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Quasiparticle Transport and Localization in High-Tc Superconductors
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We present a theory of the effects of impurity scattering indx22y2 superconductors and their quantum
disordered counterparts, based on a nonlinear-sigma-model formulation. We show the existence
quasi-two-dimensional system, of a novel spin-metal phase with a nonzero spin diffusion consta
zero temperature. With decreasing interlayer coupling, the system undergoes a quantum phase tra
(in a new universality class) to a localized spin insulator. Experimental implications for spin a
thermal transport in the high-temperature superconductors are discussed. [S0031-9007(98)07710

PACS numbers: 74.20.–z, 72.15.Rn
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Over the last few years, experiments [1] have convin
ingly established that the superconducting state of the ho
doped cuprate materials is characterized by spin sing
dx22y2 pairing. In such a superconductor, the gap vanish
at four points on the (two-dimensional) Fermi surface. Th
quasiparticle excitations at these “nodes” have a linear d
persion, and an associated density of states that vanis
linearly on approaching the Fermi surface. This leads
power law dependences of various physical quantities
temperature. Impurity scattering is expected to strong
modify these properties. Experimentally, the power la
temperature dependences are rounded off, apparently
proaching constant, temperature-independent behavio
the lowest temperatures. This fact is well reproduced
approximate, self-consistent treatments of impurity sca
tering which show that a constant finite density of state
is generated at the Fermi energy for any arbitrarily wea
impurity strength [2,3]. Quasiparticle transport propertie
have also been investigated [4,5] theoretically with suc
self-consistent approximations with some phenomenolo
cal success. Going further, Lee [2] has suggested, on
basis of calculations of the zero frequency microwave co
ductivity, that the quasiparticle eigenstates are strong
localized.

In this paper, we reconsider the effects of disorder o
the low energy quasiparticles in thedx22y2 superconductor.
We point out that the problem of quasiparticle transpo
and localization in a superconductor is conceptually ve
different from the more familiar situation of noninteracting
electrons in a random potential. This is because, unlike in
normal metal, the charge of the quasiparticles in the sup
conductor is not a conserved quantity. This immediate
implies that the quasiparticle charge in the supercondu
tor cannot be transported through diffusion. Indeed, th
quasiparticle charge density isnot a hydrodynamic mode
in the superconductor. However, in a singlet supercondu
tor (and in particular in the high-Tc superconductors), the
condensate does not carry any spin, and consequently
spin of the quasiparticles is a good quantum number a
is conserved. The quasiparticle energy is also conserv
Thus, there is the possibility of having spin and energ
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diffusion without charge diffusion. These differences
symmetry lead to interesting differences between the
calization properties of quasiparticles in the supercond
tor, and in the normal metal. Such differences have be
pointed out before [6] in the context of the random matr
theory of mesoscopic normal/superconducting systems

We address quasiparticle transport using a replica fi
theoretic formulation. As expected, the field theory is d
ferent from that describing Anderson localization in a no
mal metal. The properties of the theory are determin
by a single coupling constant, which is the dimensionle
spin conductance. This is the physically correct quant
whose behavior as a function of system size enables c
struction of a scaling theory of localization. By analyzin
the properties of the field theory, we show the existen
of a logarithmic “weak localization” correction in two
dimensions suggesting localization at the largest len
scales. This correction persists, in part, in the prese
of an orbital magnetic field (unlike usual Anderson loca
ization) or a Zeeman field, but is suppressed when b
are present. In all cases, however, the quasiparticles
generically ultimately localized in two dimensions. Upo
inclusion of interlayer coupling, there is the interestin
possibility of a quantum phase transition between an
tendedspin metaland a localizedspin insulator. The spin
metal has diffusive spin correlations, a finite spin susce
tibility, and an associated finite spin conductivity allat
zero temperature. We are not aware of the existence o
such a spin phase in any insulating Heisenberg spin mo
with or without randomness.

The spin insulator is expected to exhibit local momen
and spin-glass or random-singlet behavior at very lo
temperatures. The transition between these two pha
is described by the critical point of the replica fiel
theory (neglecting quasiparticle interactions), and is a n
universality class for localization.

Most of these results also go over unmodified to t
quantum disordered version of thedx22y2 superconduc-
tor—the “nodal liquid” phase that has been analyzed
cently [7] as a possible low-temperature theory of t
pseudogap regime in the cuprate materials.
© 1998 The American Physical Society
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We begin our analysis with the lattice quasipartic
Hamiltonian for a singlet superconductor,

H ­
X
i,j

"
tij

X
s

c
y
iscjs 1 Dijc

y
i"c

y
j# 1 Dp

ijcj#ci"

#
, (1)

where i, j are site labels. Using Hermiticity combined
with spin-rotational and time-reversal invariances,t andD

may be taken to be real-symmetric matrices. Note that
total number of particles is not conserved by this Ham
tonian while their total spin is. In the presence of im
purities, we definetij ­ t0

ij 1 t1
ij and Dij ­ D

0
ij 1 D

1
ij ,

wheret0 andD0 are the Fourier transforms of the kinetic
energyek (measured from the Fermi energy) and the ga
functionDk , respectively. In thedx22y2 superconductor of
primary interest, we may takeDk ­ D0scoskx 2 coskyd.
We mention in passing that for weak impurities, a conti
uum limit may be taken, focusing on wave vectors ne
the d wave nodes. The resulting “dirty Dirac” Hamil-
tonian is similar to various models in the literature [8
but differs from previously studied variants in that it con
tains several randomanomalous couplings. The Hamil-
tonian above can be regarded as a lattice regularizat
of this continuum effective field theory for thedx22y2 su-
perconductor, hence our results are quite general and
restricted to a BCS approximation.

The effect of weak randomness can be analyzed
perturbative renormalization group calculations [9] whic
show that the randomness is a (marginally) relevant pert
bation. To make progress then, we employ a field-theore
reformulation of the self-consistent treatment adopted
earlier works on dirtyd-wave superconductivity [2]. This
begins with the standard coherent-state functional integ
formulation, in which the electron operatorsc, cy are re-
placed by Grassman fieldsc, c averaged with respect to
a statistical weighte2S, where S is an action. As the
randomness is independent of time andH is quadratic,
different pairs of frequenciessv, 2vd decouple, and it is
sufficient for our purposes to focus simply onv ­ 0.

Several notational conventions are convenient. W
define four-component fieldsciaa, with ci1a ; ciay

p
2

and ci2a ; is
y
abciby

p
2. From this point on we adopt

a notation in which$t and $s matrices act in the particle/
hole (a) and spin (a) spaces, respectively. A conjugat
field is then defined byc i ­ sCcidT , whereC ­ syty .
The action in these variables appears nonanomalous,

S ­
X
ij

c istijtz 1 Dijtxdcj 1 ih
X

i

c is
zci . (2)

At this stage we have also included an infinitesimal imag
nary Zeeman fieldh, which acts to generate physica
correlation functions.

To compute disorder-averaged quantities, we replica
the fieldsc ! cm, with m ­ 1 . . . n, so that forn ! 0
the statistical weight is normalized for each realizatio
of the randomness. Physical quantities can now
simply expressed. In particular, the spin susceptibility
le
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x0 ­ 2s1ypd Imkc
m
i szc

m
i l (no sums). Angular brack-

ets denote both field-theoretic (c) and disorder averages
The spin diffusion constant,Ds, can also be deter-
mined from the “diffusion propagator”Pij , whose
Fourier transform isPsqd ­

P
j Pij expf $q ? s $xi 2 $xjdg ­

8px0ysDsq2d. One hasPij ­ 2ksc
m
i s 1 c

n
i d sc

n
j s 2

c
m
j dl, with s6 ­ ssx 6 isydy2 and no replica sum

should be taken.
The ensemble average overt1, D1 can now be immedi-

ately performed, generating a translationally invariant a
tion with nontrivial quartic couplings between differen
replicas. A more general analysis [9] demonstrates t
the essential features are captured by uncorrelated z
mean local Gaussian fieldst1

ij ­ t1
i dij and D

1
ij ­ D

1
i dij

with covariancesft1
i t1

j gens ­ fD1
i D

1
j gens ­ udij. With this

choice, the algebra is particularly simple, and the quar
interactions can in turn be decoupled via two2n 3 2n
Hermitian Hubbard-Stratonovich fields,Q and P, acting
in the spin and replica spaces (diagonal in the particle/h
space). The effective action becomes

S ­
X

i

1
u

Trf fQsidg2 1 fPsidg2g

1 2
X
ij

c if fiQsid 2 Psidty 1 ihszgdij

1 t0
ijtz 1 D0

ijtxgcj , (3)

where we have suppressed spin and replica indices.
A saddle-point (inQ andP) analysis of Eq. (3) recov-

ers the conventional self-consistent approximation. In p
ticular, one findsQ ­ 2px0sz andP ­ 0. The constant
x0 appears as an imaginary self-energy, is (the saddle-p
approximation to) the physical spin-susceptibility, and re
resents a generation of a nonzero “quasiparticle density
states (DOS)” due to disorder. The conclusion thatx0 fi 0
is amply supported by experiment, leading us to belie
that this saddle-point is a physically correct starting poin
The imaginary self-energy also has a complementary int
pretation as a finite (inverse) elastic scattering time1yte.
For times longer thante, quasiparticles no longer move
ballistically, and we expect diffusionof the conserved en-
ergy and spin densities.

Fluctuations around this saddle-point represent bo
diffusion and corrections to it. Near two spatial d
mensions these fluctuations are captured by a nonline
sigma-model (NLsM) treatment. The crucial ingredients
are the physical (nonstatistical) symmetry properties of t
Hamiltonian, which determine symmetries of the rep
cated action, Eq. (3). For the SU(2) and time-revers
invariant form chosen, the crucial symmetry group
Sps2nd 3 Sps2nd. In particular, consider the transfor
mation ci ! Uci , with U ­

1
2 fUAs1 1 tyd 1 UBs1 2

tydg, with UA,B 2n 3 2n unitary matrices in the spin
and replica spaces satisfyingUT

A,BsyUA,B ­ sy. Un-
der this transformation, the other fields rotate accor
ing to Q 1 iP ! U

y
A sQ 1 iPdUB. For h ­ 0, all such
4705
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rotations leaveS invariant, while this is true for nonzeroh
only whenUB ­ szUAsz, henceh breaks the symmetry
infinitesimally from Sps2nd 3 Sps2nd to Sps2nd. For a
single replica, note that as Sps2d . SUs2d, one of these
Sps2d symmetries is just spin rotation invariance. Th
other Sps2d symmetry is actually a consequence of tim
reversal invariance, and can be traced to the reality of
HamiltonianH.

The NLsM is constructed by considering fluctuating
Sps2nd 3 Sps2nd rotations of saddle-point solutions tha
are slowly varying in space. In general, these can
shown to take the form of an Sps2nd matrix Us $xd, with
Qsxd 1 iPsxd ­

p

2 x0szUs $xd. The form of the action
for U is determined entirely on symmetry grounds, an
is verified by a direct calculation [9] expandingQ andP
and integrating out noncritical massive modes. We find

SNLsM ­
Z

d2x
1

2g
Trs=U ? =Uyd 2 h TrsU 1 Uyd ,

(4)

where Usxd [ Sps2nd. This field theory is known as the
“principal chiral Sps2nd model” in the field theory litera-
ture. In contrast to the conventional sigma models used
describe the localization of noninteracting electrons, he
the field variables live on a group manifold instead of
coset space. The Sps2nd 3 Sps2nd symmetry acts onU
via global left and right multiplication with independen
Sps2nd matrices.

The replica-diagonal self-consistent approximation us
in other work corresponds to keeping only the config
ration Usxd ­ 1 in the action. Small quadratic fluctua
tions around this solution correspond to diffusion, and
direct calculation ofPij in this approximation [9] relates
the coupling constant to the spin-conductancess, to wit
1
g ­

p

2 ss. The derivation of the sigma model provide

an estimate for the bare coupling constant:1
g0

­
1

4p

y
2
F1y

2
D

yFyD

with yF , the Fermi velocity, andyD, the slope of thedx22y2

gap linearized near the nodes. Note that this is indep
dent of the disorder strength. A similar result for the ze
frequency microwave conductance was obtained ear
by Lee [2], in particularssv ­ 01d ­ 1

p2 syFyyDde2yh.
The difference in the velocity-dependence of the prefacto
is conceptually significant: the spin-conductance obeys
Einstein relation while the microwave conductance cann
This distinction arises because the quasiparticle charge
not a good quantum number.

Consider separately the orbital and Zeeman couplin
to an applied magnetic field. The orbital field breaks tim
reversal symmetry but not SUs2d, and similar manipu-
lations to those above lead ultimately to a Sps2ndyUsnd
NLsM, also distinct from the three conventional univer
sality classes of dirty metals. The Zeeman coupling,
contrast, breaks SUs2d invariance, leaving only a Us1d
spin-rotation symmetry around the field axis (sayẑ). Us-
ing the particle/hole transformation,c# ! c

y
# , this Us1d

symmetry is easily shown to play the same role as do
4706
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the charge-conservation Us1d in conventional localization.
Consequently, the Zeeman field leads to the usual
thogonal sigma model, and Zeeman and orbital effects
gether drive the system to the unitary universality class

All these field theories exhibit diffusion on length
scales of order the elastic mean free path,e. Beyond
this scale, quantum interference corrections can play
important role. They are determined by the renormaliz
tion group (RG) equation forg, which for the Sps2nd and
Sps2ndyUsnd sigma models can be found in Refs. [10]:

dg
d ln L

­ 2eg 1
ag2

4p
1 Osg3d , (5)

where e ­ d 2 2 and we have setn ­ 0. The num-
ber a ­ 1, 1

2 for the Sps2nd, Sps2ndyUsnd models, re-
spectively. Equation (5) describes the evolution of th
physical coupling (and hence the spin conductance) w
length scaleL, which could be either the system size o
an inelastic thermal cutoff length at finite temperatur
Note that in two dimensions (e ­ 0), g grows logarith-
mically with L, giving an additive logarithmic reduction
of the conductance and signaling a crossover to loc
ized behavior at long distances. Notice that to this o
der (“one-loop”) the leading logarithmic correction is
not completely suppressed by an orbital field. This r
sult is in sharp contrast to conventional weak localiz
tion, but is in agreement with similar observations mad
in the context of the random matrix theory of system
with these symmetries [6,11]. Complete suppression
the logarithmic correction occurs only with the introduc
tion of Zeeman coupling and subsequent crossover to
unitary NLsM.

These perturbative results strongly suggest that
two spatial dimensions with weak magnetic fields, th
quasiparticles are ultimately always localized. A crud
estimate for the localization length may be obtained fro
the one loop perturbation theory to bej , ,ee4pyg0

where,e is the mean free path andg0 the bare coupling
constant. Using the estimateyF

yD
, 7 in high Tc, we get

j ø 1000,e. We note in passing that sinceP2s Sps2nd
Usnd d ­

Z, a nontrivial topological term is allowed for nonzero
orbital coupling; this suggests the possibility of isolate
extended quasiparticle states for strong magnetic fie
[9].

Inclusion of coupling between two-dimensional layer
(with spacing d ) drives the system three dimensiona
making possible an extended phase where the sp
diffuse at the longest length scales. Based on the qua
2d NLsM [9], the boundary between 3d spin-metal an
spin-localized phases occurs when the barez-axis spin
conductivityszz

s , d,22
e e28pyg (see Fig. 1). Given this

steep curvature of the phase boundary near the orig
even a modest interlayer coupling can drive the syste
into the spin metal phase. In zero field, or neglectin
Zeeman coupling, the transition between the spin me
and the spin insulator is in a new universality class.



VOLUME 81, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 23 NOVEMBER 1998

in
al

be
he

he
If
be
e)

lly
s
the
the

n
or
rch
5,
e

of
In

his

ell

of

t/

o

/

SPIN
 METAL

SPIN
INSULATOR

(1/σ
s
)

σzz

s

FIG. 1. Schematic phase diagram of the layered dirtydx22y2

superconductor.

Quasiparticle interactions, which we have ignored s
far, can be shown [9] to lead to the usual Altshule
Aronov singularities for the tunneling density of states fo
the diffusive spin metal. Interaction effects are expecte
to be more crucial in the spin insulator, and ultimatel
should produce a low density (considerably less than, e.
the hole doping) of local magnetic moments which ma
then at low temperature freeze into a spin glass or st
paramagnetic in a random-singlet phase with a divergi
spin susceptibility.

An important application of the theory outlined here
is to the quantum disordereddx22y2 superconductor—a
novel zero temperature phase that has been proposed
very recently to exist between the antiferromagnetic an
superconducting regions of the high-Tc phase diagram.
The low-temperature spin and thermal transport propert
of the nodal liquid are identical to those of the superco
ductor, and with (weak) disorder, all the results mentione
above obtain. One quantitative point is worth mention
ing: as one moves from the superconductor towards t
antiferromagnet through the nodal liquid, the ratioyFyyD

decreases monotonically, thereby decreasing the bare s
conductance. Thus localization effects are expected to
come more important on going to the nodal liquid region
It is interesting that it is precisely in this region that ex
periments find a spin glass phase at low temperature.

We conclude with a few brief suggestions for exper
ments, leaving a detailed discussion to Ref. [9]. Sp
transport can be probed by NMR techniques. It shou
also be possible to observe the localization physics
thermal transport. Ignoring the weak interaction effect
we predict that the thermal conductivityk is related to the
spinconductivity by the Wiedemann-Franz law:

kyTss ­ 4p2y3 . (6)

Physically, this follows from the equality of spin and
thermal diffusion constants, the Einstein relation, and th
relation between specific heat and density of states. (T
Lorenz number differs by a factor of 4 from the usua
one as the chargee in the usual formula is replaced by
spin 1

2 in our case.) Within the self-consistent theor
o
r-
r
d

y
g.,
y
ay
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[7]
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this gives k ­ 2k2
BT sy2

F 1 y
2
Ddy3yFyDh̄. In contrast,

the microwave conductivity does not satisfy an Einste
relation and is, in general, not related to the therm
conductivity by the Weidemann-Franz law (as can
explicitly seen in the self-consistent theory, unless in t
limit yF ¿ yD [5]).

Finally, we expect thatlocalization effects should be
most pronounced when the nodal anisotropyyFyyD is
minimized, as is expected to occur on reducing t
hole concentration within the nodal liquid phase.
signatures of localization can be observed, it may
useful to perturb the system with a Zeeman (i.e., in-plan
field. A large enough Zeeman coupling is theoretica
expected to open thed-wave nodes into Fermi pocket
[12], dramatically increasing the density of states and
bare conductance, hence potentially probing some of
localization transitions discussed here.
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paper.
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