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We study the properties of the “spin quantum Hall fluid"—a spin phase with quantized spin Hall conduc-
tance that is potentially realizable in superconducting systems with unconventional pairing symmetry. A simple
realization is provided by al,._,2+id,, superconductor which we argue has a dimensionless spin Hall
conductance equal to 2. A theory of the edge states oflfhe,»+id,, superconductor is developed. The
properties of the transition to a phase with vanishing spin Hall conductance induced by disorder are considered.
We construct a description of this transition in terms of a supersymmetric spin chain, and use it to numerically
determine universal properties of the transition. We discuss various possible experimental probes of this
guantum Hall physicd.S0163-1829)00426-9

[. INTRODUCTION that a transition from thel,2 2 to thed,2 2+idy, super-
conductor may be driven by external magnetic fi€lds)d
A remarkable property of a singlet superconductor is thenence is potentially realizable in the cuprates.
occurrence of the phenomenon of spin-charge separafion. Here we first calculate the bulk spin Hall conductance of
The superconducting condensate may be viewed as a collethed+id state and show explicitly that it is quantized to be
tion of spinless, chargee2Cooper pairs that have Bose con- equal to 2(in units of the dimensionless spin conductance
densed. The spin, on the other hand, is carried entirely by the&/e then use semiclassical arguments to show the existence
fermionic quasiparticle excitations which do not carry defi-of two spin-current carrying edge states as required by the
nite charge. This observation is particularly important in thequantization of the bulk Hall spin conductance. A Hamil-
context of superconductors with neawave Cooper pairing tonian describing the propagating edge modes is derived. We
leading possibly to quasiparticle excitations at arbitrarily lownext consider the effects of disorder on th¢ id state. The
energies. The best studied casél,is_,2 pairing in the high-  quantization of the spin Hall conductance is robust to weak
T, cuprates. The resulting superconducting state has gaplesapurity scattering. However, if the impurity scattering is
quasiparticle excitations which dominate the low- sufficiently strong, there can be a phase transition to a phase
temperature properties. The cuprates thus provide an oppowith vanishing Hall spin conductance. The properties of this
tunity to explore the low-energy properties of a gapless spintransition are considered next. Ignoring the quasiparticle in-
charge separated system in dimensions greater than 1. Recéatactions, this transition is argued to be described by the
work>* has pointed out the possibility of realizing a novel critical point of a replica nonlinear sigma model thebwjth
spin phase—the “spin metal”—in the cuprates in the pres-a topological term which describes quasiparticle localization
ence of disorder. This phase is characterized by a nonvanisin a superconductor without time reversal but with spin ro-
ing finite spin-diffusion constant and spin susceptibility attation invariance(class C of Ref. 8 We then construct a
zero temperature, and is not known to exist in insulatingnetwork model® describing this transition, and show that it
Heisenberg spin models. In this work, we explore anotheis identical to that simulated recently by Kagalovsiyal1*
spin phase potentially realizable in superconductingWe then motivate a description of this transition in terms of
systems—the “spin quantum Hall fluid.” This phase is char-a supersymmetridSUSY) spin chain. In contrast to the
acterized by a quantized value of the Hall spin conductanc&USY spin chain which describes the usual integer quantum
(analogous to the quantized Hall charge conductance in theall transition!?3 this SUSY chain has only a finite num-
integer quantum Hall effeft ber, 3, of degrees of freedom at each site. This enables the
We begin by showing that such a spin quantum Hall fluidefficient use of a numerical technique—the density-matrix
phase is realized by two-dimensional superconductors withenormalization grougdDMRG)—which has been success-
dy2_2+id,, symmetry. Thed+id state, which has received fully used for accurate calculations of the properties of quan-
a fair amount of attention recently® has been known to tum spin chains in other situatioh$We present numerical
possess various similarities with quantum Hall states, thoughesults for a number of universal critical properties of the
the precise characterization in terms of spin transport has natansition. Some of these have been obtained before from the
been pointed out before. In particular, it has been suggestetetwork model simulationt' Very recently, Gruzberg, Lud-
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wig, and Reatf have provided a mapping of this transition d—>iaydT_ 7
to classical percolation and determined exact values for vari-
ous critical exponents. Our numerical results are in excellent The advantage of going to tlterepresentation is that the
agreement with these exact values. We conclude with a getHamiltonian conserves the number @articles. Note that
eral discussion of various experimental probes of the physicghe transformation Eq3) implies that the number af par-
discussed in this paper. ticles is essentially the component of the physical spin
density:
II. BULK SPIN HALL CONDUCTANCE OF THE d+id
SUPERCONDUCTOR , h +

, - _ =5 (dfdi-1). ®)
We begin by defining the spin Hall conductance. In gen-
eral, the spin conductance measures the spin current inducg\dspin rotation about the axis corresponds to (1) rota-
in the system in response to a spatially varying Zeeman magjon of thed operators. ThidJ(1) is clearly present in the

netic_field. _The_spin Hall conductance measures the_spin CURamiltonian. Invariance under spin rotations aboutxfuz y
rent in a direction transverse to the direction of variation ofy o5 is not manifest though.

the external Zeeman field. More precisely, a Zeeman fielc?l Now consider the particular case of d_,o+id

H 5 H H - X
B“(y) along, say the direction of spin, which depends only g, erconductol” In momentum space, the Hamiltonian is
on, for instance, the spatigldirection, leads to a currenf
of the z component of the spin along the spatkadlirection

given by H= ; €ChaCrat (Axclichy +H.C), 9
) dB*(y) . . . _
jZ=0S | — (1) Where € is the band dispersion and,=Aycos(Z)
Y dy —i4A,,sin(26,) with tan(6,) =k, /k, . It is sometimes useful to

with oS, being the spin Hall conductancéNote that the think in terms of a lattice version of theé+id supercon-

Xy . . .
analog of the “electric” field for spin transport is the deriva- _(Ii_uctoz. _This has been formulafted by Lauglr‘?hr_l.
tive of the Zeeman fieldl.Just like the usual Hall effectss, ranslating to momentum space, for a square lattice,

is 0 in the presence of parity and time-reversal invariances"© have e—[cosk)+cosk)], Ax—Adcosk)—cosk,)]

Thed+id superconductor is neither parity nor time-reversal_'Axys'n(l(x)s'n(ky) which ha$ the same symm_etry under
invariant and hence can have a nonvanishifjg. fourfold rotations of the lattice as the form written down

Before proceeding further, it is worthwhile to recall some earlier. :
. . ' ; . The parameten,, measures the relative strength of the
general properties of singlet superconductors with no time- Y

reversal invariance. Consider a general lattice BCS HamilGxy andds2_y2 componentsA,,=0 corresponds to the fa-
. . miliar d,2_,2 state. In this limit, the gap function, van-
tonian for such a superconductor: Y

ishes at four points of the Fermi surface and there are gapless
quasiparticle excitations at these four nodes. A low-energy
H=2 [t;> ¢l.Clat Ajclicl +Afccii|, (@ theory of thed,2_,2 superconductor can be obtaiféwy lin-
b “ earizing the dispersion relation of these quasiparticles around
wherei,j refer to the sites of some lattice. Hermiticity im- the nodes. We puY (k) =c,,Y »(k)=io,c", for k,>0 to

plies tij=tﬁ, and spin rotation invariance requires;; write
=Aj .
It is often useful to use an alternate representation in " Nct
terms of a new set ofl operators defined by T ; YR (et Axmd Y(K), (10
dij=cip, di=¢f. (3 where the prime indicates a sum oJgr>0 and 7 are the

Pauli matrices inY,,Y, (particle-hole¢ space. If K;,K5)

The Hamiltonian, Eq(2), then takes the form are the two nodal directions witk,>0, we may just keep

ty A modes neark{,,K5). Linearizinge, andA, near the nodes,
H=, diT(A-*- _t*)djEZ diHj;d; . (4 we get the following low-energy theory for tltgz_,2 super-
ij ij ij 1 conductor:
Writing t;=afj+ib;, A;=aj—ia}] with a;=a;, real
symmetric, and;; = —bj; , real antisymmetric, gives H:f d2X¢I(—iVF0xTz+iVA0YTx) U+ (1= 2;X=Y).
Hljzlb”"’é”(;, (5) (11)

HereX=1/\2(x+y) andY=1/\2(—x+y). The fieldy; is
the Fourier transform of;(k) =Y (K;+k) for i=1,2. Each
¢; thus has four componenis;,, wherea is the particle-
o Hou=—H* 6) hole index andr the spin index. The); transform as spinors
oy 4 underSU(2) spin rotations. This Hamiltonian is manifestly
Equivalently, we may require that the second quantizednvariant under spinSU(2). (It also has additionalJ(1)
Hamiltonian{ in Eq. (4) be invariant under symmetries that can be related to momentum conservation

whereg; are the three Pauli matrices. Note ti$d(2) spin
rotational invariance requires
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that holds in clean systeR)s The physical charge density is
of course not conserved as is already apparent fron{®g.

It is useful at this stage to express the original real-space
electron operators in terms of the low-energy continuum
fields. This is easily seen to be

CT(X)NeiKJ'Xl//m_eiiK"'xlﬁszi1 (12
; - FIG. 1. Semiclassical trajectory leading t f bound state.
¢ (0~ ety +e kg, 13 emiclassical trajectory leading to a surface bound state
with a sum over the node index+1,2) understood. Es A )(ﬁ/2)2
Now consider introducing a smailtl,, component, i.e., 2SN 5

letting A,,>0. For smallA,,, we may work with the low- ) )
energy theory Eq(11) near the nodes of thd supercon- We f21ave introduced the quantum of spin conductance
ductor. Theid perturbation adds to the low-energy Hamil- (7/2)°/2mh="/8m. As there are now four Dirac species, we

tonian Eq.(11) the following term: obtain for the spin Hall conductan¢e units of#/8) of the
d+id superconductor:
Hid:J d2X Ay (Y1 Tyt — YTy ). (14 T3y =2 SO Ayy). (21)
Note that this is basically a mass term for the two Dirac This is the main result of this sectiofif we repeat the cal-
theories describing the two nodes. culat!on for _adxz,yz+is ;uperconductor, we fin_driy=0
The spin density can be expressed in terms of the corfonsistent with the analysis in the following section on edge
tinuum fields as states).

The explicit calculation above was restricted [th,,|
I <A,. However, the result Eq21) holds even away from
S= EilfTUl/f- (19  this limit. This is because the system is in the same phase for
any finite nonzero value of the ratib,,/A,. The quantized
Similarly the spin currents may also be obtained from Noetvalue of the spin Hall conductance is a universal property of

her's theorem. this phase. A topological invariant characterizing theid
We now perform the continuum version of the transfor-phase has previously been discussed by Vol&¥ikhe re-
mation Eq.(3) by defining new fieldsy;,, through sults of this section provided a physical interpretation of this
topological invariance in terms of the quantization of the
Yia1= Xiat » (16) spin Hall conductance.
.t
Yia| = Xia - (17 lll. EDGE STATES
The form of the Hamiltonian Eq$11) and(14) is unchanged A. Semiclassical argument

under the transformation to thefields. It is clear that the

component of the physical spin density is essentially the den- As is well known from the theory of the quantum Hall
omp © phy P NSty "y effect, the quantization of the bulk spin Hall conductance
sity of the y particles. A spin rotation about theaxis cor-

. . ; . implies the existence, for a system with a boundary, of spin-
responds to aJ.(l) rotauoq of .theX fields. Th|s.U(1). S current carrying states at the edge. In particuddg,:Z im-
clearly present in thgg Hamiltonian. Once again, invariance

under spin rotations about theor y axes is not manifest. plies the existence of two such edge modes. Consided the

The d operator in real space may also be expressed ir?L'd superconductor with a boundary, and a particle incident

terms of these continuum fields as on the boundary with wave vectéy directed 45 degrees to
the normal. This particle is reflected to a state with a wave
ci(x)=d ()~ ¥y, —e i Xy, (18)  vectork, also at 45 degrees to the normal. This particle can
now Andreev reflect off the bulk of the superconductor and

CI(X)Edl(X)Ne—in‘XXm+ei Kj-ijZT' (199  return as a holésee Fig. 1 The hole moves on the reverse

trajectory until it is Andreev reflected from the bulk back as
with a sum over the node index < 1,2) understood. Note g particle at wave vectdr; .
that the symmetry transformation E() implies symmetry

of the Hamiltonian under If the direction ofk; corresponds to an angly, the di-

rection ofk, corresponds to anglé,= 6, =/2. For thed
+id gap Ag=Aqcos()—iA,sin(20). Therefore one has

: t
i i iag. 20
Xiaa=1(0y)apXjag 20 Ay, =—Ay,. Thus there is a relative phase shift of for

The calculation of the spin Hall conductance is simplified Andreev reflection ak, andk,, respectively. The problem is
by choosing the external Zeeman field to be oriented alonthen formally identical to that of a superconductor-normal-
thez-spin direction. In that case, the spin Hall conductance isuperconductofSNS junction with a phase shift ofr be-
just the charge Hall conductance of thdields. The resultis tween the two superconductors. It is well known that in such
well known® The contribution of each Dirac species is a system there exists a state at zero energy bound in the
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normal layer. A similar situation obtains if the incident par- (—ivr*ay— Ay, ™) p(x)=0, (24

Llef 21 s uecor & uhen agan e Sngle of I where e have assumed two-comporentuaye functon
9 ) 9 ’ ga(x) is independent of/—the coordinatealong the edge.

phase shift for the two Andreev reflections is different from - . . -
7, and there is no bound state. Thus there are precisely thhe appropriate solution which decays into the sample for

surface bound states for every surface orientation ofdthe X>0 is readily found:ga(x) = 0a1€XP(-Ayv). At low en-

+id state. This is entirely consistent with the quantization Ofergles belowa,, the Dirac fields can be expanded in terms

the bulk spin Hall conductance to be 2. This is, however, toOf this wave function as:

be contrasted with thd,._,2 superconductor where the ex- A,

istence of such zero-energy surface states depends sensi- Xjaa(X,y)=(—1)’ \/—y¢a(x)xea(y), (25)

tively on the orientation of the interfaéeNote also that for a v

dy2_2+is superconductor, there is no orientation of the in-with a two-component edge Fermion field(y). Here, the

terface for which the phase shift for the two Andreev reflec-(—1)! factor has been included to satisfy the boundary con-

tions is m—hence there are no surface bound states agaiditions ony(x=0,y), and the prefactor under the square root

consistent with the absence of a quantized spin Hall condudias been chosen so that the one-dimensional edge field sat-

tance. isfies canonical anticommutation relations. The effective
This semiclassical argument can be made precise by sohedge Hamiltonian can be readily obtained by inserting this

ing the Bogoliubov-de Gennd®-dG) equations for thel  expansion into the Dirac form in Eq22). After performing

+id superconductor in the presence of a boundary in thehe x integration one finds

Andreev approximation. We remind the reader that the B-dG

equations are just the eigenvalue equations fordtparticle

wave functions. As the calculations are straightforward, and

are very similar to t.hose in the literature for thg._y2 su- . with edge velocityv.=V sin(26). For the isotropic case this
perconductor, we will not present them here. Instead, we wil mpliesv.=ve=v
e~ VF=Va-

show how the edge modes may be obtained from the con- gy, edge Hamiltonian describes a two-component one-

tinuum theory described in the previous section. dimensional chiral Fermion. Each edge mode contributes
unity to the dimensionless Hall conductance, givir@zZ.
Since the edge density opera]s(qi[r)(e is proportional to thez

To show the existence of edge states within the effectiveomponent of spin, this is actually tispinHall conductance,
low-energy Dirac theory, it is necessary that the incident andliscussed in the previous section. Rotational invariance of
reflected modesgat 45 degrees with respect to the edie  the electron spin requires that the Hamiltonian be invariant
along directions in momentum space which pass close to thender y—i ay)(*, or equivalently,
nodes of thed,>_,2 order parameter. If this is not the case, a _ ;
description of the edge states requires retaining bulk modes Xe10yXe- (27
at high energies of ordek,. To this end, we consider an
edge parallel to thg axis located ak=0. It is convenient to
first rewrite the Dirac Hamiltonian in the original spatial co-
ordinates X,y):

Hedge:f dyXZa(_iVeay)Xeaa (26)

B. Continuum Dirac theory

The edge Hamiltoniart¢qqe is seen to satisfy this symme-
try. It is instructive to rewrite the edge Hamiltonian back in
terms of the original Dirac fieldsy, which transform as
spinors undeSU(2) rotations. In terms of one-dimensional
“edge” Dirac fields defined via
H=f d2x x A —iv o+ —i(vy T+ Vv, 7)dy— Ay X1

¢eT:XeT ; weL:XIey (28
H(1=2X= =X A= = Ayy). (220 the edge Hamiltonian takes the same form:
Here we have performed a rotation about tHeaxis by an
angle = arctanyg/v,) and definedv,= —v cos(%) andv, Hedge= f dy ¢;( —iVedy) e, (29)
=v sin(26) with v2=(vZ+v3)/2.

~ To establish the appropriate boundary conditions omythe with an implicit sum ona. This form is clearly seen to be
fields atx=0, it is necessary to use Eq4.8) and (19) re- invariant under SU(2) rotations ye—Ue, with U
expressing them in terms of the underlying electron fields=exp(6- o).

As emphasized in the previous section, re-expressing the Rather surprisingly, though, the edge Hamiltonian actu-
original BCS Hamiltonian in terms of the fermions elimi-  ally is seen to have amdditional U(1) symmetry; i
nates all anomalous terms, reflecting the conservation of;exp( ). This additional symmetry can be traced to the
spin, even in the presence of the edge. The appropriai@nservedJ(1) “charge” of the Diracy particles—called
boundary condition is thus simpld,(x=0y)=0, which  nodons in Ref. 2. Physically, thi$(1) symmetry reflects the

corresponds to the condition fact that the original BCS Hamiltonian conserves tiféer-
. B B encebetween the number of electrons at one node, s&y at
X12a(X=0Y) =~ X2a4(x=0y) (23 and the node with opposite momentumK; . In the pres-
on the Dirac fields. ence of impurities which break momentum conservation, this

To search for a zero-energy edge state it is necessary additionalU(1) symmetry willnotbe preserved. To see this,
solve the wave equation which follows from the Dirac theoryconsider adding scattering impurities to the above edge
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D p(E)
SPIN INSULATOR
Oy |=0
SQHF SQHF
Oxy =2 Oxy= 2 5 L
0 A E, ‘Ey E, E; E

Xy
FIG. 3. Density of states of the particles showing positions of

FIG. 2. Schematic phase diagram as a function gf and dis- extended states.

orderD; SQHF refers to the spin quantum Hall fluid.

o ] N ) ) disorder at zerd\,, localizes the quasiparticle states at the
Hamiltonians. For impurities which do not break spin rota- permi energy leading to a spin insulator. This phase should
tional invariance, the edge Hamiltonian must still be invari-pe robust to turning on a small,, . This is particularly clear
ant under yo—ioyxS, and, moreover, conserve the i the lattice version of the+id superconductor in terms of
component of spinyix.. A general form satisfying these the d operators. The,, simply corresponds to a diagonal

requirements is hopping term, and hence is innocuous, if weak, in a localized
phase. It is clear then that there must be two transition lines
H :f dv ! O Xas 30 emerging from theD =A,,=0 point (symmetrically about
mp Y Xe(my)- o)xe 30 the A,,=0 line) separating the two quantum Hall phases

where 5(y) are real functions, random in the spatial coordi- (With 5, = =2) from the spin insulator withr} =0.

nate along the edge. Rewritten in terms of théields these Note that the jump inv}, is by twa™®—this is prohibited
become in generic noninteracting models of quantum Hall systems
but is allowed here due to the special ex®d(2) symmetry.
B n _ + All phases have zero longitudinal spin conductance. It is in-
Himp_f dY[ 7" Yoo et H. CH mofetfe]. (3D teresting to ask about the behavior of the bulk quasiparticle
density of state§DOS) p(E) as a function of energy in
various regions of the phase diagram. It is knéwrat in the
spin insulator without time-reversal invarianggE) actu-
ally vanishes a&? at low energies. In the+id supercon-
- ductor, for weak disorder, standard arguments suggest the
Although the rgndqm terms gxphmtly break thé(1) development of exponentially small tails in the density of
symmetry, there is sl anothglnldden U1) symmetry, _states leading to a weak filling in of the gap. However, at
which can be revealed by making a clever change of variyisorder strong enough to be near the transition, we expect a
ables. Specifically, consider defining new fields larger density of states that nevertheless vanishes on ap-
B iy proaching zero ener§yasE?.
XezTyex;{—J dy’ 5(y') - | Xe, (32 A different perspective on the phase diagram is provided
Ve by considering the properties of the wave functions of the
whereT, denotes a “time ordering” along the spatial coor- Single-particle Hamiltonian for thel particles. In the spin
dinatey. This effectively gauges away the random terms, andjuantum Hall phaseg;, =2 implies the existence of pre-
the full Hamiltonian when expressed in terms of the niw ~ Cisely two extended states below the Fermi enefegch

fields exhibits theU(1) symmetry re—exp(6o)Te. This contributing unity to(fiy). These two states will be at two

; ; ; . different energies, say-E; and —E, (see Fig. 3 The
SU(2) gauge transformation will play an important role in i 1 —2 = .
analyzing the network model studied in the next section. particle-hole symmetry c_)f the_l Ha”_“'tof"a” n Eq_.(7) [i-e.,
the SU(2) spin rotation invariandamplies the existence of

two extended unoccupied states at positive energieand
E,. These states, if filled, contribute 1 each tosy, . Thus
A. Phase diagram as we move up in energy and pdss, oy, jumps from 2 to

We now move on to consider the effects of impurities onl and finally, as we pasi;, from 1 to 0. As the disorder
thed+id superconductor. As shown in the previous sectionincreases and we approach the transitiopandE, collapse
the edge modes are robust to weak impurity scattering—towards zero. A nice way to move upr down in energy is
hence so is the quantization of the bulk spin Hall conduc®Y turning on an external Zeeman field as this acts exactly
tance. Strong impurity scattering can, however, lead to Ey.k(_a a chemical potenual for th.ell pamclgs. .In particular, at
transition to a phase with zero Hall conductance. It is usefufinite Zeeman field, the transition splits into two separate
to consider a phase diagram of the system as a function &Mes witho, jumping by one at each. We show in Fig. 4 the
A,y and disordeD. The general topology of such a phase Phase diagram in the presence of a Zeeman field.
diagram is shown in Fig. 2.

At zero D, af(y=2$gn(AXy). This spin quantum Hall
phase is stable to weak disorder as seen above. The line Let us now consider the properties of the transitian
A,y=0 is of course thel,>_,2 superconductor. Turning on zero Zeeman fieldin some more detail. This is a quantum

with »* =9, *in, ando™ =(oy*ioy)/2. Although still in-
variant undeiSU(2) spin rotationsy.— U i, the additional
U(1) symmetry is clearlynot present anymore, due to the
anomalous .0 ¢, and ¢ZU+ wf;) terms.

IV. DISORDER EFFECTS

B. Delocalization transition
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B length as a function of energy diverges &s~E~"8. The
density of states may now be obtained by hyperscaling:

1
P(E)“E—é:ZMEZ"B_l- (39
SPIN INSULATOR B

For 6#0, p(E) satisfies the scaling form

oxy=0 p(E,8)~E2"s LY (Es V'"8). (36)
The universal scaling functio¥ satisfies
=1

y Y(x—o0)=1, (37)
Y (x—0)~x3"2"8, (38)

FIG. 4. Schematic phase diagram as a function of external Zeeyhere the second line follows from requiring th«E) van-
man fieldB (or energ)E) and a parametef measuring the distance jshes asE? off criticality.
(at zero field from the zero-field phase boundary for the-@
transition. C. Network model

Hall plateau transition wheref(y jumps by 2. This is a new Ju_st as for the conventional quantum Hall t_ransition, it is
universality class for a quantum Hall localization transition POSSible to construct a network model to describe the univer-
distinct from the usual one describéfbr instance by the sl critical properues..lf we t.h|nk of the links of the network
Chalker-Coddington network model. A field-theoretic de-Model as corresponding to internal edge states of puddles of
scription of this critical point in two-dimensional supercon- the quantum Hall fluid immersed in the spin insulator phase,
ductors without time reversal but with spin rotation symme-then it is clear that we need to have two channels of propa-
try is obtained on examining the nonlinear sigma modelgation on each link. The link amplitude is the.amplltude of
appropriate for describing quasiparticle localization in such @ropagation of the two channels. As the Hamiltonire-
system. In a replica formalism, this is a sigma model on theScribing the dynamics of the system has the symmetry
spaceSp(2n)/U(n).3*19This field theory admits a topologi- oyH*oy=—H, it is clear that the unitary time evolution
cal tern? asI,(Sp(2n)/U(n))=Z is nontrivial. We expect OPeratory=e "' satisfies) T U=a, . Upon restriction to
by analogy to the reasoning for the conventional intege® Subspace with? states, this unitary operator can be rep-
quantum Hall transition that the sigma model supplemente#esented by a matrix belonging to the grd&ip(2N) (which
with the topological term has a critical point which describesiS_defined precisely as aN2x2N unitary matrix satisfying
the spin quantum Hall transition. Introducing a Zeeman fieldJ ' oyU =0y). Thus for the case of two channels, the ampli-
induces a crossover to the conventional universality classtude for propagation is a22 matrix belonging to the group
This is of course consistent with the transition splitting into SP(2)=SU(2). Theother ingredient in the network model
two as jumps ofrs, by more than one are prohibited in that 1S the matrix at the node connecting four links. Formally, this
case. There is, however, another very significant differencé$ @ scattering event with four incoming channels and four
between the spin quantum Hall transition and the conven@utgoing channels. The corresponding scattering matrix thus
tional one. As mentioned above, the density of states actualljelongs to the grouSp(4). Taking the link and node scat-
vanishegat zero energyon either side of the transition. By {tering matrices to be random and belongingSp(2) and
continuity, we expect that the density of states vanishes a¢P(4), respectively, then completes the specification of the
the critical point as well. network model.

We may now formulate scaling hypotheses for various [N some recent work, Kagalovset al* have simulated
physical quantities of interest near the transition. On ap@ network model with these symmetries and obtained nu-
proaching the critical pointat zero Zeeman fiejcby tuning merical estimates of various critical exponents. Here, how-

the disorde, for instance, the localization length(at zero ~ €ver, we will follow a different route. We will use the net-
energy diverges as work model to motivate the construction of a

supersymmetric quantum spin chain which can be used to
E~577, (33  calculate various disorder averaged properties of the system.
For that purpose, it is actually more useful to consider an
where & is the distance from the phase boundary. Movinganisotropic version of the network model in which we view
away from the critical point by turning on a Zeeman field it as a collection of counterpropagating edge modes along the
also introduces a finite localization lenggg diverging as y direction. Two adjacent modes are connected by random
tunneling. (An alternative approach to deriving a superspin
£g~B7 B, (34) chain is discussed in Ref. 25As shown in the previous
section, each edge mode is described by a two component
We may now obtain, for instance, the behavior of the densitychiral fermion and is described by the Hamiltonian
of statesp(E) at the critical point. To that end, note that
moving away from zero energy is the same perturbation as

—_ 1) T —j (V) - )
turning on a Zeeman field. Consequently, the localization (=1) fdyx,(y)[ toy+m(y)-olxi(y). (39



PRB 60 SPIN QUANTUM HALL EFFECT IN UNCONVENTIONAL . .. 4251

Here x; refers to thejth edge mode. They(y) representthe This crucial simplification permits considerable numerical
randomness on the links of the network model. To completend analytical progress.

this Hamiltonian description of the network model, we need For a chain ofL (even sites, the super-Hamiltonian may
to introduce random tunneling between neighboring counterbe written, following the notation of Ref. 13, as
propagating edge modes. The most general term consistent

with the symmetries required of the Hamiltonian are i 4 2
H:j=o Jj a§=:1 gaS?S?+1+(_1)JEl§=:5 gaS?S?+1
; f dy{=it)YLX]+ 1D x () = X[ (V)X +2()] L1
+,Zo w[SH+S7]. (47)

) X ox () + x]oxg e} (40)
Heret?(y) andt;(y) are random variables with zero mean. Here J;=[1+(—1)'5] where the relevant dimerization pa-

Precisely this Hamiltonian for the case of just two neigh_rameter5=0 at the critical point. We have introduced dif-

boring edge modes has been studied in detail in Ref. 4. [{rént imaginary frequencies; at each site to permit the

was shown that averages of physical quantities like the derXtraction of critical propertiegsee the following section
sity of states and diffusion propagator could be obtained N€ constantg, are defined to be
from an equivalent supersymmetric quantum-mechanical

problem defined by the non-Hermitian “Hamiltonian” 2; a=178
h:hff+hbb+ hfb+ hw! (41) ga: 11 a:3,4 (48)
hi=—I[(Floyf D (Foy D) +(Froyf1)(fo0yfy) —2; a=256.
+2(f’1ff1—1)(f’£f2—1)], (42) In Eg. (47) we have introduced eight spin operators:
hep=23(blb;+1)(biby+1), 43) S'=blb,+1, S=eblf},
hio=23[(bloy 1) (flaybd)+(byayf1)(faoyby) SP=flf,—1, S=e,4b.fp,
(49)
—(f1by)(3by) = (b]f1)(b3f5)], (44) S=c i, ST=blf,,
h,=w(f]f1+blb;+13f,+blb,). (45) S'mefufp S=f'by.
Here f;(b;) are two component fermionithosoni¢ opera- . .
tors, and inde) = 1,2 labels the two edge modes. ParametelBOS'(m'C'Valuecj ope_rato_&l, e '.’84 mak_e up the symmetric
w is the imaginary frequency at which we wish to Computesector of the Hamiltonian while fermion-valued operators
S°, ..., S are in the antisymmetric sector. Despite the fact

averages. The constaht-0 is determined by the strength of
the disorder. Its actual value is unimportant for calculation o
universal properties. We refer the reader to Ref. 4 for furthe
details. In the following we sel=1 for convenience. This

super-Hamiltonian generates time evolution in thdirec- Lo . .
P g n The Hamiltonian commutes with twéfermion-valuedl

tion. Clearly the super-Hamiltonian describing the full net- o =
work can be built up from this two edge Hamiltonian. Just agSupersymmetry generatofsd, Q;]=[H, Q,]=0, where

in the case of the superspin chain which describes the con-

ventional quantum Hall transitiotf, the two distinct phases Q=2 [bjTafja—(—l)jijabja].

on either side of the transition correspond to the two possible ]

ways of dimerizing the chain. The critical point corresponds

to the uniform chain where the bond strengtis the same .

for all bonds. An important feature of this Hamiltonian that QZE; [(_1)Jb;rafja+f1fabja]- (50)

is not shared by superspin chains constructed for the conven-

tional quantum Hall transitiod*3is that the low energy sec- It is not difficult to see that the supersymmetric Hamiltonian
tor of this theory is described by a finite on-site Hilbert must have a unique, zero-energy ground state. The right and

1IhatH is non-Hermitian, it only has real-valued eigenvalues.
ﬁ is also defectivgthe left eigenstates or the right eigen-
states do not separately span the whole Hilbert gpaoen-
plicating the numerical problem of diagonalizing it.

spacé of dimensionD =3: left (ground eigenstates are therefore annihilated by the
Hamiltonian H| W) =(W¥,|H=0. Also, the ground state is
11)=|0), annihilated by the SUSY charg€| ¥ o) = Q,|¥,)=0. All

excited states appear in quartets or larger multiples of 4, half

1 tet with odd total fermion content, and these cancel out in the
2)= E Eaﬁbafﬁ|0>’ (46) partition function by virtue of the supertrace
Z=STre Al=Tr(—1)Nie A =1, (51)

1
= tet
13)= 2 €apfafpl0)- whereN; is the total number of fermions.
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V. DMRG RESULTS *—O-0690 L=4

We employ the relatively simple “infinite-size” DMRG *—o-06—9--0—0
algorithmt* to numerically access the properties of the criti-
cal point 6=0. The fact that the ground-state energy is ex- o——90--06—-90-0—90-0690 .-
actly zero provides a valuable check on the accuracy of the
DMRG algorithm which incurs errors when, as the chain
length increases, the Hilbert spaces of the blocks grow be-
yond the finite limit ofM states. Increasinigl up to limits set
by machine memory and speed yields systematic improve-
ment in the accuracy of the DMRG algorithm. In results
reported below we have checked thatis sufficiently large
to ensure adequate accuracy; fée243 there is no trunca-
tion until the chain exceeds length=12. Reasonable accu-
racy is maintained, for the caséd =256, out toL =26: the
ground state, when targeted, has an eneggywhich in- -h
creases from zero to jut,=2.3x10 % at L =26. Further- Spin Moments Induced by Field Applied to Ends
more_,5forM =512, the ground-state energy is orily=3.2 FIG. 5. Extraction of critical behavior from finite-size effects,
X107 at c_haln lengthl :_30_' sh0W|_ng the systematic im- jyygirated for the case of an ordinary quantum antiferromagnetic
provement in accuracy with increasiig spin chain. Dimerization of the nearest-neighbor spin-spin correla-
Reduced density matrices for the two augmented blocks;on function, indicated here by alternating strofsglic) and weak

each of Hilbert space si@ X M are formed by computing a (dashedi bonds, is induced by the open boundary conditions. Spin
partial trace over half the chain. For the left half of the chainmoments are induced by the application of a magnetic field of

the density matrix is chosen to have the following symmetricstrength=h to the two spins at the ends of the chashown or

Dimerization Induced by Open Boundary Condition

+h

form:#* formed by the application of a staggered field throughout the chain.
oM Lo 5 n and the ratio&/L. Consider, for instance, the density of
Pii=7 > {W Wy + W WL (52)  states. This is determined by the boson occupancy according
=1 to*

a similar formula holds for the right half of the chain. Here 2

W, =(i,i"|¥) and W;,=(¥[i,i') are, respectively, the 27Tp(E)=EReZ (1+bb}), (53)

real-valued matrix elements of the targeted right and left '

eigenstates projected onto a basis of states labeled lyhere we calculate expectation values settiag= w =

unprimed Roman index which covers the left half of the —i(E+i%). Thusp(E) can be obtained from the behavior

chain and primed indekx’ which covers the right half. To of the spin operato®'. This scales at the center of the chain

compute ground-state propertied, is selected to be the as a function of the chain lengthand the uniform, “bulk,”

ground state; conversely, to find the gap,is chosen to be imaginary frequencys;= o as follows:

one of the lowest-lying excited states. All of the eigenvalues

of p are real and positive; these are interpreted as probabili- (Sl =wf(Lo"s, éw"s), (54

ties and the D —1)M least probable states are thrown away.
To extract critical behavior, we monitor the induced

dimerization and spin moments near the center of the chain a=2vg—1, (55)

as the chain length is enlarged via the DMRG algorithft. ) . .

Dimerization is induced by the open boundary conditions a&S réquired by hyperscalingee Eq(35)]. When the applied

shown in Fig. 5. Spin moments are formed in the interior ofdimerizationé=0, this reduces to

the chain in two different ways. In the bulk case is set 1\ o« Ve

equal to a small, but nonzero, constasnt-0 on :zch site, (S =egLe™)~LYe  as 0=0. 6

inducing nonzero spin moments. Alternatively, the spins aHere the scaling functiog(x) is given, for|x|<1, by

the chain ends can be fixed by setting=0 except at the _/ N o

chain ends where; is assigned a large value which com- g(X)=X"“"B(C X "B+ CoX T BA - - ). (57

pletely polarizes the end spins; see Fig. 5. Power-law scalingpis oquation expresses the fact that when the system length

of the induced dimerization and spin moments in the interior :
L e . ) is much smaller than the correlation lengtlx|&1), the
of the chain is expectétiat the critical points=0. As dis- gthde<1)

. oL e ; DOS is an analytic, linear function of the imaginary ener
cussed earlier, we may move off criticality either by dimer- y ginary 9y

o . . ; 7 .~ w. With this scaling form we obtain

izing the spin chain or by turning on a finite Zeeman field

(which is equivalent to going away from zero energyhere y=2(1-vg)lvg. (58)

are two independent exponents related to these two perturba-

tions of the critical spin chain. As in Sec. IV, we may write  In what follows, we first describe the calculation of the
down scaling forms for various physical quantities. For aexponentsy,vg for the two diverging localization lengths.
finite system size, these scaling forms will involve two scal-These can then be used to extract the other critical exponents
ing variables: the rati@/ &g of the two localization lengths «, y using the above scaling arguments. We will, however,

where the exponent
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and thusy=1.32+0.02, close to the percolation value of 4/3
reported in Ref. 15. For the spin-1/2 Heisenberg antiferro-
magnet and the spin-1 antiferromagnet at the critical point
accuracy at the few percent level was also achiévekhe
network model simulationt$ find »=1.12. Though this is
close to the value we find numerically, and to the exact result
15, the reason for the lack of more precise agreement is
unclear to us.

o 1 (3) DOS exponentse and y. Drawing upon the data
< induced dimerization, M=512 shown in Fig. 6 we obtaiy=1.43+0.05 by direct fit of the

-
o
T

o
o

expectation value at chain center

T  oosupancY, M=o bulk occupancy at one of the central sites to the second line
* upancy, M=256 . . .

, of Eq. (56). The error is estimated by comparing results from
10 100 DMRG calculations withM =256 andM =512 and also by

t making power-law fits over different ranges of chain lengths

FIG. 6. Power-law scaling of the induced dimerization, the bulkL. This calculation ofy can now be used to calculate;
occupancy, and the induced occupancy with chain lehgtim the ~ =0.58+0.01 in good agreement with the value obtained in
case of the induced dimerization and the bulk occupangy, item 1 above.
=105 throughout the chain, small enough for the bulk occupancy ~As mentioned above, the scaling of the DOS can be ex-
to be well described by the second line of E56). The bulk occu-  tracted in another way: seb; =0 everywhere along the
pancies have been multiplied by a factor of 1The induced occu-  chain except at the two sites at the ends of the chain where it
pancy is obtained by setting; =0 everywhere except at the chain js made large. Consequently at the chain ed@)
gnds Whe_re it is made large, in this casg= w__,=10. Straight :<Sﬁ—1>: 1 but in the interior the expectation val(lsﬁ,z),
lines are fit to each of the three data sets. which we call the induced occupancy, decreases as the chain

provide independent support for the validity of these scalinggrOWS in length:

arguments by direct calculation. 1

(1) Localization length exponentg. The localization (St)~—.
length scales, as a function of the imaginary frequeagy L"
with exponentvg:

(63

From Fig. 6 we findv=0.26+0.02. Now, scaling relatels
£~ B, (59 ~w" "B and hencex=wwg. Using the relatioro=2vg—1,
¢ we get vg=0.57+0.02 again in agreement with the esti-
One way to determiney is to find the crossover, for uni- mates above, and the exact result 15. Note that the density of
form wj=w>0, from power-law decay of the induced states exponent=0.14+0.04.
dimerization to exponential decay. The induced dimerization
at the center of the chain is defined as VI. DISCUSSION

A(L,w)= |<§/2_1§L/2_ §/2SE/2+1>|, (60) How may the physics discussed in this paper be probed if
ad,2_,2+id,, superconductor were to be found experimen-

where we recall thasszeaﬁfzfz is one of the eight SUSY tally? The bulk of this paper has focused on spin Hall trans-
spin operatorgeach of the seven other spin operators scalgort which is extremely difficult to measure. However, the

similarly). It has the following asymptotic behavior: thermal Hall conductance is also quantized in the 2
+idy, state. This can, for instance, be seen using the edge
CL =0 state theory developed in Sec. lll. Indeed, if the temperature
A(L,w)= (61)  of one edge is raised b§T relative to the other, the excess
C' e M@t m(e)L>1. heat current is easily seen to berZI 5Tk3/3h implying a

. o . _ thermal Hall conductance of
Fits to the second line in E¢61) permit the extraction of the

mass gapn(w); thenvg is determined by a power-law fit to 22T

M(w)~w"8. We find vg=0.55+0.1 for calculations with K= "3

M =128, fitting over the range 20L<24 and 0.X v<0.8.

A direct calculation of the gap in the excitation spectrum asrp,s Kyl T is quantize®® in the dy_,2+id,, supercon-

a function ofw also yields results consistent with this value gy ctor. On the other hand, in the spin insulator phagg/T

for v5. Note that the exact result of Ref. 15 i§=4/7  goes to zero as the temperature goes to zero. Note that the

=0571... . » charge Hall conductance isot quantized in thed+id

(2) Dimerization exponent. For smallw;=10"°, fitting  phase?* Physically this is because any edge quasiparticle

the induced dimerization shown in Fig. 6 to the first line in glectrical current causes flow of supercurrent in the opposite

Eq. (61) yieldsx=1.24+0.01. The dimerization exponent  jrection out to a distance of order the penetration depth.

is related to the scaling dimensiarby The behavior of the quasiparticle density of states may be
probed by specific-heat, spin susceptibility, or tunneling

62) measurements. We c_autic_m, h_owever_, that it may be neces-
sary to include quasiparticle interactions, neglected in the

(64)

_ 1
VT2



4254 T. SENTHIL, J. B. MARSTON, AND MATTHEW P. A. FISHER PRB 60

theory so far, to obtain meaningful comparisons with experiful way of probing quasiparticle transport. Arguments very
ments for these quantitie€The quantization of the spin and similar to those used in this paper show that a two-
thermal Hall conductances is expected to be robust to includimensional superconductor with,+ip, symmetry has a
sion of quasiparticle interactions. quantized thermal Hall conductance. For a layered three-
It is interesting to ask about experimental realizations ofgimensional system, we then have a chiral surface sheath
d+id pairing symmetry in layered three-dimensional superjith diffusive thermal transport in the direction perpendicu-
conductors. If each layer is deep in the spin quantum Hallyr to the layers, and ballistic thermal transport within each

fluid phase, then arguments similar to those for muItiIayeqayer_ Such a layered+ip superconductor is possibly real-
quantum Hall system32° imply the existence of a “chiral o4 in the material SRUO, 2"

spin metal” phase at the surface with diffusive spin transport
in the direction perpendicular to the layers and ballistic spin We thank Leon Balents, John Chalker, Steve Girvin, llya
transport within each layer. The properties of this chiral spinGruzberg, Andreas Ludwig, Chetan Nayak, Nick Read,
metal will be quite similar to those of the chiral metal dis- Shan-Wen Tsai, and Xiao-Gang Wen for useful discussions.
cussed in multilayer quantum Hall systefmg® This research was supported by NSF Grant Nos. DMR-
Throughout this paper, we have analyzed only the case &#704005, DMR-9528578, DMR-9357613, DMR-9712391,
spin singlet pairing. For triplet pairing, such as ipavave and PHY94-07194. Computations were carried out with
superconductor, neither the spin nor the charge of the quasilouble-precision @ + code on Cray PVP machines at the
particles is conserved. Thermal transport still remains a useFheoretical Physics Computing Facility at Brown University.

*Permanent address. than the Fermi energy. There is actually another pHésm-
1S, A. Kivelson and D. S. Rokhsar, Phys. Rev.4&, 11 693 lecular limit”) in which the gap is so large that, at fixed density,

(1990. the chemical potential has actually gone negative. Such a phase
2L. Balents, M. P. A. Fisher, and C. Nayak, Int. J. Mod. Phys. B does not have a quantized spin Hall conductance.

12, 1033(1998; Phys. Rev. B60, 1654(1999. BA W, W. Ludwig, M. P. A. Fisher, R. Shankar, and G. Grinstein,
3T. Senthil, M. P. A. Fisher, L. Balents, and C. Nayak, Phys. Rev. Phys. Rev. B50, 7526(1994).

Lett. 81, 4704(1998. 19R. Bundschuch, C. Cassanello, D. Serban, and M. R. Zirnbauer,
4T. Senthil and M. P. A. Fisher, cond-mat/9810238, Phys. Rev. B cond-mat/9806172(unpublishedt Phys. Rev. B 59, 4382

(to be published 1 September 1999 (1999.
5D. S. Rokhsar, Phys. Rev. Left0, 493 (1993. 20Thjs was also emphasized in Ref. 11 using the network model.
®R. B. Laughlin, Phys. Rev. Let80, 5188(1999. 213, Kondev and J. B. Marston, Nucl. Phys.487, 639 (1997);
"See A. V. Balatsky, Phys. Rev. Let80, 1972 (1998 for an Shan-Wen Tsai and J. B. Marstomnpublishegl

interpretation of the experiment of R. Movshovich, M. A. Hub- 22)\1. E. Fisher and P.-G. de Gennes, C. R. Seances Acad. Sci., Ser.
bard, M. B. Salamon, A. V. Balatsky, R. Yoshizaki, J. L. Sarrao, B 287, 207 (1978; F. Igloi and H. Rieger, Phys. Rev. Lef8,

and M. Jalmejbid. 80, 1968(1998. 2473(1997).
8M. Fogelstrom, D. Rainer, and J. A. Sauls, Phys. Rev. I#dt. 2See C. L. Kane and Matthew P. A. Fisher, Phys. Rev5®
281 (1997; M. Covington, M. Aprili, E. Paraocanu, L. H. 15 832(1997 for a discussion of quantized thermal Hall con-
Greene, F. Xu, J. Zhu, and C. A. Mirkiihid. 79, 277 (1997). ductance in the conventional quantum Hall effect.
9A. Altland and M. R. Zirnbauer, Phys. Rev. 55, 1142(1997);  2*J. Goryo and K. Ishikawa, cond-mat/981241@published
M. R. Zirnbauer, J. Math. Phy&7, 4986(1996. 253, T. Chalker and A. Dohmen, Phys. Rev. L&®, 4496(1995;
103, T. Chalker and P. D. Coddington, J. Phys2T; 2665 (1988. L. Balents and M. P. A. Fisheibid. 76, 2782 (1996; Y.-B.
11y, Kagalovsky, B. Horovitz, Y. Avishai, and J. T. Chalker, Phys. Kim, Phys. Rev. B53, 16 420(1996; L. Balents, M. P. A.
Rev. Lett.82, 3516(1999. Fisher, and M. R. Zirnbauer, Nucl. Phys.483, 601 (1996); I.
2M. R. Zirnbauer, Ann. Phys3, 513 (1994; N. Read (unpub- A. Gruzberg, N. Read, and Subir Sachdev, Phys. Re%5B
lished. 10 593(1997); 56, 13 218(1997.
133, B. Marston and Shan-Wen Tsai, Phys. Rev. L&®. 4906  2°H. L. Starmer, J. P. Eisenstein, A. C. Gossard, W. Wiegmann,
(1999. and K. Baldwin, Phys. Rev. Leth6, 85(1986; D. P. Druist, P.
143 R. White, Phys. Rev. Let69, 2863(1992; Phys. Rev. B48, J. Turley, K. Maranowski, E. G. Gwinn, and A. C. Gossalitj.
10 345(1993. 80, 365(1998.

B|lya A. Gruzberg, Andreas W. W. Ludwig, and N. Read, Phys.?’T. M. Rice and M. Sigirst, J. Phys.: Condens. MatferL643
Rev. Lett.82, 4524(1999. (1995; G. M. Luke, Y. Fudamoto, K. M. Kojima, M. I. Larkin,
186G, E. Volovik, Pis'ma Zh. Esp. Teor66, 492(1997 [JETP Lett. J. Merrin, B. Nachumi, Y. J. Uemura, Y. Maeno, Z. Q. Mao, Y.
66, 522(1997)]. Mori, H. Nakamura, and M. Sigrist, Natuféondon 394, 558

"We consider only the situation in which the gap is much smaller  (1998.



