
PHYSICAL REVIEW B 1 AUGUST 1999-IIVOLUME 60, NUMBER 6
Spin quantum Hall effect in unconventional superconductors
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We study the properties of the ‘‘spin quantum Hall fluid’’—a spin phase with quantized spin Hall conduc-
tance that is potentially realizable in superconducting systems with unconventional pairing symmetry. A simple
realization is provided by adx22y21 idxy superconductor which we argue has a dimensionless spin Hall
conductance equal to 2. A theory of the edge states of thedx22y21 idxy superconductor is developed. The
properties of the transition to a phase with vanishing spin Hall conductance induced by disorder are considered.
We construct a description of this transition in terms of a supersymmetric spin chain, and use it to numerically
determine universal properties of the transition. We discuss various possible experimental probes of this
quantum Hall physics.@S0163-1829~99!00426-9#
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I. INTRODUCTION

A remarkable property of a singlet superconductor is
occurrence of the phenomenon of spin-charge separatio1,2

The superconducting condensate may be viewed as a co
tion of spinless, charge 2e Cooper pairs that have Bose co
densed. The spin, on the other hand, is carried entirely by
fermionic quasiparticle excitations which do not carry de
nite charge. This observation is particularly important in t
context of superconductors with non-s-wave Cooper pairing
leading possibly to quasiparticle excitations at arbitrarily lo
energies. The best studied case isdx22y2 pairing in the high-
Tc cuprates. The resulting superconducting state has gap
quasiparticle excitations which dominate the lo
temperature properties. The cuprates thus provide an op
tunity to explore the low-energy properties of a gapless sp
charge separated system in dimensions greater than 1. R
work3,4 has pointed out the possibility of realizing a nov
spin phase—the ‘‘spin metal’’—in the cuprates in the pre
ence of disorder. This phase is characterized by a nonvan
ing finite spin-diffusion constant and spin susceptibility
zero temperature, and is not known to exist in insulat
Heisenberg spin models. In this work, we explore anot
spin phase potentially realizable in superconduct
systems—the ‘‘spin quantum Hall fluid.’’ This phase is cha
acterized by a quantized value of the Hall spin conducta
~analogous to the quantized Hall charge conductance in
integer quantum Hall effect!.

We begin by showing that such a spin quantum Hall flu
phase is realized by two-dimensional superconductors w
dx22y21 idxy symmetry. Thed1 id state, which has receive
a fair amount of attention recently,5–8 has been known to
possess various similarities with quantum Hall states, tho
the precise characterization in terms of spin transport has
been pointed out before. In particular, it has been sugge
PRB 600163-1829/99/60~6!/4245~10!/$15.00
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that a transition from thedx22y2 to the dx22y21 idxy super-
conductor may be driven by external magnetic fields,6 and
hence is potentially realizable in the cuprates.

Here we first calculate the bulk spin Hall conductance
the d1 id state and show explicitly that it is quantized to b
equal to 2~in units of the dimensionless spin conductanc!.
We then use semiclassical arguments to show the exist
of two spin-current carrying edge states as required by
quantization of the bulk Hall spin conductance. A Ham
tonian describing the propagating edge modes is derived.
next consider the effects of disorder on thed1 id state. The
quantization of the spin Hall conductance is robust to we
impurity scattering. However, if the impurity scattering
sufficiently strong, there can be a phase transition to a ph
with vanishing Hall spin conductance. The properties of t
transition are considered next. Ignoring the quasiparticle
teractions, this transition is argued to be described by
critical point of a replica nonlinear sigma model theory3 with
a topological term which describes quasiparticle localizat
in a superconductor without time reversal but with spin
tation invariance~class C of Ref. 9!. We then construct a
network model10 describing this transition, and show that
is identical to that simulated recently by Kagalovskyet al.11

We then motivate a description of this transition in terms
a supersymmetric~SUSY! spin chain. In contrast to the
SUSY spin chain which describes the usual integer quan
Hall transition,12,13 this SUSY chain has only a finite num
ber, 3, of degrees of freedom at each site. This enables
efficient use of a numerical technique—the density-ma
renormalization group~DMRG!—which has been success
fully used for accurate calculations of the properties of qu
tum spin chains in other situations.14 We present numerica
results for a number of universal critical properties of t
transition. Some of these have been obtained before from
network model simulations.11 Very recently, Gruzberg, Lud-
4245 ©1999 The American Physical Society
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wig, and Read15 have provided a mapping of this transitio
to classical percolation and determined exact values for v
ous critical exponents. Our numerical results are in excel
agreement with these exact values. We conclude with a g
eral discussion of various experimental probes of the phy
discussed in this paper.

II. BULK SPIN HALL CONDUCTANCE OF THE d1 id
SUPERCONDUCTOR

We begin by defining the spin Hall conductance. In ge
eral, the spin conductance measures the spin current ind
in the system in response to a spatially varying Zeeman m
netic field. The spin Hall conductance measures the spin
rent in a direction transverse to the direction of variation
the external Zeeman field. More precisely, a Zeeman fi
Bz(y) along, say thez direction of spin, which depends onl
on, for instance, the spatialy direction, leads to a currentj x

z

of the z component of the spin along the spatialx direction
given by

j x
z5sxy

s S 2
dBz~y!

dy D ~1!

with sxy
s being the spin Hall conductance.~Note that the

analog of the ‘‘electric’’ field for spin transport is the deriva
tive of the Zeeman field.! Just like the usual Hall effect,sxy

s

is 0 in the presence of parity and time-reversal invarianc
Thed1 id superconductor is neither parity nor time-rever
invariant and hence can have a nonvanishingsxy

s .
Before proceeding further, it is worthwhile to recall som

general properties of singlet superconductors with no tim
reversal invariance. Consider a general lattice BCS Ham
tonian for such a superconductor:

H5(
i , j

F t i j (
a

cia
† cj a1D i j ci↑

† c↓ j
† 1D i j* cj↓ci↑G , ~2!

where i , j refer to the sites of some lattice. Hermiticity im
plies t i j 5t j i* , and spin rotation invariance requiresD i j

5D j i .
It is often useful to use an alternate representation

terms of a new set ofd operators defined by

di↑5ci↑ , di↓5ci↓
† . ~3!

The Hamiltonian, Eq.~2!, then takes the form

H5(
i j

di
†S t i j D i j

D i j* 2t i j*
D dj[(

i j
di

†Hi j dj . ~4!

Writing t i j 5ai j
z 1 ibi j , D i j 5ai j

x 2 iai j
y with aW i j 5aW j i , real

symmetric, andbi j 52bji , real antisymmetric, gives

Hi j 5 ibi j 1aW i j •sW , ~5!

wheresW i are the three Pauli matrices. Note thatSU(2) spin
rotational invariance requires

syHi j sy52Hi j* . ~6!

Equivalently, we may require that the second quantiz
HamiltonianH in Eq. ~4! be invariant under
ri-
nt
n-
cs

-
ed
g-
r-
f
ld

s.
l

-
il-

n

d

d˜ isyd
†. ~7!

The advantage of going to thed representation is that th
Hamiltonian conserves the number ofd particles. Note that
the transformation Eq.~3! implies that the number ofd par-
ticles is essentially thez component of the physical spi
density:

Si
z5

\

2
~di

†di21!. ~8!

A spin rotation about thez axis corresponds to aU(1) rota-
tion of thed operators. ThisU(1) is clearly present in thed
Hamiltonian. Invariance under spin rotations about thex or y
axes is not manifest though.

Now consider the particular case of adx22y21 idxy
superconductor.17 In momentum space, the Hamiltonian is

H5(
ka

ekcka
† cka1~Dkck↑

† c2k↓
† 1H.c.!, ~9!

where ek is the band dispersion andDk5D0cos(2uk)
2iDxysin(2uk) with tan(uk)5ky /kx . It is sometimes useful to
think in terms of a lattice version of thed1 id supercon-
ductor. This has been formulated by Laughlin6

Translating to momentum space, for a square latt
we have ek;@cos(kx)1cos(ky)#, Dk;D0@cos(kx)2cos(ky)#
2iDxysin(kx)sin(ky) which has the same symmetry und
fourfold rotations of the lattice as the form written dow
earlier.

The parameterDxy measures the relative strength of th
dxy and dx22y2 components.Dxy50 corresponds to the fa
miliar dx22y2 state. In this limit, the gap functionDk van-
ishes at four points of the Fermi surface and there are gap
quasiparticle excitations at these four nodes. A low-ene
theory of thedx22y2 superconductor can be obtained2 by lin-
earizing the dispersion relation of these quasiparticles aro
the nodes. We putY1(k)5ck ,Y2(k)5 isyc2k

† for ky.0 to
write

H5( 8
k

Y†~k!~ektz1Dktx!Y~k!, ~10!

where the prime indicates a sum overky.0 andtW are the
Pauli matrices inY1 ,Y2 ~particle-hole! space. If (K1 ,K2)
are the two nodal directions withky.0, we may just keep
modes near (K1 ,K2). Linearizingek andDk near the nodes
we get the following low-energy theory for thedx22y2 super-
conductor:

H5E d2Xc1
†~2 ivF]Xtz1 ivD]Ytx!c11~1↔2;X↔Y!.

~11!

HereX51/A2(x1y) andY51/A2(2x1y). The fieldc i is
the Fourier transform ofc i(k)5Y(Ki1k) for i 51,2. Each
c i thus has four componentsc iaa wherea is the particle-
hole index anda the spin index. Thec i transform as spinors
underSU(2) spin rotations. This Hamiltonian is manifest
invariant under spinSU(2). ~It also has additionalU(1)
symmetries that can be related to momentum conserva
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that holds in clean systems2!. The physical charge density i
of course not conserved as is already apparent from Eq.~9!.

It is useful at this stage to express the original real-sp
electron operators in terms of the low-energy continu
fields. This is easily seen to be

c↑~x!;eiKj •xc j 1↑2e2 iKj •xc j 2↓
† , ~12!

c↓~x!;eiKj •xc j 1↓1e2 iKj •xc j 2↑
† , ~13!

with a sum over the node index (j 51,2) understood.
Now consider introducing a smallidxy component, i.e.,

letting Dxy.0. For smallDxy , we may work with the low-
energy theory Eq.~11! near the nodes of thed supercon-
ductor. Theid perturbation adds to the low-energy Ham
tonian Eq.~11! the following term:

Hid5E d2XDxy~c1
†tyc12c2

†tyc2!. ~14!

Note that this is basically a mass term for the two Dir
theories describing the two nodes.

The spin density can be expressed in terms of the c
tinuum fields as

SW 5
\

2
c†sW c. ~15!

Similarly the spin currents may also be obtained from No
her’s theorem.

We now perform the continuum version of the transfo
mation Eq.~3! by defining new fieldsx iaa through

c ia↑5x ia↑ , ~16!

c ia↓5x ia↓
† . ~17!

The form of the Hamiltonian Eqs.~11! and~14! is unchanged
under the transformation to thex fields. It is clear that thez
component of the physical spin density is essentially the d
sity of thex particles. A spin rotation about thez axis cor-
responds to aU(1) rotation of thex fields. ThisU(1) is
clearly present in thex Hamiltonian. Once again, invarianc
under spin rotations about thex or y axes is not manifest.

The d operator in real space may also be expressed
terms of these continuum fields as

c↑~x![d↑~x!;eiKj •xx j 1↑2e2 iKj •xx j 2↓ , ~18!

c↓
†~x![d↓~x!;e2 iKj •xx j 1↓1eiKj •xx j 2↑ , ~19!

with a sum over the node index (j 51,2) understood. Note
that the symmetry transformation Eq.~7! implies symmetry
of the Hamiltonian under

x jaa˜ i ~sy!abx jab
† . ~20!

The calculation of the spin Hall conductance is simplifi
by choosing the external Zeeman field to be oriented al
thez-spin direction. In that case, the spin Hall conductanc
just the charge Hall conductance of thex fields. The result is
well known:18 The contribution of each Dirac species is
e

n-

t-

-

n-

in

g
is

1

2
sgn~Dxy!

~\/2!2

2p\
.

We have introduced the quantum of spin conducta
(\/2)2/2p\5\/8p. As there are now four Dirac species, w
obtain for the spin Hall conductance~in units of\/8p) of the
d1 id superconductor:

sxy
s 52 sgn~Dxy!. ~21!

This is the main result of this section.~If we repeat the cal-
culation for adx22y21 is superconductor, we findsxy

s 50
consistent with the analysis in the following section on ed
states.!

The explicit calculation above was restricted touDxyu
!D0. However, the result Eq.~21! holds even away from
this limit. This is because the system is in the same phase
any finite nonzero value of the ratioDxy /D0. The quantized
value of the spin Hall conductance is a universal property
this phase. A topological invariant characterizing thed1 id
phase has previously been discussed by Volovik.16 The re-
sults of this section provided a physical interpretation of t
topological invariance in terms of the quantization of t
spin Hall conductance.

III. EDGE STATES

A. Semiclassical argument

As is well known from the theory of the quantum Ha
effect, the quantization of the bulk spin Hall conductan
implies the existence, for a system with a boundary, of sp
current carrying states at the edge. In particular,sxy

s 52 im-
plies the existence of two such edge modes. Consider thd
1 id superconductor with a boundary, and a particle incid
on the boundary with wave vectorkW1 directed 45 degrees to
the normal. This particle is reflected to a state with a wa
vectorkW2 also at 45 degrees to the normal. This particle c
now Andreev reflect off the bulk of the superconductor a
return as a hole~see Fig. 1!. The hole moves on the revers
trajectory until it is Andreev reflected from the bulk back
a particle at wave vectorkW1.

If the direction ofkW1 corresponds to an angleu1, the di-
rection of kW2 corresponds to angleu25u16p/2. For thed
1 id gap Dk5D0cos(2uk)2iDxysin(2uk). Therefore one has
Dk1

52Dk2
. Thus there is a relative phase shift ofp for

Andreev reflection atkW1 andkW2, respectively. The problem is
then formally identical to that of a superconductor-norm
superconductor~SNS! junction with a phase shift ofp be-
tween the two superconductors. It is well known that in su
a system there exists a state at zero energy bound in

FIG. 1. Semiclassical trajectory leading to a surface bound st
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normal layer. A similar situation obtains if the incident pa
ticle is at wave vector2kW2 when again the angle of inci
dence is 45 degrees. For all other angles of incidence,
phase shift for the two Andreev reflections is different fro
p, and there is no bound state. Thus there are precisely
surface bound states for every surface orientation of thd
1 id state. This is entirely consistent with the quantization
the bulk spin Hall conductance to be 2. This is, however
be contrasted with thedx22y2 superconductor where the ex
istence of such zero-energy surface states depends s
tively on the orientation of the interface.8 Note also that for a
dx22y21 is superconductor, there is no orientation of the
terface for which the phase shift for the two Andreev refle
tions is p—hence there are no surface bound states a
consistent with the absence of a quantized spin Hall cond
tance.

This semiclassical argument can be made precise by s
ing the Bogoliubov-de Gennes~B-dG! equations for thed
1 id superconductor in the presence of a boundary in
Andreev approximation. We remind the reader that the B-
equations are just the eigenvalue equations for thed-particle
wave functions. As the calculations are straightforward, a
are very similar to those in the literature for thedx22y2 su-
perconductor, we will not present them here. Instead, we
show how the edge modes may be obtained from the c
tinuum theory described in the previous section.

B. Continuum Dirac theory

To show the existence of edge states within the effec
low-energy Dirac theory, it is necessary that the incident a
reflected modes~at 45 degrees with respect to the edge! lie
along directions in momentum space which pass close to
nodes of thedx22y2 order parameter. If this is not the case
description of the edge states requires retaining bulk mo
at high energies of orderD0. To this end, we consider a
edge parallel to they axis located atx50. It is convenient to
first rewrite the Dirac Hamiltonian in the original spatial c
ordinates (x,y):

H5E d2x x1
†@2 ivtx]x12 i ~vxt

x1vzt
z!]y2Dxyt

y#x1

1~1˜2,x˜2x,Dxy˜2Dxy!. ~22!

Here we have performed a rotation about thety axis by an
angleu5arctan(vF /vD) and definedvx52v cos(2u) and vz

5v sin(2u) with v25(vF
21vD

2 )/2.
To establish the appropriate boundary conditions on thx

fields atx50, it is necessary to use Eqs.~18! and ~19! re-
expressing them in terms of the underlying electron fiel
As emphasized in the previous section, re-expressing
original BCS Hamiltonian in terms of thed fermions elimi-
nates all anomalous terms, reflecting the conservation
spin, even in the presence of the edge. The approp
boundary condition is thus simplyda(x50,y)50, which
corresponds to the condition

x1aa~x50,y!52x2aa~x50,y! ~23!

on the Dirac fields.
To search for a zero-energy edge state it is necessa

solve the wave equation which follows from the Dirac theo
he

o

f
o
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~2 ivtx]x2Dxyt
y!f~x!50, ~24!

where we have assumed the~two-component! wave function
fa(x) is independent ofy—the coordinatealong the edge.
The appropriate solution which decays into the sample
x.0 is readily found:fa(x)5da1exp(2Dxyx/v). At low en-
ergies belowDxy , the Dirac fields can be expanded in term
of this wave function as:

x jaa~x,y!5~21! jADxy

v
fa~x!xea~y!, ~25!

with a two-component edge Fermion fieldxe(y). Here, the
(21) j factor has been included to satisfy the boundary c
ditions onx(x50,y), and the prefactor under the square ro
has been chosen so that the one-dimensional edge field
isfies canonical anticommutation relations. The effect
edge Hamiltonian can be readily obtained by inserting t
expansion into the Dirac form in Eq.~22!. After performing
the x integration one finds

Hedge5E dy xea
† ~2 ive]y!xea , ~26!

with edge velocityve5v sin(2u). For the isotropic case this
implies ve5vF5vD .

The edge Hamiltonian describes a two-component o
dimensional chiral Fermion. Each edge mode contribu
unity to the dimensionless Hall conductance, givingsxy

s 52.
Since the edge density operatorxe

†xe is proportional to thez
component of spin, this is actually thespinHall conductance,
discussed in the previous section. Rotational invariance
the electron spin requires that the Hamiltonian be invari
underx˜ isyx

†, or equivalently,

xe˜ isyxe
† . ~27!

The edge HamiltonianHedge is seen to satisfy this symme
try. It is instructive to rewrite the edge Hamiltonian back
terms of the original Dirac fieldsca which transform as
spinors underSU(2) rotations. In terms of one-dimension
‘‘edge’’ Dirac fields defined via

ce↑5xe↑ ; ce↓5x↓e
† , ~28!

the edge Hamiltonian takes the same form:

Hedge5E dy ce
†~2 ive]y!ce , ~29!

with an implicit sum ona. This form is clearly seen to be
invariant under SU(2) rotations ce˜Uce , with U
5exp(iu•s).

Rather surprisingly, though, the edge Hamiltonian ac
ally is seen to have anadditional U(1) symmetry; ce
˜exp(iu0)ce. This additional symmetry can be traced to t
conservedU(1) ‘‘charge’’ of the Diracc particles—called
nodons in Ref. 2. Physically, thisU(1) symmetry reflects the
fact that the original BCS Hamiltonian conserves thediffer-
encebetween the number of electrons at one node, say atKj ,
and the node with opposite momentum,2Kj . In the pres-
ence of impurities which break momentum conservation, t
additionalU(1) symmetry willnot be preserved. To see this
consider adding scattering impurities to the above e
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Hamiltonians. For impurities which do not break spin ro
tional invariance, the edge Hamiltonian must still be inva
ant under xe˜ isyxe

† , and, moreover, conserve thez
component of spinxe

†xe . A general form satisfying thes
requirements is

Himp5E dy xe
†
„h~y!•s…xe , ~30!

whereh(y) are real functions, random in the spatial coor
nate along the edge. Rewritten in terms of thec fields these
become

Himp5E dy@h1ces
2ce1H. c.1hzce

†ce#, ~31!

with h65hx6 ihy ands65(sx6 isy)/2. Although still in-
variant underSU(2) spin rotationsce˜Uce , the additional
U(1) symmetry is clearlynot present anymore, due to th
anomalous (ces

2ce andce
†s1ce

†) terms.
Although the random terms explicitly break theU(1)

symmetry, there is still anotherhidden U(1) symmetry,
which can be revealed by making a clever change of v
ables. Specifically, consider defining new fields

x̃e5TyexpF i

ve
Ey

dy8h~y8!•sGxe , ~32!

whereTy denotes a ‘‘time ordering’’ along the spatial coo
dinatey. This effectively gauges away the random terms, a
the full Hamiltonian when expressed in terms of the newc̃e

fields exhibits theU(1) symmetry c̃e˜exp(iu0)c̃e. This
SU(2) gauge transformation will play an important role
analyzing the network model studied in the next section.

IV. DISORDER EFFECTS

A. Phase diagram

We now move on to consider the effects of impurities
thed1 id superconductor. As shown in the previous secti
the edge modes are robust to weak impurity scatterin
hence so is the quantization of the bulk spin Hall cond
tance. Strong impurity scattering can, however, lead t
transition to a phase with zero Hall conductance. It is use
to consider a phase diagram of the system as a functio
Dxy and disorderD. The general topology of such a pha
diagram is shown in Fig. 2.

At zero D, sxy
s 52 sgn(Dxy). This spin quantum Hall

phase is stable to weak disorder as seen above. The
Dxy50 is of course thedx22y2 superconductor. Turning on

FIG. 2. Schematic phase diagram as a function ofDxy and dis-
orderD; SQHF refers to the spin quantum Hall fluid.
-
-

-

i-

d

,

-
a
l
of

ine

disorder at zeroDxy localizes the quasiparticle states at t
Fermi energy3 leading to a spin insulator. This phase shou
be robust to turning on a smallDxy . This is particularly clear
in the lattice version of thed1 id superconductor in terms o
the d operators. TheDxy simply corresponds to a diagona
hopping term, and hence is innocuous, if weak, in a localiz
phase. It is clear then that there must be two transition li
emerging from theD5Dxy50 point ~symmetrically about
the Dxy50 line! separating the two quantum Hall phas
~with sxy

s 562) from the spin insulator withsxy
s 50.

Note that the jump insxy
s is by two20—this is prohibited

in generic noninteracting models of quantum Hall syste
but is allowed here due to the special extraSU(2) symmetry.
All phases have zero longitudinal spin conductance. It is
teresting to ask about the behavior of the bulk quasipart
density of states~DOS! r(E) as a function of energy in
various regions of the phase diagram. It is known4 that in the
spin insulator without time-reversal invariance,r(E) actu-
ally vanishes asE2 at low energies. In thed1 id supercon-
ductor, for weak disorder, standard arguments suggest
development of exponentially small tails in the density
states leading to a weak filling in of the gap. However,
disorder strong enough to be near the transition, we expe
larger density of states that nevertheless vanishes on
proaching zero energy4 asE2.

A different perspective on the phase diagram is provid
by considering the properties of the wave functions of
single-particle Hamiltonian for thed particles. In the spin
quantum Hall phase,sxy

s 52 implies the existence of pre
cisely two extended states below the Fermi energy~each
contributing unity tosxy

s ). These two states will be at two
different energies, say2E1 and 2E2 ~see Fig. 3!. The
particle-hole symmetry of thed Hamiltonian in Eq.~7! @i.e.,
the SU(2) spin rotation invariance# implies the existence o
two extended unoccupied states at positive energiesE1 and
E2. These states, if filled, contribute21 each tosxy

s . Thus
as we move up in energy and passE1 , sxy

s jumps from 2 to
1 and finally, as we passE2, from 1 to 0. As the disorder
increases and we approach the transition,E1 andE2 collapse
towards zero. A nice way to move up~or down! in energy is
by turning on an external Zeeman field as this acts exa
like a chemical potential for thed particles. In particular, at
finite Zeeman field, the transition splits into two separa
ones withsxy

s jumping by one at each. We show in Fig. 4 th
phase diagram in the presence of a Zeeman field.

B. Delocalization transition

Let us now consider the properties of the transition~in
zero Zeeman field! in some more detail. This is a quantu

FIG. 3. Density of states of thed particles showing positions o
extended states.
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Hall plateau transition wheresxy
s jumps by 2. This is a new

universality class for a quantum Hall localization transiti
distinct from the usual one described~for instance! by the
Chalker-Coddington network model. A field-theoretic d
scription of this critical point in two-dimensional superco
ductors without time reversal but with spin rotation symm
try is obtained on examining the nonlinear sigma mo
appropriate for describing quasiparticle localization in suc
system. In a replica formalism, this is a sigma model on
spaceSp(2n)/U(n).3,4,19This field theory admits a topologi
cal term3 asP2„Sp(2n)/U(n)…5Z is nontrivial. We expect
by analogy to the reasoning for the conventional inte
quantum Hall transition that the sigma model supplemen
with the topological term has a critical point which describ
the spin quantum Hall transition. Introducing a Zeeman fi
induces a crossover to the conventional universality cla3

This is of course consistent with the transition splitting in
two as jumps ofsxy

s by more than one are prohibited in th
case. There is, however, another very significant differe
between the spin quantum Hall transition and the conv
tional one. As mentioned above, the density of states actu
vanishes~at zero energy! on either side of the transition. B
continuity, we expect that the density of states vanishe
the critical point as well.

We may now formulate scaling hypotheses for vario
physical quantities of interest near the transition. On
proaching the critical point~at zero Zeeman field! by tuning
the disorderD, for instance, the localization lengthj ~at zero
energy! diverges as

j;d2n, ~33!

whered is the distance from the phase boundary. Movi
away from the critical point by turning on a Zeeman fie
also introduces a finite localization lengthjB diverging as

jB;B2nB. ~34!

We may now obtain, for instance, the behavior of the den
of statesr(E) at the critical point. To that end, note th
moving away from zero energy is the same perturbation
turning on a Zeeman field. Consequently, the localizat

FIG. 4. Schematic phase diagram as a function of external Z
man fieldB ~or energyE) and a parameterd measuring the distanc
~at zero field! from the zero-field phase boundary for the 0˜2
transition.
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length as a function of energy diverges asjE;E2nB. The
density of states may now be obtained by hyperscaling:

r~E!;
1

EjE
2

;E2nB21. ~35!

For dÞ0, r(E) satisfies the scaling form

r~E,d!;E2nB21Y~Ed2n/nB!. ~36!

The universal scaling functionY satisfies

Y~x˜`!51, ~37!

Y~x˜0!;x322nB, ~38!

where the second line follows from requiring thatr(E) van-
ishes asE2 off criticality.

C. Network model

Just as for the conventional quantum Hall transition, it
possible to construct a network model to describe the univ
sal critical properties. If we think of the links of the networ
model as corresponding to internal edge states of puddle
the quantum Hall fluid immersed in the spin insulator pha
then it is clear that we need to have two channels of pro
gation on each link. The link amplitude is the amplitude
propagation of the two channels. As the HamiltonianH de-
scribing the dynamics of the system has the symme
syH* sy52H, it is clear that the unitary time evolution
operatorU5e2 iHt satisfiesUTsyU5sy . Upon restriction to
a subspace with 2N states, this unitary operator can be re
resented by a matrix belonging to the groupSp(2N) ~which
is defined precisely as a 2N32N unitary matrix satisfying
UTsyU5sy). Thus for the case of two channels, the amp
tude for propagation is a 232 matrix belonging to the group
Sp(2)5SU(2). Theother ingredient in the network mode
is the matrix at the node connecting four links. Formally, th
is a scattering event with four incoming channels and fo
outgoing channels. The corresponding scattering matrix t
belongs to the groupSp(4). Taking the link and node scat
tering matrices to be random and belonging toSp(2) and
Sp(4), respectively, then completes the specification of
network model.

In some recent work, Kagalovskyet al.11 have simulated
a network model with these symmetries and obtained
merical estimates of various critical exponents. Here, ho
ever, we will follow a different route. We will use the ne
work model to motivate the construction of
supersymmetric quantum spin chain which can be used
calculate various disorder averaged properties of the sys
For that purpose, it is actually more useful to consider
anisotropic version of the network model in which we vie
it as a collection of counterpropagating edge modes along
y direction. Two adjacent modes are connected by rand
tunneling.~An alternative approach to deriving a supersp
chain is discussed in Ref. 15.! As shown in the previous
section, each edge mode is described by a two compo
chiral fermion and is described by the Hamiltonian

~21! jE dy x j
†~y!@2 i ]y1hj~y!•s#x j~y!. ~39!

e-
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Herex j refers to thej th edge mode. Thehj (y) represent the
randomness on the links of the network model. To comp
this Hamiltonian description of the network model, we ne
to introduce random tunneling between neighboring coun
propagating edge modes. The most general term consi
with the symmetries required of the Hamiltonian are

(
j
E dy$2 i t j

0~y!@x j 11
† ~y!x j~y!2x j

†~y!x j 11~y!#

1 tW j~y!•@x j 11
† ~y!sW x j~y!1x j

†sW x j 11#%. ~40!

Here t j
0(y) and tW j (y) are random variables with zero mea

Precisely this Hamiltonian for the case of just two neig
boring edge modes has been studied in detail in Ref. 4
was shown that averages of physical quantities like the d
sity of states and diffusion propagator could be obtain
from an equivalent supersymmetric quantum-mechan
problem defined by the non-Hermitian ‘‘Hamiltonian’’

h5hf f1hbb1hf b1hv , ~41!

hf f52J@~ f 1
†syf 1

†!~ f 2
†syf 2

†!1~ f 1syf 1!~ f 2syf 2!

12~ f 1
†f 121!~ f 2

†f 221!#, ~42!

hbb52J~b1
†b111!~b2

†b211!, ~43!

hf b52J@~b1
†syf 1

†!~ f 2
†syb2

†!1~b1syf 1!~ f 2syb2!

2~ f 1
†b1!~ f 2

†b2!2~b1
†f 1!~b2

†f 2!#, ~44!

hv5v~ f 1
†f 11b1

†b11 f 2
†f 21b2

†b2!. ~45!

Here f j (bj ) are two component fermionic~bosonic! opera-
tors, and indexj 51,2 labels the two edge modes. Parame
v is the imaginary frequency at which we wish to compu
averages. The constantJ.0 is determined by the strength o
the disorder. Its actual value is unimportant for calculation
universal properties. We refer the reader to Ref. 4 for furt
details. In the following we setJ51 for convenience. This
super-Hamiltonian generates time evolution in they direc-
tion. Clearly the super-Hamiltonian describing the full ne
work can be built up from this two edge Hamiltonian. Just
in the case of the superspin chain which describes the
ventional quantum Hall transition,12 the two distinct phases
on either side of the transition correspond to the two poss
ways of dimerizing the chain. The critical point correspon
to the uniform chain where the bond strengthJ is the same
for all bonds. An important feature of this Hamiltonian th
is not shared by superspin chains constructed for the con
tional quantum Hall transition12,13 is that the low energy sec
tor of this theory is described by a finite on-site Hilbe
space4 of dimensionD53:

u1&[u0&,

u2&[
1

A2
eabba

† f b
† u0&, ~46!

u3&[
1

2
eab f a

† f b
† u0&.
te
d
r-
ent

-
It
n-
d
al

r

f
r

-
s
n-

le
s

n-

This crucial simplification permits considerable numeric
and analytical progress.

For a chain ofL ~even! sites, the super-Hamiltonian ma
be written, following the notation of Ref. 13, as

H5 (
j 50

L22

JjF (
a51

4

gaSj
aSj 11

a 1~21! j (
a55

8

gaSj
aSj 11

a G
1 (

j 50

L21

v j@Sj
11Sj

2#. ~47!

Here Jj5@11(21) jd# where the relevant dimerization pa
rameterd50 at the critical point. We have introduced di
ferent imaginary frequenciesv j at each site to permit the
extraction of critical properties~see the following section!.
The constantsga are defined to be

ga55
2; a51,7,8

1; a53,4

22; a52,5,6.

~48!

In Eq. ~47! we have introduced eight spin operators:

S1[ba
†ba11, S5[eabba

† fb
† ,

S2[ f a
† f a21, S6[eabba f b ,

~49!
S3[eab f a

† f b
† , S7[ba

† f a ,

S4[eab f a f b , S8[ f a
†ba .

Bosonic-valued operatorsS1, . . . ,S4 make up the symmetric
sector of the Hamiltonian while fermion-valued operato
S5, . . . ,S8 are in the antisymmetric sector. Despite the fa
thatH is non-Hermitian, it only has real-valued eigenvalue
H is also defective~the left eigenstates or the right eige
states do not separately span the whole Hilbert space!, com-
plicating the numerical problem of diagonalizing it.

The Hamiltonian commutes with two~fermion-valued!
supersymmetry generators,@H, Q1#5@H, Q2#50, where

Q1[(
j

@bj a
† f j a2~21! j f j a

† bj a#,

Q2[(
j

@~21! jbj a
† f j a1 f j a

† bj a#. ~50!

It is not difficult to see that the supersymmetric Hamiltoni
must have a unique, zero-energy ground state. The right
left ~ground! eigenstates are therefore annihilated by
Hamiltonian HuC0&5^C0uH50. Also, the ground state is
annihilated by the SUSY chargesQ1uC0&5Q2uC0&50. All
excited states appear in quartets or larger multiples of 4,
with odd total fermion content, and these cancel out in
partition function by virtue of the supertrace

Z5STre2bH[Tr~21!Nfe2bH51, ~51!

whereNf is the total number of fermions.
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V. DMRG RESULTS

We employ the relatively simple ‘‘infinite-size’’ DMRG
algorithm14 to numerically access the properties of the cr
cal pointd50. The fact that the ground-state energy is e
actly zero provides a valuable check on the accuracy of
DMRG algorithm which incurs errors when, as the cha
length increases, the Hilbert spaces of the blocks grow
yond the finite limit ofM states. IncreasingM up to limits set
by machine memory and speed yields systematic impro
ment in the accuracy of the DMRG algorithm. In resu
reported below we have checked thatM is sufficiently large
to ensure adequate accuracy; forM>243 there is no trunca
tion until the chain exceeds lengthL512. Reasonable accu
racy is maintained, for the caseM5256, out toL526: the
ground state, when targeted, has an energyE0 which in-
creases from zero to justE052.331024 at L526. Further-
more, forM5512, the ground-state energy is onlyE053.2
31025 at chain lengthL530, showing the systematic im
provement in accuracy with increasingM.

Reduced density matrices for the two augmented bloc
each of Hilbert space sizeD3M , are formed by computing a
partial trace over half the chain. For the left half of the cha
the density matrix is chosen to have the following symme
form:21

r i j 5
1

2 (
i 851

DM

$C i i 8
L C j i 8

L
1C i i 8

R C j i 8
R %; ~52!

a similar formula holds for the right half of the chain. He
C i i 8

R [^ i ,i 8uC& and C i i 8
L [^Cu i ,i 8& are, respectively, the

real-valued matrix elements of the targeted right and
eigenstates projected onto a basis of states labeled
unprimed Roman indexi which covers the left half of the
chain and primed indexi 8 which covers the right half. To
compute ground-state properties,C is selected to be the
ground state; conversely, to find the gap,C is chosen to be
one of the lowest-lying excited states. All of the eigenvalu
of r are real and positive; these are interpreted as proba
ties and the (D21)M least probable states are thrown awa

To extract critical behavior, we monitor the induce
dimerization and spin moments near the center of the ch
as the chain lengthL is enlarged via the DMRG algorithm.21

Dimerization is induced by the open boundary conditions
shown in Fig. 5. Spin moments are formed in the interior
the chain in two different ways. In the bulk casev j is set
equal to a small, but nonzero, constantv.0 on each site,
inducing nonzero spin moments. Alternatively, the spins
the chain ends can be fixed by settingv j50 except at the
chain ends wherev j is assigned a large value which com
pletely polarizes the end spins; see Fig. 5. Power-law sca
of the induced dimerization and spin moments in the inte
of the chain is expected22 at the critical pointd50. As dis-
cussed earlier, we may move off criticality either by dime
izing the spin chain or by turning on a finite Zeeman fie
~which is equivalent to going away from zero energy!. There
are two independent exponents related to these two pertu
tions of the critical spin chain. As in Sec. IV, we may wri
down scaling forms for various physical quantities. For
finite system size, these scaling forms will involve two sc
ing variables: the ratioj/jB of the two localization lengths
-
e

e-

e-

s,

c

ft
by

s
li-
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in

s
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r
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-

and the ratioj/L. Consider, for instance, the density o
states. This is determined by the boson occupancy accor
to4

2pr~E!5
2

L
Re(

i
^11bi

†bi&, ~53!

where we calculate expectation values settingv j5v5
2 i (E1 ih). Thusr(E) can be obtained from the behavio
of the spin operatorS1. This scales at the center of the cha
as a function of the chain lengthL and the uniform, ‘‘bulk,’’
imaginary frequencyv j5v as follows:

^SL/2
1 &5va f ~LvnB,jvnB!, ~54!

where the exponent

a52nB21, ~55!

as required by hyperscaling@see Eq.~35!#. When the applied
dimerizationd50, this reduces to

^SL/2
1 &5vag~LvnB!;Lyv as v˜0. ~56!

Here the scaling functiong(x) is given, foruxu!1, by

g~x!5x2a/nB~c1x1/nB1c2x2/nB1••• !. ~57!

This equation expresses the fact that when the system le
is much smaller than the correlation length (uxu!1), the
DOS is an analytic, linear function of the imaginary ener
v. With this scaling form we obtain

y52~12nB!/nB . ~58!

In what follows, we first describe the calculation of th
exponentsn,nB for the two diverging localization lengths
These can then be used to extract the other critical expon
a, y using the above scaling arguments. We will, howev

FIG. 5. Extraction of critical behavior from finite-size effect
illustrated for the case of an ordinary quantum antiferromagn
spin chain. Dimerization of the nearest-neighbor spin-spin corr
tion function, indicated here by alternating strong~solid! and weak
~dashed! bonds, is induced by the open boundary conditions. S
moments are induced by the application of a magnetic field
strength6h to the two spins at the ends of the chain~shown! or
formed by the application of a staggered field throughout the ch
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provide independent support for the validity of these scal
arguments by direct calculation.

~1! Localization length exponentnB . The localization
length scales, as a function of the imaginary frequencyv,
with exponentnB :

jv;v2nB. ~59!

One way to determinenB is to find the crossover, for uni
form v j5v.0, from power-law decay of the induce
dimerization to exponential decay. The induced dimerizat
at the center of the chain is defined as

D~L,v![u^SL/221
3 SL/2

3 2SL/2
3 SL/211

3 &u, ~60!

where we recall thatS3[eab f a
† f b

† is one of the eight SUSY
spin operators~each of the seven other spin operators sc
similarly!. It has the following asymptotic behavior:

D~L,v!5H C L2x; v50

C8 e2m(v)L; m~v!L@1.
~61!

Fits to the second line in Eq.~61! permit the extraction of the
mass gapm(v); thennB is determined by a power-law fit to
m(v);vnB. We find nB50.5560.1 for calculations with
M5128, fitting over the range 20<L<24 and 0.1,v,0.8.
A direct calculation of the gap in the excitation spectrum
a function ofv also yields results consistent with this valu
for nB . Note that the exact result of Ref. 15 isnB54/7
50.5714 . . . .

~2! Dimerization exponentn. For smallv j51025, fitting
the induced dimerization shown in Fig. 6 to the first line
Eq. ~61! yields x51.2460.01. The dimerization exponentn
is related to the scaling dimensionx by

n5
1

22x
~62!

FIG. 6. Power-law scaling of the induced dimerization, the b
occupancy, and the induced occupancy with chain lengthL. In the
case of the induced dimerization and the bulk occupancy,v j

51025 throughout the chain, small enough for the bulk occupan
to be well described by the second line of Eq.~56!. The bulk occu-
pancies have been multiplied by a factor of 103. The induced occu-
pancy is obtained by settingv j50 everywhere except at the cha
ends where it is made large, in this casev05vL21510. Straight
lines are fit to each of the three data sets.
g

n

le

s

and thusn51.3260.02, close to the percolation value of 4
reported in Ref. 15. For the spin-1/2 Heisenberg antifer
magnet and the spin-1 antiferromagnet at the critical po
accuracy at the few percent level was also achieved.21 The
network model simulations11 find n.1.12. Though this is
close to the value we find numerically, and to the exact re
15, the reason for the lack of more precise agreemen
unclear to us.

~3! DOS exponentsa and y. Drawing upon the data
shown in Fig. 6 we obtainy51.4360.05 by direct fit of the
bulk occupancy at one of the central sites to the second
of Eq. ~56!. The error is estimated by comparing results fro
DMRG calculations withM5256 andM5512 and also by
making power-law fits over different ranges of chain leng
L. This calculation ofy can now be used to calculatenB
50.5860.01 in good agreement with the value obtained
item 1 above.

As mentioned above, the scaling of the DOS can be
tracted in another way: setv j50 everywhere along the
chain except at the two sites at the ends of the chain whe
is made large. Consequently at the chain ends^S0

1&
5^SL21

1 &51 but in the interior the expectation value^SL/2
1 &,

which we call the induced occupancy, decreases as the c
grows in length:

^SL/2
1 &;

1

Lw
. ~63!

From Fig. 6 we findw50.2660.02. Now, scaling relatesL
;v2nB and hencea5wnB . Using the relationa52nB21,
we get nB50.5760.02 again in agreement with the es
mates above, and the exact result 15. Note that the densi
states exponenta50.1460.04.

VI. DISCUSSION

How may the physics discussed in this paper be probe
a dx22y21 idxy superconductor were to be found experime
tally? The bulk of this paper has focused on spin Hall tra
port which is extremely difficult to measure. However, t
thermal Hall conductance is also quantized in thedx22y2

1 idxy state. This can, for instance, be seen using the e
state theory developed in Sec. III. Indeed, if the temperat
of one edge is raised bydT relative to the other, the exces
heat current is easily seen to be 2p2TdTkB

2/3h implying a
thermal Hall conductance of

kxy5
2p2TkB

2

3h
. ~64!

Thus kxy /T is quantized23 in the dx22y21 idxy supercon-
ductor. On the other hand, in the spin insulator phase,kxy /T
goes to zero as the temperature goes to zero. Note tha
charge Hall conductance isnot quantized in thed1 id
phase.24 Physically this is because any edge quasipart
electrical current causes flow of supercurrent in the oppo
direction out to a distance of order the penetration depth

The behavior of the quasiparticle density of states may
probed by specific-heat, spin susceptibility, or tunneli
measurements. We caution, however, that it may be ne
sary to include quasiparticle interactions, neglected in

y
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theory so far, to obtain meaningful comparisons with expe
ments for these quantities.~The quantization of the spin an
thermal Hall conductances is expected to be robust to in
sion of quasiparticle interactions.!

It is interesting to ask about experimental realizations
d1 id pairing symmetry in layered three-dimensional sup
conductors. If each layer is deep in the spin quantum H
fluid phase, then arguments similar to those for multila
quantum Hall systems25,26 imply the existence of a ‘‘chiral
spin metal’’ phase at the surface with diffusive spin transp
in the direction perpendicular to the layers and ballistic s
transport within each layer. The properties of this chiral s
metal will be quite similar to those of the chiral metal di
cussed in multilayer quantum Hall systems.25,26

Throughout this paper, we have analyzed only the cas
spin singlet pairing. For triplet pairing, such as in ap-wave
superconductor, neither the spin nor the charge of the qu
particles is conserved. Thermal transport still remains a u
B
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ful way of probing quasiparticle transport. Arguments ve
similar to those used in this paper show that a tw
dimensional superconductor withpx1 ipy symmetry has a
quantized thermal Hall conductance. For a layered thr
dimensional system, we then have a chiral surface she
with diffusive thermal transport in the direction perpendic
lar to the layers, and ballistic thermal transport within ea
layer. Such a layeredp1 ip superconductor is possibly rea
ized in the material Sr2RuO4.27
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