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Quasiparticle density of states in dirty high-T. superconductors
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We study the density of quasiparticle states of dotwave superconductors. We show the existence of
singular corrections to the density of states due to quantum interference effects. We then argue that the density
of states actually vanishes in the localized phasgEhr E? depending on whether time-reversal is a good
symmetry or not. We verify this result for systems without time-reversal symmetry in one dimension using
supersymmetry techniques. This simple, instructive calculation also provides the exact universal scaling func-
tion for the density of states for the crossover from ballistic to localized behavior in one dimension. Above two
dimensions, we argue that in contrast to the conventional Anderson localization transition, the density of states
has critical singularities which we calculate in & 2 expansion. We discuss consequences of our results for
various experiments on dirty highs materials[S0163-1829)00833-4

[. INTRODUCTION ticle localization length.This second energy scale marks the
crossover from the diffusive to the localized regime. The
The question of the quasiparticle density of states of aatio of the two crossover scalds;/E, is exponentially
two-dimensionald,2_,2 superconductor in the presence of large in the bare dimensionless spin conductance, and can be
disorder has been a matter of some controversy. Early thequite large.
retical work based on approximate self-consistent Note that our conclusion of the vanishing density of states
treatments > of the disorder demonstrate that a finite Fermi-is only superficially similar to the results of Nersesyan, Ts-
level density of states is generated for arbitrarily weak disvelik, and Wengef.In particular, we argue that the localiza-
order. In contrast, some exact restiftsr a simplified model tion length approaches a finite constantE&s»0. (In con-
of the disorder which ignores the scattering between the twerast, Nersesyan, Tsvelik, and Wenger find a diverging
pairs of antipodal nodal points show that the density of statekcalization length as£—0). Our results are also in dis-
(p(E)) vanishes on approaching zero enefgeasured from agreement with the claims of Ziegler, Hettler, and
the Fermi energyasp(E)~EY". Claims of rigorous proofs  Hirschfeld® It has, however, been pointed étitat the tech-
of a constant nonzero density of states have also appearednigues of Ref. 5 give incorrect results in other situations—
the literature. this signals a flaw in the technique which could invalidate
In a recent papetwe discussed the problem of quasipar- their results.
ticle transport and localization in dirty superconductors ig- For a superconductor with spin rotation invariance but no
noring the quasiparticle interactions, and treating the disortime reversal 7}, there is again a logarithmic suppression of
der with a nonlinear sigma model field theory. The startingthe density of states in the diffusive regime. This accounts
point for the sigma model description is the approximateentirely for the leading logarithmic suppression of the spin
self-consistent treatment of the disorder which, as mentionedonductance found earlier, and provides an explanation of it.
above, generates a finite density of states. We argued thai this case, we argue that in the localized phase, the density
inclusion of small harmonic fluctuations about the self-of states vanishes &2.
consistent solution leads to diffusion of the spin and energy We provide an explicit verification of some of our general
densities of the quasiparticléhough not of the charge den- results by exact nonperturbative calculations in one dimen-
sity). Quantum interference effects finally lead to quasiparti-sion using supersymmetry techniques.
cle localization at the longest length scales in two dimen-
sions. In this paper, we consider the behavior of the density
of states in the sigma model. We show that in the diffusive p(E)
regime, quantum interference effects lead to a singular loga-
rithmic suppression of the density of states. We then argue
that in the localized spin insulator, the density of states ac-
tually vanishes asE| for superconductors with both spin
rotation and time-reversal symmetry. A schematic plot of the
density of states as a function of energy is shown in Fig. 1. T
The linear density of states of the pudg. 2 supercon-
ductor gets rounded off at an energy sdaleof the order of

the elastic scattering rate. This marks the crossover from the ) E E E
e I . 2 1
ballistic to the diffusive regime. At a lower energy scale
E,~D/ &, the density of states dips linearly to zefdereD FIG. 1. Density of states of the two-dimensional didy:_,2

is the “bare” spin diffusion constant, andlis the quasipar- superconductor.
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Il. DIFFUSIVE REGIME P—Po o gN n
Consider first a two-dimensional,>_,2 superconductor Po 8mn

with poth.spnj rotation and’ invariance. In the absence of Note that the constar@ has dropped out of this resus it
guasiparticle interactions, and at scales larger than the elast]

o . X X hould. The quantityl, is the elastic mean free path.
mean free path, the quasiparticle diffuslas described by Thg sameqresult ?ieobtained in tHdbroken butzpin rota-
the replica field theofy

tion invariant case. This is described by the Sp(2J(n)
field theory with the action

1
sNL,,szdZXETr(VU-VUT)—nTr(u+uT). 1)

1
— 2y " 2_
HereU(x) are 2nX 2n unitary matricese Sp(2n), and 7 is S f d ngTr((VQ) 7Q02), ©®

a positive infinitesimal that is introduced to enable calcula-

—ut i i i
tion of the appropriate Green'’s functions. The coupling con—WhereQ_U a;U with U e Sp(2n). The density of states is

stant g is related to the spin conductanag, by 1ig again the order parameter of this field theory, and is given by

=(ml2)os.

The quasiparticle density of states at the Fermi energy is p= Iimﬂ(Tr(QaZ». (7)
exactly proportional to the uniform spin susceptibility which 02N
g,iv?r(]aborder parametet” for this field theory. Thus it is Calculation similar to the one above gives the result (Gg.

y but with N=n(2n+1)—n? being the number of indepen-
Po dent massless fields. In either case, in the replica limit, we
p=lim—(Tr(UT+U)), (2 get
noodn

wherep, is the bare density of statéBOS) (i.e., its value on P—Po_ _ im( E) _ 5
the scale of the mean free patifhe limit n—0 is implied. Po 8m \le

As this is the “order parameter” for the field theory, quan-
tum corrections to it can be obtained from the known reSults
for the “field renormalization” to one loop order. To pertur-
batively calculate corrections tp, we write U=1+i¢

— ¢?/2+ - - - with ¢ belonging to the Lie algebra of Sp(,
and expand in powers @f. To quadratic order, the action is

Thus to leading order, the suppression of the density of states
is independent of whether or n@tis present.

The leading logarithmic correction to the spin conduc-
tance in two dimensions was evaluated in Ref. 6:

o 1 L
o(L)=os— —In—, €)
1 2m? e
sozz—f d>x Tr(V¢)2. )
9 where? is the bare spin conductance, ands the elastic
We may choose a basiE for the Lie algebra to writeap ~ mean free path. IT is broken, then the correction is reduced
= ¢,T?, and normalize the basis by some choiceTH{°) by a factor of 22
=C %P with C a positive constant. The action then becomes The spin conductance satisfies the Einstein relatign
=Dp/4 with D being the spin diffusion constar{The factor
C of 4 arises from the spin of 1/2Equations(8) and (9) to-
= —_— 2 . . . . . .
So_zgj d°xV da-Vba. (4) gether with the relation @)= (7/2)os imply a logarithmic
suppression of the diffusion constant at ordey When7 is

(Summation over the indea is implied in the above equa- regent. Withou invariance, there is no suppression of the
tions) The matricesT® are traceless, and the susceptibility yiffusion constant to this order.

may be expressed to leading order as It is possible to understand this result in terms of a semi-
1 1 classical pictur®tinvolving interfering trajectories. To that
P _ —(Tr(2— $?)) = —(4n—Tr(T2T®) b by,) end, consider, quite generally, a lattice Hamiltonian for the
po 4n 4n quasiparticles in a singlet superconductor
=1 cn G(0
- —E ( ) H:IEJ t'JE CiTngo'_i_AijCiTTCJTL—’—Ai*jleCiT , (10)

In the last line, we have used the functi@{x) defined by
(ha(X) pp(0))=G(X) Sap; N is the number of linearly inde-
pendent matrice¥?. For Sp(2), N=n(2n+1). Itis under-
stood that then=0 limit is taken at the end of the calcula-
tion. Considering now a finite system size, we get

wherei,] refer to the sites of some lattice. Hermiticity im-
plies tij=t}‘i , and spin rotation invariance requires;;
=Aj; . Itis useful conceptually to use the alternate represen-
tation in terms of a new set af operators defined byd;,
:CiTrdU:CiTl- The Hamiltonian Eq.(10) then takes the

S0 g d?k 1 form
Cli=L"L(2m)2 k2 ( t; Ay

Ar -t

H=, d

dj=2> dfH;d;. 11
This gives i )J ; i Hijd; (11
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Writing t;=af; +ib Ajj=ajj—ia); with glij zgji . real  ping between sites. In the limit of zero hopping, the sites are

ij

symmetric anch;;=—by; , real antisymmetric, we get all decoupled. At each site, the Hamiltonian in terms ofdhe
particles satisfies th8U(2) invariance requirement,Ho,
Hij=ibj+aj - 0. (12 =—H*. This takes the fornH=a- ¢ with a random. With

7 symmetry, we further havel=H* implying a,=0. Con-
sidering now the case where the probability distributiora of
has finite, nonzero weight at zero, we see immediately that
the disorder averaged density of states vanishds>asith-

out 7 and as|E| with 7. Now consider weak nonzero hop-

Note thatSU(2) invariance requiresyH;; %,= —Hi’] . This
implies that the amplitudeG; ,z=(iale”"™|jB)6(t) for a
d particle to go from poinf, (pseudgspin 8 to pointi, spin
«a satisfies the relations

Gyj.11(t)= —Gi*j (), (13 ping. In the localized phase, perturbation theory in the hop-

‘ ’ ping strength should converge, and we expect to recover the
Gii 1 (D)=G* (1) (14) single site results at asymptoti(_:ally |OW energie_zs.

T .11 A more formal field-theoretic version of this argument

The Fourier transform of this amplitude is with the same conclusions is as follows. As we are con-
cerned with the properties of the localized phase, we prefer

- CoN i(+inte to phrase the argument in terms of a supersymmetric field
Gij.ap(@F17) fdte' Gij.cs(t) theory rather than the replica version used before. In the
1 localized phase, we expect that a strong-coupling expansion

=(ia| ——=——|jB). of this field theory converges. This may be performed, as

o—H+ip usual, by regularizing the sigma model on a lattice. The lead-

The density of states at the Fermi energy may be obtainef§d term in the strong-coupling expansion is the zero-
from this in the usual manner. dimensional limit of the sigma model which is equivalent to

the random matrix theory of Hamiltonians with these sym-
1 metries. In the random matrix limit, it is knowhthat the
p=- ;Im(G”m(i 7)+(T<1)) (15  density of states vanishes in the manner discussed above.
These results on the localized phase can be verified in

Consider now the return amplitud®; (t). This can be ~great detail in one spatial dimension for systems withbut
written as a sum over all possible paths for this event. ConConsider a lattice Hamiltonian for theparticles in one di-
sider in particular the contribution from the special class off€nsion. In the absence of disorder, we take this to be of the
paths where the particle traverses some orbit and returns f8rm
the pointi in time t/2 with spin down, and then traverses the
same orbit again in the remaining time and returns with spin H:E —t(dfo,di ;1 +H.c)— udl o0, (17

I

up. This contribution taG;; ;4(t) can be written

t) t t

§>|Gii,m E) =—‘Gii,u<§> consistent with the required symmetry. For weak disorder,

we may just keep the modes near the two Fermi points of the

using the symmetry relation E§14). Now |Gii,T1(t/2)|2 iS  pure system. Linearizing the dispersion near these Fermi
just the probability for the event] —i| in time t/2. For  points, we arrive, as usual, at a one-dimensional Dirac theory
larget, this is half the total return probability whick 14 in  with various sorts of randomness. The resulting Hamiltonian
two dimensions if the particles are diffusing. This leads to acan be written down on symmetry grounds as
logarithmic divergence in the density of states which may be

cut off by a finite system size. To be precise, this gives . - s [14+7 - _[1-7
’ Y i ’ H=—wzax+<m<x>~o>(72) —(nz(X)~U)( )

2 Now consider adding random terms to this Hamiltonian

op 1 L _ .
b0 w2pD In . (16) +o(X) 7y + (E(X) - 0) 7y (18)
in agreement with the field-theoretic result obtained earlier.Thr'rS]rAS trthe most_g_eg(iretl Haingtobman i?lorrlstlsfr: ivr\ll\lfhrifhe
In addition, even to leading order the spin conductance fopyMMetryoyHoy= eqL_J € .y spin rotatio a_
T invariant systems is suppressed further by the usual cordnce.(We have set the Fermi velocity to)Ilhe = are Pauli
structive interference between paths and their time reversaatrices in the right mover/left mover space apd 7, ,tg,t
which explains the larger suppression in that case. are random, independently distributed real variables. Green’s
functions of this Hamiltonian are generated by the action

Ill. LOCALIZED REGIME

Having established the presence of a singular suppression S= f AX[§(iH + @)+ &* (IH + 0)&], (19
of the density of states in perturbation theory, we now con- L
sider the opposite limit of strong disorder when the system isvhere ¢, are Grassmann variables, agdis a complex
localized. We show that the density of states vanishes at zemralar field. For a system of finite sizewe impose periodic
energy. To see this heuristically, consider the Hamiltoniarboundary conditions on all fields. The partition functig@n
(10) in the limit of strong on-site randomness and weak hop-corresponding to this action is exactly equal to one for lany
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as the fermionic and bosonic integrals cancel each othefye now average over the disorder assumipgto be dis-
Here w is chosen to have a positive real part to ensure CONgibuted as P[51]mexp{—fdx[(7}1)2/2u]}. The resulting
vergence of the bosonic integral. translationally invariant action can be interpreted as the co-

The density of states can be obtained from the Green Rerent state path integral of a zero-dimensional quantum

function through “Hamiltonian” in terms of Bose operatorb;,=(b;,bq))
and Fermi operators, ,=(f,;,f,)). Before doing that, we

p(E)=— ilm TIG(E+i7), (20) note that the fermionic fields actually satisfy periodic bound-
m ary conditions. To get fermion fields that satisfy antiperiodic
where the overline indicates disorder averaging and boundary conditions, we may perform a change of variables

Yr— €™ Yy —ye ™ This adds a term
Jdx(a/L) 14 to the action. Thus we get

1
af ’. H — - ’
Gah(x.xiE+im)=(aax| gy [bAX). (21 N
Z=STre 'R (29
Its disorder average can be expressed in terms of correlators
of the either the Bose or Fermi variables: hRZU(flt;f1+(f1<—>b1))2+w(fIf1+bIb1)- (30)

G2 (X, X" ;E+i 1;)=(zﬁaa(x)%ﬁ(x’»=<§aa(x)§§ﬁ(x’)>. (The subscripR on h is a reminder that this is for the right
(22 moving fields along.The supertrace operatid®Tr is de-

, T .
(We have setw=E+i7 in evaluating the correlatojsAs  fined throughSTr O=Tr((—1)1"0). It is necessary to take
we need the Green’s function when=x’, there is some the supertrace to account for the extra term in the action

subtlety on the relative ordering of and x’. The correct coming from the change of the fermion boundary conditions.
procedur& is to take a symmetrized form: At zero w, it is clear that there is a triplet of states with
zero energy: the vacuum state with no particles which we
2mp(E) =R (£qn(X+ €)X (X) + Enn(X— €) EX(X))], denote |0), the state f],f] |0)=|1];0), and the state
(23)  (1//2)(bl.f1 —by f1:)[0)=]|1;1). All other states have en-
1111y 11y
ergies at leas©(u). (Nonzerow, of course, splits the ener-
the same expression with- i holds in terms of the fermi- gies of this zero energy tripletSimilar considerations apply

onic variables as well. The other physical quantity we will bet(:z;thei Iglflt 2:02\2?3 zre].\gtror aast V;gljlt)|-r:htlrj12 tlri]rizteoafrZ;céﬁt ?ef dnme
interested in is the diffusion propagator. This is defined, as gy P

; , g right/left sectors.
usual, in terms of the Green’s function by Now consider coupling the left/right moving sectors. The

full action can also be interpretddfter disorder averaging
P(x,x")= E |Gaaybﬁ(x,x’;i77)|2. (29 as the coherent state path integral of a zero-dimensional
ab,ap quantum Hamiltonian. In the limit where the coupling is
Now the symmetryr,Ho, = —H* can be used to show that small, it is sufficient to project t'he interactjons induced be-
tween the two sectors to the nine-dimensional space of the
* aB P N aat BBl ol ground states of the two decoupled sectors. For simplicity,
GZ Oxx'im) == (=) PG (xxsim), (29 we assume that the, are Gaussian distributed with

wheree=0", and summation ove, « is implied. Precisely

wherea=2 if =1 and vice versa. ThuB(x,x") may be

written t, ()t,(X")=t25,,8(x—X"). (31
- To leading order then, the coupling between the two sites in
P(x,x)=— > (—1)**PG2fGf (26)  the nine-dimensional space will be of ordéfu. To derive
ab,ap

the form of this coupling, it is convenient to gauge awgy
B N and 7, by letting ¢, —U;4; ,g5— U], and similarly for¢
= bE (= 1) Bau(X) Pop(X") Ea(X) Eng(X))). with U;(x) =T,[ e/ 9777 for i =1,2. (T, is thex-ordering
abap @27 symbol) We impose the condition that);,(x=L)=1 to
maintain the periodic boundary conditions. Note that the
We have chosen to write one Green'’s function in terms olU;(x) are randonSU(2) matrices. The full action can then
the fermions and one in terms of the bosons. This enables ze written
calculation of the two particle properties using the same for-

mulation needed to calculate the one particle properties. B — . — Lot _

In the limit wheret“=0, ©=0,1,2,3, the left/right mov- S= | dxip(Todxt @)Y +i(WBX)T Yt yB (X))
ing fields decouple for every realization of the disorder. Con-
sidering just one of them, say the right movers, we get the +(Y—=9). (32
action

Here B(x)=U(x)(to+it - c)UJ(x) is a random X2 ma-
_ .. _ trix. It is distributed according to
S:f dX{ 1(dx+ 1 0)h1+ (i) + (P §)].
29) BL4(0B,s(x') =t?e X554,
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Baﬁ(X)Bya(X/)=t2€_ulx_xl‘(0y)a5(o-y)m. p(E)

For largeu, we may replace2e "**'I 35(x—x’) with
J=t?/2u. It is now convenient to change variablgs,—
— Yo Poa— aa €20 — &, - This changes the action to

| o e a6+ BT v 000,

—EBETEBE) T 0Pyt £ 8)), (33 ! E
Under this change of variables, the expression @8) for FIG. 2. Density of states in one dimension in the absence of
the density of states remains unchang@d the limit e  Ume reversal symmetry; the energy scale 1/¢.
—07").

We may now perform the disorder average to get a transVe have normalized these so thdf-Vg=1. There are
lationally invariant action which can be interpreted as thesome subtle questions regarding the resolution of the identity
coherent state path-integral of a zero-dimensional quanturt the basis of right(left) eigenvectors of the Hamiltonian

problem with Bose operators,,, Fermi operators,,(a  Which are addressed at length in the Appendix.
=1,2;a=1,|), and a “Hamiltonian:” The expression Eq(23) for the density of states can

clearly be interpreted as the following expectation value:
h=hy+h,, (34)
2mp=2 Re2+b'b), (38)

_ toetyost gt
o= = I(faoy ) (Fa0,f2) + (TroyT1) (Fo0yf2) where we calculate expectation values settings E+i 7. In
+ z(f’lffl_ 1)(f;f2— 1)]- 2(b{b1+ 1)(b;b2+ 1) the thermodynamic limit only the zero energy state contrib-
utes, and the result is
+[2(bloyf]) (floybd) +2(byo,f1)(fo0,b,)

E2
—2(f]b1)(f1by) — 2(b]f1)(bif2)T}, (35) -
aa
h,=w(f1f+b'b). (36) 50<E)=1——E2 3. (39
Note that this Hamiltonian is non-Hermitian. Its action on 1+?

the nine-dimensional subspace is simplified by noting that _ _ _ _
fif,—fif,, and bib;—blb, commute with h. Thus Note that this vanishes &’ at smallE, entlre_ly consistent
the six states|7;]);1®]0),,/0%:®|1;1)2,]11;0)1®]0),, with the general arguments presented earlier. For l&ge
[0Y1@[71:0)2,17;1)1®|11;0)5,]11;0)1®|1;1), are imme- this saturates at 2/ which is the ballistic resulfsee Fig. 2
diately seen to be eigenstates of the Hamiltonian. The first The diffusion propagator can also be calculated explicitly
four have eigenvalues}4 2w and the last two have In this one-dimensional case. The calculation proceeds
+4w. The action ofh on the remaining three stat¢g),  Straightforwardly from Eq(26). We first perform the change
®[0)2.17:1)1@(1:1)2,111:0)1®]11;0), can be represented  of variablesyz,— — 24, 20— h2a €24~ &2,, and then
in terms of a 3<3 non-Hermitian matrix: interpret the resulting correlator as an expectation value of an
operator in the equivalent quantum problem. We find

0 —-J —-J
a3 2000 3, @) POX) =(Ty(01(X)07(x')),
e O;=(fyby, =1 byy)+(f5b3 —F3 b3,
There is one eigenvalue 0 and two eigenvaluds-4w. fot et ot
With these eigenvalues, it is easy to see thatSTre t" Op=(f1by =11 b1y)—(fob =5 byy).

=1 for any system sizk, as required. We will also need to
know the zero energy wave function. However, due to th
non-Hermiticity of the Hamiltonian, the left eigenvector
(VL) and the right eigenvectoMg) are different. They are P(x,x’)=(01e‘h(x‘x/)02>. (40)
easily seen to be

The expectation value is to be taken in the zero energy state.
Considerx>x’ for definiteness. Thus we write

We may evaluate this by inserting a complete set of states.

v 1+ L 11 As O, acting on the ground state is a state with enerdy 4
R J (Wwhen w—0), P(x,x’) decays ae~“**x) The precise
1+ 3 result is easily seen to be
i 1 P(x,x")=8e  #Ix~x'l, (41)
V= 1+—, 1,1
1+ 2 Thus the localization length of the system §s=1/2]. In

J momentum space, this becomes
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TABLE I. Properties of the two different symmetry classes of superconductors witlS4gii) symme-
try. WL stands for weak localizatiom,,(E) is the density of states in the localized phase. The last column
gives the critical properties of the density of states above two dimensions as calculate¢t inex@ansion.
The distance from the critical point is5¢), andp.(E) is the density of states at the critical point.

Symmetry WL ind=2 Proc(E) Critical properties id=2+¢€

o 1 L

SpinSU(2) andT ls:f—ln(—) [E| p(E=0)~(59)"?
Os 270 le
op 1 L
_:7_|n(—) Pcr(E)N|E|e/4
P 410, le
1 1 L

SpinSU(2) and noT is:__m(—) E? p(E=0)~(59)
Os 4o le
p 1 L .
—:——In(—) pcr(E)~|E| 2
p 4oy \le

ignoring the quasiparticle interactions. We showed the exis-
TR (42)  tence of a singular logarithmic suppression of the density of
(43)°+q states in the diffusive regime in two dimensions due to quan-

Note the difference in structure from conventional localiza-tum interference effects. We then argued that in any dimen-
tion with a finite density of states whe(q=0,w) has a  sion in the localized phase the density of states vanishes as
pole atw=0. In this problem, the density of states vanishes|E| if both spin rotation and” symmetry are present, and as
and there is no pole. E2 if spin rotation is the only symmetry. This was verified by
The detailed calculation above of the one-dimensionah simple explicit calculation in the latter case in one dimen-
problem is strong evidence in support of our general asseswsion using supersymmetry techniques. Above two dimen-
tions regarding the vanishing of the density of states in th&ions, we showed that the density of states is finite in the spin
localized phase. In this case, the crossover from the constantetal phase, but vanishes on approaching the transition to
to the vanishing density of states occurs at an energy scatfie insulator. The corresponding critical exponent was calcu-
J~1/¢ which is the energy scale for the crossover from thejated in a 2+ € expansion. These results are summarized in
ballistic to the localized regime. We expect that E2p) isa  Taple |I.
ur.1ivers.al scaling function for the den§ity of §tates za_ssociated We emphasize that the ultimate vanishing of the density
with this crossover. In two dimension®r in quasi-one- ¢ giates at zero energy in two dimensions does not invali-
dimensional situations such as that_ con_S|dered in R_et. 13date the use of the nonlinear sigma model field théFpe
the crossover occurg between t.he dlffu_swe.and localized res'igma model description assumes a finite, nonvanisharg
gimes at a scal®/¢ _(whereD is the diffusion constant density of states. The renormalized value of the density of
Again, this crossover is expected to be represented by a U"Sates is then determined by the properties of the field theory
versal scaling function for the density of states. ; : o o
itself. It is useful to make a comparision to a more familiar
physical situation—the classical Heisenberg ferromagnet in
two dimensions. It is well known that this has no long range
We now turn to the situation above two dimensions whereorder at any finite temperature. Nevertheless, a correct field-
there is the possibility of a spin metal to spin insulator tran-theoretic description of this system at low temperature is
sition. The density of states is finite in the spin metal phasérovided by theD(3) nonlinear sigma model in two dimen-
and vanishes on approaching the transition. Thus, in contrastons. This field theory assumes the presence of a local order
to usual Anderson localization, the density of states behavegarameter—however, the renormalized value of the order pa-
as a conventional order parameter in these universalitjameter is zero at any finite temperature. The field theoretic
classes. The order parameter expon@mhay be calculated description of quasiparticle localization in a superconductor
within the 2+ e expansion. We find, to leading order i is quite similar with the density of states playing the role of
B=13 if Tis present, an@g=1 without 7. Right at the tran- the order parameter. This is, however, quite different from
sition, the density of states vanishes with energyp6&) localization in a normal metal where the density of states

~EY, The exponend=4/e,2/e with and withoutZ, respec- ~ 'emains finite in the localized phase. o
tively. These results imply that the spin susceptibility, linear

temperature coefficient of the specific heat, and the tunneling
V. DISCUSSION Qensity of states all .have alloga_rithmic. sup_pression as a_func-
tion of temperature in the diffusive regime in two dimensions
In this paper, we have studied the behavior of the quasidue to quantum interference effects. As pointed out in Ref. 6,
particle density of states in a dirtgl,2_y2 superconductor inclusion of a Zeeman magnetic coupling drives the system

P(a)=

IV. ABOVE TWO DIMENSIONS
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into the usual unitary universality class where there are ndq.(34), it is easy to see that from every right eigenst&g
singular corrections to the density of states. Thus this logaa corresponding left eigenstate| can be obtained by the
rithmic correction is killed by an external Zeeman field operation
(though not by a purely orbital magnetic figl&Experimental

verification of this effect may be clouded somewhat due to

the presence of quasiparticle interactions. We have shown
elsewher that in the diffusive regime, interaction effects .
lead to a logarithmic Altshuler-Aronov suppression of theWhere the symboll denotes taking the transpose. The left
tunneling density of states in the diffusive regime in two €igenstates corresponding|Ry) and|R;) then are
dimensions. This therefore adds to the quantum interference

correction discussed in this paper. In contrast, the specific  (L;|=a;[1+z, 1, 1]; (L,/=a,[0, 1, 1]

heat and spin susceptibility are expected to get logarithmic (A3)
enhancements due to interactions in two dimensions in the

diffusive regime!® which too is killed by a Zeeman field. respectively, as can also be seen by direct calculation. The
They would thus compete with the quantum interference corleft eigenstates also do not span the full three-dimensional
rections. Nevertheless, if the interactions are weak, we exspace. Note thafl;|R,) =(L,|R;)=(L,|R,)=0.

pect that the quantum interference effects would dominate To get a complete set of states, we need to supplement
leading to a logarithmic suppression of the spin susceptibilityL,| and(L,| by any other linearly independent bra vector
and specific heat, which can be probed by applying an exterL |. It is convenient to choose this to be orthogonalRg)

(L|=((- DR, (A2)

nal Zeeman magnetic field. and (L,)".
The effect of interactions in the localized phase is a more
delicate matter. Qualitatively, repulsive interactions tend to (Lol=agl—2, —(1+2), (1+2)] (A4)

favor the formation of local moments leading possibly to a
divergent spin susceptibility and linear specific-heat coeffi- . . , .
cient. This effect will however compete with the vanishing ﬁa\g)o.rrespondlng right statgRs) can be defined using Eg.
density of states we have discussed ab@wkich tends to '

produce a vanishing spin susceptibility, tcThe ultimate

fate of the localized phase in the presence of these two com- -2
peting physical effects is a formidable problem that we will IRg)=ay| 1+2 (A5)
not attempt to answer here. 8/ :
1+z
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1=|Ry)(Lq|+|Ro){L3|+[Rg)(Lo| —|R)(Lo|. (AB)
APPENDIX: RESOLUTION OF THE IDENTITY

In this appendix, we discuss some subtle questions rel his can be checked directly by its action on any vector in

garding the resolution of the identity in the eigenbasis of thd"€ three-dimensional space. .
(supeyHamiltonian Eq.(34). As all the subtleties are associ- | is resolution of the |dent|t_yh|f:an now be used to easily
ated with the three-dimensional subspace spanned _rg‘é"n e_;‘ﬁgf't%ag;at Eo:rst;(raecalc: l; t'(l)r:1 tor}ethfg" dg:]ne_t' of
0):®[0)5,|1:1)1@[71:1)2,/71;0)1®]|11;0),, we just focus d'Mmensl space. uiatl Jensity
|0n> l'chtalséztﬁelegta'tlspla |t11|ls sﬁbsﬁe&ce%he Hé\miltdnian states or the diffuson, we need to know the action of the
represented by the 83 matrix Eq.(37). The right eigen- Hamiltonianh on [Rs). This is easily seen to be

states corresponding to the two eigenvalues 0 anhd 4w

are easily seen to bgn bra/ket notatiop h|R3)=4J(1+2)(|R3) +|Ry)). (A7)
1+7 0 Combined with the eigenvalue equatioh|R,)=4J(1
+2)|R,), this implies that
Ry=ai| =1 |; [Ry)=ap —1]|, (A1)
1 1 e "Ry =e POTIL(R,) —4ILZ(1+2)|Ry)).

wherea, ,a, are normalization constants, ang w/J. (|R;) In the limit L—o, e "Y|R3)—0; similar considerations ap-
has eigenvalue 0, anR,) has eigenvalue 3+ 4w). Note  ply to (L as well. Calculation of any correlation function is
that the right eigenstates do not span the full threethus reduced, in the limit of infinite system size to a calcu-
dimensional space. From the structure of the Hamiltonianation in the zero energy state withight) eigenvectolR;).
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