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Dual order parameter for the nodal liquid
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The guiding conception of vortex-condensation-driven Mott insulating behavior is central to the theory of
the nodal liquid. We amplify our earlier description of this idea and show how vortex condensation in two-
dimensional~2D! electronic systems is a natural extension of 1D Mott insulating and 2D bosonic Mott
insulating behavior. For vortices in an underlying superconducting pair field, there is an important distinction
between the condensation of fluxhc/2e and fluxhc/e vortices. The former case leads to spin-charge confine-
ment, exemplified by the band insulator and the charge-density wave. In the latter case, spin and charge are
liberated, leading directly to a 2D Mott insulator exhibitingspin-chargeseparation. Possible upshots include
not only the nodal liquid, but also an undoped antiferromagnetic insulating phase with gapped excitations
exhibiting spin-charge separation.@S0163-1829~99!02924-0#
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I. INTRODUCTION

The present paper is rooted in the conviction that the b
property of an insulator is that it insulates. Magnetic orde
a secondary effect which, though it may be one of the app
tenances of insulating behavior, is not synonymous with
This premise underlies our recent discussion of the ph
diagram of underdoped cuprate superconductors, where
relied upon the notion of an insulator as a vort
condensate.1,2 Here, we would like to elucidate and expan
upon this paradigm. As a by-product of this approach,
find a precise distinction between spin-charge-separated
confined insulators.

Since correlated insulators often exhibit magnetism, th
are typically described by their magnetic order paramet
Furthermore, in commensurate, weak-coupling models,
development of magnetic order can be the mechanism
which a system becomes insulating. This can lead to a c
flation of magnetic order with insulating behavior.3 How-
ever, this state of affairs is both unsatisfying and incomple
since magnetic order can persist even when the system
comes conducting and, conversely, a system can be ins
ing even in the absence of magnetic order, as suggeste
Anderson’s original Resonating Valence Bond~RVB! ideas
and exemplified by the nodal liquid. Hence it would behoo
us to seek an order parameter which is directly related to
electrical properties of an insulator. The difficulty in such
program is that an insulator seems more disordered tha
conductor since most correlation functions in the charge s
tor are short ranged. We interpret this as suggestin
‘‘dual’’ approach based on a ‘‘disorder’’ parameter. Distil
ing the key elements of our nodal liquid construction, w
propose that the appearance of a nonzero expectation v
for a disorder parameter signals an insulating behavior.

The relation between the conduction properties of a s
PRB 600163-1829/99/60~3!/1654~14!/$15.00
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tem and spontaneous symmetry breaking in a dual order
rameter is perhaps most transparent in the field-theore
formulation of duality.5 In this version of the transformation
the dual theory is constructed to implement local charge c
tinuity, which is adynamicalconsequence of U~1! symmetry
in the original Hamiltonian, as a rigidconstraint~dynamics
in the dual theory implies conservation ofvorticity!. This
construction is quite familiar from the one-dimension
theory of Luttinger liquids.6 There the two-current can b
written in terms of a phase fieldf(x) as

j i5] if. ~1.1!

In the alternative, but equivalent, dual description, the c
rent can be written in terms of a dual field,u:

j i5e i j ] ju. ~1.2!

In a one-dimensional Mott insulator, theu field acquires a
mass, implying a gap in the spectrum of charge excitatio
and hence, experimentally, in the optical conductivity. No
that massive dynamics for thephasefield f is inconsistent,
since it would violate charge conservation] i j i50. The one-
dimensional model has thus communicated an important
son: insulating behavior occurs when a gap is acquired
the dual field representing the current operator.

This description of Mott insulators generalizes readily
two-dimensionalbosons. Let us write the boson annihilation
operatorc in terms of its amplitude and phase:c5Areiw. In
the superfluid state, we fixr and describe the system by i
phase degree of freedom,w(x):

L5 1
2 ~]mw!2. ~1.3!

We can model the destruction of superfluidity by introduci
a vortex fieldF; effectively, we are reducing the amplitud
1654 ©1999 The American Physical Society
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degree of freedom to a vortex field which keeps track of
points at which it vanishes. We can represent the cur
j m5]mw as5,7

j m5emnl]nal , ~1.4!

which is the natural extension of Eq.~1.2! to two dimen-
sions. This parametrization is highly redundant as a resu
its invariance under the gauge symmetry:

am˜am1]mx ~1.5!

for an arbitrary function,x. This gauge symmetry is enor
mously larger than the analogous global invariance in
one-dimensional Luttinger liquid,u˜u1const. The vortices
‘‘see’’ the gauge fieldam according to the Magnus force law
so the dual Lagrangian takes the form

LD5 1
2 ~]man!21u~]m2 iam!Fu21V~F!. ~1.6!

In the superfluid state, vortices are gapped and the bo
condense, while, in the Mott insulating state, the vortic
condense and the bosons become gapped~at the chemical
potential!. When the vortices condense,am becomes massive
by the Anderson-Higgs mechanism. As a consequence
system is insulating.

Let us abstract away the archetypal features of this s
tem. We can introduce representation~1.4! for any conserved
current in two dimensions, so we can certainly use it for
electrical current in the fermionic system of our choice.
order to carry the rest of this scheme over to electronic s
tems, we must find a way for the system to conspire to m
am massive. The only way that this can happen which
consistent with the gauge symmetry~1.5! is via the
Anderson-Higgs mechanism.8 Since the Anderson-Higg
phenomenon can only take place if there is a conden
which is coupled toam according to the Magnus force law
@Eq. ~1.6!#, we are led to the following question: how do yo
define a vortex field in a fermionic system? One possibility
to implement statistical transmutation to represent the fer
ons as bosons coupled to an auxiliary Chern-Simons ga
field.6 Then we can define vortices in the bosonic field. T
approach is probably suitable for describing a conventio
antiferromagnet, as discussed very briefly in Sec. IV. Bu
this paper we pursue a different tack—using Cooper pair
the bosons. This is quite promising for the cuprates beca
it is tailor made for insulators which contain the germ
superconductivity.

A question rears its head when we consider an insul
which descends in this way from a superconductor: do
finite-energy excitations inherit their quantum numbers fr
the superconducting state, or do they simply have the e
tron quantum numbers? In particular, one can ask what is
energy of an isolated neutral spin-1

2 excitation. If this di-
verges with system size, then spin and charge are confi
If, on the other hand, it is finite, as it is in a superconduct
then the insulator exhibits spin-charge separation. A tw
dimensional~2D! band insulator is, of course, a state of t
former variety. As we show in Sec. II, this can be understo
~rather differently than in elementary textbooks! as resulting
from the condensation of fluxhc/2e vortices in a state with
s-wave pairing. Spin and charge are confined as a resu
the Aharonov-Bohm phase, which a spinful excitation a
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quires as it orbits anhc/2e vortex; an isolated spin12 has a
logarithmically divergent energy in two-dimensions. Th
spin-charge confinement physics is also present in a cha
density-wave~CDW! insulator, which occurs for example i
the negative-u ~extended! Hubbard model at half-filling.
There, however, thehc/2e vortex condensation leads t
translational symmetry breaking~see also the second refe
ence in Ref. 2!. In both instances the resulting insulatin
phase can be viewed as a ‘‘crystal’’ of charge 2e ‘‘Cooper’’
pairs. For 2D electronic systems at or near half-filling w
strong on-site repulsion, however, such CDW order is phy
cally unreasonable, and for the cuprate materials can be
carded on phenomenological grounds. For this reason we
led to consider the possibility of the condensation of dou
strengthhc/e vortices in a superconducting pair field.9

The Mott insulator which arises at half-filling upon con
densation ofhc/e vortices has a number of appealing a
remarkable properties. The insulating phase is translation
invariant, in contrast to the CDW. Moreover, since there
no Aharonov-Bohm phase factors when a spin1

2 is trans-
ported around anhc/e vortex, the resulting Mott insulato
exhibits spin-chargeseparation.4,10,11 For a d-wave super-
conductor appropriate to the cuprates, condensation ofhc/e
vortices leads directly to thenodal liquid.12 The nodal liquid
indeed possesesgapless spin 1

2 but charge-neutra
fermions—the nodons—which descend directly from t
d-wave quasiparticles. As we shall see, there are also m
sive chargee spinless boson excitations in the nodal liqu
phase. These ‘‘holons’’ are solitonictopologicalexcitations
in the underlyinghc/e condensate, a dual analog of Abriko
sov flux tubes. The excitations in the nodal liquid have t
same quantum numbers as in the spin-charge-sepa
gauge theories,13 but are weakly interacting rather tha
strongly coupled by a gauge field. We suspect that a no
liquid ground-state requires the retention of the charged
grees of freedom, and cannot occur in a spin-only mode

A peculiar feature of the nodal liquid is that spin-char
separation survives the ordering of the nodal spins int
phase with long-ranged antiferromagnetic order. T
phase—denoted AF*—which has gapped nodons is dist
from the conventional Ne´el antiferromagnet AF which doe
not have neutral, spin-1

2 excitations even at high energies.14

These two phases are physically very different, as may
seen from simplegedankenexperiments which make th
point that chargee can be physically separated from spin1

2

with finite energy cost in the AF* phase but not the A
phase. However, in two dimensions nodon-holon bou
states form in the AF* phase, so the spin-charge separatio
not so easily found in the electron spectral function.

Our ultimate goal is to describe a spin-charge-separa
state, the nodal liquid, and an ordered state which can re
from it, AF*. Along the way, however, we will re-examine
number of seemingly quotidian states such as the band i
lator, the charge-density wave, and the antiferromagnet.
broader framework will enable us to understand the phys
of doping these insulators from the point of view of creati
topological excitations in the disorder parameter.15 Such a
point of view naturally leads to a discussion of the possibil
of spin-charge separation in these states. In Secs. II and I
we will illustrate the physics of fluxhc/2e condensation in
systems with attractive electron-electron interactions, wh
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we expect the insulating states to be related tos-wave super-
conductivity. In the resulting states, the band insulator a
the CDW, spin and charge are confined, as we discus
length in Sec. II. In Sec. III B, we then consider fluxhc/e
vortex condensates in ad-wave superconductor, filling in a
gap in our earlier paper. We introduce an effective latt
model in Sec. III C which incorporates this physics. In S
IV, we discuss the spin-charge-separated antiferroma
AF*, and compare it to the conventional antiferromagnet A
Possible experimental signatures are analyzed. We conc
with some summary remarks in Sec. V, relegating some s
porting technical details to the Appendix.

II. BAND INSULATOR AND SPIN-CHARGE
CONFINEMENT

In the absence of electron interactions, a band insul
with two electrons per unit cell corresponds to a filled v
lence band of noninteracting levels. Provided the interacti
are small compared to the energy gap of the conduc
band, this should provide a good description of the pha
But even with stronger interactions a band insulator can
adiabatically deformed~without gap closure! back to the
noninteracting state. To obtain an order parameter for
band insulator, we will attempt to describe this phase a
‘‘quantum-disordered’’s-wave superconductor.

To this end, consider spinful electrons moving in the tw
dimensional continuum. In the presence of a local attrac
interaction the Fermi surface is unstable, and presume
form a spin-singlets-wave superconducting phase, with e
ergy gapD. Now imagine introducing a periodic potentia
with magnitudeV and a period corresponding to two ele
trons per unit cell. ForV much smaller thanD the supercon-
ducting phase should be stable, but with increasingV one
expects an eventual quantum transition into a band insula
This transition can be described as a quantum vortex unb
ing transition, analogous to the thermally driven Kosterli
Thouless transition. At zero temperature the vortices
condense, giving one an order parameter for the band i
lator.

Of particular interest is the nature of the gapped exc
tions in the two phases. As we shall discuss, in a superc
ductor it is possible to define charge-neutral quasiparticle16

which carry spin 1
2 . In an s-wave superconductor thes

‘‘spinon’’ excitations are fully gapped,10 but can be gaples
~called nodons! in a d-wave superconductor, which we retu
to in Sec. IV below. Since the Cooper pairs carry no spin
a singlet superconductor, the Cooper pairs and spinons
vide a natural spin-charge-separated description of the su
conducting phase. On the other hand, the excitations
band insulator are electrons which of course carry both s
and charge—the band insulator doesnot exhibit spin-charge
separation. We would like to try and understand the mec
nism whereby the separated spin and charge excitation
the superconductor become ‘‘confined’’ upon entering
band insulator.

To address these issues, it is convenient to consid
low-energy effective theory for an s-wave superconducto
which both Cooper pairs and the gapped quasiparticle st
near the Fermi surface are retained. The appropriate
grangian takes the formL5Lc1Lw1Lint , with
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Lc5ca
†~x,t!@ i ] t2¹22m#c~x,t!, ~2.1!

Lw5
km

2
~]mw!2, ~2.2!

Lint5uDueiwc↑~x!c↓~x!1H.c. ~2.3!

Hereca denotes an electron with spina, andw is the phase
of the pair field, with magnitudeuDu. Integrating over high-
energy electron states, well away from the Fermi surfa
will generate dynamics for the phase field. The appropri
form of Lw at low energy is essentially determined by sym
metry. Here we have retained the leading-order terms i
gradient expansion, withk05k the compressibility and
2k j5vc

2k0 a superfluid stiffness. Henceforth we will set th
velocity vc51. In general a Berry’s phase term6 of the form
LBerry5n0] tw is allowed ~see Sec. III below! but with one
Cooper pair~two electrons! per unit cell of the periodic po-
tential n051 and the Berry’s phase term can be dropp
since exp(i*dtLBerry)51.

Notice that the phase fluctuations are strongly coupled
the electron operators throughLint . To decouple this inter-
action and to exhibit the spin-charge separation, it is con
nient to consider the change of variables

f a~x!5eiw/2ca~x!. ~2.4!

The Lagrangian becomes

L5Lf1Lw1 1
2 Jm]mw, ~2.5!

with

Lf5 f a
†@ i ] t2¹22m# f a1uDu f ↑~x! f ↓~x!1H.c., ~2.6!

andJm is a quasiparticle three-current operator:

J05 f a
† f a , JW5 i f a

†¹W f a1H.c. ~2.7!

This current is not conserved as a result of the anoma
term ~2.3!, but the spin currents

J0
i 5 f a

†sab
i f b , JW i5 i f a

†sab
i ¹W f b1H.c. ~2.8!

are conserved. Here we have assumed that the phase fi
slowly varying, and have dropped terms involving two sp
tial gradients ofw.

The LagrangianLf can be diagonalized as usual by
Bogoliubov transformation, and describes gapped quasip
cles. Since thef operators are electrically neutral but car
spin 1

2 , these excitations are ‘‘spinons.’’ The spinons a
coupled to the phase fluctuations via a Doppler-shift-ty
term. In the superconducting phase these phase fluctua
are small, and will generate a weak interaction between
gapped spinon states.

To quantum disorder the superconducting phase and
rive at a description of the band insulator, we will need
allow for vortices in the phase of the pair field. In two d
mensions vortices are simply whorls of current swirlin
around a core region. The circulation of such vortices
quantized, since upon encircling the core the phasew can
only change by integer multiples of 2p. The ‘‘elementary’’
vortices have a phase winding of62p. Since the Cooper
pairs have charge 2e, in the presence of an applied magne
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field these vortices quantize flux in units ofhc/2e. Inside the
core of a vortex themagnitudeof the complex order param
eter uDu vanishes, but is essentially constant outside. Si
the position of these ‘‘pointlike’’ vortices can change wi
time, their dynamics requires a quantum-mechanical desc
tion. Thus a collection of many vortices can be viewed a
many-body system of ‘‘pointlike’’ particles. Since positiv
~11! and negative (21) circulation vortices can annihilat
and disappear, they behave as ‘‘relativistic’’ particles. Th
is a conserved vortex ‘‘charge’’ in this process, namely,
total circulation and an associated current. A duality tra
formation can be implemented5,7 in which the phasew is
replaced by a dual fieldu, which is the phase of a vorte
complex fieldF;eiu. In a Hamiltonian description,F and
F† can be viewed as vortex quantum field operators—wh
destroy and create vortices.

A crucial element in the duality transformation is the to
electrical three-current,Jm

tot5km]mw1Jm/2, which must be
conserved even in the dual representation. This is achie
by expressing the current as a curl of a gauge field,am ~Ref.
5!:

Jm
tot5emnl]nal , ~2.9!

which automatically implies the continuity equation]mJm
tot

50. This representation also introduces a gauge symm
into the problem,am˜am1]mL. It is this gauge symmetry
which is spontaneously broken in the band insulating sta

In Ref. 1 the duality transformation was implemented
the presence of the Doppler-shift interaction between
Cooper pairs and the spinons, giving a dual Lagrangian
the form: LD5Lf1Lv1La with a vortex piece of the
Ginzburg-Landau form,

Lv~am!5
km

2
u~]m2 i2pam!Fu22r uFu22uuFu4,

~2.10!

and

La5
1

2k0
~ej

22b2!1
1

2k0
Jmemnl]nal . ~2.11!

Here ej5(] ja02]0aj ) and b5e i j ] iaj are dual ‘‘electric’’
and ‘‘magnetic’’ fields. The dual magnetic fieldb is simply
the total charge density~in units of the Cooper pair charge!.
The last term inLa is the only one coupling the spinons
the vortices. However, this dual Lagrangian is not valid sin
it ignores a strong statistical gauge interaction betw
spinons andhc/2e vortices. To see this consider taking
spinon ~f! around a closed loop which encircles anhc/2e
vortex. Along this circuit the phasew winds by 2p. Due to
the 1

2 in Eq. ~2.4!, this implies that the spinonf must change
sign upon completing this circuit. This can be forma
implemented by introducing branch cuts emanating fr
each and every vortex across which the fermion wave fu
tion must change sign. This represents a strong and lo
ranged ‘‘statistical’’ interaction between the spinons a
hc/2e vortices.

The presence of this long-ranged interaction clearly
validates the form of the dual Lagrangian. One is tempted
try and incorporate the branch cuts by introducing two n
e
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gauge fields coupled together by a Chern-Simo
interaction.6 The most natural way of doing this is to intro
duce a couplingJmam of the spinons to a gauge fieldam
which attaches half of a fictitious flux quantum to each v
tex. However, such a coupling is not gauge invariant sin
the spinon currentJm is not conserved. To avoid thi
problem—but at the cost of breaking spin-rotation
invariance—we coupleam to thez component of the spinon
spin current, which is conserved. Specifically, letam andam

s

denote statistical gauge fields coupled to the spinons
vortices, respectively, with a modified dual Lagrangian

LD5Lf1La1Lv~am1am
s !1amJm

z 1Lcs ~2.12!

and a Chern-Simons interaction

Lcs52amemnl]nal
s . ~2.13!

The Chern-Simons term effectively attaches flux tubes w
strength1

2 to each of the spinons and vortices. This follow
from the equations of motion obtained from]LD /]am50
and]LD /]am

s 50, which imply, respectively,

emnl]nal
s5 1

2 Jm
z ~2.14!

and

emnl]nal5 1
2 j m

v . ~2.15!

Here, the vortex three-current is given by

j m
v 5Im@F* ~]m2 iam!F#. ~2.16!

Consider now trying to condense thehc/2e vortices. In
the ground state the spinon (f fermions! are gapped out with
^Jm

z &50, so one can presumably setam
s 50. Setting ^F&

5F0 corresponds to a spontaneous breaking of the ga
symmetry, and leads to an effective Higgs LagrangianL
5F0

2kmam
2 /2. In terms of the dual Ginzburg-Landau theo

this describes the ‘‘Meissner state.’’ But since the curl ofam
corresponds to the total electrical current, this phase co
sponds to an insulator—the band insulator—with a cha
gap.

If the dual Ginzburg-Landau theory is type II, it will ex
hibit topological excitations corresponding to penetrati
quantized ‘‘dual’’ flux tubes. In the electronic insulator the
correspond to gapped charge62e spin-zero states, which
are two-electron bound states.

But now consider an excited state in the insulator wh
carries spin1

2 . This can be created by adding a spinon at
origin by acting with f a

†(x50). The presence of a spino
induces a statistical gauge field from the Chern-Simons te

hs~x!5e i j ] iaj
s5 1

2 J05 1
2 d2~x!. ~2.17!

Sincehs(x) corresponds to an applied ‘‘magnetic field’’ i
the dual Ginzburg-Landau theory, adding a spinon is equ
lent to the insertion of a solenoid carrying one-half of
~dual! flux quantum. Being in the Meissner state, the du
Ginzburg-Landau theory will tend to screen out this appl
magnetic field by generating currents that induce an opp
ing internal field,b(x). This follows readily from the energy
in the Meissner state, which takes the form
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E5
F0

2k0

2 E d2xu¹u22paW 22paW su2, ~2.18!

where we have putF5F0eiu. With both u50 andam50
the energy in the presence of the solenoid will diverge lo
rithmically with system size. Apparently, the energy of
isolated spinon diverges in the thermodynamic limit. But
the presence of an induced internal magnetic field the en
will be finite provided the integrated flux is precisely on
half of the dual flux quantum:

E d2x b~x!52 1
2 . ~2.19!

In physical terms this corresponds to an induced cloud
electric charge with magnitudee. Evidently, in the insulating
phase an isolatedSz5

1
2 excitation will bind chargee to form

a spin-up electron. The resulting excitation has finite ene
Similarly, an isolatedSz52 1

2 will bind charge2e to form a
spin-down hole with the same energy as the spin-up elect
This mechanism for confinement of spin and charge is re
niscent of the confinement of charge and flux which occ
in the quantum Hall effect. In the bosonic Chern-Simo
formulation of the quantum Hall effect, the confinement
charge and flux also arises via a Higgs mechanism—in
case when the composite Boson condenses.

For the above Ginzburg-Landau–Chern-Simons the
there is another finite-energy configuration in the presenc
a singleSz5

1
2 —a 2p winding in the phaseu of the vortex

field together with an internal field of one-half quantu
which aligns with the ‘‘applied flux’’ @*d2x b(x)51 1

2 #.
This creates a finite-energy excitation with spin1

2 and charge
2e, corresponding to a conventional spin-up hole. We c
create a spin-down electron of equal energy in a similar m
ner. On physical grounds the energy of theSz56 1

2 states
should clearly be degenerate. Unfortunately, for the ab
Ginzburg-Landau–Chern-Simons theory, while both en
gies are finite, they will in general be different, due to d
ferences in the core energies~e.g., near theSz52 1

2 state
with u winding, it is necessary to suppress the magnitude
F to zero!. This signals a clear deficiency in the Cher
Simons formulation of the ‘‘statistical’’ interaction betwee
spinons andhc/2e vortices. Since the vortices and spino
can sense thesign of the statistical flux~that is, 6 1

2 flux
quanta arenot identical! the Chern-Simons fields do not giv
a faithful representation of the branch cuts. The neces
evil of breaking spin-rotational symmetry is a conseque
of this asymmetry in the Chern-Simons formulation.

Currently, we do not have a convenient formulation
interactinghc/2e vortices and spinons which correctly re
spects this symmetry. Such a formulation would be parti
larly desirable for the case of ad-wave superconducto
where the quasiparticles are gapless. Nevertheless, we
lieve that the Chern-Simons formulation does help elucid
the correct mechanism behind confinement of spin
charge upon condensation ofhc/2e vortices.

The preceding considerations dovetail naturally with
following approach to understanding spin-charge separat
Consider the followinggedankenexperiment, for which we
are indebted to Halperin,14 which probes the existence o
spin-charge separation. Consider a totally gapped sys
-
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which exhibits spin-charge separation, meaning that it
weakly coupled neutral spin-1

2 excitations—spinons—and
chargee spin less excitations – which we will call holons
following Ref. 10. Imagine imposing two spatially localize
perturbations. These take the form of an interaction Ham
tonian

H int5l@„Q~x!2e…21„Sz~x!…2#

1l@„Q~x8!…21„Sz~x8!2 1
2 …

2#. ~2.20!

Here Q(x)5(yr(x1y) f (y,z) and Sz(x)5(ys
z(x1y)

3 f (y,j) are the total charge andz component of the spin
within a smoothed region of linear sizej around the pointx.
For reasons of mathematical rigor, we choosef (y,j) to be a
differentiable function ofy with f (0,j)51 and f (y,j)
5 lnj/lny for y.2j. The perturbation favors localizing
chargee without spinnear x and a spin1

2 without charge
nearx8. Now imagine takingux2x8u@j@a ~the lattice spac-
ing!, so that the points are well separated. For smalll, the
ground state of the system will be unchanged, since ther
a gap to all excitations. Increasingl will ultimately induce a
change in the ground state to take advantage of these pe
bations. Providedj is taken larger than the size of the spino
and holon, these excitations can come into the system
lower its energy and will be localized in the wells. Th
change in the ground state will occur at finitel, since the
energy gap to the spinon and holon is finite, and indeed
critical l will saturate asux2x8u˜`. One can interpret this
critical lc as the minimum energy needed to produce
unbound spinon-holon pair.

Now imagine repeating the same experiment on a b
insulator or any other state which does not exhibit sp
charge separation. In this case, the spinon and holon are
available to ‘‘fill’’ the local perturbations. Instead the syste
must create a nonlocal superposition of elementary exc
tions, i.e. develop a polarization, to localize the desir
chargee or spin 1

2 . Consider, for example, the region aroun
the pointx, in which a chargee should localize. A simple
and generic model for a band insulator is a collection of de
potential wells, each containing two electrons. For the lo
energy states, the wells may be approximated as quad
and, in the ground state, all electrons are in the low
harmonic-oscillator level. The lowest excited states which
not induce local spin textures are constructed simply
moving both electrons in one of the wells from the grou
state to one of the first excited states with energy gapv0. A
convenient basis for these states is the setum&5a↑m

† a↓m
† u0&,

whereaam
† 5Amv0/2(xm2 ipm /mv) is the raising operator

along thei axis in space. Now consider the superposition
the ground and excited states,

uu&5~11uuu2/ l 2!21/2S u0&1
um

l
um& D , ~2.21!

where l 5A2/mv0 is the characteristic spatial width of th
harmonic oscillator levels. For smalluuu, the stateuu& repre-
sents a small displacement of the electrons, i.e.,

^uuxuu&5u. ~2.22!

Thus it possesses a dipole momentd522eu, and a local
charge may be built up by polarizing the collection of all t
electrons near the pointx ~i.e. forming a many body state
which is a direct product of single-particle states with diffe
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ing displacements on each site!. We consider a slowly vary-
ing displacementu(x) for which a continuum description i
adequate~although this is not a necessary restriction!. Far
away from the pointx, the induced charge densityr5
2e“•u, and hence the charge in a given regionR is
*Rddx r(x)52e*]Ru•dn̂. The radially symmetric configura
tion

u~x9!5
1

2Sd

x2x9

ux2x9ud
~2.23!

thus carries a total chargee. Provided all the electrons ar
involved in the texture, there is no net spin polarization. T
polarized state is not an eigenstate of the unperturbed Ha
tonian, but does couple favorably to the first term in E
~2.20!. We can, however, determine the expectation value
the ~unperturbed! energy in this state. The result is esse
tially classical: E(u)5*ddxv0(u/ l )2. In two dimensions,
this integral is logarithmically divergent,E(u); ln L. The
isolated long-range polarization thus cost aninfinite energy.
In the thought experiment, this divergence will be cut off
the finite distance betweenx andx8, since we may localize
an oppositely charged texture around the pointx8 in combi-
nation with an added electron withSz5 1

2 , thus satisfying
both perturbations and rendering the energy finite. Howe
the criticallc will grow logarithmically asux2x8u˜`, and
hence it becomes impossible to create the isolated holon
spinon in the thermodynamic limit.

This argument is appealing in that it agrees with ear
Chern-Simons calculations, which suggested logarith
confinement of holons and spinons. As a means of dis
guishing spin-charge-separated from spin-charge-confi
phases, however, it is somewhat delicate. In particular
fails for d.2, where the polarization energy to create t
chargee texture becomes finite. It is also somewhat unsa
fying because the texture is not an eigenstate of the un
turbed Hamiltonian. Fortunately, the duality formalism a
lows the two phases to be distinguished instead by the
order parameterF. WhenF condenses, the statistical gau
interactions between spinons and the condensing vort
leads to spin-charge confinement ind52. In this senseF is
an order parameter for confinement, a rather unique feature
of the present theory.

III. MOTT INSULATORS, HC/E CONDENSATES,
AND NODAL LIQUID

We now turn to the more interesting case of insulatin
phases with one electron per unit cell. In such Mott insu
tors, electron interactions are necessary to destroy the m
lic state, in contrast to the band insulator which has a smo
noninteracting limit. As in Sec. II, we will obtain a descrip
tion of the insulating state by quantum disordering an app
priate superconducting phase. A brief discussion
quantum-disordereds wave superconductivity at this densi
illustrates the need to consider ‘‘double-strength’’ vort
condensates in the cuprates. Suchhc/e condensates ar
nodal liquid insulators, and the subject of the remainder
this section.
s
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A. Quantum-disordered s wave

We begin by considering a system of spinful interacti
electrons moving in the 2D continuum, which pair to form
spin singlets wave superconducting phase, and then ‘‘tu
on’’ a periodic potential which for simplicity has squar
symmetry. Here, however, we choose the period to co
spond to one electron per unit cell. As in Sec. II, with i
creasing potential strength the superconducting phase ca
destroyed by the unbinding and condensation ofhc/2e su-
perconducting vortices. But in this case there is only one-h
of a Cooper pair per unit cell, so the resulting insulati
phase will be dramatically different from the band insulat
In particular, one expects the formation of a crystalline st
of Cooper pairs which exhibits charge-density-wave order
at wave vector (p,p), and spontaneously breaks~discrete!
translational symmetry.

In order to proceed expeditiously to our main interest,
nodal liquid, we only mention a few salient points here. T
difference between the CDW and the band insulator in
present approach is that the Berry’s phase term7

LBerry5n0] tw ~3.1!

cannot be dropped. To appreciate the physics of this te
we must return to the lattice, where the lattice Hamiltoni
corresponding to Eq.~2.2!, together with the Berry’s phas
term @Eq. ~3.1!# takes the form:

Hw52t2(
^ i , j &

cos~w i2w j !1U2(
i

~ni2n0!2. ~3.2!

Hereni is the Cooper pair number operator which is cano
cally conjugate tow. Because, at half-filling, there is, o
average, half a Cooper pair per site, one hasn05 1

2 .
Implementing duality as before7 ~but now on the lattice!

gives a dual Euclidean action which is the lattice analog
Eqs. ~2.10! and ~2.11!, the only difference being that th
Maxwell term(1/2k0)(ej

22b2) term is replaced by

Sa5
u2

2 (
j m

~emnlDnaj
l2n0dm0!2. ~3.3!

The new feature, as compared to the last section, is
‘‘offset’’ charge n0 which results from the Berry phase ter
~3.1!. It corresponds to an applied ‘‘magnetic’’ field for th
lattice Ginzburg-Landau theory. The insulating CDW pha
of the Cooper pairs corresponds to an Abrikosov flux latt
in this dual representation. As in the case of the band in
lator, the vortex condensate leads to a charge gap and i
lating behavior.

Generally, one expects that a condensation ofhc/2e vor-
tices will lead to charge ordering with charge 2e per unit
cell. This follows from the underlying duality:hc/2e vortices
pick up a 2p phase change upon encircling charge 2e Coo-
per pairs—the same phase accumulated when a Cooper
encircles such a vortex. Thus the liberation and condensa
of hc/2e vortices leads to a charge quantization in units
2e. For the model with attractive interactions and one el
tron per unit cell considered above, the resulting state is
CDW at wave vector (p,p), which can be thought of as
~charge 2e) Cooper pair crystal.
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B. Quantum-disordered d wave

We now turn to the interesting problem of the quantu
disorderedd-wavesuperconductor.d-wave superconductiv
ity is thought to arise from the combination of strong on-s
Coulomb repulsion and some unspecified~and controversial!
longer-range attraction on the scale of a few lattice spacin
Certainly strong local repulsion is a key ingredient of t
cuprates. For such systems, thehc/2e vortex condensation
described above—which implies considerable double oc
pancy ~at least in a region near half-filling!—is physically
unreasonable. It must also be discarded on phenomeno
cal grounds, as the actual undoped antiferromagnet is a M
insulator without charge ordering.

Although hc/2e-flux vortex unbinding is untenable fo
this case, phase coherence must nevertheless still be
stroyed to obtain an insulating state. Charge uniformity a
phase disruption can both be achieved together by unbin
bound pairs of vortices with flux hc/e instead of isolated
ones. We expect such adouble-vortex condensateto appear
in the dual description as a condensate with a doubled
charge, and hence a halved dual flux quantum.9 At half-
filling, then, the dual lattice Ginzburg-Landau theory has
full 2p flux per plaquette, and thus, as desired, exhibits
translational symmetry breaking.12

Having motivated double-vortex condensation in thed
wave case, we now proceed to discuss its implementa
The calculations are significantly different because of an
portant additional physical ingredient in thed-wave super-
conductor: gapless fermionic quasiparticles. These exc
tions arise owing to the vanishing of the amplitude of t
pair wave function at its nodes in momentum space. T
presence of low-energy fermionic excitations necessitate
careful reinvestigation of the duality transformation and
implications. Much of the necessary calculations and form
ism was discussed in detail in Ref. 1, and is briefly recap
lated in the Appendix.

As for thes wave case, the analysis of the interactions
vortices with quasiparticles is based on the neutraliz
change of variables in Eq.~2.4!. The distinctive feature of
thed wave superconductor is that the neutral spin-1

2 particles
are gapless, and can be described by a Dirac Hamiltonia
Because in this case the spinons near the nodes can co
ute to low-energy physics, we attribute to them special s
nificance and the namenodons, signifying the low-energy
spinons descended from thed-wave nodal quasiparticles. Be
ing gapless, they can be described by continuum field the
and a four-component Dirac spinorc ~the analog off in Sec.
II—see the Appendix for a precise definition!.

Having already argued that onlyhc/e-flux vortices should
be considered, we will focus primarily on this simpler ca
It is, however, appropriate at this point to reflect briefly
the consequences of these strong gauge interactions sh
single-strength vortices become important low-energy e
tations. As above,hc/2e-vortex unbinding gives rise to
strong gauge interactions of the spinons, now nodons.
gauge-theoretical arguments given in Sec. II can again
carried through, and we expect confinement of the nodo
Unlike the s wave case, however, because the nodons
gapless excitations, their presence or absence has de
consequences on theground-statecorrelations. For instance
in a pured-wave superconductor, the gapless Dirac exc
-
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tions lead to static~equal time! power-law spin correlations
and aT linear magnetic susceptibility. It is natural to expe
that the removal of the nodons from the low-energy spectr
in the insulator will be accompanied by the condensation
some pairing operator~for example, spin-density-wave orde
is characterized by the order parameter^c†tysysW c†&Þ0;
other possibilities are legion!, in most cases accompanied b
a gap for the reconfined electrons.17 The formation of such a
paired-nodon state is analogous tochiral symmetry breaking
in QCD, and in that context as well is generally believed
accompany confinement~although the converse need not b
true!. One can imagine approaching such a state from
superconductor by continuously lowering the vortex ‘‘mas
to zero, at which point one has a theory in which gaple
fermionic nodons interact with gapless bosonic vortices
strong gauge interactions. This putative critical point is
tempting starting point for future systematic studies of su
instabilities.

We now return to the problem ofhc/e vortex condensa-
tion, which, although motivated on energetic grounds, h
dramatic consequences for the elementary excitations. A
examining Eq.~2.4! when only double-strength vortices a
present,w is defined modulo 4p, and this transformation
defines a single-valued neutral fermion. The nodons thus
perience no statistical gauge interactions in this case.
results obtained in Ref. 1, which ignored gauge interactio
hence apply to thehc/e condensate, with the proviso that th
fundamental vorticity must be doubled throughout the ana
sis. The salient result is that when gauge effects are abs
the nodons and vortices interact only via the two-fluid int
action Lagrangian

Lint5]mwJm , ~3.4!

whereJm is the electrical current carried by the quasipar
cles, and is bilinear in thec fields. Equation~3.4! can be
understood as the Doppler shift of the nodon energies
superflow given by]mw. This is a much weaker coupling
than the statistical gauge interactions in the single-vor
condensate, and controlled analytical calculations are p
sible. Detailed predictions for this quantum-disordered st
the nodal liquid ~NL!, can be derived by writing a coarse
grained continuum theory forF2 andam , as in Refs. 1 and
18. The key conclusions are:~1! gapless nodons survive int
the NL state, carrying spin but neither charge nor curren
low frequencies;~2! the NL has gapped charged excitation
the lowest lying of which are expected to be~spinless!
charge6e holons, which occur as vortices in the dual ord
parameterF2; ~3! the half-filled NL has a uniform charge
density, and upon~hole! doping charge is introduced as
spinless Wigner crystal with chargee per unit cell~but see
Sec. IV for a discussion of how this may be modified wh
antiferromagnetism is present!.

It is important to emphasize that a connection has b
made here between two apparently unrelated phenomena
assumingdouble-vortex condensation, characterized by
dual order parametersF25^e2iu j&Þ0 ~double vortices are
condensed!, F5^eiu j&50 ~single vortices are bound!, we
were led to the persistence of spin-charge deconfinemen
the insulator. The single-vortex disorder parameter,F
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~which also distinguishes translational symmetry breaking
half-filling! can thus be regarded as anorder parameter for
confinement.

C. Lattice model for the nodal liquid

We conclude this section by describing a direct route
the NL at half-filling, by which most of its properties may b
derived without the use of the duality mapping. To do
consider the following lattice regularization, which forbid
hc/2e-flux vortices from the outset:

Hqp5(̂
i j &

2t~ci
†cj1cj

†ci !

1uDu~21!xi2xje2 i (w i1w j )/2ci↑
† cj↓

† 1H.c., ~3.5!

Hw5(̂
i j &

2J cosS w i

2
2

w j

2 D1(
i

U

2
~2ni1cia

† cia21!2.

~3.6!

The cos(wi/22w j /2) term has been chosen to allow64p
phase slips but not62p phase slips, hence ‘‘confining’
single-strength vortices. Further, we have made the ap
ently arbitrary choice of dividing the superconducting pa
field phase among neighboring sites. While this may se
unnatural, provided the continuumd-wave quasiparticle
Hamiltonian is an adequate low-energy description,any lat-
tice regularization should reproduce identical lo
wavelength behavior. Finally, we have included a ‘‘chargi
energy’’ term coupling to the total~Cooper pair plus quasi
particle! charge.

This model has particle-hole symmetry, and at ze
chemical potential is thus automatically at half-filling. T
determine the properties of the system, we begin by perfo
ing the lattice analog of Eq.~2.4!: cj a

† 5eiw j /2f ia
† . Simulta-

neously, to avoid nontrivial commutation relations betwe
f , f †, andn, we let Ni52ni1ci

†ci and f i5w i /2. The f fer-
mion creates neutral, spin-1

2 quanta. In these variables, th
Hamiltonian becomesH5Hw1H f1H int , with

Hf5(̂
i j &

2J cos~f i2f j !1(
i

U

2
~Ni21!2, ~3.7!

H f5(̂
i j &

uDu~21!xi2xj f i↑
† f j↓

† 1H.c., ~3.8!

Hint5(̂
i j &

2t~ei (f i2f j ) f ia
† f j a1H.c.!. ~3.9!

Note that the nodon-phase coupling has been transfe
from the pair-field interaction to the kinetic term by the o
erator transformation. An insulating state is obtained in
limit U@J,t, where the charging energy dominates ov
both pair and single-particle hopping. This state can be s
ied perturbatively int andJ, expanding around the insulatin
state withNi51 exactlyon each site. Att5J50, however,
the f-particle Hamiltonian is still highly degenerate. This d
generacy is broken at second order int and J, giving the
t

o
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m
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ed

e
r
d-

effective Hamiltonian~obtained, e.g., by perturbatively inte
grating outNi and f i in a path-integral formulation! Heff
5He01He1, with

He05(̂
i j &

2
tJ

U
~ f ia

† f j a1H.c.!

1(̂
i j &

uDu~21!xi2xj f i↑
† f j↓

† 1H.c., ~3.10!

He152
2t2

U (̂
i j &

f ia
† f j a f j b

† f ib . ~3.11!

The quadratic HamiltonianHe0 is identical to the mean-field
Hamiltonian ford-wave quasiparticles, with a renormalize
bandwidth 8tJ/U. It therefore describes two sets of spin1

2

Dirac fermions at low energies. One thus recovers in t
way the NL phase obtained previously via continuum du
ity. The interactionHe1 can be rewritten as a combination o
antiferromagnetic exchange and contact repulsion of thf
particles. If both are weak~as in the large-U limit !, such
four-fermion interactions are strongly irrelevant around t
noninteracting NL fixed point, due to the linearly vanishin
density of states of the Dirac fermions. A slightly refine
analysis including a physical external gauge fieldAm allows
one to calculate the conductivity explicitly, and show that t
f fermions carry no current in the NL state, so it is indeed
insulator.1

IV. ANTIFERROMAGNETISM

A. Phenomenology

As discussed in Sec. III,hc/e-flux vortex condensation
atop the d-wave superconductor yields the NL, an insula
with charge quantization~chargee per unit cell! appropriate
near the half-filled Mott insulator. Unlike the CDW obtaine
by hc/2e-flux vortex condensation or the conventional~fully
gapped ‘‘short-range RVB’’! spin liquid state,10 the NL also
contains low-lying gapless spin degrees of freedom,
nodons, which contain the germ of true antiferromagne
order. As described in Ref. 1, the phenomenology descri
above can be easily extended to include Ne´el order.

The description to this point has essentially neglected
ternodon interactions. This approach is justified provid
such interactions are weak, as all such terms are pertu
tively irrelevant~in the renormalization group sense! in the
Dirac theory describing the NL.1 However, perturbative ir-
relevance does not imply thatstrong interactions cannot
drive quantum phase transitions and hence a qualita
change in behavior. Indeed, interacting Dirac fermion mo
els are known to undergochiral symmetry-breakingtransi-
tions as quartic couplings are increased.19 The nature of the
transition incurred depends upon the precise nature of
interactions, and various circumstances can induce antife
magnetism, spin Peierls, charge density wave, and o
types of ordering from the NL Lagrangian. Indeed, in t
lattice model above we obtained an interaction@Eq. ~3.11!#,
capable of driving a transition to an antiferromagnetic stat
sufficiently large.

Because of the uncertainties and pitfalls of attemptin
microscopic justification of such interactions, however,
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prefer to follow the strategy of Ref. 1 and take a more p
nomenological approach. For simplicity let us focus on
case of half-filling with particle/hole symmetry. Since th
cuprate materials are clearly antiferromagnetically order
we will assumethe existence of a triplet collective mod
with momentum (p,p). In the NL phase, spin-rotational in
variance is not broken, and this magnon mode has a
Indeed we also expect a nonzero lifetime since the trip
magnons can decay into pairs of nodons. Thus, stri
speaking, the magnons are not sharply defined elemen
excitations in this case. Nevertheless, we may imagine
ing a parameter~e.g., reducing frustrating spin-spin intera
tions in a lattice model! to reduce the magnon gap. Ult
mately when it vanishes the collective mode becomes sh
and condenses to form an antiferromagnetically orde
state. In the antiferromagnetic state, the nonzero Ne´el vector
coherently mixes nodons with opposite quasimomentum
opposite spin, halving the magnetic Brillouin zone as is us
in spin-density-wave systems. As in those more conventio
cases, this has the effect of opening up a gap in the no
spectrum.

En~qW !56A~vFq'!21~vDqi!
21~gN0!2, ~4.1!

wherevF and vD are the Dirac ‘‘velocities’’ perpendicula
and parallel to the putative Fermi surface,q is the momen-
tum measured from a node,N0 is the mean-field staggere
magnetization, andg is a phenomenological coupling con
stant. Due to this mixing, the only gapless degrees of fr
dom in the antiferromagnet are the collective spin-wa
modes guaranteed by Goldstone’s theorem.

In this way we arrive at an effective low-energy fie
theory for an antiferromagnetic Mott insulator, which w
will denote ~for reasons which will become apparent! as an
AF* phase. The antiferromagnetic spin order, featureless
compressible charge configuration, and gapless spin w
are qualitatively identical to those we would obtain in mo
conventional antiferromagnetic models, e.g. the nested s
density wave in the weakly interacting half-filled Hubba
model, or alternatively thet-J-like very large-U limit of the
same Hamiltonian. We stress, however, that although
nodons have been lifted away from zero energy, they are
confined by the spontaneous symmetry breaking in the A
phase, i.e., spin-1

2 neutral particles still exist as well-define
elementary excitations. For this reason, we believe that s
an interesting antiferromagnetic insulator~AF* ! is topologi-
cally distinct from ~i.e., cannot be adiabatically deforme
into! a more conventional antiferromagnetic~AF! state. This
conviction is bolstered by the existence of the dual or
parameterF2, which we have argued characterizes the no
liquid and the AF* phase. SinceF2 createshc/e vortices in
a pair field, the AF* phase contains the germ of superco
ductivity. In contrast, construction of a dual order parame
for the conventional antiferromagnet probably requires
use of Chern-Simons~chargee) bosons, obtained directly b
statistical transmutation from the electrons. For exam
condensing elementaryhc/e vortices in the spin-up boson t
form a chargee crystal which lives on one sublattice, an
similarly freezing the spin-down particles onto the other s
lattice, should suffice to describe the hidden order of the
phase. Evidently, the dual order parameters in AF and A
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are very different. Alternatively, one can distinguish AF
and AF by testing for the presence or absence of spin-ch
separation, employing the argument in Sec. II. To make
argument precise in this case probably requires adding
easy-axis anisotropy,

Hea5(
x

Jea@~sx!21~sy!2#, ~4.2!

which creates a gap in the magnon spectrum. But it is
more interest to address whether the AF and AF* phases
be distinguishedexperimentally. To address this, we turn to
discussion of the electron spectral function in these t
phases.

B. Electron spectral function

In standard many-body systems, the existence of w
defined excitations is ascertained by examination of the
evant spectral function.20 Unfortunately, a direct probe o
spin-charge separation via spectral functions is not poss
since there are no local operators which separately cr
nodons and holons. On the other hand, the electron spe
function A(k,v) is accessible experimentally, and has be
intensively studied in the high-temperature superconduc
with momentum resolution via angle-resolved photoemiss
spectroscopy21–23 and locally~i.e., in momentum-integrated
form! via nonlinear tunneling characteristics.24 It seems natu-
ral to suggest thatA(k,v) might possibly give one a way to
distinguish the AF and AF* phases, since in the latter u
bound nodon-holon pairs form a two-particle continuum, a
in the former the electron is itself the elementary excitatio
Unfortunately, the situation is not so simple, as we disc
below.

1. AF

To see how this idea works out in practice, let us fi
consider in some detail the spectral function in the AF pha
A simple model which captures the qualitative physics of
spectral function is fluctuation-corrected spin-density-wa
mean-field theory. The~imaginary time! quasiparticle La-
grangian is

L5E
k
ck

†@]t1ek2m#ck1g̃NW •ck1Q
† sW ck , ~4.3!

where we have assumed ordering atQ5(p,p). For simplic-
ity, let us assume the Fermi surface intersects (p/2,p/2) with
some curvature~it is straightforward to generalize this t
other geometries!. Choosing new coordinates along the (1,
and (1,21) axes, we then writek5(p/A2,0)1q and ek
2m'vFqx1qy

2/2m near this point. Performing a similar ex
pansion near the opposite point on the Fermi surface,
defining continuum fieldsh̃6(q)[c(6p/A2,0)1q , one finds

LNqp5h̃†F]t1 ivFtz]x2
1

2m
]y

2G h̃1gNW •h̃†sW txh̃,

~4.4!

whereg is the spin-density-wave coupling constant. We su
press the additional quasiparticles located near (6p/2,
2p/2), since these are not coupled to theh fields by the
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ordering wave vectorQ. In the antiferromagnetic phase

^NW &5N0Þ0, and if fluctuations are ignored the electro
states are gapped with energy dispersion,

E~q!5AuDu21vF
2qx

21qy
2/2m, ~4.5!

with D5gN0 the mean-field spin-density wave gap.
Spatial and temporal fluctuations of the Ne´el field NW can

be described by, e.g., a Landau theory such as Eq.~A10!, or
by a nonlinears model. In the AF phase, we require only th
spin-wave expansion for small deviations,P i!1, from per-
fect alignment, i.e.,NW 5N0(P1 ,P2 ,A12P2), for small PW .
Since uniform rotations ofNW are equivalent by SU~2! invari-
ance, it is convenient to perform the ‘‘gauge’’ rotation

h̃~x,t!5exp@ i e i j s iP j~x,t!#h~x,t!. ~4.6!

In the new variables, the quasiparticle Lagrangian beco
LNqp5Lh1LP2h , with

Lh5h†@ l̂ 1Dsztx#h, ~4.7!

LP2h52 i e i j h
†F l̂ P i2

1

m
]yP i]yGh. ~4.8!

Here l̂ []t1 ivFtz]x2(1/2m)]y
2 . Finally, the magnons are

governed by the quadratic Lagrangian

LP5
K

2
@ u]tPW u21vs

2u¹PW u2#. ~4.9!

The spin waves in Eq.~4.9! are gapless, as required by Gol
stone’s theorem. Neglecting the coupling to the spin wa
~a good approximation ifK is very large, so that thePW fields
fluctuate very little!, the h particles are noninteracting qua
siparticles with a gapD, and have a sharp spectral functio

Ah
0~q,v!5p21Im Gh

0~q,ivn˜v1 id!5d„v2E~q!….
~4.10!

The spin-wave coupling@Eq. ~4.8!#, generates a self-energ
in the h Green’s function. The relevant diagram is indicat
in Fig. 1, and a straightforward if tedious evaluation sho
that

Gh~q,v!5@ iv1vFtzqx1qy
2/2m1Dsztx1S~q,v!#21,

~4.11!

Im S~q,v!;
1

Kvs
d11 ~dv!dQ~dv!, ~4.12!

FIG. 1. Self-energy diagram for the charged quasiparticles in
AF phase. The solid line indicates a dressedh-fermion Green’s
function, while the dashed line is the spin-wave propagator.
es

s

s

with dv5v2E(q). Equation ~4.12! holds provided uqu
,mvs . Since ImS!dv for small dv, the decay rate is
negligible at low energies, and we expect ad-function sin-
gularity to survive in the spectral function atdv50 ~there
will also be some small shifts in the energy spectrum its
given by the real part ofS). When calculating theelectron
spectral function, one needs to include the effects of
SU~2! rotation @Eq. ~4.6!#. Since the physical electrons ar
created by theh̃ fields, additional factors of thePW operators
appear inA(k,v). TheP operators may be expanded out
the exponential and treated perturbatively. Both this eff
and the broadening due to the nonzero self-energy ab
lead to additional weight fordv.0, which is often referred
to as ‘‘incoherent’’ spectral weight. The general expectat
for the electron spectral function in the AF phase is illu
trated in Fig. 1.

The physical meaning of these results is the followin
The minimum energy excitation with chargee and spin1

2 is
the electron, which in the interacting system is ‘‘dressed’’
magnon excitations that mix with the bare electron. Furth
there are higher-energy states involving a dressed elec
and unbound excited magnons which are orthogonal to
interacting electron but not the bare one, and thus show u
continua fordv.0 once interactions are present. The tr
elementary excitation does not decay however, basically
cause phase space@which leads to the ImS;(dv)d law
above# prevents it. Thus the expected electron spectral fu
tion has a resolution-limited dispersing peak at the sing
particle gap near its minimum, above which lies continuo
spectral weight. Well away from (p/2,p/2), phase space
may ~or may not! open up to allow decay even of the singl
particle peak, depending upon details of the band struc
and interactions.

2. AF*

In the unconventional antiferromagnet, we expect
presence of unconfined nodons and holons to lead to a
particle continuum in the electron spectral function. Wh
this is indeed the case, lower-energy features in fact exist
to nodon-holon bound states. Such bound states are anal
gous to excitons in semiconductors, which provide sh
peaks in the optical conductivity despite the existence of
electron-hole continuum at higher energies.

Similar considerations apply here. In particular, if we co
sider the interaction of a chargee holon with a spin-12 nodon,
it is quite natural to expect that they may experience an
tractive interaction leading to a bound state withbothcharge
e and spin1

2 , i.e., anelectron. To show the existence of suc
bound states we specialize again to the case of half-fil
with particle-hole symmetry. It is convenient to perform
particle-hole~Bogoliubov! transformation on the nodon op
erators near one pair of nodes,

c̃a↑5c1a↑ , c̃a↓5c1a↓
† , ~4.13!

so that the number operator of the transformed fermion
proportional to the z component of the spin: Sz

5 1
2 *d2x c̃†c̃. In the presence of Ne´el order,NW 5N0ẑ, the

transformed nodon Hamiltonian density takes the sim
form

e
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Hn5c̃†Hnc̃, ~4.14!

with a single-particle Hamiltonian

Hn~p1!5v~tzp1
x1txp1

y!1Dntysy. ~4.15!

Here the nodon momentum operatorp152 i“ r 1
is conjugate

to the positionr1, and for simplicity we have assumed only
single-nodon velocity. This Hamiltonian describes mass
nodon states, with energy gapDn5gN0. Since the holons are
also gapped, the appropriate first quantized Hamiltonian f
single holon~with position r2 and momentump2) is simply

Hh~p2!5Dh1
p2

2mh
. ~4.16!

The form of the interaction between the nodons and
lons follows from the dual Lagrangian in Sec. II. For sim
plicity we only retain the density-density interaction term
proportional toJ0e i j ] iaj , wheree i j ] iaj is the holon density
and the nodon density can be expressed in terms of the tr
formed fermions asJ05c̃†tzszc̃. The corresponding firs
quantized interaction Hamiltonian is then

Hint~r12r2!5ua2tzszd (2)~r12r2!, ~4.17!

with interaction strengthu, anda is a short distance cutoff.
Since the two-body Hamiltonian is independent of t

‘‘center-of-mass’’ coordinateR5(r11r2)/2, the total mo-
mentum,P5p11p2, is conserved. For simplicity we con
sider bound states withP50. The Hamiltonian for therela-
tive coordinates,

r5r12r2 , p5~p11p2!/2, ~4.18!

then takes the simple form

Hrel5Hn~p!1Hh~p!1H int~r !. ~4.19!

To solve for bound states with energyE, we recast the Schro¨-
dinger equationH relf5Ef in the form

G21~q!f~q!52ua2tzszf~r50!, ~4.20!

with matrix Greens functionG21(q)5Hn(q)1Hh(q)2E.
Here f(q) denotes the Fourier transform of the fou
component wave functionf(r ). Upon matrix inversion this
can be rewritten asMf(r50)50, with

M511ua2E d2q

~2p!2G~q!tzsz, ~4.21!

so that the eigenvalue condition is the vanishing of the
terminant: det(M )50. Here we are implicitly assuming tha
the integration is cut off at high momentum byqc51/a.

An explicit expression for the bound-state energyEb can
be readily obtained in theu˜0 limit by putting Eb5Dn
1Dh2eb with small binding energyeb . In this limit one
need only retain the contribution to the above integral wh
is infrared divergent, which gives

M511W~sztz2sxtx!, ~4.22!

with

W52~u/8pe0!ln~eb /e0!. ~4.23!
e

a

-

,

ns-

-

h

Here we have defined an energy scale,

e05~mhv21Dn!/~2mhDna2!. ~4.24!

Since det(M )5W2(42W2), the eigenvalue condition re
duces toW52, which gives the final result for the bound
state binding energy:

eb5e0 exp~216pe0 /u!. ~4.25!

Notice that the binding energy is exponentially small in t
interaction strengthu, reflecting the two-dimensional con
stant density of states for free massive holons and nodon
one were to change the sign of the interaction, there is st
bound state~from W522) with thesameenergy. In either
case, the bound state has the quantum numbers of the
tron with sz5

1
2 and charge6e. A spin-down bound state

can also be readily found, corresponding to the binding o
holon to a single-nodon ‘‘hole’’ in the filled Fermi sea.

Between the threshold energy for generating the elec
(Eb) and the energy of the unbound nodon-holon continuu
the electron spectral function should be governed by qua
tively the same physics as in the AF case, except that
total spectral weight of the corresponding feature will
reduced by matrix element factors arising from, e.g., the p
sibly large spatial extent of the nodon-holon bound-st
wave function. Upon reaching the nodon-holon continuu
we expect a much enhanced spectral weight but no sh
feature at the continuum, as it is already lying in the co
tinuum formed by the electron plus spin-wave excitatio
and the pair excitation can thereby easily decay.

A(k,v) in the AF and AF* phases are thus not qualit
tively different, and cannot strictly speaking be used to d
tinguish the phases. Quantitatively, however, we expect
AF* spectral function to exhibit a very small ‘‘quasipart
cle’’ peak, with minimal separation from a nodon-holon co
tinuum carrying most of the spectral weight. If we assum
that the holon gap greatly exceeds the gap for the nod
then both features are expected to disperse in approxima
d-wave fashion, though the cusp for angles near645°
should be rounded by the nodon gap@Eq. ~4.1!#. At nonzero
temperatures, thermally excited particles will scatter the
jected electron and lead to a broadening of even the thr
old peak. In the AF* case, where this feature is expected
lie close to the nodon-holon continuum and have a sm
weight, such thermal broadening could well remove the q
siparticle peak completely at experimental temperatures.

For a system at half-filling but without particle-hole sym
metry, the Ne´el ordering wave vector is not commensura
with the spacing between antipodal nodes. If this incomm
surability is sufficiently large, it is possible for the nodons
remain gapless even in the presence of long-range antife
magnetic order.1 In this unusual state, which we denote
AF/NL, gapless spin-12 nodons coexist with the spin-1 mag
nons. Since the density of states for the gapless nodons
ishes linearly with energy, a weak interaction with the ma
sive holons isnot expected to result in a holon-nodon boun
state. Angle-resolved photoemission in the AF/NL phase w
thus have a number of notable features. Specifically, si
the electron will decay into the nodon-holon continuum, o
does not expectany sharp features in the momentum
resolved spectral function. The lowest energy spectral we
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is expected at the nodes, with a threshold energy which
perses linearly away from the nodes as in thed wave super-
conductor. The spectral weight should rise smoothly ab
threshold due to the nodon-holon continuum—with
d-function peaks. This behavior is in fact reminiscent of th
observed in the undoped Ca compound by Shen,23 and is in
marked contrast to thed-function spectral features expecte
in a conventional antiferromagnetic insulator.

V. DISCUSSION

A small number of examples of condensed matter syst
are generally agreed to exhibit exotic quantum numbers,
particles which seem to require ‘‘splitting’’ the electro
Both charge fractionalization25 and spin-charge separatio
are generic in one dimension.6 In the two-dimensional quan
tum Hall effect, fractionally charged particles have be
known to exist for some time,26 and recently have been ob
served in dramatic shot-noise experiments.27 In both these
examples, fractional charge is connected to topological e
tations: solitons or domain walls in one dimension and v
tices in two dimensions.

A third example, less widely appreciated, is a superc
ductor in any dimension.16 For the superconductor th
mechanism is different:Pairing of electrons into singlets
creates a gapless collective~second! sound mode that carrie
the charge. The sound mode can adjust almost insta
neously to a quasiparticle, effectively neutralizing it, leavi
only a bare spin1

2 . On the face of it this species of spin
charge separation appears considerably different from
other topological varieties.

In this paper we have exploited a dual formulation
show that indeed isolated charges~‘‘holons’’ ! derived from
the superconductor can be understood as topological ex
tions in a vortex condensate.29 Further, we have describe
how spin-charge separation can occur in an insulating s
which results from the quantum disordering of a superc
ductor. Of course, propinquity to the superconducting s
does not guarantee the inheritance of spin-charge separa
it only occurs when fluxhc/e vortices condense. The mo
interesting example of this phenomenon—from the point
view of high-Tc phenomenology—is the nodal liquid, whic
we have discussed from this standpoint. The condensatio
hc/2e vortices, on the other hand, leads to the confinem
of spin and charge. The band insulator and the CDW,
example, can be understood in this way.

One striking consequence of the distinction between s
charge separated, and confined systems is that there are
distinct antiferromagnetic states: one, AF, which is the or
nary antiferromagnet and another, AF*, which is spin cha
separated. The latter results from ordering the nodons
nodal liquid, so it has neutral, spin-1

2 excitations. However,
the distinction between the AF and AF* phases is exp
mentally rather elusive. The natural place to look is the el
tron spectral function, which can be probed through ang
resolved photoemission experiments. Under some condit
~see Sec. IV B!, the unconventional antiferromagnet shou
exhibit only a nodon-holon continuum instead of a quasip
ticle pole. Unfortunately, the existence of nodon-hol
bound states makes the distinction between the AF and
phases rather subtle. On the other hand, according to
s-
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paradigm presented here, spin-charge separation is a co
quence ofhc/e vortex condensation. Thus spin-charge se
ration could be indirectly evidenced by the observation
hc/e vortices near the quantum critical point at which sup
conductivity is destroyed.

The continuity of spin-charge separation that is embod
in the nodal liquid and its offspring AF* state makes possib
a simple phenomenological description of the evolution fro
the insulator to the superconductor, as espoused in Re
For example, the simplest Ginzburg-Landau formulation p
dicts the phase diagrams in Fig. 2. If, on the other ha
spin-charge separation isabsent in the undoped insulator
there must be a confinement transition betweenx50 and the
superconductor. While we have argued that such a trans
is driven byhc/2e vortices, its nature and the phases which
connects are highly nontrivial. The relative simplicity an
elegance of the nodal liquid scenario thus argues in favo
its relevance to the cuprates. Despite numerous and inte
ing differences among different compounds, the phase
grams of high-temperature superconductors enjoy a rem
able degree of universality. A number of theoretical wor
have attempted to understand the commonalities and va
tions among the topology of these phase diagra
phenomenologically.30 At low temperatures, however, w
believe classical phenomenology based only on conventio
order parameters misses the important physics of gap
quasiparticles and spin-charge separation that are key in
vicinity of d wave superconductor-insulator transitions.Any
viable theory of the cuprates must at least address the i
of how spin and charge either remain separated or bec
confined on approaching the insulator.

FIG. 2. Phenomenological phase diagrams in the nodal liq
Ginzburg-Landau theory of Ref. 1. Herex is the hole doping, andT
is temperature. As discussed in the text,hc/e vortex condensation
leads to the unconventional AF* antiferromagnetic Mott insulat
Note that, depending upon the magnitude of particle/hole asym
try, nodons may remain gapless in an AF*/NL state at half-filling
space constraints prevent us from indicating this on the figure.
pending upon microscopic parameters, two principal ph
diagrams occur opon doping. In the type-I scenario, added ch
segregates into locally superconducting regions, which coalesc
some critical dopingxc . In the type-II scenario, added charge
order into a Wigner crystal~WC! with chargee per period, presum-
ably with some associated spin ordering. After a small amoun
doping the antiferromagnetic order is suppressed and the nodon
liberated into a nodal liquid~NL! coexisting with the WC. Atxc

this WC melts into thed-wave superconductor~dSC! phase. See
Ref. 1 for details. Some modifications are necessary if the effect
impurities are included, some of which are discussed in Ref. 28
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In addition to the search for a ‘‘smoking gun’’ experime
for spin-charge separation, there are a number of other in
esting questions raised by this work. How do we implem
the interaction between nodons andhc/2e vortices in an
SU~2!-invariant way? How do these formulations of spi
charge separation apply to 3D systems?

ACKNOWLEDGMENTS

We are grateful to Eugene Demler, Eduardo Fradk
Steve Girvin, Subir Sachdev, Doug Scalapino, and Anirv
Sengupta for clarifying discussions. We would particula
like to thank Bert Halperin for his insight on the importan
of gapped spin-charge separated excitations as a mea
distinguish quantum phases. This work has been suppo
by the National Science Foundation under Grants N
PHY94-07194, DMR94-00142, and DMR95-28578.

APPENDIX: DIRAC LAGRANGIAN

Here we review the effective Lagrangian for low-ener
d-wave quasiparticles, following the notation of Ref. 1. It
most directly written in terms of the appropriate Namb
Gorkov-like spinor,C iaa , with

C i1a~k!5cK i1k,a , ~A1!

C i2a~k!5 isab
y c2(K i1k),b

† , ~A2!

where K1 and K2 are the momenta of thed wave nodes
along the Fermi surface. We use index-free notation in wh
Pauli matricesmW , tW , andsW act in the node, particle-hole, an
spin (iaa) subspaces, respectively; furthermore, if a sin
index is given explicitly, it is always the node index. In
particle-hole symmetric model at half-filling,K1/25
(6p/2,p/2) in the usual (a,b) crystalline coordinate system
~i.e., axes along the Cu-O bonds!. The separation in Eq.~A2!
is well defined provided the momentum is restricted to poi
near the nodes, i.e.,uku,L, whereL is a cutoff.

As in thes-wave case, we must allow for space-time d
pendence of the superconducting phasew. For adx22y2 su-
perconductor, one has

v^ci↑~ t !cj↓~ t !&85Dd~xi2xj !exp@ iw~ x̄,t !#, ~A3!

where the prime on the angular brackets indicates an ave
~path integral! over high-energy electronic states away fro
the nodes, andx̄5(xi1xj )/2. The amplitude functionDd(x)
is the Fourier transform of the usual momentum-space
function, Dk; f (uku)@cos2 ka2cos2 kb#, and decays on the
scale ofj. It is usually more convenient for us to work i
rotated coordinatesx5(xa1xb)/A2, y5(xb2xa)/A2. The
appropriate effective quasiparticle Lagrangian density w
derived in Ref. 1:

LC5 (
s56

C1
†~ i ] t1 ivFtz]x

1 ivDtseisw/2]ye
isw/2!C11~1↔2;x↔y!. ~A4!

Equation~A4! is derived on the assumption that the phasew
is slowly varying on the scale of the coherence length, i
r-
t

,
n

to
ed
.

-

h

e
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-

ge
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uj]xwu,uj]ywu,uj/v]twu!2p. However, we expect on
grounds of universality that Eq.~A4! and its consequence
provide a correct low-energy description of thed-wave su-
perconductor and its quantum-disordered descendents m
generally.31 The analysis of the interactions of vortices wi
quasiparticles is based on the important change of varia

c5exp~2 iwtz/2!C. ~A5!

Inserting Eq.~A5! into Eq. ~A4!, one findsLC5Lc1Lint ,
with

Lc5c1
†@ i ] t1vFtzi ]x1vDtxi ]y#c11~1↔2,x↔y!.

~A6!

The nodon fieldc interacts with the phase of the order p
rameter as in Eq.~3.4!. Here the electrical three-currentJm is
given by

J05 1
2 c j

†tzc j , ~A7!

Jj52 i
vF

2
c j

†c j . ~A8!

Compared to the statistical gauge interaction w
6hc/2e-flux vortices, Eq.~3.4! represents a much weake
two-fluid interaction between the quasiparticle or nodon c
rentJm and the superfluid current]mw. A continuum duality
transformation appropriate for such a coupling was descri
in detail in Ref. 1, and on the lattice in Ref. 18. Noting th
the ~Euclidian! nodon currentJm couples to the superfluid
current ]mw in a manner directly generalizing the Berry
phase couplingin0ẇ, the dual~Euclidian! lattice action can
be determined simply by replacingin0dm0˜ in0dm01 iJm ,
i.e.,

Sa˜S̃a5
u2

2 (
j m

~emnlDnaj
l2N0dm02Jm!2. ~A9!

The incorporation of antiferromagnetism was also d
scribed in Ref. 1. A low-energy effective Lagrangian d
scribing the magnon mode and its coupling to the nodon

L5 1
2 Kmu]mNu22VN~ uNu!1gN•SpW , ~A10!

whereK05K, andK15K252vs
2K, with vs the spin-wave

velocity in the AF. Here

SpW 5
1

2
@c j

†tyssyc j
†1H.c.# ~A11!

is the spin operator at momentumpW . Near any phase transi
tions, and for most phenomenological purposes, it is su
cient to take a simple form for the potential:VN(uNu)
5r NuNu21uNuNu4. The parameterr N controls the presence
or absence of AF order. In mean-field theory, and neglec
for the moment the nodon couplingg, the ground state passe
from long-range to short-range AF order asr N is tuned from
negative to positive. We include only the most relevant co
pling of the Néel field to the nodons allowed by symmetry

Lnodon5Lc1gN0•SpW , ~A12!
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with N05^N&.
A compelling feature of the above description is the

sulting low-lying spectrum in the antiferromagnet. Th
model can be readliy diagonalized with an appropriate B
goliubov transformation, giving the energy eigenvalues,
B

m
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Eq. ~4.1!. In all nodon sectors there is a nonzerogap, equal
to gN0. The nodons having been lifted to finite energy, t
only remaining gapless excitations in the AF* phase are
spin waves~slow rotations ofN) dictated by Goldstone’s
theorem.
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