-
conductivity is quantum disordered, these new fields will
play a fundamental role, describing low energy gapless ex-
citations, centered at the former nodes. For this reason,
we refer to these fermions as nodons. For completeness,
we quote the symmetry properties of the nodon field un-
der a particle/hole transformation. Since ϕ → −ϕ, one
has simply

ψ → ψ†. (2.19)

The full Lagrangian in the d-wave superconductor,
L = Lϕ +Lqp, can be conveniently re-expressed in terms
of these nodon fields since Lqp = Lψ + Lint + Lλ with a
free nodon piece,

Lψ = ψ†
1[i∂t − vF τ

zi∂x − v∆τ
xi∂y]ψ1

+(1 ↔ 2, x↔ y), (2.20)

interacting with the phase of the order-parameter:

Lint = ∂µϕJµ. (2.21)

Here the electrical 3-current Jµ is given by

J0 =
1

2
ψ†
jτ
zψj , (2.22)

Jj =
vF
2
ψ†
jψj . (2.23)

Because the transformation in Eq. 2.18 is local, identical
expressions hold for these currents in terms of the quasi-
particle fields, Ψ. The form of the particle/hole asymme-
try term remains the same in terms of the nodon fields:

Lλ = λψ†
jτ
zψj . (2.24)

It is instructive to re-express the components of the
currents Jµ back in terms of the original electron opera-
tors. One finds

J0 =
1

2
(c†Kj

cKj
+ c†−Kj

c−Kj
), (2.25)

(with an implicit spin summation) which corresponds
physically to the total electron density living at the
nodes, in units of the Cooper pair charge. Similarly,

Jj =
vF
2

(c†Kj
cKj

− c†−Kj
c−Kj

) (2.26)

corresponds to the current carried by the electrons at
the nodes. Thus, Jµ can be correctly interpreted as the
quasiparticles three-current.

To complete the description of a quantum mechani-
cally fluctuating order parameter phase interacting with
the gapless fermionic excitations at the nodes, we min-
imally couple to an external electromagnetic field, Aµ.
Since the nodon fermions are neutral, the only cou-
pling is to the order-parameter phase, via the substitu-
tion ∂µϕ → ∂µϕ − Aµ. For simplicity, here and in the
rest of the paper, we have set the Cooper pair charge
2e = 1. The final Lagrangian then takes the form
L = Lϕ + Lψ + Lint + Lλ, with

Lϕ =
1

2
κµ(∂µϕ−Aµ)

2, (2.27)

Lint = (∂µϕ−Aµ)Jµ, (2.28)

and Lψ still given by Eq. 2.20.
The time component of the electromagnetic field is pro-

portional to the chemical potential µ, i.e. A0 = 2µ. For
electrons at half-filling one has µ = 0. Doping can be
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achieved by changing µ. Long-ranged Coulomb interac-
tions could be readily incorporated at this stage by treat-
ing A0 as a dynamical field and adding a term to the La-
grangian of the form, Lcoul = (1/2)(∂jA0)

2. The spatial
components of the electromagnetic field, Aj , have been
included to keep track of the current operator. In par-
ticular, the total electrical 3-current is obtained by dif-
ferentiating the Lagrangian, i.e. J totµ = ∂L/∂Aµ, which
gives

J totµ = κµ(∂µϕ−Aµ) + Jµ. (2.29)

Here the first terms are the Cooper pair 3-current, and
the second the quasiparticles current. The equation of
motion for the phase of the order-parameter, ∂L/∂ϕ = 0,
implies the continuity equation ∂µJ

tot
µ = 0.

D. Duality

To quantum-disorder the d-wave superconductor, one
must allow for vortices in the pair-field phase, ϕ. We
do this using field-theoretic duality, as described, e.g. in
Ref. 13. To this end we introduce a vortex 3-current, jvµ,
which satisfies,

jvµ = ǫµνλ∂ν∂λϕ. (2.30)

In the presence of vortices, ϕ is multi-valued, ∂µϕ is not
curl-free, and jvµ is non-vanishing. In the desired dual
representation, the vortices become the quantized parti-
cles, rather than the Cooper pairs. However, even in the
dual representation one still needs to conserve the total
electrical charge. This can be achieved by expressing the
total electrical 3-current as a curl,

J totµ = ǫµνλ∂νaλ, (2.31)

where we have introduced a “fictitious” dynamical gauge
field, aµ. Upon combining Eqs. 2.29-2.31, one can elimi-
nate the pair-field phase, ϕ, and relate aµ to the vortices:

jvµ = ǫµνλ∂ν [κ
−1
λ ǫλαβ∂αaβ +Aλ − κ−1

λ Jλ], (2.32)

where Jµ is the quasiparticle 3-current defined earlier in
Eqs. 2.22-2.23.

A dual description is obtained by constructing a La-
grangian, LD, depending on aµ, Jµ and jvµ, whose equa-
tion of motion, obtained by differentiating with respect to
aµ, leads to the above equation. To assure that the vor-
tex 3-current is conserved, it is useful to introduce a com-
plex field, Φ, which can be viewed as a vortex destruc-
tion operator. Since a vortex acquires a 2π phase upon
encircling a Cooper pair, the vortex field should be min-
imally coupled to aµ. The appropriate dual Lagrangian
can be conveniently decomposed as LD = Lψ +Lv +La,
where Lψ is given in Eq. 2.20. The vortex piece has the
Ginzburg-Landau form,3

Lv =
κµ
2
|(∂µ − iaµ)Φ|2 − VΦ(|Φ|), (2.33)

where Φ is a (dimensionless) complex field for the
vortices. The vortex 3-current, following from jvµ =
∂Lv/∂aµ, is

jvµ = κµIm[Φ∗(∂µ − iaµ)Φ]. (2.34)

For small |Φ| (appropriate close to a second order transi-
tion) one can expand the potential as, VΦ(X) = rΦX

2 +
uΦX

4. The remaining piece of the dual Lagrangian is

La =
1

2κ0
(e2j − b2) + aµǫµνλ∂ν(Aλ − κ−1

λ Jλ), (2.35)

with dual “magnetic” and “electric” fields: b = ǫij∂iaj
and ej = v−1

c (∂ja0 − ∂0aj). It is straightforward to
verify that the dual Lagrangian has the desired prop-
erty that Eq. 2.32 follows from the equation of motion
∂LD/∂aµ = 0.

III. NODAL LIQUID PHASE

In this section we employ the dual representation of
the d-wave superconductor to analyze the quantum dis-
ordered phase - a new phase of matter which we refer to as
a nodal liquid. The dual representation comprises a com-
plex vortex field, which is minimally coupled to a gauge
field, as well as a set of neutral nodon fermions. Without
the nodons and in imaginary time, the dual Lagrangian
is formally equivalent to a classical three-dimensional su-
perconductor at finite temperature, coupled to a fluctu-
ating electromagnetic field. To disorder the d-wave su-
perconductor, we must order the dual “superconductor”
– that is, condense the vortices. The nature of the result-
ing phase will depend sensitively on doping, since upon
doping, the dual “superconductor” starts seeing an ap-
plied “magnetic field”. Below, we first consider the sim-
pler case of half-filling. We then turn to the doped case,
where two scenarios are possible depending on whether
the dual “superconductor” is Type I or Type II.3

A. Half-filling

Specialize first to the case of electrons at half-filling,
with particle-hole symmetry. In the dual representation,
the “magnetic field”, b, is equal to the deviation of the to-
tal electron density from half-filling. Thus at half-filling
〈b〉 = 0 and the dual Ginzburg-Landau theory is in zero
applied field. The quantum disordered phase corresponds
to condensing the vortices, setting 〈Φ〉 = Φ0 6= 0. In this
dual Meissner phase, the vortex Lagrangian becomes

Lv =
1

2
κµΦ

2
oa

2
µ. (3.1)

It is then possible to integrate out the field aµ. The full
Lagrangian in the nodal liquid phase is then
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Lnl = Lψ +AµIµ +
ǫ0
2
E2
j −

B2

2µ0
+O

[

(∂J)2
]

, (3.2)

where we have introduced the physical magnetic and elec-
tric fields: B = ǫij∂iAj and Ej = ∂jA0 − ∂tAj . The last
two terms describe a dielectric, with magnetic perme-
ability µ0 = κ0Φ

2
0 and dielectric constant ǫ0 = (µ0v

2
c )

−1,
with the sound velocity entering, rather than the speed
of light. The external electromagnetic field is coupled to
the 3-current Iµ, which can be expressed as a bi-linear of
the nodon fermions as,

Iµ =
ǫ0
κ2

0v
2
c

[κν∂
2
νJµ − κµ∂µ(∂νJν)]. (3.3)

Notice that this 3-current is automatically conserved:
∂µIµ = 0.

The order (∂J)2 terms which we have not written out
explicitly are quartic in the fermion fields, and also in-
volve two derivatives. Since Lψ describes Dirac fermions
in 2 + 1 space-time dimensions, these quartic fermion
terms are highly irrelevant, and rapidly vanish under a
rescaling transformation. Thus, in the absence of exter-
nal electromagnetic fields, the description of the nodal
liquid phase is exceedingly simple. It consists of four
neutral Dirac fermion fields – two spin polarizations
(α = 1, 2) for each of the two pairs of nodes.

Despite the free fermion description, the nodal liquid
phase is highly non-trivial when re-expressed in terms of
the underlying electron operators. Indeed, the ψ fermion
operators are built from the quasiparticle operators Ψ in
the d-wave superconductor, but are electrically neutral,
due to the “gauge transformation” in Eq. 2.18. More-
over, in the nodal liquid phase, the Cooper pairs are
not superconducting, but rather in a dielectric Mott-
insulating phase,19 immobilized by their commensurabil-
ity with the underlying crystal lattice. Although the ψ
fermions are electrically neutral, they do carry a new
conserved “charge”. In fact, there are four new con-
served charges, since the Lagrangian is invariant under
the global transformations ψjaα → eiθjαψjaα for arbi-
trary constant phases, θjα, with j = 1, 2 and α = 1, 2.
We refer to the ψ fields as nodon operators, their quanta
as nodons, and the associated conserved quantities as
“nodon charges”. As seen from Eq. 2.20, these con-
served charges are related to the quasiparticle current,

since Jj = (vF /2)ψ†
jψj . However, in the nodal liquid

phase the electrical current operator is Iµ, not Jµ, since
Iµ = ∂Lnl/∂Aµ.

1. Spin response

The spin response functions in the nodal liquid are
rather straightforward, since the electron spin operators
have a simple representation in terms of the nodons. In
particular, consider the spin operator for small momen-
tum,

Sq =
1

2

∑

k

c†k+qσck. (3.4)

At low energies in the nodal liquid phase one can focus

on momenta near the nodes: ~k = ± ~Kj. The electron
operators near the nodes can be rewritten in terms of
the nodon operators, and one finds that back in real
space the long-wavelength piece of the spin operator,
S(~x) =

∑

q exp(i~q · ~x)Sq, is simply

S(~x) =
1

2
ψ†
ja(~x)σψja(~x). (3.5)

Spin correlation and response functions can then be com-
puted from the free nodon theory. For example, the uni-
form spin susceptibility is given by

χ =

∫ ∞

0

dE(−∂f/∂E)ρn(E), (3.6)

where the nodon density of states is ρn(E) =
(const)E/vF v∆, and f(E) is a Fermi function. One finds
χ ∼ T/vFv∆. There are also low energy spin excita-
tions at wavevectors which span between two different
nodes. The associated spin operators can readily be be
re-expressed in terms of the nodon fields. For example,
the staggered magnetization operator, S~π, is

S~π =
1

2

[

ψ†(τyσσy)ψ† + h.c.
]

. (3.7)

Notice that this operator is actually “anomalous” in
terms of the conserved nodon charge. We will return
to the effects of finite wavevector magnetic fluctuations
and ordering in Section IV.

In addition to carrying spin, the nodons carry energy,
and so will contribute to the thermal transport. At finite
temperature, Umklapp scattering processes (or impuri-
ties) give a finite thermal conductivity; in their absence
the nodon thermal conductivity is infinite.

2. Charge response

The electrical charge properties in the nodal liquid
phase are, however, somewhat trickier. Imagine chang-
ing the chemical potential away from µ = 0. In terms of
the dual vortex “superconductor” this corresponds to ap-
plying an external “magnetic” field, due to the coupling
Lµ = −2µb. The vortices, however, are in the “Meissner”
phase, and for µ ≤ µc the applied field will be screened
out, maintaining the internal field at b = 0. That is, the
electron density will be pinned at half-filling, until the
chemical potential passes through the Mott gap for the
insulating system of Bosons (Cooper pairs).19

Despite the presence of a charge gap, there are low en-
ergy current fluctuations in the nodal liquid. Indeed, in
this phase the electrical current operator is Iµ, which is
bi-linear in terms of the nodon fermions, ψ. One might
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imagine employing this current operator to compute the
electrical conductivity in the nodal liquid. For this, one
requires computing a two-point correlator of the elec-
trical current operator at zero wavevector (say in the
x−direction) Ix(q = 0) = (ǫ0/κov

2
s)∂

2
t Jx(q = 0). But no-

tice that Jx(q = 0) is proportional to a globally conserved

nodon charge, since Jx(~x) = (vF /2)ψ†
1ψ1. Thus, when

the nodon number is conserved one has Ix(q = 0) = 0,
and the nodons do not contribute to the electrical con-
ductivity. (There will of course be a response at finite fre-
quencies in the imaginary part of the conductivity from
the Mott-insulating phase of the Cooper pairs.)

When impurities or Umklapp scattering is present,
however, the nodon number is no longer conserved, and
the nodons presumably will contribute to the real part of
the electrical conductivity, at least at finite frequencies.
Specifically, the umklapp scattering term with momen-
tum transfer 2~π is given by

Lumklapp = u ǫABCDψjAψjBψjCψjD + h.c., (3.8)

where the composite index A runs over 1, 2, 3, 4 corre-
sponding to aα = 11, 12, 21, 22. By power counting, this
term is irrelevant by one power of frequency. Hence, it
enters scaling forms in the combination ueff = uω.

According to the Kubo formula,

σ(ω) ∼ 1

ω
〈Ix(q = 0, ω)Ix(q = 0,−ω)〉

∼ ω3 〈Jx(q = 0, ω)Jx(q = 0,−ω)〉. (3.9)

From scaling, we expect the latter correlation function to
vary as ω. However, as we noted above, it actually van-
ishes in the absence of Umklapp scattering; therefore it is
determined by the correction to scaling, which, naively,
is of the form:

σ(ω) ∼ ω3 · ω · u2
eff ∼ u2ω6. (3.10)

Finally, it is instructive to consider the behavior of
the electron Green’s function, which can be accessed in
photo-emission and tunneling experiments. The electron
operator cα(~x) can be conveniently decomposed in terms
of the nodon operators by focusing on momenta near the

nodes. For example, near the node at ~Kj one can write,

cα(~x) = ei
~Kj·~xeiϕ(~x)/2ψj1α(~x) + ... (3.11)

In the nodal liquid phase, the electron Green’s function,
G(~x, t) = 〈c†(~x, t)c(~0, 0)〉 factorizes as,

G(~x, t) = ei
~Kj ·~x〈e−iϕ(~x,t)/2eiϕ(~0,0)/2〉〈ψ†

j1α(~x, t)ψj1α(~0, 0)〉.
(3.12)

Although the nodon correlator is a power law, falling off
as |x|−2 and t−2, one expects the correlator over exponen-
tials of the pair field phase to fall off exponentially in the
nodal liquid, since the Cooper pairs (Bosons) are locked

in a Mott insulating phase. This indicates a gap in the
electron spectral function at the Fermi energy, of order
∆1 ∼ µc at the nodes. If µc is small relative to T ∗, the
corresponding gap will show strong four-fold anisotropy
in momentum space, varying from of order T ∗ down to
of order µc near the nodon wave-vectors. In the discus-
sion section, we comment briefly on how such a d-wave
pseudo-gap feature is likely enhanced when the NL is
doped in the presence of impurities.

B. Doping the Nodal Liquid

We now consider the effects of doping charge into the
nodal liquid phase. In a grand canonical ensemble this is
achieved by changing the chemical potential, µ = A0/2.
In the dual Ginzburg-Landau description of the vortices,
a chemical potential acts as an applied dual field, as seen
from Eq. 2.35, since

Lµ = −2µb. (3.13)

The dual magnetic field, b = ǫij∂iaj , is the total electric
charge in units of 2e. For a hole doping with concentra-
tion x, one has 〈b〉 = x/2a2

0, with a0 the crystal lattice
constant. Provided the applied dual field, 2µ, is smaller
than the critical field (2µc) of the Ginzburg-Landau the-
ory, the dual superconductor stays in the Meissner phase
– which is the nodal liquid phase at half-filling. But for
µ ≥ µc dual flux will penetrate the Ginzburg-Landau
superconductor, which corresponds to doping the nodal
liquid phase. The form of the dual flux penetration will
depend critically on whether the dual Ginzburg-Landau
theory is Type I or Type II. Within a mean-field treat-
ment this is determined by the ratio of the dual penetra-
tion length, λv, to the dual coherence length, ξv (where
the subscript v denotes vortices). In particular, Type

II behavior is expected if λv/ξv ≥ 1/
√

2, and Type I be-
havior otherwise. In the Ginzburg-Landau description λv
determines the size of a dual flux tube, which is simply
a Cooper pair. We thus expect that λv will be roughly
equal to the superconducting coherence length, ξ, which
is perhaps 15− 20Å in the cuprates. On the other hand,
ξv is the size of the “vortex-core” in the dual vortex field,
and presumably can be no smaller than the microscopic
crystal lattice spacing, ξv ≥ 3 − 5Å. This reasoning sug-
gest that λv/ξv is probably close to unity, so that either
Type I or Type II behavior might be possible - and could
be material dependent. We first consider such Type II
doping, returning below to the case of a Type I Ginzburg-
Landau theory.

1. Type II Behavior

The phase diagram of a clean three-dimensional type
II superconductor is well understood.3 Above the lower
critical field, Hc1, flux tubes penetrate, and form an
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Abrikosov flux lattice - usually triangular. As the applied
field increases the flux tubes start overlapping, when their
separation is closer than the penetration length. Upon
approaching the upper critical field Hc2 their cores start
overlapping, the Abrikosov flux lattice disappears, and
the superconductivity is destroyed. Mean field theory
predicts a second order transition at Hc2, but with ther-
mal fluctuations one expects this to become weakly first
order.20 This weak first order transition separates a flux-
lattice phase from a non-superconducting flux-liquid.

These results hold equally well for our dual Ginzburg-
Landau superconductor, except that now the direction
parallel to the applied field is actually imaginary time.
Moreover, the Ginzburg-Landau order parameter de-
scribes quantum vortices, and the penetrating flux tubes
are Cooper pairs. Upon doping the nodal liquid with
µ > µc1, charge is added to the 2d system, which corre-
sponds to the penetration of dual magnetic flux. In this
dual transcription, the resulting Abrikosov flux-lattice
phase is a Wigner crystal of Cooper pairs, with one
Cooper pair per real space unit cell of the lattice. We
denote this paired Wigner crystal phase by PWC. Upon
further doping, one passes via a weak first order transi-
tion (at µ = µc2) into the dual flux-liquid phase. In this
phase the lattice of Cooper pairs has melted, and they
are free to condense - this is the d-wave superconductor.
This latter transition should occur when the spacing be-
tween dual flux tubes becomes roughly comparable to the
coherence length, ξv. Experimentally, superconductivity
typically sets in for x = 0.1, which corresponds to one
Cooper pair for every 20 or so Cu atoms, and a mean
pair separation of 4-5a0. This again suggests that λv/ξv
is probably of order one.

In the Cooper pair Wigner crystal phase, translational
symmetry is spontaneously broken. However, in a real
material the Wigner crystal will have a preferred loca-
tion, determined by impurities and perhaps crystal fields,
which will tend to pin and immobilize the Wigner crys-
tal. The resulting phase should be an electrical insu-
lator. Moreover, in two-dimensions even weak impuri-
ties will smooth the weakly first order transition between
the Wigner crystal and superconducting phases. (In the
absence of impurities, long-ranged Coulomb interactions
preclude phase separation, so a mixed phase would result
- see Type I behavior below.)

A striking and unusual feature of the PWC phase, is
that it co-exists with the nodal liquid, as we now ar-
gue. With a weak (commensurate) pinning potential
present, the Wigner crystal phase is a dielectric. The
charge response is thus essentially the same as that of
the undoped phase at half-filling, except with a modi-
fied dielectric constant and magnetic permeability. Thus
even with doping, it is possible to “integrate out” the
charge fluctuations described by the fields aµ, and ar-
rive at the nodal liquid Lagrangian Eq. 3.2, except with
different values of ǫ0 and µ0. The only complication is
that there will be a background frozen in charge den-
sity, from the Wigner crystal of Cooper pairs, so that

〈b(~x)〉 = n(~x) = n0 + δn(~x). Here, the mean pair density
is simply n0 = x/2a2

0 for doping x, and δn(~x) has the pe-
riodicity of the Wigner crystal. This “background” field
couples to the nodons, and from Eq. 2.35 leads to a term
of the form,

Lb = 〈b(~x)〉κ−1
0 J0 =

1

2κ0
n(~x)ψ†

jτ
zψj . (3.14)

What is the effect of this term on the nodons? Consider
first the spatially constant piece, proportional to n0. This
term can be absorbed into Lψ, which contains a term of

the form, ψ†
jvF qjτ

zψj , and leads to a momentum space

shift of the nodes, with qj → qj + (n0/2vFκ0). Since
the pair compressibility κ0 ∼ ∂n0/∂µ, the shift satisfies
vF δq ∼ δµ, as expected from the change of the area en-
closed by the Fermi surface upon doping.

The spatially varying background density, δn(~x),
which has the periodicity of the underlying Wigner crys-
tal, causes a mixing between nodon states at momen-
tum differing by Wigner crystal reciprocal lattice vectors.
When the reciprocal lattice vectors are larger than the
momentum cutoff, Λ, of the nodons, the δn(~x) term can-
not scatter within the low energy nodon theory, and can
be dropped. At lower pair densities, it becomes necessary
over a range of length scales to retain the new periodicity
by working with nodon Bloch states, rather than plane
waves. (Since only linear derivatives enter into the nodon
Lagrangian, Bloch wavefunctions in the lowest band can
be readily constructed.) In any event, at length scales
larger than the Wigner crystal lattice spacing, the form
of the effective theory of the nodons is identical to that
at half-filling.

We thereby arrive at a description of a rather remark-
able new phase of matter. A Paired Wigner Crystal
(PWC) of doped Cooper pairs co-exists with neutral
gapless fermionic excitations – the nodons. In this co-
existing phase, which we denote as PWC/NL, low en-
ergy spin and thermal properties will be dominated by
the nodons. The behavior will be qualitatively similar to
that in the undoped nodal liquid phase. We propose that
this PWC/NL phase is present in the pseudo-gap region
of the high Tc cuprates.

2. Type I Behavior

In a classical Type I superconductor, the applied field
is expelled until the criticalHc is exceeded.3 At this point
there is a first order phase transition from the Meissner
phase with all the flux expelled, to a normal metal phase
in which (essentially) all the field penetrates. If a thin
film type I superconductor is placed in a perpendicular
field, screening currents are unable to expel all the flux,
and a “mixed” or “intermediate” state occurs. In this
mixed phase, regions of superconductivity co-exist with
normal metallic regions. In some cases the superconduct-
ing regions form stripes, but generally the lowest energy
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configurations are determined in large part by material
imperfections, and tend to be “history” dependent.

If our dual Ginzburg-Landau theory describing quan-
tized vortices is of type I, then similar properties are ex-
pected. Specifically, as the chemical potential increases,
the dual field – which is the Cooper pair density – re-
mains at zero until a critical chemical potential µc is
reached. At this point there is a first order phase tran-
sition, between the nodal liquid phase at half-filling, and
a d-wave superconductor at finite doping, xc. At fixed
doping x < xc, phase separation is impeded by long-
ranged Coulomb interactions between the Cooper pairs.
The system will break apart into co-existing “micro-
phases” of nodal liquid and d-wave superconductivity.
The configuration of the co-existing “micro-phases” will
be determined by a complicated competition between the
Coulomb energy and the (positive) energy of the domain
walls. In practice, impurities will also probably play a
very important role. This doping scenario is similar to
that envisaged by Emery and Kivelson,15 who have ex-
tensively discussed the possibility of phase separation as a
mechanism for high Tc superconductivity. Unfortunately,
with the transition being strongly first order in this case,
the associated physics is rather non-universal.

IV. ANTIFERROMAGNETISM IN THE NODAL

LIQUID

A. Effective Action for Antiferromagnetism

We now turn to the low-doping region of the phase
diagram of Fig. 1. Retaining the Nodal Liquid as the
underlying description of the low-energy fermionic de-
grees of freedom, we consider antiferromagnetic order-
ing. In principle, this can arise in two ways. Antiferro-
magnetism could stem from interactions between nodons,
i.e. physics below the scale T ∗. This can be modeled
in principle by including simple inter-nodon interactions.
The experimental coincidence of T ∗ with the Néel tem-
perature and magnon bandwidth J suggests that such
a separation of scales is not valid. Instead, antiferro-
magnetic correlations may exist already at (high) en-
ergies comparable to T ∗. This sort of local AF am-
plitude could be captured by decoupling spin-spin (or,
e.g. on-site Hubbard) interactions in a microscopic model
with a Hubbard-Stratonovich transformation. Such a
decoupling introduces a conjugate field M, which inter-
acts with the electron operators via a term of the form

HM =
∑

~xM(~x)·c†α 1
2σαβcβ. Integrating out high-energy

degrees of freedom generates an effective action for M.
We expect dominant ordering tendencies at momentum
~π = (π, π), and so decompose

M ∼ M0 + exp(i~π · ~x)N, (4.1)

where N and M0 are slowly-varying. The fields M0 and
N have the physical interpretation of the coarse-grained

uniform and staggered magnetization. Focusing on the
Néel ordering, we imagine integrating out M0 to obtain
the Lagrangian

L =
1

2
Kµ|∂µN|2 − VN (|N |) + gN · S~π, (4.2)

where K0 = K, K1 = K2 = −v2
sK, with vs the spin-

wave velocity in the AF. Here S~π is the spin operator
at momentum ~π, expressed as a bi-linear in terms of the
electron operators as in Section III. The staggered mag-
netization operator can be readily re-expressed in terms
of the nodons as,

S~π =
1

2

[

ψ†τyσσyψ† + h.c.
]

, (4.3)

given earlier in Eq. 3.7. Near any phase transitions,
and for most phenomenological purposes, it is sufficient
to take a simple form for the potential: VN (|N |) =
rN |N |2 + uN |N |4. The parameter rN controls the pres-
ence or absence of AF order. In mean-field theory, and
neglecting for the moment the nodon coupling g, the
ground state passes from long-range to short-range AF
order as rN is tuned from negative to positive. A precise
determination of rN , uN , and g in terms of t, t′, U , x,
etc. is the province of a more microscopic theory.

We note that, in principle, Eq. 4.2 allows for the pos-
sibility of incommensurate spin-density-wave ordering at
wavevectors other than (π, π), which would correspond
to a state which spontaneously develops a spatially peri-
odic expectation value for N. We find such ordering un-
likely within this model, however, and have therefore not

included terms responsible for locking in possible higher-
order commensurate magnetic wavevectors. Since incom-
mensurate order seems not to be realized experimentally
at low doping, we hope this omission is unimportant.

B. Magnetism and Phases at Half-Filling

Once we have coupled in the Néel order parameter
field, we can describe magnetic phases, in addition to
the nodal liquid and d-wave superconducting phases of
earlier sections. Here we first focus on the situation at
half-filling, where our effective field theory already de-
scibes a number of magnetic and non-magnetic ground
states. It will be useful to further specialize initially to
models with particle-hole symmetry, returning later to
the half-filled but particle-hole asymmetric case below.

1. Particle-hole symmetric case

The full effective Lagrangian has two order parameter
fields, the Néel order parameter, N, and the vortex com-
plex field, Φ, which is minimally coupled to a gauge field,
aµ. The Néel order parameter is directly coupled to the
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nodons, whereas the vortex field only sees the nodons in-
directly via the gauge field. Ordering of the two fields is
determined by the coefficients of the quadratic terms in
the Lagrangian, namely rN and rΦ. It will be convenient
to plot the phase diagram at half-filling in the rN − rΦ
plane. The phase diagram with particle-hole symmetry
(λ = 0) is shown in Fig. 3a. Here we briefly discuss each
of the four phases.

λ=0(a)

rφ
AF/dSCg

~r
N

(b) λ>0

rφ

AF/dSCg

λ2

~r
N

~r
N

δ
NL

AF

dSC NL dSC

AF

AF/NL AF/dSC

Fig. 3: Phase diagrams at half-filling for the particle-
hole (a) symmetric and (b) asymmetric cases. In (b),
both horizontal phase boundaries shift downward with
increasing particle/hole asymmetry parameter λ, dimin-
ishing the domain of the AF phase.

Consider first rN large and positive, so that Néel order
is not present. For rΦ negative, the vortices will con-
dense (the Meissner phase in the dual Ginzburg-Landau
theory) leaving the nodons as the only low energy gap-
less excitations. This is the nodal liquid phase. As rΦ
changes sign, the vortices will disorder, entering the “nor-
mal” phase of the dual Ginzburg-Landau theory. This
phase corresponds to the d-wave superconductor, shown
in the upper right quadrant of Fig. 3a. The d-wave super-
conducting phase can be obtained in a microscopic lattice
model even at half-filling, by appropriately choosing the
electron interaction terms.21

When rN is large and negative, the model magneti-
cally orders into the antiferromagnetic Néel phase. With
particle-hole symmetry the antipodal nodes are separated
by the Néel ordering wavevector, (π, π), so the nodons are
“nested”. This opens a gap in the nodon spectrum, as
we now demonstrate. With either sign of rΦ the gauge
field aµ can be integrated out, generating irrelevant four
fermion nodon interaction terms, which can be dropped.
Then, upon putting 〈N〉 = N0ŷ into the effective La-
grangian, we arrive at the following quadratic Lagrangian
for the nodon fields,

Lnodon = Lψ + gN0(ψ
†
jτ
yψ†

j + h.c.). (4.4)

This model can be readliy diagonalized with an appro-
priate Bogoliubov transformation, giving energy eigen-
values,

E1(~q) = ±
√

(vF qx)2 + (v∆qy)2 + (gN0)2, (4.5)

in the j = 1 sector, and an identical form with qx and
qy interchanged for the other pair of nodes (j = 2).
In all nodon sectors there is a non-zero gap, equal to
gN0. In the lower left quadrant of Fig. 3a, with rΦ nega-
tive, this corresponds to the usual Néel antiferromagnet.
With the nodons gapped out, the only low energy exci-
tations are the spin waves of the antiferromagnet. For
rΦ positive, in the lower right quadrant, antiferromag-
netism co-exists with d-wave superconductivity. In the
d-wave superconductor, the nodons become equivalent to
the d-wave quasiparticles, so that the d-wave state in this
quadrant is rather unusual. In particular, it is a d-wave
superconductor with a full single particle gap, and an ab-
sence of nodal quasiparticles. We have denoted this with
a subscript g – for gap – in the phase of the lower right
quadrant.

Before turning to the effects of particle-hole asymme-
tries, it is interesting to briefly discuss the nature of the
phase transitions between the four phases in Fig. 3a.
Consider first the vertical phase boundary, separating
the superconducting from non-superconducting phases.
For rN negative there are no gapless nodons, and the
magnet is ordered in both phases. At the transition,
rΦ = 0, where superconductivity develops, we can em-
ploy the dual Ginzburg-Landau theory. Equivalently, we
can return to the original representation (before duality)
in terms of the pair field phase, ϕ, which (in the ab-
sence of long-ranged Coulomb interactions22) is simply
the classical three-dimensional XY model. The result-
ing transition is in the classical 3d-XY universality class.
For rN positive, we have to worry about the presence of
gapless nodons, which might effect the nature of the su-
perconducting transition at rΦ = 0. However, since the
dual Ginzburg-Landau field Φ is only indirectly coupled
to the nodons, via the gauge field aµ, we expect that the
transition will still be in the 3d-XY universality class. In-
deed, power counting in d spatial dimensions about the
Gaussian fixed point, reveals that the coupling term (of
the form ∂aψ†ψ) has scaling dimension (3d+1)/2. Being
greater than d + 1 for all d ≥ 1, and much greater near
the upper-critical dimension (duc = 3), one expects this
coupling to be strongly irrelevant in the two-dimensional
case of interest.

Consider next the phase transition into the antiferro-
magnetic state, upon crossing the horizontal axis. For
either sign of rΦ, since the vortices and gauge field aµ
can be integrated out generating irrelevant four-nodon
interactions, the transition is described by the Néel order-
ing field coupled to the nodon bi-linear, with Lagrangian
L = Lψ + LN . This is an interesting field theory de-
scribing Dirac fermions anomalously coupled to a fluc-
tuating O(3) field. Power counting about the Gaussian
fixed point (free nodons and rN = uN = 0) reveals that
the coupling term is relevant in two dimensions, but if
the model is suitably generalized to higher dimensions
becomes marginal in d = 3. This suggests an attack near
four space-time dimensions, working perturbatively for
small ǫ = 4 − (d + 1). A complication is that there are
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in fact three independent velocities, two for the nodons
(vF , v∆) and one for the Néel spin field (vs). In Appendix
B we first consider the special case in which all three ve-
locities are set equal. This model is then a bona fide rel-
ativistic field theory, with Lorentz invariance. A leading
order perturbative renormalization group in ǫ reveals the
existence of a new non-trivial fixed point. The associated
critical properties and exponents are briefly discussed in
Appendix B. Remarkably, as we also show in Appendix
B, this relativistic fixed point is in fact linearly stable to
small deviations in the three velocities. A microscopic
model with different velocities scales into a relativistic
form near criticality. As further discussed in Appendix
B, this model is closely related to a remarkable model23

which has has a non-trivial fixed point in D = 2+1 with
an exact (N = 1) space-time supersymmetry.24 Super-
symmetry is powerful enough to determine several exact

critical exponents in D = 3,23 which serve as a useful
check on our ǫ expansion results.

It is finally worth mentioning the effects of the coupling
to the nodons, on the location of the antiferromagnetic
ordering transition. With rN positive one can safely in-
tegrate out the nodons. This leads to a supression of rN ,
with a “renormalized value”, r̃N , given to leading order
by,

r̃N = rN − (cΛ/v∆)g2 +O(g4). (4.6)

Here Λ is the high momentum cutoff on the nodons, and c
a cut-off dependent constant of order one. The coupling
to the nodons thus tends to enhance the magnetic or-
dering. Within mean-field theory, the antiferromagnetic
ordering transition will take place when the “renormal-
ized” coefficient r̃N = 0, as indicated in Fig. 3a.

2. Effects of Particle-hole asymmetry

Staying at half-filling, we next consider the effects
of particle-hole asymmetries, generated for example by
a second neighbor electron hopping term in a micro-
scopic square lattice model. As discussed in Section II, a
particle-hole asymmetry generates an additional term in
the nodon Lagrangian of the form,

Lλ = λψ†
jτ
zψj . (4.7)

In the absence of coupling to the Néel field, this sim-
ply causes a momentum space shift in the positions of
the nodes, by an amount δq = λ/vF . As we shall see,
this has a profound effect when the nodons are coupled
to the Néel order parameter, since such a shift destroys
the “nesting” of the nodons. Indeed, this leads to two
additional phases at half-filling, as shown in the phase
diagram for λ 6= 0 in Fig. 3b.

Since both additional phases are antiferromagnetically
ordered, we once again integrate out Φ and aµ (valid
for non-zero rΦ), and put 〈N〉 = N0ŷ into the effective

Lagrangian to arrive at a quadratic nodon Lagrangian
of the form Lnodon + Lλ, with Lnodon given in Eq. 4.4.
Once again a Bogoliubov transformation diagonalizes the
quadratic form, and with non-zero λ the energy eigenval-
ues (in the j = 1 nodon sector) satisfy, E4−2AE2+B = 0
with,

A = (gN0)
2 + (vF qx)

2 + (v∆qy)
2 + λ2, (4.8)

and

B = [A− 2λ2] + (2λv∆qy)
2. (4.9)

If gN0 > λ, there is no solution at E = 0, so that there is
a gap in the nodon spectrum. The resulting phases - an-
tiferromagnet for rΦ < 0 and co-existing gapped d-wave
superconductivity with antiferomagnetism for rΦ > 0 -
occur for large negative rN , where N0 is large (given by

N0 =
√

(−rN )/2uN within mean-field theory). But for
smaller |rN |, when gN0 < λ, zero energy solutions do

exist, and there are gapless nodon states present! This
leads to the two new phases present in Fig. 3b.

Specifically, for rΦ negative, the new phase exhibits
gapless nodon excitations co-existing with long-range an-
tiferromagnetic order. The nodons are now incommensu-
rate with the magnetic order (at ~π), since the zero energy
nodon state for λ > gN0 occurs at a shifted wavevector:

qx = v−1
F

√

λ2 − (gN0)2 6= 0, (4.10)

and qy = 0. This interesting new phase, which we de-
note as AF/NL, exhibits gapless incommensurate mag-
netic fluctuations co-existing with the ~π magnons of the
Néel state.

For positive rΦ, where d-wave superconductivity is
present, the gapless nodon excitations are simply d-wave
quasiparticles, incommensurate with the Néel order. In
the new phase, the incommensurate gapless d-wave su-
perconductor co-exists with antiferromagnetic order, as
depicted in Fig. 3b

It is worth emphasizing that with particle-hole asym-
metry present (ie. non-zero λ) the region of antiferromag-
netic order in the phase diagram is diminished, relative
to the case with λ = 0, as depicted in Fig. 3b. This
occurs because incommensurate nodons are less effective
at renormalizing rN . Specifically, upon integrating out
the nodons with non-zero λ one finds the same form as
in Eq. 4.6, but with c → cF (λ/vFΛ), where F (X) is a
monotonically decreasing function of X with F (0) = 1.
This leads to a downward shift in the horizontal phase
boundary in Fig. 3b by an amount,

δr̃N = [1 − F (λ/vFΛ)](cΛ/v∆)g2. (4.11)

Physically, particle-hole asymmetries, such as a second
neighbor hopping term, tend to frustrate and weaken the
antiferromagnetism at ~π. With non-zero λ the nodes are
shifted off commensurablilty, and the magnetism is in-
deed weakened. This effect leads to a natural mechanism
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for the destruction of antiferromagnetism upon doping,
as we describe in the next section.

Finally, we briefly discuss the nature of the phase tran-
sitions between the six phases present at half-filling with
particle-hole asymmetry. Arguments as in the previous
subsection, suggest that the vertical phase boundary sep-
arating the three superconducting from the three non-
superconducting phases (at rΦ = 0) should, as before,
be in the universality class of the classical 3d-XY model.
Since the nodons are incommensurate at the upper hor-
izontal phase boundary where antiferromagnetism first
appears, they will decouple from the critical magnetic
fluctutations. Both of these two transitions (for posi-
tive and negative rΦ) should thus be in the universality
class of the classical 3d Heisenburg model. At the lower
horizontal phase boundaries, the gapless nodons disap-
pear. The critical properties are correctly described by
the quadratic nodon Lagrangian, considered above. In
particular, for λ > gN0, one can linearize for small mo-
mentum around the shifted zero energy nodes by putting
δqx = qx − v−1

F

√

λ2 − (gN0)2, which gives,

E = ±
[(

1 −
(

gN0

λ

)2
)

(vF δqx)
2 + v∆q

2
y

]
1

2

. (4.12)

As the transition is approached, the velocity along the
x-direction – i.e. perpendicular to the Fermi surface –
vanishes and the nodons become quasi-1D.

C. Doping the Antiferromagnet

We are now in a position to extend our understand-
ing of doping to include AF order at half-filling, in ac-
cord with experimental observations. In all high-Tc ma-
terials, doping is actually achieved by chemical substitu-
tion/depletion of atoms between the CuO2 layers. While
it is generally believed that this process transfers charge
to the CuO2 planes, this charge transfer is not necessarily
proportional to the chemical doping, defined as the frac-
tion of atoms substituted or removed. To simplify this
discussion, however, we shall assume that chemical dop-
ing indeed corresponds to hole doping, and consider the
phase diagram as a function of hole concentration x. A
further assumption concerns the degree of particle/hole
asymmetry. Since the composition is changing with dop-
ing, the parameter λ should in general be a function of
x (in fact, we expect the asymmetry to increase with x).
To simplify the discussion, we shall further assume that
any explicit dependence of λ on x is weak, and therefore
treat the effects of doping solely through the chemical
potential µ.

At half-filling, the system sustains long-range AF or-
der. In general, we expect a non-zero particle/hole asym-
metry, so that this could correspond to either the AF or
AF/NL state, the latter occuring if λ is sufficiently large.
We do not believe current experiments distinguish the

two alternative phases in undoped cuprates. Since by
assumption we are varying only µ, and µ couples indi-

rectly to magnetism via the corresponding dual “flux”
in Eq. 2.35, the AF order and nodons are effected only
once charge is added to the system. What is the effect
of such charge doping on the AF? From Eqs. 2.24,2.35,
we see that the added charges act simply to increase the
effective particle/hole asymmetry of the nodons. In par-
ticular,

λeff = λ+
x

4κ0a2
0

. (4.13)

Eq. 4.13 is an extremely useful result. Using it, we can
simply trade the doping x for an effective particle/hole
asymmetry to determine the fate of the system from the
phase diagrams at half-filling, Fig. 3.

AF/PWC AF/PWC/NL PWC/NL dSC

xc2 x

AF

0

xc2
x0

AF/NL

dSCAF/PWC/NL PWC/NL

(c)

(b)

(a)

dSCAF + dSC

x

AF

0 xc

Fig. 4: Possible phase diagrams as a function of dop-
ing for the type II (a and b) and type I (c) scenarios.
We tentatively identify the PWC/NL phase, which ex-
hibits neither magnetism or superconductivity, with the
pseudogap state of the underdoped high-Tc materials.

Consider then first the type II doping scenario. The
charge behavior is similar to that obtained when dop-
ing the NL, Sec. III. Upon increasing µ from zero, the
dual “flux” is first expelled from the sample, and the
system remains undoped. Charge first enters above the
dual “lower critical field”, µ > µc1, forming a Paired
Wigner Crystal (PWC) with density x(µ) due to long-
range Coulomb interactions. Since x is small at this
point, the crystal coexists with the AF, so the actual
phase for small x is an AF/PWC. As x increases, so does
λeff , unbinding the nodons into the AF/PWC/NL. This
can be understood from the evolution of the phase dia-
grams at half-filling as a function of λ, as shown in Fig. 3.
As x increases further, the NL and AF become increas-
ingly incommensurate, and the energy gain from their
coupling is eventually reduced sufficiently to destroy the
AF order in a transition to a PWC/NL phase - again
a feature of the phase diagrams at half-filling. Finally,
when x ≥ xc2, the upper critical field is reached and
the crystal melts into the dSC phase. This progression
is shown schematically in Fig. 4a. An alternate type II
doping scenario, shown in Fig. 4b, is that the system is an
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AF/NL at half-filling, in which case the phase diagram is
unchanged except for the absence of the AF/PWC phase.

Another possibility is type I doping. Because this
involves a strong first-order transition in the absence
of Coulomb interactions, the mixed (micro-phase sepa-
rated) state could occur as a coexistence between a num-
ber of different phases. The simplest phase diagram in-
cludes only coexistence between the AF and pure dSC
as in Fig. 4c. Because the physics of the mixed state is
highly non-universal, we do not discuss it further here.

V. DISCUSSION

The main result of this paper is the Lagrangian,
Eqs. 1.1-1.2, which describes the Nodal Liquid phase,
its interaction with external electromagnetic fields, and
transitions between it and the antiferromagnetic (AF)
and superconducting (dSC) phases. This Lagrangian fol-
lows directly from disordering the d-wave superconduc-
tor. It implies that, in the underdoped region, low-energy
fermionic degrees of freedom are located solely at four
isolated (Dirac) points in the Brillouin zone – a hypothe-
sis which is strongly supported by ARPES6,7, NMR9,10,
optical conductivity11,12, and other experiments2. The
main consequences of Eqs. 1.1-1.2 are (1) the predic-
tion of a new zero-temperature phase, the Nodal Liq-
uid, which interpolates between the AF and dSC phases;
(2) a quantitative description of charge and spin dynam-
ics in this phase; (3) specific predictions for the critical
behavior at the AF and dSC ordering transitions; and,
above all, (4) a coherent weak-coupling framework – with
the Nodal Liquid as its foundation – for understanding
the underdoped side of the high-Tc phase diagram. We
tentatively identify the coexisting Paired Wigner Crys-
tal/Nodal Liquid (PWC/NL) phase as the pseudo-gap
state in a hypothetical disorder-free underdoped cuprate.
In the real materials, however, disorder will play a role,
as we briefly discuss below.

Our description of this part of the phase diagram en-
joys kinship with several other approaches. The Nodal
Liquid phase is reminiscent of the π-flux state25 and the
SU(2) MFT staggered-flux state,26 and is the d-wave
analog of the short-range27 resonating valence bond spin-
liquid state.28 These states also involve neutral Dirac
fermions interacting with a gauge field, but the cou-
pling to electromagnetic fields, the coupling between the
fermions and the gauge fields, the bosonic charged de-
grees of freedom, and the evolution with doping are all
rather different in the Nodal Liquid. Several authors29,30

have conjectured that the lightly-doped 3-leg Hubbard
ladder might serve as a paradigm for the underdoped
cuprates and Furukawa and Rice31 have tried to substan-
tiate these claims with weak-coupling RG calculations on
partially nested Fermi liquids. The Nodal Liquid con-
cretely realizes the attractive features of this proposal.
The basic idea of bringing AF and dSC under the same

rubric, which is expressed in (1.1), is the central theme of
Zhang’s SO(5) theory.32 However, there is a direct tran-
sition from AF to dSC in the SO(5) theory, whereas the
Nodal Liquid intervenes in our theory. There is a further
important distinction, namely, that our theory focuses
on the zero-temperature quantum phase transitions of
the high-Tc materials. This is one reason why our theory
accords primary importance to the low-energy fermionic

degrees of freedom. Finally, our prediction of phase sepa-
ration at the dSC transition in the type I scenario as well
as our interpretation of T ∗ echoes the ideas of Emery and
Kivelson.15

There are a number of important issues which we have
not addressed in this paper. By restricting our atten-
tion to the region underneath the dashed line in Fig. 1,
we have skirted one of the most controversial questions
in this field: what mechanism drives pair formation at
this scale? Presumably this physics must be understood
for progress to be made on the part of the phase dia-
gram above and to the right of the dashed line. This
would require an investigation complementary (but per-
haps orthogonal in spirit) to ours. Also, our discussion
of transport was necessarily incomplete because finite-
temperature transport can be particularly subtle (for re-
cent examples of this, see Ref. 33) and the transport prop-
erties of the Nodal Liquid deserve a thorough exposition
of their own, which we defer. Moreover, a pure sample
would melt at a finite temperature phase transition, al-
though this transition would be rounded by impurities.
The melting temperature is expected to vanish upon ap-
proaching either zero doping or the PWC/NL to dSC
quantum phase transition, and therefore has maximum
at some intermediate x in the underdoped regime.

The effects of disorder are also quite subtle, and war-
rant a full and separate treatment. Nevertheless, a few
comments are germane to this discussion. The first, and
most basic, is that disorder plays a significant role in the
physics of the cuprates. Even in Y Ba2Cu3O7−δ, which
is believed to be cleaner than, say, La2−xSrxCuO4,
doping cannot help but introduce disorder. According
to standard arguments,34 first-order phase transitions
will be driven second-order by arbitrarily weak disor-
der in two dimensions. In particular, we expect the
PWC/NL→dSC transition to be second order with im-
purities present. Moreover, based on the irrelevance (in
the technical sense) of the coupling between the nodons
and the superconducting phase in the clean case, we
suspect this transition may be in the same universality
class as the superconductor–insulator transition. This
could explain the experiments of Fukuzumi, et al. on
Y Ba2Cu3−yZnyO7−δ.

35 The disorder will also have an
effect on the phases themselves. For instance, transport
and spin dynamics in the Nodal Liquid will be influ-
enced by disorder. Finally, we note that disorder will
transform the PWC into a Bose Glass (BG). One con-
sequence would be power-law suppression (rather than
a hard gap) of the low frequency electron spectral func-
tion at the nodes in the BG/NL phase because the BG is
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compressible.19 Having adopted a panoramic view in the
preceeding section, we can afford, in closing, to narrow
our focus to the BG/NL (and the PWC/NL from which
it descends) because it is our candidate for the T = 0
pseudo-gap phase: a phase without a Fermi surface or
long-range order but possessing low-energy fermionic ex-
citations centered about four points in the Brillouin zone.
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APPENDIX A: MICROSCOPIC APPROACH

In this appendix, we describe techniques to derive the
effective field theory from some specific microscopic mod-
els. As our purpose is primarily phenomenological, we
will consider one of the simplest models which develops
antiferromagnetism and d-wave superconductivity. This
is a square lattice extended Hubbard model with nearest-
neighbor hopping t, on-site electron-electron repulsion U
and nearest neighbor attraction V (we emphasize that
this model is not realistic, but is chosen for illustrative
purposes), i.e.

H [c†, c] = −t
∑

〈~x~x′〉

[

c†α(~x)cα(~x′) + h.c.
]

+ µ̃
∑

~x

n(~x)

+U [n(~x)]2 − V
∑

〈~x~x′〉

n(~x)n(~x′). (A1)

Here n(~x) = c†α(~x)cα(~x), and µ̃ is the microscopic chem-
ical potential, and we have neglected to include terms
(e.g. a second-neighbor hopping t′) which break parti-
cle/hole symmetry at half-filling. Also, for simplicity we
measure distances in units of the lattice spacing. The
tendency toward AF and dSC states can brought out by
using the identities [n(~x)]2 = −4/3[S(~x)]2 + 2n(~x) and

n(~x)n(~x′) = c†α(~x)c†β(~x
′)cβ(~x

′)cα(~x), for ~x 6= ~x′. The
Hamiltonian can be rewritten as

H [c†, c] = −t
∑

〈~x~x′〉

[

c†α(~x)cα(~x′) + h.c.
]

+ µ
∑

~x

n(~x)

−4

3
U
∑

~x

|S(~x)|2 − V
∑

〈~x~x′〉

c†α(~x)c†β(~x
′)cβ(~x

′)cα(~x), (A2)

where we defined a shifted chemical potential µ, and have
neglected an unimportant constant. As usual, the lattice

spin operator is defined by S(~x) = 1
2c

†
α(~x)σαβcβ(~x). The

angular brackets 〈~x~x′〉 under the two sums indicate sums
over all nearest-neighbor pairs of sites.

To derive an effective field theory, it is convenient to
use an imaginary time path integral formulation. In this
case one studies the partition function Z = Tre−H/T ,
where T is the temperature. It can be represented using
Grassman coherent states as

Z =

∫

[dc][dc]e−S , (A3)

where the Euclidean action is

S =

∫

dτ

{

∑

~x

cα(~x)∂τ cα(~x) +H [c, c]

}

. (A4)

We consider here only T = 0, for which the τ integration
domain is infinite. The possibility of dSC and AF phases
can be entertained by decoupling the above action using
Hubbard-Stratonovich transformations. One finds that

Z =

∫

[dc][dc][dM][d∆][d∆]e−S1 , (A5)

with S1 =
∫

dτ [
∑

~x cα(~x)∂τ cα(~x) + Heff ]. The effective
Hamiltonian can be decomposed intoHeff = Hqp+HM+
H∆, with Hqp = H0 +Hint, and

H0 = −t
∑

〈~x~x′〉

[

c†α(~x)cα(~x′) + h.c.
]

+ µ
∑

~x

n(~x) (A6)

Hint = −
∑

~x

M(~x) · S(~x)

+
∑

〈~x~x′〉

[

∆
αβ

~x~x′cβ(~x
′)cα(~x) + ∆αβ

~x~x′cα(~x)cβ(~x)
]

, (A7)

HM =
3

8U

∑

~x

|M(~x)|2, (A8)

H∆ =
1

V

∑

〈~x~x′〉

∆
αβ

~x~x′∆
αβ
~x~x′ . (A9)

Eqs. A6-A9 form a basis for studying the original ex-
tended Hubbard model. Following the philosophy of
Sec. II A , we imagine integrating out high-frequency
modes in the functional integral to arrive at an effec-
tive field theory for the low-lying degrees of freedom. In
the process, one will generate dynamics for the order pa-
rameter ∆ and the magnetization M. For the most part,
symmetry considerations require the corresponding La-
grangians to take the forms given in Sec. II A and Sec. IV,
so we choose not to complicate the presentation by ex-
plicitly performing these integrations (e.g. diagrammat-
ically).

One subtle point in the analysis of Sec. II A, how-
ever, does warrant a more careful treatment. This is the
coupling of the nodons to the superconducting phase-
gradient, from which follows the expressions for the
quasiparticle current, Eqs. 2.22-2.23. In Sec. II A, we de-
rive these using the “symmetric” prescription of Eq. 2.14.
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We now show that the currents are indeed obtained cor-
rectly using this prescription.

We first specialize to the case of singlet pairing, ∆αβ
~x~x′ =

∆(~x, ~x′)(δα↑δβ↓ − δα↓δβ↑). Since ∆ lives on the bonds, it
is convenient to associate two such fields with each site
in the square lattice, i.e.

∆1(~x) ≡ ∆(~x, ~x+ ê1), (A10)

∆2(~x) ≡ ∆(~x, ~x+ ê2), (A11)

where ê1, ê2 are unit vectors along the a and b axes of the
square lattice, respectively. Note that at this point, we
have specified no particular relation between ∆1 and ∆2,
so that the model has the potential both for d-wave and s-
wave pairing. To distinguish them, we must consider the
form of the effective action for ∆,∆ generated upon in-
tegrating out the high-energy modes. By symmetry, the
simplest local allowed additional term on the lattice is
a sum of U(1)-invariant two-bond products around each
lattice site, which can be written as S2 =

∫

dτ H2, with

H2 =
γ̃

8

∑

~x

{

∆1(~x)∆2(~x) + ∆2(~x)∆1(~x− ê1)

+∆1(~x− ê1)∆2(~x− ê2) + ∆2(~x − ê2)∆1(~x) + c.c.

}

.

(A12)

Of course, the actual quadratic ∆∆ interaction terms
generated from the high-energy degrees of freedom will
be much more complex. However, since the general form
of the long-wavelength effective action is dictated by
symmetry, this example suffices for illustrative purposes.
Writing ∆j = ∆0e

iφj , Eq. A12 becomes

H2 =
γ

4

∑

~x

{

cos(φ1(~x)−φ2(~x)) + cos(φ2(~x)−φ1(~x−ê1))

+ cos(φ1(~x−ê1)−φ2(~x−ê2)) + cos(φ2(~x−ê2)−φ1(~x))

}

,

(A13)

with γ = (∆0)
2γ̃. We assume γ > 0, in which case this in-

teraction favors a relative phase difference of φ1−φ2 = π,
i.e. dx2−y2 order.

We now turn to the fluctuations around the uniform
dSC state. To do so, we let φ1 = ϕ, φ2 = ϕ + θ + π.
The phase ϕ is precisely the order parameter phase in-
troduced in Sec. II A. The other variable θ represents an-
other branch of massive fluctuations around the d-wave
state. We can thus assume θ ≪ 1, and that ϕ is slowly
varying, i.e. ∂jϕ ≪ 1. Under this assumption, we can
take the continuum limit and replace the positional sum
in Eq. A13 by an integration. This gives H2 =

∫

d2xH2,
with

H2 = γ

{

θ2

2
+

1

4
(∂jϕ)2 − 1

4
∂xϕ∂yϕ+

θ

2
(∂x − ∂y)ϕ

}

.

(A14)

As expected, the θ field is massive, and can be integrated
out. Equivalently, one minimizes H2 with respect to θ.
This process restores isotropy and gives

H2 → γ

8
(∂jϕ)2. (A15)

This is just the spatial component of the superfluid La-
grangian, Eq. 2.17, with γ = v2

cκ0. The corresponding
time component can be obtained similarly.

Finally, consider the coupling of of the phase ϕ to the
fermionic quasi-particle operators. To study this, we
take for simplicity µ = M = 0. Using the definitions
in Eqs. A10-A11, the coupling term in Eq. A7 can be
rewritten

Hint =
∑

j,~x

{

∆j(~x)
[

c†↑(~x)c
†
↓(~x + êj)− ↑↔↓

]

+ h.c.

}

, (A16)

where the sum includes all lattice sites and j = 1, 2. To
ease comparison with Sec. II A, we have returned now to
a Hamiltonian formalism, replacing cα by c†α. We are now
in a position to take the continuum limit. In this case, it
suffices to neglect the massive θ mode, and simply take
∆1 = −∆2 = ∆0e

iϕ. For agreement with Sec. II A, we
define v∆ = 2

√
2∆0, or ∆1 = −∆2 = ∆̃/2

√
2. In addi-

tion, we take the continuum limit of the electron fields,
using the decompositions

c†↑ ∼ Ψ†
111i

x+y−Ψ122(−i)x+y+Ψ†
211(−i)x−y−Ψ222i

x−y,

c†↓ ∼ Ψ†
112i

x+y+Ψ121(−i)x+y+Ψ†
212(−i)x−y+Ψ221i

x−y,

and the hermitian conjugates of these equations. In-
serting these into Eq. A16, gradient-expanding the Ψ
fields, and rotating 45 degrees to x− y coordinates along
the (π, π) and (−π, π) directions, one obtains Hint =
∫

d2xHint, with

Hint =

[

∆̃

2

(

Ψ†
1τ

+i∂yΨ1 − (i∂yΨ
†
1)τ

+Ψ1

)

+ h.c.

]

+(1 ↔ 2, x↔ y). (A17)

This form is identical to the ∆̃ term in Eq. 2.10 when
the order parameter ∆̃ is constant, but the symmetric
placement of derivatives is important in the presence of
phase gradients. In particular, now let ∆̃ = v∆e

iϕ and
integrate by parts to transfer the derivative in the second
term from the Ψ† to the ∆̃Ψ combination. Then, using
the operator identity

1

2

(

eiϕi∂y + i∂ye
iϕ
)

= eiϕ/2i∂ye
iϕ/2, (A18)

one obtains

Hint =
∑

s=±

Ψ†
1[v∆τ

seisϕ/2(i∂y)e
isϕ/2]Ψ1 + (1 ↔ 2;x↔ y).

(A19)

Eq. A19 is identical to the symmetrized form of the
phase-quasiparticle interaction hypothesized in Eq. 2.15.
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APPENDIX B: RENORMALIZATION GROUP

ANALYSIS

In this appendix, we present some details of the RG
calculations for the transition at half-filling with parti-
cle/hole symmetry between the nodal liquid phase and
the antiferromagnet. As discussed in Section IV, this
transition is described by the same field theory as the
phase transition between the d-wave superconducting
phase and the phase with co-existing antiferromagent and
gapped d-wave order. A striking feature of this transi-
tion, which we access perturbatively in an ǫ = 4− (d+1)
expansion, is that it is Lorentz-invariant. Although the
model possesses three independent velocities, the differ-
ences between these scale to zero at the critical point.

The full Lagrangian is given by,

L = ψ†
1 (i∂t − vF τ

zi∂x − v∆τ
xi∂y)ψ1

+ ψ†
2 (i∂t − v∆τ

zi∂x − vF τ
xi∂y)ψ2

+
1

2
Kµ|∂µN|2 − rNN2 − u

(

N2
)2

+ gN · [ψ†τyσσyψ† + c.c.], (B1)

where we have suppressed the spin subscripts α, β on the
σ Pauli matrices, and the particle/hole subscripts a, b on
the τ Pauli matrices. Here K0 = K and Kj = −v2

sK, for
j = 1, 2. Notice that this model has three independent
velocities, vF , v∆ and vs.

Now, we can rescale the N field to set K = 1, and
rescale ~x to set vs = 1. The Lagrangian can then be
rewritten as:

L = ψ†
jα (i∂t − τzi∂x − τxi∂y)ψjα

+
1

2
(∂tN)

2 − 1

2
(∂jN)

2 − rNN2 − u
(

N2
)2

+ gN · [ψ†τyσσyψ† + c.c.]

− ψ†
1 (a1τ

zi∂x + a2τ
xi∂y)ψ1

− ψ†
2 (a2τ

zi∂x + a1τ
xi∂y)ψ2 (B2)

where

a1 =
vF
vs

− 1,

a2 =
v∆

vs
− 1. (B3)

Power counting about the Gaussian theory reveals that
both u and g2 are relevant inD = 2+1 = 3 space-time di-
mensions, but become marginal in D = 4. To implement
a perturbative RG calculation thus requires continung
the model above D = 3. This is a little tricky, due to the
Pauli-matrix algebra. One approach is to dimensionally
continue the loop integrals, but leave the 3D Pauli-matrix
algebra unchanged. This turns out to be equivalent to in-
troducing into the Dirac equations an extra Pauli matrix,
τy , multiplied by another (3rd) spatial dimension. Alter-
natively, one could replace the two-dimensional Pauli ma-
trices by the 4−dimensional γ-matrices, appropriate for
4D spinors. This latter procedure would be more correct

if we were truly interested in the vicinity of four dimen-
sions, but our choice probably makes more sense given
that we are eventually concerned with ǫ → 1. In any
case, the difference is fairly trivial: factors of 2 would be
replaced by factors of 4 in traces over the 4D γ-matrices.
With our convention, we obtain the following one-loop
flow equations:

du

dl
= ǫu− 44u2 − 32λu+ 32λ2

dλ

dl
= ǫλ− 20λ2

drN
dl

≡ 1

ν
rN = (2 − 20u− 16λ)rN

daj
dl

= −12λaj, (B4)

where λ = g2. N and ψ have anomalous dimensions
8λ and 3λ, respectively. These flow equtions have a fixed
point at O(ǫ): λ = ǫ/20, u = ǫ

√
371/440, rN = 0, aj = 0.

This fixed point has the following interesting features:
(1) ‘Relativistic Invariance.’ Since the velocity differ-
ences scale to zero according to (B4), all physically mea-
surable quantities are a function of x2+y2−t2 in the units
which we have chosen, or, upon restoring the velocities,
(x2 + y2) − v2

st
2.

(2) An antiferromagnetic correlation length which di-
verges as

ξ ∼ |rN − rcN |−1/(2−20u∗−16λ∗) (B5)

as the transition is approached.
(3) Critical correlation functions with the following
power-law decays

〈Ni(x, t)Nj(0, 0)〉 ∼ δij

|~x2 − t2| 12−16λ∗

〈ψ†(x, t)ψ(0, 0)〉 ∼ 1

|~x2 − t2|1−6λ∗
(B6)

As a check on the reliability of the ǫ-expansion, we
consider the following related model23:

L = ψ† (i∂t − τzi∂x − τxi∂y)ψ

+
1

2
|∂tΦ|2 − 1

2
|∂jΦ|2 − u|Φ|4 + g[ψ†τyψ† + c.c.], (B7)

where ψ is now a single two-component spinor, and Φ is a
complex field. Using the same ǫ-expansion procedure, we
find a fixed point at λ∗ = u∗ = ǫ/6; at this fixed point,
the fields Φ and ψ have anomalous dimension ǫ/6. It is
a remarkable and fortunate fact that this model exhibits
N = 1 supersymmetry. As a result, the existence of a
fixed point is guaranteed and the scaling dimensions of ψ
and Φ can be determined exactly, in agreement with the
ǫ expansion.
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