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The guiding conception of vortex-condensation-driven Mott insulating behavior is central to the theory of
the nodal liquid. We amplify our earlier description of this idea and show how vortex condensation in two-
dimensional(2D) electronic systems is a natural extension of 1D Mott insulating and 2D bosonic Mott
insulating behavior. For vortices in an underlying superconducting pair field, there is an important distinction
between the condensation of flixc/2e and fluxhc/e vortices. The former case leads to spin-charge confine-
ment, exemplified by the band insulator and the charge-density wave. In the latter case, spin and charge are
liberated, leading directly to a 2D Mott insulator exhibitisgin-chargeseparation. Possible upshots include
not only the nodal liquid, but also an undoped antiferromagnetic insulating phase with gapped excitations
exhibiting spin-charge separatidi$0163-18209)02924-0

[. INTRODUCTION tem and spontaneous symmetry breaking in a dual order pa-
rameter is perhaps most transparent in the field-theoretical
The present paper is rooted in the conviction that the basitormulation of duality® In this version of the transformation,
property of an insulator is that it insulates. Magnetic order isthe dual theory is constructed to implement local charge con-
a secondary effect which, though it may be one of the appurtinuity, which is adynamicalconsequence of (1) symmetry
tenances of insulating behavior, is not synonymous with itin the original Hamiltonian, as a rigidonstraint(dynamics
This premise underlies our recent discussion of the phas® the dual theory implies conservation wbrticity). This
diagram of underdoped cuprate superconductors, where yRonstruction is qun_e f_amlllar from the one-dimensional
relied upon the notion of an insulator as a vortexth‘?ory pf Luttinger Iqu|d55. There the two-current can be
condensaté? Here, we would like to elucidate and expand Written in terms of a phase field(x) as
upon this paradigm. As a by-product of this approach, we )
find a precise distinction between spin-charge-separated and Ji=di¢. 1.1
confined insulators. . . In the alternative, but equivalent, dual description, the cur-
Slncg correlateq insulators _often exh!blt magnetism, the¥ent can be written in terms of a dual fielet
are typically described by their magnetic order parameters.
Furthermore, in commensurate, weak-coupling models, the C_
d . _ ji=€i0;0. 1.2
evelopment of magnetic order can be the mechanism by
which a system becomes insulating. This can lead to a conn a one-dimensional Mott insulator, thefield acquires a
flation of magnetic order with insulating behavibHow-  mass, implying a gap in the spectrum of charge excitations,
ever, this state of affairs is both unsatisfying and incompleteand hence, experimentally, in the optical conductivity. Note
since magnetic order can persist even when the system bghat massive dynamics for thghasefield ¢ is inconsistent,
comes conducting and, conversely, a system can be insuladince it would violate charge conservatiéf;=0. The one-
ing even in the absence of magnetic order, as suggested ¥mensional model has thus communicated an important les-
Anderson’s original Resonating Valence BofRVB) ideas  son: insulating behavior occurs when a gap is acquired by
and exemplified by the nodal liquid. Hence it would behoovethe dual field representing the current operator.
us to seek an order parameter which is directly related to the This description of Mott insulators generalizes readily to
electrical properties of an insulator. The difficulty in such atwo-dimensionabosons Let us write the boson annihilation
program is that an insulator seems more disordered than gperatory in terms of its amplitude and phasg= vpe'®. In

conductor since most correlation functions in the charge seqne superfluid state, we fix and describe the system by its
tor are short ranged. We interpret this as suggesting gnase degree of freedoma(x):

“dual” approach based on a “disorder” parameter. Distill-

ing the key elements of our nodal liquid construction, we L£=%(3,9) (1.3

propose that the appearance of a nonzero expectation value

for a disorder parameter signals an insulating behavior. ~ We can model the destruction of superfluidity by introducing
The relation between the conduction properties of a sysa vortex field®; effectively, we are reducing the amplitude
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degree of freedom to a vortex field which keeps track of thequires as it orbits aic/2e vortex; an isolated spig has a
points at which it vanishes. We can represent the curreribgarithmically divergent energy in two-dimensions. This
ju.=d,.p as’ spin-charge confinement physics is also present in a charge-
density-waveg(CDW) insulator, which occurs for example in
the negativai (extended Hubbard model at half-filling.
which is the natural extension of E¢L.2) to two dimen- There, however, thenc/2e vortex condensation leads to
sions. This parametrization is highly redundant as a result dranslational symmetry breakingee also the second refer-

j,u,ze,uv)\ava)\ ’ (14)

its invariance under the gauge symmetry: ence in Ref. 2 In both instances the resulting insulating
phase can be viewed as a “crystal” of charge ‘Zooper”
a,—a,td,.x (1.5  pairs. For 2D electronic systems at or near half-filling with

strong on-site repulsion, however, such CDW order is physi-
cally unreasonable, and for the cuprate materials can be dis-
%arded on phenomenological grounds. For this reason we are
led to consider the possibility of the condensation of double
» strengthhc/e vortices in a superconducting pair field.
The Mott insulator which arises at half-filling upon con-
_1 2 s 2 densation ofhc/e vortices has a number of appealing and
Lo=2(7,8,)°+ W“ |a#)d>| V(D). (1.6 remarkable properties. The insulating phase is translationally
In the superfluid state, vortices are gapped and the bosomsvariant, in contrast to the CDW. Moreover, since there are
condense, while, in the Mott insulating state, the vorticesno Aharonov-Bohm phase factors when a spins trans-
condense and the bosons become gappédhe chemical ported around atc/e vortex, the resulting Mott insulator
potentia). When the vortices condensg, becomes massive exhibits spin-chargeseparatiorf:'>** For a d-wave super-
by the Anderson-Higgs mechanism. As a consequence, theonductor appropriate to the cuprates, condensatidncte#
system is insulating. vortices leads directly to theodal liquid'? The nodal liquid
Let us abstract away the archetypal features of this sysndeed possesesgapless spin 3 but charge-neutral
tem. We can introduce representatidm) for any conserved fermions—the nodons—which descend directly from the
current in two dimensions, so we can certainly use it for thed-wave quasiparticles. As we shall see, there are also mas-
electrical current in the fermionic system of our choice. Insive chargee spinless boson excitations in the nodal liquid
order to carry the rest of this scheme over to electronic sysphase. These “holons” are solitontopological excitations
tems, we must find a way for the system to conspire to makén the underlyinghc/e condensate, a dual analog of Abriko-
a, massive. The only way that this can happen which issov flux tubes. The excitations in the nodal liquid have the
consistent with the gauge symmetrfl.5) is via the same quantum numbers as in the spin-charge-separated
Anderson-Higgs mechanistnh.Since the Anderson-Higgs gauge theories® but are weakly interacting rather than
phenomenon can only take place if there is a condensatrongly coupled by a gauge field. We suspect that a nodal
which is coupled tca, according to the Magnus force law liquid ground-state requires the retention of the charged de-
[Eq. (1.6)], we are led to the following question: how do you grees of freedom, and cannot occur in a spin-only model.
define a vortex field in a fermionic system? One possibility is A peculiar feature of the nodal liquid is that spin-charge
to implement statistical transmutation to represent the fermiseparation survives the ordering of the nodal spins into a
ons as bosons coupled to an auxiliary Chern-Simons gaugghase with long-ranged antiferromagnetic order. This
field.® Then we can define vortices in the bosonic field. Thisphase—denoted AF*—which has gapped nodons is distinct
approach is probably suitable for describing a conventionalrom the conventional Nad antiferromagnet AF which does
antiferromagnet, as discussed very briefly in Sec. IV. But imot have neutral, spii-excitations even at high energits.
this paper we pursue a different tack—using Cooper pairs aShese two phases are physically very different, as may be
the bosons. This is quite promising for the cuprates becausseen from simplegedankenexperiments which make the
it is tailor made for insulators which contain the germ of point that charges can be physically separated from sgin
superconductivity. with finite energy cost in the AF* phase but not the AF
A question rears its head when we consider an insulatophase. However, in two dimensions nodon-holon bound
which descends in this way from a superconductor: do thatates form in the AF* phase, so the spin-charge separation is
finite-energy excitations inherit their guantum numbers fromnot so easily found in the electron spectral function.
the superconducting state, or do they simply have the elec- Our ultimate goal is to describe a spin-charge-separated
tron quantum numbers? In particular, one can ask what is thstate, the nodal liquid, and an ordered state which can result
energy of an isolated neutral spjnexcitation. If this di-  from it, AF*. Along the way, however, we will re-examine a
verges with system size, then spin and charge are confinedumber of seemingly quotidian states such as the band insu-
If, on the other hand, it is finite, as it is in a superconductor lator, the charge-density wave, and the antiferromagnet. Our
then the insulator exhibits spin-charge separation. A twobroader framework will enable us to understand the physics
dimensional(2D) band insulator is, of course, a state of the of doping these insulators from the point of view of creating
former variety. As we show in Sec. Il this can be understoodopological excitations in the disorder parameéfeBuch a
(rather differently than in elementary textbodles resulting  point of view naturally leads to a discussion of the possibility
from the condensation of flukc/2e vortices in a state with  of spin-charge separation in these states. In Secs. Il and Il A,
swave pairing. Spin and charge are confined as a result ofe will illustrate the physics of flushc/2e condensation in
the Aharonov-Bohm phase, which a spinful excitation ac-systems with attractive electron-electron interactions, where

for an arbitrary function,y. This gauge symmetry is enor-
mously larger than the analogous global invariance in th
one-dimensional Luttinger liquidd— 6+ const. The vortices
“see” the gauge fieldh,, according to the Magnus force law
so the dual Lagrangian takes the form
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we expect the insulating states to be relategteave super- ECZCL(X,T)U 8= V2= p]e(x,7), (2.2
conductivity. In the resulting states, the band insulator and
the CDW, spin and charge are confined, as we discuss at

K
length in Sec. II. In Sec. IlIB, we then consider fltxc/e ﬁ¢=7“(¢9u¢)2, (2.2
vortex condensates in &wave superconductor, filling in a
gap in our earlier paper. We introduce an effective lattice Eim=|A|e“"C¢(X)C¢(X)+H-C- (2.3

model in Sec. Il C which incorporates this physics. In Sec.

IV, we discuss the spin-charge-separated antiferromagnéterec, denotes an electron with spin, and¢ is the phase

AF*, and compare it to the conventional antiferromagnet AF.of the pair field, with magnitudgA|. Integrating over high-

Possible experimental signatures are analyzed. We conclug#ergy electron states, well away from the Fermi surface,

with some summary remarks in Sec. V, relegating some sup¥ill generate dynamics for the phase field. The appropriate

porting technical details to the Appendix. form of £, at low energy is essentially determined by sym-
metry. Here we have retained the leading-order terms in a
gradient expansion, withkg=« the compressibility and

Il. BAND INSULATOR AND SPIN-CHARGE — kj=VZko a superfluid stiffness. Henceforth we will set the
CONFINEMENT velocity v,=1. In general a Berry’s phase tetmf the form

In the absence of electron interactions, a band insulatofBery=Nod:¢ is allowed(see Sec. Il beloybut with one
with two electrons per unit cell corresponds to a filled va-COOPEr pairtwo electrons per unit cell of the periodic po-
lence band of noninteracting levels. Provided the interaction€ntidl No=1 and the Berry’s phase term can be dropped
are small compared to the energy gap of the conductiogNCe expidt Lger)=1. _
band, this should provide a good description of the phase. Notice that the phase fluctuations are strongly _co_upled to
But even with stronger interactions a band insulator can b&1€ electron operators through,.. To decouple this inter-
adiabatically deformedwithout gap closure back to the —action and to exhibit the spln—charg.e separation, it is conve-
noninteracting state. To obtain an order parameter for th@i€nt to consider the change of variables
band insulator, we will attempt to describe this phase as a ol2
« : " C(X). (2.9

quantum-disordered’s-wave superconductor.

To this end, consider spinful electrons moving in the two-The Lagrangian becomes
dimensional continuum. In the presence of a local attractive
interaction the Fermi surface is unstable, and presumed to L=Li+L,+3,0,0, (2.9
form a spin-singles-wave superconducting phase, with en- i
ergy gapA. Now imagine introducing a periodic potential
with magnitl_JdeV and a period corresponding to two elec- gfzfl[iat—VZ—M]faJr|A|fT(x)fl(x)+H.c., (2.6)
trons per unit cell. Fo¥ much smaller tha the supercon- ) o
ducting phase should be stable, but with increasihgne  @ndJ, is a quasiparticle three-current operator:
expects an eventual quantum transition into a band insulator. t 3 ot
This transition can be described as a quantum vortex unbind- Jo=f,fo, J=if Vi, +Hc 2.7)
ing transition, analogous to the thermally driven Kosterlitz-Tpjs cyrrent is not conserved as a result of the anomalous
Thouless transition. At zero temperature the vortices Caerm (2.3), but the spin currents
condense, giving one an order parameter for the band insu-
lator. _ | b=flalsfs, J=iflol VigtHe (28

Of particular interest is the nature of the gapped excita-
tions in the two phases. As we shall discuss, in a supercorgre conserved. Here we have assumed that the phase field is
ductor it is possible to define charge-neutral quasiparfitles slowly varying, and have dropped terms involving two spa-
which carry spin3. In an sswave superconductor these tial gradients ofe.

“spinon” excitations are fully gappet but can be gapless The Lagrangianl; can be diagonalized as usual by a
(called nodonkin ad-wave superconductor, which we return Bogoliubov transformation, and describes gapped quasiparti-
to in Sec. IV below. Since the Cooper pairs carry no spin incles. Since thdé operators are electrically neutral but carry
a singlet superconductor, the Cooper pairs and spinons prepin 3, these excitations are “spinons.” The spinons are
vide a natural spin-charge-separated description of the supegoupled to the phase fluctuations via a Doppler-shift-type
conducting phase. On the other hand, the excitations in term. In the superconducting phase these phase fluctuations
band insulator are electrons which of course carry both spiare small, and will generate a weak interaction between the
and charge—the band insulator doest exhibit spin-charge gapped spinon states.

separation. We would like to try and understand the mecha- To quantum disorder the superconducting phase and ar-
nism whereby the separated spin and charge excitations five at a description of the band insulator, we will need to
the superconductor become “confined” upon entering theallow for vortices in the phase of the pair field. In two di-
band insulator. mensions vortices are simply whorls of current swirling

To address these issues, it is convenient to consider around a core region. The circulation of such vortices is
low-energy effective theory for an s-wave superconductor iruantized since upon encircling the core the phasecan
which both Cooper pairs and the gapped guasiparticle statemly change by integer multiples ofi2 The “elementary”
near the Fermi surface are retained. The appropriate Latortices have a phase winding df27. Since the Cooper
grangian takes the forni= L.+ L+ Ly, with pairs have chargee? in the presence of an applied magnetic

fl(x)=¢
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field these vortices quantize flux in unitstof/2e. Inside the gauge fields coupled together by a Chern-Simons
core of a vortex thenagnitudeof the complex order param- interaction® The most natural way of doing this is to intro-
eter |A| vanishes, but is essentially constant outside. Sinceluce a couplingl ,«,, of the spinons to a gauge field,
the position of these “pointlike” vortices can change with which attaches half of a fictitious flux quantum to each vor-
time, their dynamics requires a quantum-mechanical descrigex. However, such a coupling is not gauge invariant since
tion. Thus a collection of many vortices can be viewed as ahe spinon currentJ, is not conserved. To avoid this
many-body system of “pointlike” particles. Since positive problem—but at the cost of breaking spin-rotational
(+1) and negative { 1) circulation vortices can annihilate invariance—we couple, to thez component of the spinon
and disappear, they behave as “relativistic” particles. Therespin current, which is conserved. Specifically, det andai
is a conserved vortex “charge” in this process, namely, thedenote statistical gauge fields coupled to the spinons and
total circulation and an associated current. A duality transvortices, respectively, with a modified dual Lagrangian
formation can be implementgdin which the phasep is
replaced by a dual field, which is the phase of a vortex Lo=Li+ Lyt Ly(a,+ aZ)+aﬂJfL+ Les (212
complex field®~e'?. In a Hamiltonian descriptionp and
®T can be viewed as vortex quantum field operators—whic
destroy and create vortices. o
A crucial element in the duality transformation is the total cs
electrical three-currentJ;ft= k,d,¢+J3,/2, which must be The Chern-Simons term effectively attaches flux tubes with
conserved even in the dual representation. This is achievestrength; to each of the spinons and vortices. This follows
by expressing the current as a curl of a gauge figJd(Ref.  from the equations of motion obtained froaCp /da, =0
5): anddLp/da;,=0, which imply, respectively,

Hand a Chern-Simons interaction

wE€uv

N (2.13

J;(L)t: E,U,V)\(?Va)\ ' (29) eM,,)\(?,,ai= %JZ (214)

which automatically implies the continuity equationJy"'  and
=0. This representation also introduces a gauge symmetry
into the problema,—a,+d,A. Itis this gauge symmetry €,y 0\ = %j‘/’L. (2.15
which is spontaneously broken in the band insulating state. o
In Ref. 1 the duality transformation was implemented inHere, the vortex three-current is given by
the presence of the Doppler-shift interaction between the . .
Cooger pairs and the spFi)rfons, giving a dual Lagrangian of anlm[(b*(ﬁu_'au)q’]- (2.1
the form: Lp=L¢+L,+ L, with a vortex piece of the

Ginzburg-Landau form, Consider now trying to condense the/2e vortices. In

the ground state the spinof fermion9 are gapped out with
P (J7)=0, so one can presumably sa}f=0. Setting(®)
L,(a,)= 7“|(<9,L—i2ﬂTaM)(1>|2—r|<I>|2—u|¢’|4, =®, corresponds to a spontaneous breaking of the gauge
(2.10 symmetry, and leads to an effective Higgs Lagrangién:
=®fk,a’/2. In terms of the dual Ginzburg-Landau theory
and this describes the “Meissner state.” But since the curagf
1 1 corresponds tq the total electrical qurrent, this phase corre-
ﬁazz_'%(ejz_bz)+ 2_KOJMG,U«V)\{9Va)\' 2.11 Zzg?ds to an insulator—the band insulator—with a charge
. . If the dual Ginzburg-Landau theory is type II, it will ex-
Here € =(dja0—doa;) andb=e;;dia; are dual “electric”  pinit topological excitations corresponding to penetrating
and “magnetic” fields. The dual magnetic fietwlis simply 4, ;antized “dual” flux tubes. In the electronic insulator these

the total charge densityn units of the Cooper pair charBe  .qrrespond to gapped charge2e spin-zero states, which
The last term inZ, is the only one coupling the spinons to 4.a two-electron bound states.

the vortices. However, this dual Lagrangian is not valid since ' gt now consider an excited state in the insulator which

it ignores a strong statistical gauge interaction betweenjes spint. This can be created by adding a spinon at the
spinons andhc/2e vortices. To see this consider taking Aorigin by acting withf!(x=0). The presence of a spinon

spinon (f) aroun_d a ClO.SEd loop whigh encircles u/2e induces a statistical gauge field from the Chern-Simons term:
vortex. Along this circuit the phasg winds by 2. Due to

the% in Eq.(2.4), thi_s impli_es that _the sp_inohmust change he(X) = 6ijt9iajs= 130="16%(x). .17

sign upon completing this circuit. This can be formally

implemented by introducing branch cuts emanating fromSincehg(x) corresponds to an applied “magnetic field” in

each and every vortex across which the fermion wave functhe dual Ginzburg-Landau theory, adding a spinon is equiva-

tion must change sign. This represents a strong and londent to the insertion of a solenoid carrying one-half of a

ranged “statistical” interaction between the spinons and(dua) flux quantum. Being in the Meissner state, the dual

hc/2e vortices. Ginzburg-Landau theory will tend to screen out this applied
The presence of this long-ranged interaction clearly in-magnetic field by generating currents that induce an oppos-

validates the form of the dual Lagrangian. One is tempted tang internal field,b(x). This follows readily from the energy

try and incorporate the branch cuts by introducing two newin the Meissner state, which takes the form
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(I)SKO . . which exhibits spin-charge separation, meaning that it has
E:TJ d?x|V§—2ma—2mad?, (2.189  weakly coupled neutral spig- excitations—spinons—and
chargee spin less excitations — which we will call holons,
where we have pub =®,e'’. With both =0 anda,=0 following Ref. 10. Imagine imposing two spatially localized
the energy in the presence of the solenoid will diverge |ogaperturbat|ons. These take the form of an interaction Hamil-

rithmically with system size. Apparently, the energy of antonian

isolated spinon diverges in the thermodynamic limit. But in Hine= N (Q(X) — €)%+ (S(x))?]

the presence of an induced internal magnetic field the energy

will be finite provided the integrated flux is precisely one- FA(Q(X))?+ (SH(x") — 3)?]. (2.20
half of the dual flux quantum: Here Q(X)=Z,p(x+Y)f(y,l) and S¥(x)=ZX,s(x+Y)

X f(y,§&) are the total charge andcomponent of the spin
within a smoothed region of linear siZzearound the poink.
For reasons of mathematical rigor, we chobég, &) to be a
differentiable function ofy with f(0,£)=1 and f(y,¢)

In physical terms this corresponds to an induced cloud of=Ing/Iny for y>2¢&. The perturbation favors localizing a
electric charge with magnitude Evidently, in the insulating chargee without spinnearx and a spins without charge
phase an isolated,= 3 excitation will bind chargesto form  nearx’. Now imagine takingx—x'|> &> a (the lattice spac-

a spin-up electron. The resulting excitation has finite energying), so that the points are well separated. For srnalthe
Similarly, an isolated,= — 1 will bind charge—e to forma  ground state of the system will be unchanged, since there is
spin-down hole with the same energy as the spin-up electror® gap to all excitations. Increasingwill ultimately induce a

This mechanism for confinement of spin and charge is remichange in the ground state to take advantage of these pertur-
niscent of the confinement of charge and flux which occurdations. Provided is taken larger than the size of the spinon

in the quantum Hall effect. In the bosonic Chern-Simonsand holon, these excitations can come into the system to
formulation of the quantum Hall effect, the confinement of OWer its energy and will be localized in the wells. This
charge and flux also arises via a Higgs mechanism—in thi§hange in the ground state will occur at finite since the
case when the composite Boson condenses. energy gap to the spinon and holon is f|n|te,_and mdee(_j the

For the above Ginzburg-Landau—Chern-Simons theor)?r!t!cal A will saturate ‘f.’“d'x_xll_m' One can interpret this
there is another finite-energy configuration in the presence O(fr|t|cal A¢ 85 the minimum energy needed to produce an

a singleS,=;—a 2w winding in the phas of the vortex unbhloolw(jirsgl?gg_?glzgt?r?lr.the same experiment on a band
field together with an internal field of one-half quantum. 9 b 9 b

which aligns with the “applied flux” [ [d?x b(x)= + 1. insulator or any other state which does not exhibit spin-

This creates a finite-energy excitation with spiand charge charge separation. In this case, the spinon and holon are not
. 9y . . g available to “fill” the local perturbations. Instead the system
—e, corresponding to a conventional spin-up hole. We cal

' ! O ust create a nonlocal superposition of elementary excita-
createaspm-_down electron of equal energy in a similar MaMGons, i.e. develop a polarization, to localize the desired
ner. On physical grounds the energy of te= + ; states ' '

chargee or spin}. Consider, for example, the region around
should clearly be degenere_lte. Unfortunately,.for the abovrﬁqe gointx, irr)1 vjhich a chargee shoulg Iocalize.gA simple
Ginzburg-Landau—Chern-Simons theory, while both ENernd generic model for a band insulator is a collection of deep
gies are finite, they will in general be different, due to dif-

ferences in the core energiée.g., near theS,= — 3 state potential wells, each containing two electrons. For the low-
: AT I I nergy states, the wells may be approximated as quadratic
with § winding, it is necessary to suppress the magnitude o nd, in the ground state, all electrons are in the lowest

g). to ze][d. Trlust_ S|gnfa !{i a“ctle?rt_de?f:l_e?cy '?. th% (t:hern- harmonic-oscillator level. The lowest excited states which do
imons formulation of the “statistical™ interaction DEWEEN 4t jnqyce local spin textures are constructed simply by

spinons andhc/2e vortices. Since the vortices and spinons moving both electrons in one of the wells from the ground

; . ) 1
can ?ense tftw%lgnt_of ;Tﬁ Sgﬁ'sucgl. qux(tf}fﬂtlcljs,; 2 ﬂfx. state to one of the first excited states with energy @apA
quanta areotidentica) the t-nern->IMons Nelds doNot give ., enjent basis for these states is the| gpot= a}L alr |0),
a faithful representation of the branch cuts. The necessar h " mad2(x,—ip, ! s the raisi Bl t
evil of breaking spin-rotational symmetry is a consequenc erea,, = yMwy/2(X, ~ip, /Mw) is the raising operator

of this asymmetry in the Chern-Simons formulation. along thei axis in space. Now consider the superposition of

Currently, we do not have a convenient formulation of "€ 9round and excited states,
interactinghc/2e vortices and spinons which correctly re-
spects this symmetry. Such a formulation would be particu- luy=(1+]|u?/12) "2
larly desirable for the case of d-wave superconductor
where the quasiparticles are gapless. Nevertheless, we beherel=2/mwy is the characteristic spatial width of the
lieve that the Chern-Simons formulation does help elucidatdarmonic oscillator levels. For small|, the statdu) repre-
the correct mechanism behind confinement of spin andents a small displacement of the electrons, i.e.,
charge upon condensation lot/2e vortices.

The preceding considerations dovetail naturally with the (ulxjuy=u. (2.22
following approach to understanding spin-charge separatiorhus it possesses a dipole momekt —2eu, and a local
Consider the followinggedankerexperiment, for which we charge may be built up by polarizing the collection of all the
are indebted to Halperilf, which probes the existence of electrons near the point (i.e. forming a many body state
spin-charge separation. Consider a totally gapped systemhich is a direct product of single-particle states with differ-

f d’x b(x)=—3. (2.19

"
o+ im|, @2



PRB 60 DUAL ORDER PARAMETER FOR THE NODAL LIQUID 1659

ing displacements on each git&/e consider a slowly vary- A. Quantum-disordered s wave

ing displacementi(x) for which a continuum description is We begin by considering a system of spinful interacting
adequate(although this is not a necessary restriclioRar  gectrons moving in the 2D continuum, which pair to form a
away from the pointx, the induced charge densify=  gpin singlets wave superconducting phase, and then “turn
2eV-u, and hence the charge in a given regihis  on» a periodic potential which for simplicity has square
Jrd% p(x) = 2e[ ,zu-dn. The radially symmetric configura- symmetry. Here, however, we choose the period to corre-
tion spond to one electron per unit cell. As in Sec. Il, with in-
creasing potential strength the superconducting phase can be
destroyed by the unbinding and condensatiorhof2e su-
perconducting vortices. But in this case there is only one-half
of a Cooper pair per unit cell, so the resulting insulating
phase will be dramatically different from the band insulator.

thus carries a total charge Provided all the electrons are !N particular, one expects the formation of a crystalline state
involved in the texture, there is no net spin polarization. This®f Cooper pairs which exhibits charge-density-wave ordering
polarized state is not an eigenstate of the unperturbed Hamifit Wave vector 4, ), and spontaneously breakdiscrete
tonian, but does couple favorably to the first term in Eq.iranslational symmetry. . o

(2.20. We can, however, determine the expectation value of [N order to proceed expeditiously to our main interest, the
the (unperturbeyl energy in this state. The result is essen-n0dal liquid, we only mention a few salient points here. The
tially classical: E(u)= [d%wo(u/l)2. In two dimensions, difference between the CDW and’the band insulator in the
this integral is logarithmically divergenE(u)~InL. The Present approach is that the Berry’s phase ferm

isolated long-range polarization thus costiafinite energy.

In the thought experiment, this divergence will be cut off by

the finite distance betweenandx’, since we may localize cannot be dropped. To appreciate the physics of this term,
an oppositely charged texture around the painin combi-  we must return to the lattice, where the lattice Hamiltonian

nation with an added electron wit*=3, thus satisfying corresponding to Eq2.2), together with the Berry’s phase
both perturbations and rendering the energy finite. Howeveterm[Eq. (3.1)] takes the form:

the critical A will grow logarithmically as|x—x’|—%, and

hence it becomes impossible to create the isolated holon and

spinon in the thermodynamic limit. Ho=—1,2, codgi—¢)+U,> (ni—ng)% (3.2
This argument is appealing in that it agrees with earlier 0 '

Chern-Simons calculations, which suggested logarithmigieren; is the Cooper pair number operator which is canoni-

confinement of holons and spinons. As a means of diStincally Conjugate top. Because, at half_filling, there is, on

guishing spin-charge-separated from spin-charge-confinegverage, half a Cooper pair per site, one hgs 3.

phases, however, it is somewhat delicate. In particular, it |mplementing duality as befofébut now on the lattice

fails for d>2, where the polarization energy to create thegives a dual Euclidean action which is the lattice analog of

chargee texture becomes finite. It is also somewhat unsatis£gs. (2.10 and (2.11), the only difference being that the

fying because the texture is not an eigenstate of the unpefjaxwell term(1/2;<0)(ej2—b2) term is replaced by
turbed Hamiltonian. Fortunately, the duality formalism al-

lows the two phases to be distinguished instead by the dual Uy

order parameted. Whend condenses, the statistical gauge Sa=7% 2 (€l —nod,0). 3.9
interactions between spinons and the condensing vortices e

leads to spin-charge confinementdrs- 2. In this senseb is

an order parameter for confinemerd rather unique feature .
of the present theory.

x—x"
u(x") = 25, X=X (2.23

Lery=MNodre (3.1

The new feature, as compared to the last section, is the
offset” charge ny which results from the Berry phase term
(3.2). It corresponds to an applied “magnetic” field for the
lattice Ginzburg-Landau theory. The insulating CDW phase
of the Cooper pairs corresponds to an Abrikosov flux lattice
in this dual representation. As in the case of the band insu-
lator, the vortex condensate leads to a charge gap and insu-

We now turn to the more interesting case of insulating,lating behavior.
phases with one electron per unit cell. In such Mott insula- Generally, one expects that a condensatioh @®e vor-
tors, electron interactions are necessary to destroy the metdices will lead to charge ordering with charge per unit
lic state, in contrast to the band insulator which has a smoothell. This follows from the underlying dualityic/2e vortices
noninteracting limit. As in Sec. Il, we will obtain a descrip- pick up a 27 phase change upon encircling chargeQoo-
tion of the insulating state by quantum disordering an approper pairs—the same phase accumulated when a Cooper pair
priate superconducting phase. A brief discussion ofencircles such a vortex. Thus the liberation and condensation
qguantum-disorderegwave superconductivity at this density of hc/2e vortices leads to a charge quantization in units of
illustrates the need to consider “double-strength” vortex2e. For the model with attractive interactions and one elec-
condensates in the cuprates. Sutb/e condensates are tron per unit cell considered above, the resulting state is the
nodal liquid insulators, and the subject of the remainder of CDW at wave vector £, ), which can be thought of as a
this section. (charge &) Cooper pair crystal.

IIl. MOTT INSULATORS, HC/E CONDENSATES,
AND NODAL LIQUID
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B. Quantum-disordered d wave tions lead to staticequal tim¢ power-law spin correlations
and aT linear magnetic susceptibility. It is natural to expect
that the removal of the nodons from the low-energy spectrum

ity is thought to arise from the combination of strong on-sitel the insulator will be accompanied by the condensation of
Coulomb repulsion and some unspecifiadd controversial ~SOMe pairing operatdfor example, spin-density-wave order

longer-range attraction on the scale of a few lattice spacingds characterized by the order parameter' 7¥o¥oy')#0;
Certainly strong local repulsion is a key ingredient of theother possibilities are legionin most cases accompanied by
cuprates. For such systems, the/2e vortex condensation & gap for the reconfined electrotsThe formation of such a
described above—which implies considerable double occupaired-nodon state is analogousctural symmetry breaking
pancy (at least in a region near half-filling-is physically in QCD, and in that context as well is generally believed to
unreasonable. It must also be discarded on phenomenologiccompany confinemesialthough the converse need not be
cal grounds, as the actual undoped antiferromagnet is a Motfug). One can imagine approaching such a state from the
insulator without charge ordering. superconductor by continuously lowering the vortex “mass”
Although hc/2e-flux vortex unbinding is untenable for to zero, at which point one has a theory in which gapless
this case, phase coherence must nevertheless still be d@rmionic nodons interact with gapless bosonic vortices via
stroyed to obtain an insulating state. Charge uniformity andtrong gauge interactions. This putative critical point is a
phase disruption can both be achieved together by unbindingmpting starting point for future systematic studies of such
bound pairs of vortices with fluxhc/e instead of isolated instabilities.
ones. We expect suchdouble-vortex condensate appear We now return to the problem dfc/e vortex condensa-
in the dual description as a condensate with a doubled dudion, which, although motivated on energetic grounds, has
charge, and hence a halved dual flux quantuAt. half-  dramatic consequences for the elementary excitations. Again
filling, then, the dual lattice Ginzburg-Landau theory has a€xamining Eq.(2.4) when only double-strength vortices are
full 2 flux per plaquette, and thus, as desired, exhibits nd@resent,¢ is defined modulo 4, and this transformation
translational symmetry breakirg. defines a single-valued neutral fermion. The nodons thus ex-
Having motivated double-vortex condensation in the Perience no statistical gauge interactions in this case. The
wave case, we now proceed to discuss its implementatioriesults obtained in Ref. 1, which ignored gauge interactions,
The calculations are significantly different because of an imhence apply to thac/e condensate, with the proviso that the
portant additional physical ingredient in tllewave super- fundamental vorticity must be doubled throughout the analy-
conductor: gapless fermionic quasiparticles. These exciteSis. The salient result is that when gauge effects are absent,
tions arise owing to the vanishing of the amplitude of thethe nodons and vortices interact only via the two-fluid inter-
pair wave function at its nodes in momentum space. Th&ction Lagrangian
presence of low-energy fermionic excitations necessitates a
careful reinvestigation of the duality transformation and its
implications. Much of the necessary calculations and formal-
ism was discussed in detail in Ref. 1, and is briefly recapitu-
lated in the Appendix. whereJ,, is the electrical current carried by the quasiparti-
As for thes wave case, the analysis of the interactions ofcles, and is bilinear in the) fields. Equation(3.4) can be
vortices with quasiparticles is based on the neutralizinginderstood as the Doppler shift of the nodon energies in a
change of variables in Eq2.4). The distinctive feature of superflow given byd,¢. This is a much weaker coupling
thed wave superconductor is that the neutral spiparticles  than the statistical gauge interactions in the single-vortex
are gapless and can be described by a Dirac Hamiltonian.condensate, and controlled analytical calculations are pos-
Because in this case the spinons near the nodes can contritible. Detailed predictions for this quantum-disordered state,
ute to low-energy physics, we attribute to them special sigthe nodal liquid (NL), can be derived by writing a coarse-
nificance and the nameodons signifying the low-energy grained continuum theory fob, anda,, as in Refs. 1 and
spinons descended from tdevave nodal quasiparticles. Be- 18. The key conclusions arét) gapless nodons survive into
ing gapless, they can be described by continuum field theorthe NL state, carrying spin but neither charge nor current at
and a four-component Dirac spingr(the analog of in Sec.  low frequencies(2) the NL has gapped charged excitations,
ll—see the Appendix for a precise definitjon the lowest lying of which are expected to Hepinlesg
Having already argued that onhc/e-flux vortices should  charge* e holons, which occur as vortices in the dual order
be considered, we will focus primarily on this simpler case.parameterd,; (3) the half-filled NL has a uniform charge
It is, however, appropriate at this point to reflect briefly ondensity, and uporthole) doping charge is introduced as a
the consequences of these strong gauge interactions showpinless Wigner crystal with chargeper unit cell (but see
single-strength vortices become important low-energy exciSec. IV for a discussion of how this may be modified when
tations. As abovehc/2e-vortex unbinding gives rise to antiferromagnetism is present
strong gauge interactions of the spinons, now nodons. The It is important to emphasize that a connection has been
gauge-theoretical arguments given in Sec. Il can again bgade here between two apparently unrelated phenomena. By
carried through, and we expect confinement of the nodonsissumingdouble-vortex condensation, characterized by the
Unlike the s wave case, however, because the nodons ardual order parameter®,=(e® ‘)0 (double vortices are
gapless excitations, their presence or absence has definitendensed ®=(e'%)=0 (single vortices are boundwe
consequences on tlggound-statecorrelations. For instance, were led to the persistence of spin-charge deconfinement in
in a pured-wave superconductor, the gapless Dirac excitathe insulator. The single-vortex disorder parametédr,

We now turn to the interesting problem of the quantum-
disorderedd-wave superconductord-wave superconductiv-

Eim:&M(PJ (34)

y7l
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(which also distinguishes translational symmetry breaking aéffective Hamiltonianobtained, e.g., by perturbatively inte-
half-filling) can thus be regarded as arder parameter for grating outN; and ¢; in a path-integral formulationH

confinement =Hgo+Heq, with
) - tJ
C. Lattice model for the nodal liquid Heo= 2 — U(fiTafja+ H.c)
We conclude this section by describing a direct route to W
the NL at half-filling, by which most of its properties may be c—xet ot
derived without the use of the duality mapping. To do so, +<i2_> |A[(=1)%f L f] +H.c, (310
consider the following lattice regularization, which forbids .
hc/2e-flux vortices from the outset: 212

_ t t
Hel——U% fl it stis- (3.11)
Hgoo=>, —t(c/c+clc . - :
ap <.2,> (cic*ejc) The quadratic Hamiltoniahl  is identical to the mean-field
N (et o2t ot Hamiltonian ford-wave quasiparticles, with a renormalized
+A[(-1) e e elief +H.c., (35  pandwidth 8J/U. It therefore describes two sets of sgin-
Dirac fermions at low energies. One thus recovers in this
B e @ U : ) way the_NL phe_lse obtained previpusly via contin_uum dual-
H,=> —Jco 5% +2 (2N +CioCig—1)% ity. The interactiorH,, can be rewritten as a combination of
w ' (3.  antiferromagnetic exchange and contact repulsion offthe
' particles. If both are weakas in the largdd limit), such

The cosg/2—¢;/2) term has been chosen to allow4 four_-fermior_1 interaqtions are strongly irrel_evant arou_nd _the
phase slips but not-27 phase slips, hence “confining” noninteracting NL fixed point, due to the Ilnea_rly vanls_hlng
single-strength vortices. Further, we have made the appaflensity of states of the Dirac fermions. A slightly refined
ently arbitrary choice of dividing the superconducting pair-analysis including a physical external gauge fiald allows
field phase among neighboring sites. While this may seerfne to calculate the conduc_tlwty explicitly, and_shoyv that the
unnatural, provided the continuurd-wave quasiparticle ffermlonls carry no current in the NL state, so it is indeed an
Hamiltonian is an adequate low-energy descriptiamy lat-  insulator.

tice regularization should reproduce identical low-

wavelength behavior. Finally, we have included a “charging IV. ANTIFERROMAGNETISM

energy” term coupling to the totdlCooper pair plus quasi-
particlg charge.

This model has particle-hole symmetry, and at zero As discussed in Sec. lllhc/e-flux vortex condensation
chemical potential is thus automatically at half-filling. To atop the d-wave superconductor yields the NL, an insulator
determine the properties of the system, we begin by performwith charge quantizatiofchargee per unit cel) appropriate
ing the lattice analog of E¢2.4): c;ra=ei<°i’2fi’ra. Simulta-  near the half-filled Mott insulator. Unlike the CDW obtained
neously, to avoid nontrivial commutation relations betweerby hc/2e-flux vortex condensation or the conventiolailly
f,f7, andn, we letN;=2n;+c/c; and ¢, = ¢;/2. Thef fer-  gapped “short-range RVBJ'spin liquid state’ the NL also
mion creates neutral, spih-quanta. In these variables, the contains low-lying gapless spin degrees of freedom, the
Hamiltonian becomesi=H ,+H+ Hy, with nodons, which contain the germ of true antiferromagnetic

order. As described in Ref. 1, the phenomenology described
U above can be easily extended to includeeNerder.
H¢:2 —Jcod ¢ — ¢j)+2 —(N;—1)?, (3.7 The description to this point has essentially neglected in-
) T2 ternodon interactions. This approach is justified provided
such interactions are weak, as all such terms are perturba-
cmxe et ot tively irrelevant(in the renormalization group sense the
; |A[(=1)%79f)f] +H.c., (3.8 Dirac theory describing the NLHowever, perturbative ir-
relevance does not imply thatrong interactions cannot
drive quantum phase transitions and hence a qualitative
o tai(Bi— )T £ change in behavior. Indeed, interacting Dirac fermion mod-
Hint <.E,> te Miafjat HC). 39 els are known to undergochiral symmetry-breakingransi-
tions as quartic couplings are increas@dhe nature of the
Note that the nodon-phase coupling has been transferradansition incurred depends upon the precise nature of the
from the pair-field interaction to the kinetic term by the op- interactions, and various circumstances can induce antiferro-
erator transformation. An insulating state is obtained in thanagnetism, spin Peierls, charge density wave, and other
limit U>J,t, where the charging energy dominates overtypes of ordering from the NL Lagrangian. Indeed, in the
both pair and single-particle hopping. This state can be studattice model above we obtained an interacti&u. (3.11)],
ied perturbatively irt andJ, expanding around the insulating capable of driving a transition to an antiferromagnetic state if
state withN;=1 exactlyon each site. At=J=0, however, sufficiently large.
thef-particle Hamiltonian is still highly degenerate. This de- Because of the uncertainties and pitfalls of attempting a
generacy is broken at second ordertimand J, giving the  microscopic justification of such interactions, however, we

A. Phenomenology

H;

~
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prefer to follow the strategy of Ref. 1 and take a more pheare very different. Alternatively, one can distinguish AF*
nomenological approach. For simplicity let us focus on theand AF by testing for the presence or absence of spin-charge
case of half-filling with particle/hole symmetry. Since the separation, employing the argument in Sec. Il. To make the
cuprate materials are clearly antiferromagnetically orderedargument precise in this case probably requires adding an
we will assumethe existence of a triplet collective mode easy-axis anisotropy,

with momentum ¢, 7). In the NL phase, spin-rotational in-

variance is not broken, and this magnon mode has a gap. _ X\ 2 2

Indeed we also expect a nonzero lifetime since the triplet Hea_})(: Jed (874 ()71, 4.2
magnons can decay into pairs of nodons. Thus, strictly

speaking, the magnons are not sharply defined elementalynich creates a gap in the magnon spectrum.*But it is of
excitations in this case. Nevertheless, we may imagine tun10re interest to address whether the AF and AF* phases can

ing a parametefe.g., reducing frustrating spin-spin interac- P& distinguishe@xperimentallyTo address this, we turn to a
tions in a lattice modglto reduce the magnon gap. Ulti- discussion of the electron spectral function in these two

mately when it vanishes the collective mode becomes sharpases

and condenses to form an antiferromagnetically ordered

state. In the antiferromagnetic state, the nonzerel Nector B. Electron spectral function

coherently mixes nodons with opposite quasimomentum and | standard many-body systems, the existence of well-
opposite spin, halving the magnetic Brillouin zone as is usuajefined excitations is ascertained by examination of the rel-
in spm-de_nsny-wave systems. As in those more (_:onventlonaévam spectral functioff Unfortunately, a direct probe of
cases, this has the effect of opening up a gap in the nodogpin_charge separation via spectral functions is not possible,

spectrum. since there are no local operators which separately create
) nodons and holons. On the other hand, the electron spectral
E (q)== \/(quL)2+(qu”)2+(g No)?, (4.1)  function A(k,w) is accessible experimentally, and has been

intensively studied in the high-temperature superconductors

wherevg andv, are the Dirac “velocities” perpendicular with momentum resolution via angle-resolved photoemission
and parallel to the putative Fermi surfacpjs the momen-  spectroscopdt 23 and locally (i.e., in momentum-integrated
tum measured from a noddl, is the mean-field staggered form) via nonlinear tunneling characteristitslt seems natu-
magnetization, andj is a phenomenological coupling con- ral to suggest thah(k,w) might possibly give one a way to
stant. Due to this mixing, the only gapless degrees of freedistinguish the AF and AF* phases, since in the latter un-
dom in the antiferromagnet are the collective spin-wavebound nodon-holon pairs form a two-particle continuum, and
modes guaranteed by Goldstone’s theorem. in the former the electron is itself the elementary excitation.

In this way we arrive at an effective low-energy field Unfortunately, the situation is not so simple, as we discuss
theory for an antiferromagnetic Mott insulator, which we below.
will denote (for reasons which will become appargas an
AF* phase. The antiferromagnetic spin order, featureless in- 1. AF
compressible charge configuration, and gapless spin waves T4 see how this idea works out in practice, let us first
are qualitatively identical to those we would obtain in moreonsider in some detail the spectral function in the AF phase.
conventional antiferromagnetic models, e.g. the nested spirg simple model which captures the qualitative physics of the
density wave in the weakly interacting half-filled Hubbard spectral function is fluctuation-corrected spin-density-wave

model, or alternatively the-J-like very largeV limit of the  ean-field theory. Théimaginary timé quasiparticle La-
same Hamiltonian. We stress, however, that although thétrangian is

nodons have been lifted away from zero energy, they are no

confined by the spontaneous symmetry breaking in the AF* . ~ s s

phase, i.e., spig-neutral particles still exist as well-defined L= fkck[ﬂﬁ ex—plektgN-C qocy, (4.3
elementary excitations. For this reason, we believe that such

an interesting antiferromagnetic insulatéf~*) is topologi-  where we have assumed orderingst (7, 7). For simplic-
cally distinct from (i.e., cannot be adiabatically deformed ity, let us assume the Fermi surface interseetf(w/2) with
into) a more conventional antiferromagnetiF) state. This  some curvaturdit is straightforward to generalize this to
conviction is bolstered by the existence of the dual ordether geometrigs Choosing new coordinates along the (1,1)
parameterb,, which we have argued characterizes the nodahnd (1-1) axes, we then writk= (TF/\E,OHCI and e,
|IQU|d and the AF* phase. Sinc@z createshc/e vortices in — U~VeQyt+ q§/2m near this point_ Performing a similar ex-

a pair field, the AF* phase contains the germ of supercon-pansion near the opposite point on the Fermi surface, and
ductivity. In contrast, construction of a dual order parameterdefining continuum fie|d§7¢(Q)EC(:w/\sz,0)+q, one finds

for the conventional antiferromagnet probably requires the
use of Chern-Simon&hargee) bosons, obtained directly by _ N I
statistical transmutation from the electrons. For example,  Lygp=7" aT+ivFrZax—ﬁa§ 7+gN- 7'y,
condensing elementahyc/e vortices in the spin-up boson to

VT . (4.4
form a chargee crystal which lives on one sublattice, and
similarly freezing the spin-down particles onto the other sub-whereg is the spin-density-wave coupling constant. We sup-
lattice, should suffice to describe the hidden order of the AFpress the additional quasiparticles located nearw(2,
phase. Evidently, the dual order parameters in AF and AF* 7/2), since these are not coupled to thefields by the
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LeT T T -< with dw=w—E(q). Equation (4.12 holds provided|q|
. N <mvg. Since IME:<dw for small Sw, the decay rate is
e AN negligible at low energies, and we expectdunction sin-
‘ \ gularity to survive in the spectral function @w=0 (there
N : will also be some small shifts in the energy spectrum itself
! ! given by the real part ok). When calculating thelectron
L . L spectral function, one needs to include the effects of the

. o ~ SU(2) rotation[Eq. (4.6)]. Since the physical electrons are
FIG. 1. Self-energy diagram for the charged quasiparticles in the ~ . =
AF phase. The solid line indicates a dressgdermion Green’s created by they fields, additional factors of thH operators

function, while the dashed line is the spin-wave propagator. appear inA(k, ). Thell operators may be expanded out of
the exponential and treated perturbatively. Both this effect
and the broadening due to the nonzero self-energy above
lead to additional weight fobw>0, which is often referred

to as “incoherent” spectral weight. The general expectation
for the electron spectral function in the AF phase is illus-

ordering wave vectoiQ. In the antiferromagnetic phase,

(N)=Ng#0, and if fluctuations are ignored the electron
states are gapped with energy dispersion,

— A2 022 o2 trated in Fig. 1.
El@)=va| +Vqu+qV/2m’ (4.5 The physical meaning of these results is the following.
with A=gN, the mean-field spin-density wave gap. The minimum energy excitation with chargeand spirg is

Spatial and temporal fluctuations of thé élidield N can the electron,.wh_ich in the iptera_cting system is “dressed” by
be described by, e.g., a Landau theory such agA&tp), or ~ Mmagnon excitations that mix with the bare electron. Further,
by a nonlineawr model. In the AF phase, we require only the there are higher-energy states involving a dressed electron
spin-wave expansion for small deviatiod$,<1, from per- and unbound excited magnons which are orthogonal to the

: e — > interacting electron but not the bare one, and thus show up as
fect alignment, i.6.N=No(II,,II,,v1—II%), for smallII. continua fordw>0 once interactions are present. The true

Since uniform rotations ol are equivalent by S(2) invari-  glementary excitation does not decay however, basically be-
ance, it is convenient to perform the “gauge” rotation cause phase spadwhich leads to the I~ (Sw)? law
~ ) abovd prevents it. Thus the expected electron spectral func-
n(x,7)=exdie;oillj(x,7)]n(X, 7). (4.8 tion has a resolution-limited dispersing peak at the single-
In the new variables, the quasiparticle Lagrangian becomeRarticle gap near its minimum, above which lies continuous
— ; spectral weight. Well away from#/2,77/2), phase space
Lngp= Lyt Lyi— 4, with )
may (or may noj} open up to allow decay even of the single-
L,= 7' T+Ac?]y, (4.70  particle peak, depending upon details of the band structure

and interactions.

Ly— =~ € 7'

.1
11 —anr[iﬁy} 7. (4.9 2. AF*

. _ , In the unconventional antiferromagnet, we expect the
Herel=d +ivemd,—(1/2m)dy. Finally, the magnons are presence of unconfined nodons and holons to lead to a two-

governed by the quadratic Lagrangian particle continuum in the electron spectral function. While
K this is indeed the case, lower-energy features in fact exist due
ﬁnz—[|57ﬁ|2+V§|Vﬁ|2]- (4.9 to nodon—hol_on bo_und sta}te§uch bound $tates are analo-
2 gous to excitons in semiconductors, which provide sharp

peaks in the optical conductivity despite the existence of an

The spin waves in Eq4.9) are gapless, as required by Gold- glectron-hole continuum at higher energies.

stone’s theorem. Neglecting the coupling to the spin wave o ) . : .
) T N Similar considerations apply here. In particular, if we con-
(@ good approximation iK is very large, so that thH fields  gjger the interaction of a chargeholon with a spin} nodon,
fluctuate very littlg, the  particles are noninteracting qua- it is quite natural to expect that they may experience an at-
siparticles with a gap, and have a sharp spectral function {ractive interaction leading to a bound state witith charge
0 1 0, s _ e and spin3, i.e., anelectron To show the existence of such
Ay(G,0) =7 IM G (g i og— w+i6)=5(w E(qu),.lo) bound states we specialize again to the case of half-filling
' with particle-hole symmetry. It is convenient to perform a
The spin-wave couplingEq. (4.8)], generates a self-energy particle-hole(Bogoliuboy transformation on the nodon op-
in the » Green'’s function. The relevant diagram is indicatederators near one pair of nodes,
in Fig. 1, and a straightforward if tedious evaluation shows
that "Z’aT: 1ar s FJ’aL: lljzlr_ai ) (4.13
—Ti 2 z -1
G,(a,©) [Iw+VFTZqX+qV/2m+AG T+2(Qo)] so that the number operator of the transformed fermions is
(4.11 . o
proportional to the z component of the spin:S,
1 =11d?x%". In the presence of N order,N=N,z, the
ImE(q,w)~W(5w)d®(5w), (4.12  transformed nodon Hamiltonian density takes the simple
Vs form
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H,=9H,, (4.14 Here we have defined an energy scale,
with a single-particle Hamiltonian eo=(Myv2+A,)/(2mpAa%). (4.29
Ho(py) =V(7,p5+ 7pY) + A PaV. (4.15  Since detfl)=W?(4—W?), the eigenvalue condition re-

duces toW=2, which gives the final result for the bound-

Here the nodon momentum operapge= —i Vrl is conjugate o0 binding energy:

to the positiorr4, and for simplicity we have assumed only a

single-nodon velocity. This Hamiltonian describes massive €= €o exp(— 16megy/U). (4.25
nodon states, with energy gap,=gN,. Since the holons are

also gapped, the appropriate first quantized Hamiltonian for lotice that the binding energy is exponentially small in the
single holon(with positionr, and momentunp,) is simply  interaction strengthy, reflecting the two-dimensional con-
stant density of states for free massive holons and nodons. If
one were to change the sign of the interaction, there is still a
bound statdfrom W= —2) with the sameenergy. In either

case, the bound state has the quantum numbers of the elec-
The form of the interaction between the nodons and hotron with s,=3 and charge+e. A spin-down bound state
lons follows from the dual Lagrangian in Sec. Il. For sim- can also be readily found, corresponding to the binding of a
plicity we only retain the density-density interaction term, holon to a single-nodon “hole” in the filled Fermi sea.
proportional toJyej;d;a;, Wheree;;d;a; is the holon density Between the threshold energy for generating the electron
and the nodon density can be expressed in terms of the trang,) and the energy of the unbound nodon-holon continuum,

formed fermions asly=/'r?¢%. The corresponding first the electron spectral function should be governed by qualita-

L
Hn(p2) =Ap+ 2my (4.16

guantized interaction Hamiltonian is then tively the same physics as in the AF case, except that the
) 5 total spectral weight of the corresponding feature will be
Hind(ri—rz)=ua?ro?6®(r;—r,), (417 reduced by matrix element factors arising from, e.g., the pos-

with interaction strengtli, anda is a short distance cutoff. SiPly large spatial extent of the nodon-holon bound-state
Since the two-body Hamiltonian is independent of theWave function. Upon reaching the nodon-holon continuum,

“center-of-mass” coordinateR=(r,+r,)/2, the total mo- we expect a much' enhanced. spectral Welg_ht put no sharp

mentum, P=p,+p,, is conserved. For simplicity we con- feature at the continuum, as it is already lying in the con-

sider bound states witR=0. The Hamiltonian for theela- ~ tnuum forr_ned b_y t_he electron plus sp_in-wave excitations,
tive coordinates and the pair excitation can thereby easily decay.

A(k,w) in the AF and AF* phases are thus not qualita-
r=ri—ry, p=(p1+p2)/2, (4.18 tively different, and cannot strictly speaking be used to dis-
tinguish the phases. Quantitatively, however, we expect the
AF* spectral function to exhibit a very small “quasiparti-

_ A cle” peak, with minimal separation from a nodon-holon con-
Hrer=Hn(P)+Hn(p) + Him(r)- 4.19 tinuum carrying most of the spectral weight. If we assume
To solve for bound states with enerBywe recast the Schro  that the holon gap greatly exceeds the gap for the nodons,

then takes the simple form

dinger equatiorH,qo=E¢ in the form then both features are expected to disperse in approximately
1 5 5 4 d-wave fashion, though the cusp for angles nea#5°
G () p(a)=—ua’r’o*p(r=0), (420 should be rounded by the nodon gdgy. (4.1)]. At nonzero

with matrix Greens functiorG~1(q)=H,(q)+Hn(q)—E.  temperatures, thermally excited particles will scatter the in-
Here ¢(q) denotes the Fourier transform of the four- jected electron and lead to a broade_ning of even the thresh-
component wave functiog(r). Upon matrix inversion this 0ld peak. In the AF* case, where this feature is expected to
can be rewritten aM ¢(r=0)=0, with lie close to the nodon-holon continuum and have a small
weight, such thermal broadening could well remove the qua-
B ) o} , siparticle peak completely at experimental temperatures.
M=1+ua J WG(Q)T o (4.2 For a system at half-filling but without particle-hole sym-
) o o metry, the Nel ordering wave vector is not commensurate
so that the eigenvalue condition is the vanishing of the deyith the spacing between antipodal nodes. If this incommen-
terminant: det{1) =0. Here we are implicitly assuming that syrability is sufficiently large, it is possible for the nodons to
the integration is cut off at high momentum hy=1/a. remain gapless even in the presence of long-range antiferro-
An explicit expression for the bound-state eneEgycan  magnetic ordet.In this unusual state, which we denote as
be readily obtained in the—O0 limit by putting E,=A,  AF/NL, gapless spirk nodons coexist with the spin-1 mag-
+Ap— e, With small binding energye,. In this limit one  nons. Since the density of states for the gapless nodons van-
need only retain the contribution to the above integral whichishes linearly with energy, a weak interaction with the mas-
is infrared divergent, which gives sive holons isot expected to result in a holon-nodon bound
, N state. Angle-resolved photoemission in the AF/NL phase will
M=1+W(o*r*~ %79, (422 thus have a number of notable features. Specifically, since
with the electron will decay into the nodon-holon continuum, one
does not expectany sharp features in the momentum-
W= —(u/8meg)In(ep/e€p). (4.23  resolved spectral function. The lowest energy spectral weight

2
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is expected at the nodes, with a threshold energy which dis- Typel Type I
perses linearly away from the nodes as in theave super-

conductor. The spectral weight should rise smoothly aboveT |----._ L
threshold due to the nodon-holon continuum—with no T I
S-function peaks. This behavior is in fact reminiscent of that
observed in the undoped Ca compound by SHemnd is in
marked contrast to thé-function spectral features expected
in a conventional antiferromagnetic insulator.

Psoudo-Gap ™, Pseudo-Gap

V. DISCUSSION 0

A small number of examples of condensed matter systems _ _ _ o
are generally agreed to exhibit exotic quantum numbers, i.e,, FIG- 2. Phenomenological phase diagrams in the nodal liquid
particles which seem to require “splitting” the electron. Ginzburg-Landau theory of Ref. 1. Hexes the hole doping, andl
Both charge fractionalizatih and spin-charge separation is temperature. As discussed in the tdxt/e vortex condensation
are generic in one dimensidrin the two-dimensional quan- leads to the unconventional AF* antiferromagnetic Mott insulator.
tum Hall effect, fractionally charged particles have beenNote that, depending upon the magnitude of particle/hole asymme-

. . _ try, nodons may remain gapless in an AF*/NL state at half-filling—
known to exist for some t|m%35, and recently have been ob space constraints prevent us from indicating this on the figure. De-

served in dramatic shot-noise experimefitsn both these pending upon microscopic parameters, two principal phase
examples, fractional charge is connected to topological excigiagrams occur opon doping. In the type-1 scenario, added charge
tations: solitons or domain walls in one dimension and vorsegregates into locally superconducting regions, which coalesce at
tices in two dimensions. some critical dopingx.. In the type-ll scenario, added charges
A third example, less widely appreciated, is a superconerder into a Wigner crystaM/C) with chargee per period, presum-
ductor in any dimension'® For the superconductor the ably with some associated spin ordering. After a small amount of
mechanism is differentPairing of electrons into singlets doping the antiferromagnetic order is suppressed and the nodons are
creates a gapless collecti(®cond sound mode that carries liberated into a nodal liquidNL) coexisting with the WC. Atx,
the charge. The sound mode can adjust almost instant#his WC melts into thed-wave superconductddSQO phase. See
neously to a quasiparticle, effectively neutralizing it, leavingRef. 1 for details. Some modifications are necessary if the effects of
only a bare spini. On the face of it this species of spin- impurities are included, some of which are discussed in Ref. 28.
charge separation appears considerably different from the
other topological varieties. paradigm presented here, spin-charge separation is a conse-
In this paper we have exploited a dual formulation toquence othc/e vortex condensation. Thus spin-charge sepa-
show that indeed isolated chargésolons”) derived from  ration could be indirectly evidenced by the observation of
the superconductor can be understood as topological excit&c/e vortices near the quantum critical point at which super-
tions in a vortex condensaté Further, we have described conductivity is destroyed.
how spin-charge separation can occur in an insulating state The continuity of spin-charge separation that is embodied
which results from the quantum disordering of a superconin the nodal liquid and its offspring AF* state makes possible
ductor. Of course, propinquity to the superconducting statea simple phenomenological description of the evolution from
does not guarantee the inheritance of spin-charge separatiaihie insulator to the superconductor, as espoused in Ref. 1.
it only occurs when flushc/e vortices condense. The most For example, the simplest Ginzburg-Landau formulation pre-
interesting example of this phenomenon—from the point ofdicts the phase diagrams in Fig. 2. If, on the other hand,
view of high-T. phenomenology—is the nodal liquid, which spin-charge separation &bsentin the undoped insulator,
we have discussed from this standpoint. The condensation ¢fiere must be a confinement transition betweerd and the
hc/2e vortices, on the other hand, leads to the confinemensuperconductor. While we have argued that such a transition
of spin and charge. The band insulator and the CDW, fois driven byhc/2e vortices, its nature and the phases which it
example, can be understood in this way. connects are highly nontrivial. The relative simplicity and
One striking consequence of the distinction between spirlegance of the nodal liquid scenario thus argues in favor of
charge separated, and confined systems is that there are tite relevance to the cuprates. Despite numerous and interest-
distinct antiferromagnetic states: one, AF, which is the ordi-ing differences among different compounds, the phase dia-
nary antiferromagnet and another, AF*, which is spin chargegrams of high-temperature superconductors enjoy a remark-
separated. The latter results from ordering the nodons in able degree of universality. A number of theoretical works
nodal liquid, so it has neutral, spi-excitations. However, have attempted to understand the commonalities and varia-
the distinction between the AF and AF* phases is experitions among the topology of these phase diagrams
mentally rather elusive. The natural place to look is the elecphenomenologically® At low temperatures, however, we
tron spectral function, which can be probed through anglebelieve classical phenomenology based only on conventional
resolved photoemission experiments. Under some conditionsrder parameters misses the important physics of gapless
(see Sec. IV B the unconventional antiferromagnet should quasiparticles and spin-charge separation that are key in the
exhibit only a nodon-holon continuum instead of a quasipar-vicinity of d wave superconductor-insulator transitioAsy
ticle pole. Unfortunately, the existence of nodon-holonviable theory of the cuprates must at least address the issue
bound states makes the distinction between the AF and AFdf how spin and charge either remain separated or become
phases rather subtle. On the other hand, according to theonfined on approaching the insulator.
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In addition to the search for a “smoking gun” experiment |£d,¢|,|édy@|,|é/V,o|<27. However, we expect on
for spin-charge separation, there are a number of other integrounds of universality that EA4) and its consequences
esting questions raised by this work. How do we implemeniprovide a correct low-energy description of thevave su-
the interaction between nodons ahd/2e vortices in an  perconductor and its quantum-disordered descendents more
SU(2)-invariant way? How do these formulations of spin- generally®* The analysis of the interactions of vortices with
charge separation apply to 3D systems? quasiparticles is based on the important change of variables
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APPENDIX: DIRAC LAGRANGIAN Jo= 347, (A7)
Here we review the effective Lagrangian for low-energy VE 4
d-wave gquasiparticles, following the notation of Ref. 1. It is Jj=-1i ?‘ﬂj ¥ (A8)
most directly written in terms of the appropriate Nambu-
Gorkov-like spinor,¥,,,,, with Compared to the statistical gauge interaction with
+hc/2e-flux vortices, Eq.(3.4) represents a much weaker
Wi1a(K)=Ck +k.a> (A1) two-fluidinteraction between the quasiparticle or nodon cur-
' rentJ, and the superfluid curredt,¢. A continuum duality
Voo (K) =i O-ZzBCt(K-Jrk) 5 (A2)  transformation appropriate for such a coupling was described

in detail in Ref. 1, and on the lattice in Ref. 18. Noting that

whereK,; and K, are the momenta of thd wave nodes the (Euclidian nodon current)* couples to the superfluid
along the Fermi surface. We use index-free notation in whicleurrentd, ¢ in a manner directly generalizing the Berry’s

Pauli matricesu, 7, ando act in the node, particle-hole, and phase couplingnye, the dual(Euclidian lattice action can

spin (a«) subspaces, respectively; furthermore, if a singlebe determined simply by replacifi@é,o—ingd,o+iJ,,

index is given explicitly, it is always the node index. In a i-€.,

particle-hole symmetric model at half-filling,K,= U

(£ m/2,7/12) in the usual §,b) crystalline coordinate system T 2 A 12

(i.e., axes along the Cu-O bond3he separation in EqA2) Sa=Sa=7 2;:‘ (€unhs8) ~Noduo=J,)%  (A9)

is well defined provided the momentum is restricted to points

near the nodes, i.gk|<A, whereA is a cutoff. The incorporation of antiferromagnetism was also de-
As in theswave case, we must allow for space-time de-Scribed in Ref. 1. A low-energy effective Lagrangian de-

pendence of the superconducting phaseFor adyz_y2 su- scribing the magnon mode and its coupling to the nodons is

perconductor, one has

£=3K,|3,N]2=Vy(IN))+gN-S;, (A10)

V(e (De;, (1) =Ad—x)exdie(x D], (A3) whereKo,=K, andK,;=K,=—v2K, with v, the spin-wave
where the prime on the angular brackets indicates an averagelocity in the AF. Here
(path integral over high-energy electronic states away from
the nodes, and= (x;+x;)/2. The amplitude functior 4(x) 1
is the Fourier transform of the usual momentum-space gap S&Zg[lﬂﬁy”aylﬂ% H.c] (A11)
function, A~ f(|k|)[cogk,—cogk,], and decays on the
scale Ofg It is Usua”y more convenient for us to work in is the Spin operator at momentl‘“;n Near any phase transi-
rotated coordinateg= (X, +Xp)/\2, y=(Xp—Xa)/\2. The  tions, and for most phenomenological purposes, it is suffi-
appropriate effective quasiparticle Lagrangian density wasient to take a simple form for the potential/y(|N|)

derived in Ref. 1: =rn|N|?+uy|N|*. The parametery controls the presence
or absence of AF order. In mean-field theory, and neglecting
_ ; ; for the moment the nodon couplig the ground state passes
Ly= WI(ig+iver?o ,
v sZ 110 P from long-range to short-range AF orderragis tuned from

. isel2 . isel? _ negative to positive. We include only the most relevant cou-
Hiva TR0, %)Wy + (1 2x—y). (A4)  pling of the Neel field to the nodons allowed by symmetry,

Equation(A4) is derived on the assumption that the phase
is slowly varying on the scale of the coherence length, i.e., Linodor= L4+ 9Ng-S;, (A12)
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Eqg. (4.2). In all nodon sectors there is a nonzeyap, equal

A compelling feature of the above description is the re-to gN,. The nodons having been lifted to finite energy, the
sulting low-lying spectrum in the antiferromagnet. The only remaining gapless excitations in the AF* phase are the
model can be readliy diagonalized with an appropriate Bospin waves(slow rotations ofN) dictated by Goldstone’s
goliubov transformation, giving the energy eigenvalues, intheorem.
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