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Quasiparticle density of states in dirty high-Tc superconductors

T. Senthil and Matthew P. A. Fisher
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030

~Received 26 October 1998!

We study the density of quasiparticle states of dirtyd-wave superconductors. We show the existence of
singular corrections to the density of states due to quantum interference effects. We then argue that the density
of states actually vanishes in the localized phase asuEu or E2 depending on whether time-reversal is a good
symmetry or not. We verify this result for systems without time-reversal symmetry in one dimension using
supersymmetry techniques. This simple, instructive calculation also provides the exact universal scaling func-
tion for the density of states for the crossover from ballistic to localized behavior in one dimension. Above two
dimensions, we argue that in contrast to the conventional Anderson localization transition, the density of states
has critical singularities which we calculate in a 21e expansion. We discuss consequences of our results for
various experiments on dirty high-Tc materials.@S0163-1829~99!00833-4#
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I. INTRODUCTION

The question of the quasiparticle density of states o
two-dimensionaldx22y2 superconductor in the presence
disorder has been a matter of some controversy. Early th
retical work based on approximate self-consist
treatments1–3 of the disorder demonstrate that a finite Ferm
level density of states is generated for arbitrarily weak d
order. In contrast, some exact results4 for a simplified model
of the disorder which ignores the scattering between the
pairs of antipodal nodal points show that the density of sta
„r(E)… vanishes on approaching zero energy~measured from
the Fermi energy! asr(E);E1/7. Claims of rigorous proofs5

of a constant nonzero density of states have also appear
the literature.

In a recent paper,6 we discussed the problem of quasipa
ticle transport and localization in dirty superconductors
noring the quasiparticle interactions, and treating the dis
der with a nonlinear sigma model field theory. The start
point for the sigma model description is the approxim
self-consistent treatment of the disorder which, as mentio
above, generates a finite density of states. We argued
inclusion of small harmonic fluctuations about the se
consistent solution leads to diffusion of the spin and ene
densities of the quasiparticles~though not of the charge den
sity!. Quantum interference effects finally lead to quasipa
cle localization at the longest length scales in two dim
sions. In this paper, we consider the behavior of the den
of states in the sigma model. We show that in the diffus
regime, quantum interference effects lead to a singular lo
rithmic suppression of the density of states. We then ar
that in the localized spin insulator, the density of states
tually vanishes asuEu for superconductors with both spi
rotation and time-reversal symmetry. A schematic plot of
density of states as a function of energy is shown in Fig
The linear density of states of the puredx22y2 supercon-
ductor gets rounded off at an energy scaleE1 of the order of
the elastic scattering rate. This marks the crossover from
ballistic to the diffusive regime. At a lower energy sca
E2;D/j2, the density of states dips linearly to zero.~HereD
is the ‘‘bare’’ spin diffusion constant, andj is the quasipar-
PRB 600163-1829/99/60~9!/6893~8!/$15.00
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ticle localization length.! This second energy scale marks t
crossover from the diffusive to the localized regime. T
ratio of the two crossover scalesE1 /E2 is exponentially
large in the bare dimensionless spin conductance, and ca
quite large.

Note that our conclusion of the vanishing density of sta
is only superficially similar to the results of Nersesyan, T
velik, and Wenger.4 In particular, we argue that the localiza
tion length approaches a finite constant asE˜0. ~In con-
trast, Nersesyan, Tsvelik, and Wenger find a diverg
localization length asE˜0). Our results are also in dis
agreement with the claims of Ziegler, Hettler, an
Hirschfeld.5 It has, however, been pointed out7 that the tech-
niques of Ref. 5 give incorrect results in other situations
this signals a flaw in the technique which could invalida
their results.

For a superconductor with spin rotation invariance but
time reversal (T), there is again a logarithmic suppression
the density of states in the diffusive regime. This accou
entirely for the leading logarithmic suppression of the sp
conductance found earlier, and provides an explanation o
In this case, we argue that in the localized phase, the den
of states vanishes asE2.

We provide an explicit verification of some of our gener
results by exact nonperturbative calculations in one dim
sion using supersymmetry techniques.

FIG. 1. Density of states of the two-dimensional dirtydx22y2

superconductor.
6893 ©1999 The American Physical Society
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II. DIFFUSIVE REGIME

Consider first a two-dimensionaldx22y2 superconductor
with both spin rotation andT invariance. In the absence o
quasiparticle interactions, and at scales larger than the el
mean free path, the quasiparticle diffusion8 is described by
the replica field theory6

SNLsM5E d2x
1

2g
Tr ~¹U•¹U†!2h Tr ~U1U†!. ~1!

HereU(x) are 2n32n unitary matricesPSp(2n), andh is
a positive infinitesimal that is introduced to enable calcu
tion of the appropriate Green’s functions. The coupling co
stant g is related to the spin conductancess by 1/g
5(p/2)ss .

The quasiparticle density of states at the Fermi energ
exactly proportional to the uniform spin susceptibility whic
is the ‘‘order parameter’’6 for this field theory. Thus it is
given by

r5 lim
n˜0

r0

4n
^Tr~U†1U !&, ~2!

wherer0 is the bare density of states~DOS! ~i.e., its value on
the scale of the mean free path!. The limit n˜0 is implied.
As this is the ‘‘order parameter’’ for the field theory, qua
tum corrections to it can be obtained from the known resu9

for the ‘‘field renormalization’’ to one loop order. To pertu
batively calculate corrections tor, we write U511 if
2f2/21••• with f belonging to the Lie algebra of Sp(2n),
and expand in powers off. To quadratic order, the action i

S05
1

2gE d2x Tr~¹f!2. ~3!

We may choose a basisTa for the Lie algebra to writef
5faTa, and normalize the basis by some choice Tr(TaTb)
5Cdab with C a positive constant. The action then becom

S05
C

2gE d2x¹fa•¹fa . ~4!

~Summation over the indexa is implied in the above equa
tions.! The matricesTa are traceless, and the susceptibil
may be expressed to leading order as

r

r0
5

1

4n
^Tr~22f2!&5

1

4n
^4n2Tr~TaTb!fafb&

512
CN

4n
G~0!.

In the last line, we have used the functionG(x) defined by
^fa(x)fb(0)&5G(x)dab ; N is the number of linearly inde
pendent matricesTa. For Sp(2n), N5n(2n11). It is under-
stood that then50 limit is taken at the end of the calcula
tion. Considering now a finite system size, we get

G~0!5
g

CEuku.L21

d2k

~2p!2

1

k2
.

This gives
tic

-
-

is

s

r2r0

r0
52

gN

8pn
lnS L

l e
D . ~5!

Note that the constantC has dropped out of this result~as it
should!. The quantityl e is the elastic mean free path.

The same result is obtained in theT broken but spin rota-
tion invariant case. This is described by the Sp(2n)/U(n)
field theory6 with the action

S5E d2x
1

2g
Tr„~¹Q!22hQsz…, ~6!

whereQ5U†szU with UPSp(2n). The density of states is
again the order parameter of this field theory, and is given

r5 lim
n˜0

r0

2n
^Tr~Qsz!&. ~7!

Calculation similar to the one above gives the result Eq.~5!
but with N5n(2n11)2n2 being the number of indepen
dent massless fields. In either case, in the replica limit,
get

r2r0

r0
52

g

8p
lnS L

l e
D . ~8!

Thus to leading order, the suppression of the density of st
is independent of whether or notT is present.

The leading logarithmic correction to the spin condu
tance in two dimensions was evaluated in Ref. 6:

ss~L !5ss
02

1

2p2
ln

L

l e
, ~9!

wheress
0 is the bare spin conductance, andl e is the elastic

mean free path. IfT is broken, then the correction is reduce
by a factor of 2.6

The spin conductance satisfies the Einstein relationss
5Dr/4 with D being the spin diffusion constant.~The factor
of 4 arises from the spin of 1/2.! Equations~8! and ~9! to-
gether with the relation 1/g5(p/2)ss imply a logarithmic
suppression of the diffusion constant at order 1/g whenT is
present. WithoutT invariance, there is no suppression of t
diffusion constant to this order.

It is possible to understand this result in terms of a se
classical picture10,11involving interfering trajectories. To tha
end, consider, quite generally, a lattice Hamiltonian for t
quasiparticles in a singlet superconductor

H5(
i , j

F t i j (
s

cis
† cj s1D i j ci↑

† cj↓
† 1D i j* cj↓ci↑G , ~10!

where i , j refer to the sites of some lattice. Hermiticity im
plies t i j 5t j i* , and spin rotation invariance requiresD i j

5D j i . It is useful conceptually to use the alternate repres
tation in terms of a new set ofd operators defined by:di↑
5ci↑ ,di↓5ci↓

† . The Hamiltonian Eq.~10! then takes the
form

H5(
i j

di
†S t i j D i j

D i j* 2t i j*
D dj5(

i j
di

†Hi j dj . ~11!
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Writing t i j 5ai j
z 1 ibi j , D i j 5ai j

x 2 iai j
y with aW i j 5aW j i , real

symmetric andbi j 52bji , real antisymmetric, we get

Hi j 5 ibi j 1ai j
W

•sW . ~12!

Note thatSU(2) invariance requiressyHi j sy52Hi j* . This
implies that the amplitudeiGi j ,ab5^ iaue2 iHt u j b&u(t) for a
d particle to go from pointj, ~pseudo!spin b to point i, spin
a satisfies the relations

Gi j ,↑↑~ t !52Gi j ,↓↓* ~ t !, ~13!

Gi j ,↑↓~ t !5Gi j ,↓↑* ~ t !. ~14!

The Fourier transform of this amplitude is

Gi j ,ab~v1 ih!5E dt ei (v1 ih)tGi j ,ab~ t !

5^ iau
1

v2H1 ih
u j b&.

The density of states at the Fermi energy may be obta
from this in the usual manner.

r52
1

p
Im„Ḡii ,↑↑~ ih!1~↑↔↓ !… ~15!

Consider now the return amplitudeGii ,↑↑(t). This can be
written as a sum over all possible paths for this event. C
sider in particular the contribution from the special class
paths where the particle traverses some orbit and return
the pointi in time t/2 with spin down, and then traverses th
same orbit again in the remaining time and returns with s
up. This contribution toiGii ,↑↑(t) can be written

iGii ,↑↓S t

2D iGii ,↓↑S t

2D52UGii ,↑↓S t

2D U2

using the symmetry relation Eq.~14!. Now uGii ,↑↓(t/2)u2 is
just the probability for the eventi↑˜ i↓ in time t/2. For
larget, this is half the total return probability which;1/t in
two dimensions if the particles are diffusing. This leads t
logarithmic divergence in the density of states which may
cut off by a finite system size. To be precise, this gives

dr

r0
52

1

p2r0D
lnS L

l e
D ~16!

in agreement with the field-theoretic result obtained earli
In addition, even to leading order the spin conductance

T invariant systems is suppressed further by the usual c
structive interference between paths and their time rev
which explains the larger suppression in that case.

III. LOCALIZED REGIME

Having established the presence of a singular suppres
of the density of states in perturbation theory, we now c
sider the opposite limit of strong disorder when the system
localized. We show that the density of states vanishes at
energy. To see this heuristically, consider the Hamilton
~10! in the limit of strong on-site randomness and weak h
d

-
f
to

n

a
e

.
r
n-
se
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-
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n
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ping between sites. In the limit of zero hopping, the sites
all decoupled. At each site, the Hamiltonian in terms of thd
particles satisfies theSU(2) invariance requirementsyHsy

52H* . This takes the formH5aW •sW with aW random. With
T symmetry, we further haveH5H* implying ay50. Con-
sidering now the case where the probability distribution oaW
has finite, nonzero weight at zero, we see immediately
the disorder averaged density of states vanishes asE2 with-
out T and asuEu with T. Now consider weak nonzero hop
ping. In the localized phase, perturbation theory in the h
ping strength should converge, and we expect to recover
single site results at asymptotically low energies.

A more formal field-theoretic version of this argume
with the same conclusions is as follows. As we are co
cerned with the properties of the localized phase, we pre
to phrase the argument in terms of a supersymmetric fi
theory rather than the replica version used before. In
localized phase, we expect that a strong-coupling expan
of this field theory converges. This may be performed,
usual, by regularizing the sigma model on a lattice. The le
ing term in the strong-coupling expansion is the ze
dimensional limit of the sigma model which is equivalent
the random matrix theory of Hamiltonians with these sy
metries. In the random matrix limit, it is known11 that the
density of states vanishes in the manner discussed abov

These results on the localized phase can be verified
great detail in one spatial dimension for systems withoutT.
Consider a lattice Hamiltonian for thed particles in one di-
mension. In the absence of disorder, we take this to be of
form

H5(
i

2t~di
†szdi 111H.c!2mdi

†szdi . ~17!

Now consider adding random terms to this Hamiltoni
consistent with the required symmetry. For weak disord
we may just keep the modes near the two Fermi points of
pure system. Linearizing the dispersion near these Fe
points, we arrive, as usual, at a one-dimensional Dirac the
with various sorts of randomness. The resulting Hamilton
can be written down on symmetry grounds as

H52 i tz]x1„hW 1~x!•sW …S 11tz

2 D2„hW 2~x!•sW …S 12tz

2 D
1t0~x!ty1„tW~x!•sW …tx . ~18!

This is the most general Hamiltonian consistent with t
symmetrysyHsy52H* required by spin rotation invari-
ance.~We have set the Fermi velocity to 1.! The tW are Pauli
matrices in the right mover/left mover space andh1 ,h2 ,t0 , tW
are random, independently distributed real variables. Gre
functions of this Hamiltonian are generated by the action

S5E dx@c̄~ iH 1v!c1j* ~ iH 1v!j#, ~19!

where c,c̄ are Grassmann variables, andj is a complex
scalar field. For a system of finite sizeL, we impose periodic
boundary conditions on all fields. The partition functionZ
corresponding to this action is exactly equal to one for anL
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as the fermionic and bosonic integrals cancel each ot
Herev is chosen to have a positive real part to ensure c
vergence of the bosonic integral.

The density of states can be obtained from the Gree
function through

r~E!52
1

p
Im TrG~E1 ih!, ~20!

where the overline indicates disorder averaging and

Gab
ab~x,x8;E1 ih!5^aaxu

1

E2H1 ih
ubbx8&. ~21!

Its disorder average can be expressed in terms of correla
of the either the Bose or Fermi variables:

iGab
ab~x,x8;E1 ih!5^caa~x!c̄bb~x8!&5^jaa~x!jbb* ~x8!&.

~22!

~We have setiv5E1 ih in evaluating the correlators.! As
we need the Green’s function whenx5x8, there is some
subtlety on the relative ordering ofx and x8. The correct
procedure12 is to take a symmetrized form:

2pr~E!5Re@^jaa~x1e!jaa* ~x!1jaa~x2e!jaa* ~x!&#,
~23!

wheree501, and summation overa,a is implied. Precisely
the same expression withj˜c holds in terms of the fermi-
onic variables as well. The other physical quantity we will
interested in is the diffusion propagator. This is defined,
usual, in terms of the Green’s function by

P~x,x8!5 (
ab,ab

uGaa,bb~x,x8; ih!u2. ~24!

Now the symmetrysyHsy52H* can be used to show tha

Gab* ab~x,x8; ih!52~21!a1bGab
āb̄~x,x8; ih!, ~25!

whereā52 if a51 and vice versa. ThusP(x,x8) may be
written

P~x,x8!52 (
ab,ab

~21!a1bGab
abGab

āb̄ ~26!

5 (
ab,ab

~21!a1b^caa~x!c̄bb~x8!jaā~x!j̄bb̄~x8!&.

~27!

We have chosen to write one Green’s function in terms
the fermions and one in terms of the bosons. This enabl
calculation of the two particle properties using the same
mulation needed to calculate the one particle properties.

In the limit wheretm50, m50,1,2,3, the left/right mov-
ing fields decouple for every realization of the disorder. Co
sidering just one of them, say the right movers, we get
action

S5E dx@c1~]x1hW 1•sW !c11v~c1c1!1~c↔j!#.

~28!
r.
-

’s

rs

s

f
a

r-

-
e

We now average over the disorder assuminghW 1 to be dis-
tributed as P@hW 1#}exp$2*dx@(hW 1)2/2u#%. The resulting
translationally invariant action can be interpreted as the
herent state path integral of a zero-dimensional quan
‘‘Hamiltonian’’ in terms of Bose operatorsb1a5(b1↑ ,b1↓)
and Fermi operatorsf 1a5( f 1↑ , f 1↓). Before doing that, we
note that the fermionic fields actually satisfy periodic boun
ary conditions. To get fermion fields that satisfy antiperiod
boundary conditions, we may perform a change of variab
c1˜c1eipx/L,c1˜c1e2 ipx/L. This adds a term
*dx(p/L)c1c to the action. Thus we get

Z5STr e2LhR, ~29!

hR5u„f 1
†sW f 11~ f 1↔b1!…21v~ f 1

†f 11b1
†b1!. ~30!

~The subscriptR on h is a reminder that this is for the righ
moving fields alone.! The supertrace operationSTr is de-

fined throughSTrO5Tr„(21) f 1
†f 1O…. It is necessary to take

the supertrace to account for the extra term in the ac
coming from the change of the fermion boundary conditio

At zero v, it is clear that there is a triplet of states wit
zero energy: the vacuum state with no particles which
denote u0&, the state f 1↑

† f 1↓
† u0&[u↑↓;0&, and the state

(1/A2)(b1↑
† f 1↓

† 2b1↓ f 1↑)u0&[u↑;↓&. All other states have en
ergies at leastO(u). ~Nonzerov, of course, splits the ener
gies of this zero energy triplet.! Similar considerations apply
to the left moving sector as well. Thus there are a set of n
states all at zero energy at zerov in the limit of decoupled
right/left sectors.

Now consider coupling the left/right moving sectors. T
full action can also be interpreted~after disorder averaging!
as the coherent state path integral of a zero-dimensio
quantum Hamiltonian. In the limit where the coupling
small, it is sufficient to project the interactions induced b
tween the two sectors to the nine-dimensional space of
ground states of the two decoupled sectors. For simplic
we assume that thetm are Gaussian distributed with

tm~x!tn~x8!5t2dmnd~x2x8!. ~31!

To leading order then, the coupling between the two site
the nine-dimensional space will be of ordert2/u. To derive
the form of this coupling, it is convenient to gauge awayhW 1

andhW 2 by letting c i˜Uic i ,c i˜c iUi
† , and similarly forj

with Ui(x)5Tx@ei *dxhW i (x)•sW # for i 51,2. (Tx is thex-ordering
symbol.! We impose the condition thatUi(x5L)51 to
maintain the periodic boundary conditions. Note that t
Ui(x) are randomSU(2) matrices. The full action can the
be written

S5E dxc̄~tz]x1v!c1 i „c̄B~x!t1c1c̄B†~x!t2c…

1~c˜j!. ~32!

Here B(x)5U1(x)(t01 i tW•sW )U2
†(x) is a random 232 ma-

trix. It is distributed according to

Bab
† ~x!Bgd~x8!5t2e2uux2x8udaddbg ,
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Bab~x!Bgd~x8!5t2e2uux2x8u~sy!ad~sy!bg .

For largeu, we may replacet2e2uux2x8u
˜Jd(x2x8) with

J5t2/2u. It is now convenient to change variablesc2a˜

2c̄2a ,c̄2a˜c2a ,j2a↔2j2a* . This changes the action to

E dx@c̄]xc1j* ]xj1„2c1B~x!c22c2B†~x!c1

2j1* Bj21j2B†j1…1v~c̄c1j* j!#. ~33!

Under this change of variables, the expression Eq.~23! for
the density of states remains unchanged~in the limit e
˜01).

We may now perform the disorder average to get a tra
lationally invariant action which can be interpreted as
coherent state path-integral of a zero-dimensional quan
problem with Bose operatorsbaa , Fermi operatorsf aa(a
51,2;a5↑,↓), and a ‘‘Hamiltonian:’’

h5h01hv , ~34!

h052J$~ f 1
†syf 1

†!~ f 2
†syf 2

†!1~ f 1syf 1!~ f 2syf 2!

12~ f 1
†f 121!~ f 2

†f 221!#22~b1
†b111!~b2

†b211!

1@2~b1
†syf 1

†!~ f 2
†syb2

†!12~b1syf 1!~ f 2syb2!

22~ f 1
†b1!~ f 2

†b2!22~b1
†f 1!~b2

†f 2!#%, ~35!

hv5v~ f †f 1b†b!. ~36!

Note that this Hamiltonian is non-Hermitian. Its action o
the nine-dimensional subspace is simplified by noting t
f 1

†f 12 f 2
†f 2, and b1

†b12b2
†b2 commute with h. Thus

the six states u↑;↓&1^ u0&2 ,u0&1^ u↑;↓&2 ,u↑↓;0&1^ u0&2 ,
u0&1^ u↑↓;0&2 ,u↑;↓&1^ u↑↓;0&2 ,u↑↓;0&1^ u↑;↓&2 are imme-
diately seen to be eigenstates of the Hamiltonian. The
four have eigenvalues 4J12v and the last two have 4J
14v. The action ofh on the remaining three statesu0&1
^ u0&2 ,u↑;↓&1^ u↑;↓&2 ,u↑↓;0&1^ u↑↓;0&2 can be represente
in terms of a 333 non-Hermitian matrix:

4S 0 2J 2J

J 2J1v J

2J 2J v
D . ~37!

There is one eigenvalue 0 and two eigenvalues 4J14v.
With these eigenvalues, it is easy to see thatZ5STr e2Lh

51 for any system sizeL, as required. We will also need t
know the zero energy wave function. However, due to
non-Hermiticity of the Hamiltonian, the left eigenvecto
(VW L) and the right eigenvector (VW R) are different. They are
easily seen to be

VW R5
1

11
v

J

F11
v

J
,21,1G ,

VW L5
1

11
v

J

F11
v

J
, 1,1G .
s-
e
m

t

st

e

We have normalized these so thatVW L•VW R51. There are
some subtle questions regarding the resolution of the iden
in the basis of right~left! eigenvectors of the Hamiltonian
which are addressed at length in the Appendix.

The expression Eq.~23! for the density of states ca
clearly be interpreted as the following expectation value:

2pr52 Rê 21b†b&, ~38!

where we calculate expectation values settingiv5E1 ih. In
the thermodynamic limit only the zero energy state contr
utes, and the result is

p

2
r~E!512

12
E2

J2

S 11
E2

J2 D 2 . ~39!

Note that this vanishes asE2 at smallE, entirely consistent
with the general arguments presented earlier. For largeE,
this saturates at 2/p which is the ballistic result~see Fig. 2!.

The diffusion propagator can also be calculated explic
in this one-dimensional case. The calculation proce
straightforwardly from Eq.~26!. We first perform the change
of variablesc2a˜2c̄2a ,c̄2a˜c2a ,j2a↔2j2a* , and then
interpret the resulting correlator as an expectation value o
operator in the equivalent quantum problem. We find

P~x,x8!5^Tx„O1~x!O2~x8!…&,

O15~ f 1↑b1↓2 f 1↓b1↑!1~ f 2↑
† b2↓

† 2 f 2↓
† b2↑

† !,

O25~ f 1↑
† b1↓

† 2 f 1↓
† b1↑

† !2~ f 2↑b2↓2 f 2↓b2↑!.

The expectation value is to be taken in the zero energy s
Considerx.x8 for definiteness. Thus we write

P~x,x8!5^O1e2h(x2x8)O2&. ~40!

We may evaluate this by inserting a complete set of sta
As O2 acting on the ground state is a state with energyJ

~when v˜0), P(x,x8) decays ase24J(x2x8). The precise
result is easily seen to be

P~x,x8!58e24Jux2x8u. ~41!

Thus the localization length of the system isj51/2J. In
momentum space, this becomes

FIG. 2. Density of states in one dimension in the absence
time reversal symmetry; the energy scaleJ;1/j.
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TABLE I. Properties of the two different symmetry classes of superconductors with spinSU(2) symme-
try. WL stands for weak localization.r loc(E) is the density of states in the localized phase. The last colu
gives the critical properties of the density of states above two dimensions as calculated in a 21e expansion.
The distance from the critical point is (dg), andrcr(E) is the density of states at the critical point.

Symmetry WL ind52 r loc(E) Critical properties ind521e

Spin SU(2) andT dss

ss
52

1

2p2ss

lnSLleD uEu r(E50);(dg)1/2

dr

r
52

1

4p2ss

lnSLleD rcr(E);uEue/4

Spin SU(2) and noT dss

ss
52

1

4p2ss

lnSLleD E2 r(E50);(dg)

dr

r
52

1

4p2ss

lnSLleD rcr(E);uEue/2
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em
P~q!5
32J

~4J!21q2
. ~42!

Note the difference in structure from conventional localiz
tion with a finite density of states whereP(q50,v) has a
pole atv50. In this problem, the density of states vanish
and there is no pole.

The detailed calculation above of the one-dimensio
problem is strong evidence in support of our general as
tions regarding the vanishing of the density of states in
localized phase. In this case, the crossover from the cons
to the vanishing density of states occurs at an energy s
J;1/j which is the energy scale for the crossover from
ballistic to the localized regime. We expect that Eq.~39! is a
universal scaling function for the density of states associa
with this crossover. In two dimensions~or in quasi-one-
dimensional situations such as that considered in Ref.!,
the crossover occurs between the diffusive and localized
gimes at a scaleD/j2 ~whereD is the diffusion constant!.
Again, this crossover is expected to be represented by a
versal scaling function for the density of states.

IV. ABOVE TWO DIMENSIONS

We now turn to the situation above two dimensions wh
there is the possibility of a spin metal to spin insulator tra
sition. The density of states is finite in the spin metal ph
and vanishes on approaching the transition. Thus, in con
to usual Anderson localization, the density of states beha
as a conventional order parameter in these universa
classes. The order parameter exponentb may be calculated
within the 21e expansion. We find, to leading order ine,
b5 1

2 if T is present, andb51 withoutT. Right at the tran-
sition, the density of states vanishes with energy asr(E)
;E1/d. The exponentd54/e,2/e with and withoutT, respec-
tively.

V. DISCUSSION

In this paper, we have studied the behavior of the qu
particle density of states in a dirtydx22y2 superconductor
-

s

l
r-
e
nt
le

e

d

e-

ni-

e
-
e
st

es
ty

i-

ignoring the quasiparticle interactions. We showed the e
tence of a singular logarithmic suppression of the density
states in the diffusive regime in two dimensions due to qu
tum interference effects. We then argued that in any dim
sion in the localized phase the density of states vanishe
uEu if both spin rotation andT symmetry are present, and a
E2 if spin rotation is the only symmetry. This was verified b
a simple explicit calculation in the latter case in one dime
sion using supersymmetry techniques. Above two dim
sions, we showed that the density of states is finite in the s
metal phase, but vanishes on approaching the transitio
the insulator. The corresponding critical exponent was ca
lated in a 21e expansion. These results are summarized
Table I.

We emphasize that the ultimate vanishing of the den
of states at zero energy in two dimensions does not inv
date the use of the nonlinear sigma model field theory.6 The
sigma model description assumes a finite, nonvanishingbare
density of states. The renormalized value of the density
states is then determined by the properties of the field the
itself. It is useful to make a comparision to a more famili
physical situation—the classical Heisenberg ferromagne
two dimensions. It is well known that this has no long ran
order at any finite temperature. Nevertheless, a correct fi
theoretic description of this system at low temperature
provided by theO(3) nonlinear sigma model in two dimen
sions. This field theory assumes the presence of a local o
parameter—however, the renormalized value of the order
rameter is zero at any finite temperature. The field theor
description of quasiparticle localization in a superconduc
is quite similar with the density of states playing the role
the order parameter. This is, however, quite different fro
localization in a normal metal where the density of sta
remains finite in the localized phase.

These results imply that the spin susceptibility, line
temperature coefficient of the specific heat, and the tunne
density of states all have a logarithmic suppression as a fu
tion of temperature in the diffusive regime in two dimensio
due to quantum interference effects. As pointed out in Ref
inclusion of a Zeeman magnetic coupling drives the syst
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into the usual unitary universality class where there are
singular corrections to the density of states. Thus this lo
rithmic correction is killed by an external Zeeman fie
~though not by a purely orbital magnetic field!. Experimental
verification of this effect may be clouded somewhat due
the presence of quasiparticle interactions. We have sh
elsewhere14 that in the diffusive regime, interaction effec
lead to a logarithmic Altshuler-Aronov suppression of t
tunneling density of states in the diffusive regime in tw
dimensions. This therefore adds to the quantum interfere
correction discussed in this paper. In contrast, the spe
heat and spin susceptibility are expected to get logarith
enhancements due to interactions in two dimensions in
diffusive regime,15 which too is killed by a Zeeman field
They would thus compete with the quantum interference c
rections. Nevertheless, if the interactions are weak, we
pect that the quantum interference effects would domin
leading to a logarithmic suppression of the spin susceptib
and specific heat, which can be probed by applying an ex
nal Zeeman magnetic field.

The effect of interactions in the localized phase is a m
delicate matter. Qualitatively, repulsive interactions tend
favor the formation of local moments leading possibly to
divergent spin susceptibility and linear specific-heat coe
cient. This effect will however compete with the vanishin
density of states we have discussed above~which tends to
produce a vanishing spin susceptibility, etc.!. The ultimate
fate of the localized phase in the presence of these two c
peting physical effects is a formidable problem that we w
not attempt to answer here.
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APPENDIX: RESOLUTION OF THE IDENTITY

In this appendix, we discuss some subtle questions
garding the resolution of the identity in the eigenbasis of
~super!Hamiltonian Eq.~34!. As all the subtleties are assoc
ated with the three-dimensional subspace spanned
u0&1^ u0&2 ,u↑;↓&1^ u↑;↓&2 ,u↑↓;0&1^ u↑↓;0&2, we just focus
on these three states. In this subspace, the Hamiltonianh is
represented by the 333 matrix Eq. ~37!. The right eigen-
states corresponding to the two eigenvalues 0 and 4J14v
are easily seen to be~in bra/ket notation!

uR1&5a1F 11z

21

1
G ; uR2&5a2F 0

21

1
G , ~A1!

wherea1 ,a2 are normalization constants, andz5v/J. (uR1&
has eigenvalue 0, anduR2& has eigenvalue 4J14v). Note
that the right eigenstates do not span the full thr
dimensional space. From the structure of the Hamilton
o
a-

o
n

ce
c

ic
e

r-
x-
te
y
r-

e
o

-

m-
l

,
.
-

e-
e

by

-
n

Eq. ~34!, it is easy to see that from every right eigenstateuR&,
a corresponding left eigenstate^Lu can be obtained by the
operation

^Lu5„~21! f 1
†f 1uR&…T, ~A2!

where the symbolT denotes taking the transpose. The le
eigenstates corresponding touR1& and uR2& then are

^L1u5a1@11z, 1, 1#; ^L2u5a2@0, 1, 1#
~A3!

respectively, as can also be seen by direct calculation.
left eigenstates also do not span the full three-dimensio
space. Note that̂L1uR2&5^L2uR1&5^L2uR2&50.

To get a complete set of states, we need to supplem
^L1u and ^L2u by any other linearly independent bra vect
^L3u. It is convenient to choose this to be orthogonal touR1&
and (̂ L2u)T.

^L3u5a3@22, 2~11z!, ~11z!#. ~A4!

A corresponding right stateuR3& can be defined using Eq
~A2!:

uR3&5a3F 22

11z

11z
G . ~A5!

Clearly theuRi& ( i 51,2,3) form a complete set of states~as
do the ^Li u). By construction, we have the relation
^L3uR1&5^L1uR3&50. We now impose the normalizatio
conditions ^L1uR1&5^L2uR3&5^L3uR2&5^L3uR3&51. This
fixes a151/(11z),a2521/(11z),a351/2. It is now pos-
sible to construct the resolution of the identity

15uR1&^L1u1uR2&^L3u1uR3&^L2u2uR2&^L2u. ~A6!

This can be checked directly by its action on any vector
the three-dimensional space.

This resolution of the identity can now be used to eas
show explicitly that Z5STr e2hL51 in the full nine-
dimensional space. For the calculation of the density
states or the diffuson, we need to know the action of
Hamiltonianh on uR3&. This is easily seen to be

huR3&54J~11z!~ uR3&1uR2&). ~A7!

Combined with the eigenvalue equationhuR2&54J(1
1z)uR2&, this implies that

e2hLuR3&5e24J(11z)L
„uR3&24JLz~11z!uR2&….

In the limit L˜`, e2hLuR3&˜0; similar considerations ap
ply to ^L3u as well. Calculation of any correlation function
thus reduced, in the limit of infinite system size to a calc
lation in the zero energy state with~right! eigenvectoruR1&.
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