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Dual vortex theory of strongly interacting electrons: A non-Fermi liquid with a twist
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As discovered in the quantum Hall effect, a very effective way for strongly repulsive electrons to minimize
their potential energy is to aquire nonzero relative angular momentum. We pursue this mechanism for inter-
acting two-dimensional electrons in zero magnetic field, by employing a representation of the electrons as
composite bosons interacting with a Chern-Simons gauge field. This enables us to construct a dual description
in which the fundamental constituents are vortices in the auxiliary boson fields. The resulting formalism
embraces a cornucopia of possible phases. Remarkably, superconductivity is a generic feature, while the Fermi
liquid is not. We identify a duaZ, symmetry which, when brokefunbroken, leads to spin-charge confine-
ment (separation Many aspects of our earlier discussions of the nodal liquid find surprising incarnations in
this new framework.

I. INTRODUCTION momentum is a very effective way for particles to lower their
Coulomb energy. We consider strongly interacting electrons
Fermi liquid theory is the cornerstone of the modernmoving in the two-dimensiondRD) continuum, and assume
theory of metals, as well as band theories of insulators anthat these strong interactions include a hard core which pre-
semiconductors. This theory—as with most perturbativevents the crossing of electron trajectories. Some of the result-
theories—is informed by the assumption that the kinetic ening physics is reminiscent of the quantum Hall effect: pairs
ergy is the dominant scale. As a result, the theory is conef particles tend to spin around one another. There are, how-
structed in momentum space, where the kinetic energy isver, some significant differences: time-reversal symmetry is
diagonalized. This leads to strong kinematic constraintsiot explicitly broken, and further, the kinetic energy is not
which circumscribe corrections to the underlying free fer-quenched. Nevertheless, our investigations in the remainder
mion behaviott In this paper, our point of departure is a of this paper and elsewhéfdead us to suspect that strongly
different extreme limit in which the interaction must be dealtrepulsive electrons in the 2D continuum can form-wave
with at the outset, and the kinematic constraints might, con¢p,*ip,) superconductor.
sequently, be inoperatiieHence, we are forced to adopt a  To develop a low-energy effective field theory, we first
nonperturbative approach. As is often the case in nonpertuisse only the noncrossing constraint on the fermion world
bative problems—for example, the quantum Hall eftesid  lines. This is a sufficient condition to allow the use of statis-
the one-dimensional electron §asit is advantageous to tical transmutatioh*?to realize up and down-spin electrons
adopt areal spaceapproach. Here, this also enables us toas bosonic fields interacting with a Chern-Simons gauge field
gain a vantage point from which to focus on the strong elecwhich attaches flux tepin Without additional assumptions
tron interaction. we can then pass to a dual theory of vortices in the up- and
The past few decades have witnessed the discovery of @down-spin bosonic fields. In this way, we argue that many of
number of physical systems in which the interaction energyur previous results on the nodal ligtd*hold with a much
is comparable to or greater than the kinetic energy. Theswider range of validity. With this approach, we believe that
materials exhibit strange behavior which is not readily capwe gain an unfettered view of the entire phase diagram of
tured within the conventional Fermi liquid framework. The this infinitely strongly interacting fermionic system.
high-T, cuprate superconductSrare the most famous ex- Since our dual theory is of Ginzburg-Landau form, its
ample, but there are certainly others, such as heavy-fermiogphase structure can be analyzed by considering the conden-
material§ and high-mobility 2DEGs at large,.” Ironically, ~ sation of various fields. If no vortex field condenses, the
even 3He—the birthplace of Fermi liquid theory—falls in system is superconducting with a nonzero angular momen-
this categony The analysis of such systems may require artum pairing state withp,+ip, symmetry'® Since vortex
approach of the type propounded in this paper. condensation typically implies charge ordering, it is usually
Following the above reasoning, we are led to search for @riven by a periodic potential or long-range Coulomb inter-
means of incorporating strong electron-electron repulsioractions. In their absence we thus conjecture that the generic
from the outset. As discovered by Laughlirthe spatial state of the strongly interacting system is superconducting.
separation due to the centrifugal barrier for nonzero angularhis is an astonishing conclusion, given the lack of a pal-
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pable “pairing mechanism.” Evidently, strongly repulsive tween the characteristic scales of the charge and spin and
interactions essentially force electrons of opposite spin te@ven—when th&, symmetry is unbroken—true spin-charge
“rotate” about one another and introduce strong superconseparation.

ducting correlations. Other ordered phases result when the In Sec. I, we first discuss the statistical transmutation
vortex fields condense. For example, a spin- or chargewhich obviates the need for a local pair field. Constructing a

density wave results if both the up- and down-spin vortexdual theory, we describe the standard antiferromagnetic and
fields condense. charge-density-wave states which result from the condensa-
A basic feature ofany superconductor isspin-charge tion of single vortices. In_ Sec_. I!I, we discuss_ paired vorti(_:es
separatiod® To access spin-charge separation in the and theZ, sy_mmgtry WhICh. d|st|ngU|shes.the|r conden.satlon
+ip, superconductor within our dual Ginzburg-Landau for- from that qf individual vortices. When this symmetry is un-
mulationrequiresconsideration of “paired” vortex compos- Proken, spin and charge separate. In Sec. IV, we discuss the
ites. When these composite bosons condense, they can otgjage dlagr_am which _results from the condengatlon of paired
stroy the superconductivity—but spin-charge separatiorYortices. This phase diagram revolves abopfaip, super-
survives. Specifically, if a vortex in the down-spin bosonconducting state. In Sec. V, we show how time-reve(sal
field pairs with a vortex in the up-spin boson field and thisinvariant superconducting states suchpasor dy, can arise
pair condenses, translational symmetry is spontaneously brd? this model. The momentum-space structure and concomi-
ken by the formation of a crystalline statesginlesscharge  tant phenomenology of BCS-likd,, or d,2_y2 supercon-
e solitons. The spin sector is gapped except for chiral edgg_luc_tors is recove_red. We f|n_d that the physics of th_e no_dal
states, so that this phase iFaviolating nodal liquid(i.e., a  lquid reappears in a new guise: the nodons are vortices in a
chiral spin liquid. Alternatively, if a vortex in the down-spin VOrtex flgld whose fern_1|on|c statistics result from their inter-
boson field pairs with arantivortex in the up-spin boson action with a Chern-Simons gauge field. In Sec. VI, we ar-
field and this pair condenses, a transition occurs into a fullyfive, ultimately, at a phase diagram which is the synthesis of
gapped superconductor, such as a superconductor Wiiqeas_ of duality and vortex condensation common to f|¢ld
tightly bound pairs. If both types of vortex pairs condense theories of the quantum Hall effect as well as our earlier
an analogous spin-liquid results. In each of these phase¥ork on nodal liquids, but is almost entirely orthogonal to
time reversal invariance is spontaneously broken. the underlying conceit of Fermi liquid theory.
With the inclusion of an ionic potential acting on the elec-

trons, however,T-invariant phases are possible, and ex- Il. FERMIONS, FLUX ATTACHMENT, AND DUALITY

ected. Indeed, by allowing for terms in the dual Ginzburg- . L
Eandau theory W)f/lich bregk rotational invariance, gappg we focug throughou_t on splnful eIecFrons maoving in t.he
modes in the spin sector can go soft at finite momentum. Fowo—dlmensmn_al continuum, interacting via a spin-
a uniaxial potential, gapless modes naturally appear at twg1dependent interaction. We assume that the electron-
points in momentum space. At these two points the vortexSalectron repyls!on IS strong enough th“at no two 'falectrons_can
anti-vortex field is critical, and can be conveniently refermi- SV&" be coincident. Precisely this “hardcore™ constraint

onized as two Dirac fields. These can be identified as th _akes_ it _possible to transform the Interacting two-
nodal quasiparticles of @, superconducting phase. Simi- imensional electron gas into a mathematically equivalent

larly, an ionic potential with square symmetry leads to fourSyStem of interacting spinfbosons by attaching "statisti-

low-energy points in momentum space, and thereby a fourgal flux with an appropriate Chern-Simons gauge field.

. . . Such a “bosonization” scheme for 28pinlesselectrons has
fold Dirac theory recovering the spectrum af>_,> quasi- . . P .
. ; Y been particularly illuminating in the context of the fractional
particles(see below and Sec. VI for a discussion of some

A2\ A g . : . i
subtleties of thed-wave casg Within our theory, a(very) quantum Hall effect:*? With spin there is considerable free

. — . N dom in how one attaches the flux tubes to convert fermions
strong local repulsion acting in concert with an ionic poten-.

tial with square symmetry are the essential ingredients fc)lnto bosons. We adopt a scheme in which flux is attached to
hi = fhe spin of the electrons, and define
igh temperaturel-wave superconductivity. In thabsence

of the ionic potential, strongl-violating pairing with p,
+ip, symmetry is expected. This is the pairing symmetry in Cu(r)= ba(r)exr{ieaJ O(r— r’)ZSZ(r’)}, 1)
the A phase of a superfluid 3-He filf. r

An appealing feature of our dual Ginzburg-Landau for-ith a “charge” e;=1 ande = —1. Here
mulation is that it gives a clear meaning to spin-charge sepa-
ration (and spin-charge confinemenin two-dimensional S(r)=[ni(r)—n(r]/2 (2)
electron systems. Indeed, we identify an Ising-likesym- ) _ _
metry which when unbroken leaves spin and charge separaté. the z component of the spin density operator with
Spin-charge confinement is driven by an Ising ordering tran=CLC,=b4b, (N0 sum one), and®(r) denotes the angle
sition. that r makes with thex axis. The boson operators satisfy

Remarkably, although our theory is intimately tied to acanonical commutator@ba(r),bﬁ(r’)]=0 forr#r’. Dueto
real-space picture, Fermi surface physiceds lost, as evi- the non-crossing constraint, the “onsite” commutators need
denced by the nodal quasiparticles. The phase diagram whigtot be specified.
results from this analysis contains a plethora of fascinating An advantage of the above scheme for flux attachment is
states, including superconducting states of pairing symmetrthat with zero total spinS;,,=0 (as assumed hereaftethe
PxsPxtipy,dy2—y2,dyy, and their quantum disordered coun- statistical flux “seen” by the Chern-Simons bosaraishes
terparts. These states are characterized by a separation lee average. For spinless electrons this happy situation re-
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quires the presence of a strong external magnetic faddn ~ with a “potential” that can be expanded ag®)=r|d|?
the FQHE, see Ref.)3As for Abelian bosonization in one +u|®|*+ - -.
spatial dimensiof? the above choice of a spin quantization  Since the Chern-Simons term only involvgsin currents,
axis masks the underlying spin-rotational invariance. But adt is extremely convenient to introduce charge and spin gauge
we shall see, it is possible to restore explicit(@Jbymmetry  fields
by a subsequent “refermionization.”

After transforming to boson operators, the partition func- aZzaL+ aﬁ: aZZaL—ai 9
tion for the Hamiltonian of 2D interacting electrons can be
expressed as a functional integral over bosonic fields and
statistical gauge fieldv,, with associatedEuclidean La-
grangian density

nd corresponding field strengthg,,,f7 ). As with Abe-
ilan bosonization in one dimension, charge and spin currents
defined byJ? =J!,+J. andJ,=J!,—J., are given by de-
rivatives of the charge and spin fields, respectively,

mo

1

— h* i 0 —
L=b7(0,—ieqa)b,— 5

b*(V—ie,a)?b,— Les. pot

1
(3) Z:Z U__E;kaava;(' (10)

E'u,,}\ﬁvaﬁ; JM_2’7T

In the “Coulomb gauge”s,a' =0 the Chern-Simons term is Longer range Coulomb interactions can be readily incorpo-
Ecsz(i/zfr)ao(éijﬂi a;), but can be cast into a more conve- rated by adding a term bilinear in the electron charge den-
nient gauge invariant form sity: €;;;af . In this dual representatioly’ creates a vortex

in the electronwave function—effectively increasing the an-
r . 4 gular momentum ofall spin « electrons by one unit. An
es( @) =1 7 €una,d,a . ) important feature ofy, is that there are precisely as many

) ) ) positive as negative circulatiofelectron vortices(for each
The form of the electron interaction ternot shown is un- spin species implying a relativistic form ford
w-

changed under “bosonization” due to the equivalence of the " | js instructive to briefly mention how these dual fields

i itiec=b' o
fermion and boson densitiesc=b'b. couple to an external electromagnetic fidlgl. As usualA,,

_We now implement the standard £2)-dimensional du- o hjes directly to the total electrical curredt,, so that
ality transformatiof which exchanges bosofheb,,’s) for from Eq. (10) one has

vortices in the bosonic fields—arriving at a description in
terms of vortex field operators, denotdd,. To illuminate
this, it is instructive to briefly consider an alternate represen- £A=EAM5MW&V&§\’. (11
tation in terms of boson world lines:
It is also convenient to introduce an external “spin” gauge

1 . P . .
Lo==(3%)2+ie, %, — Loda,). (5) field A7, which couples to the totdz componentspin cur-
20 wok a rentJy:
Here J;, denotes a bosonic three-currefmtith w running 1
over 2+1 space-time coordinategor spin component. £X=ZAZewhava‘{. (12

The first term measures the length of the space-time world

lines and represents the kinetic energy. The Chern-Simons
coupling generates a sign change when two world lines Xl
change, transforming to fermions. To implement duality,2
these three currents are expressed in terms of two gaug
fieldsay,, one for each spin component:

The dual Ginzburg-Landau representation can be fruit-
ly employed to describe various possible phases of spinful
D electrons satisfying the “noncrossing” constraint. For
r‘?stance, imagine a phase in which tleéectron vortices are
absent in the ground statexcept as virtual fluctuatioins
1 which corresponds to takinglarge and positive in the above
J%=—¢ ga®. (6) Ginzburg-Landau description. Being massivk, can be
) NN . . .

safely integrated out, leaving an effective theory

In this way, charge conservatiod (J;;=0) is automatically 1

satisfied. The dual Lagrangian can be obtained by inserting ﬁeﬁ:—(fﬁy)erﬁcs(aZ), 13

this expression intal,,, and integrating out the Chern- 2

Simons field a*. Electron chargequantizationis imple-  \yhich describes massless charge fluctuation, and spin fluc-
mented by the vortex operatofB,, which are minimally  t,ations gappedin the bulk by the Chern-Simons term.

coupled toa, . This is a superconducting phase, which can be verified by
The final dual form consists of two Ginzburg-Landau noting that the pair field operatorcﬁcl) creates a (2—1
theories, coupled via a Chern-Simons term space-timg monopole of strength two in the field’,
=€,,)7,8 . Since the gauge fiela, is massless, the energy
Lova > Lol(P,,a%) +Legal,—al), (7)  cost to make a free monopole is finigonopoles interact
@ via 2+ 1 Coulomb forcg, so that the pair field exhibits true

ODLRO. Due to the Chern-Simons term, this superconduct-
ing phase exhibits a quantized Hall “spin-conductance,”

1 1
— i 2 - 2
EGL(@’a“)_ZWM 'a“)q)' FV(®)+ Z(f“”)  ® U§y=1, a signature of a spontaneous breakdown of time
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reversal invariance. This follows by noting that the Lagrang-which, as we shall see, are exceedingly interesting from a
ian with spin “gauge” field, L4+ L4, depends quadrati- phenomenological standpoint. These order parameters can
cally on botha’, anda,, so that they can be integrated out to condense without breaking thl symmetry
give

O —-—-Dy |, (16)

so we can havé®d, ,)#0 while ®, =0.

In the following we presume thak , and® , describe the
soft modes at low energies, and tldaj remains massive. As
we shall see, this leads naturally to a separation of low en-

readil Xil/:rilfgl tl;cilto;wgg g‘gsagﬁly;li 0': dL?C?:)'I‘ %A%;Tie can ergy spin and charge degrees of freedom. Our motivation for
y P Py this is two-fold. First, spin-charge separation is a generic

airing symmetry has precisely such a value for the quan- . .
Fized gpir?condu)étandearl)so seeybelow in Sec. )WVThe spi?1 property of superqopdyctor Sl.JCh as M'.py state dis- .
state of the pair is then presumably a triplet vag 0. This CL_Jss_ed above, and it is instructive to exhibit this separation
is the phase of a 2D superfluid 3-He A film. within .the present szburg-Larydau framework. But sec-

Before discussing spin-charge separation, which is a geqndly, in many Mott insulators of_mterest the charge degrees
neric property of a 2D superconductor, it is instructive toOf free_dom freez_e out at much higher energy scales than the
consider phases described in the dual theory when vortic gnergies on which local moments and spin order develops.

created by®, proliferate, and condenseéd_)#0. As we SPhis is typified by the undoped cuprate materials, with insu-

. . : lating behavior setting in on the scale of electron vl
shall see, in contrast to thg,+ip, superconducting phase, ., " . . :
; LY . Hubbard” U) much higher than the antiferromagnetic or-
these phases typically exhibit crystalline order, spontane-

) . ; dering temperature. In order to capture these two very differ-
ously breakingranslationalsymmetry. To see this, note that - o .
: et o ent energy scales within the present framework, it is essential
upon vortex condensation, the dual “fluxg;; 9;a;" is quan-

. . . . L to transform to the charge and spin vortex fiellsand® .
tized in units of 27, which corresponds to quantization of g b » 7

charge in units of the electron chargeBy analogy with the Indeed, in the description of the antiferromagnetic insulator
X . discussed above driven by condensationbof, charge or-
Abrikosov flux lattice phase of a type Il superconductor, on y g

. . A edering and local moment formation necessarily take place on
expects a breakdown of translational symmetry with spin URhe sameenergy scale, since the dual flux tubes in these

(and down electrons forming an ordered lattice. Depending, o« fields are electrons carryirpth charge and spin

on the relative phase between the density wave of spin up Under the assumption that both fieldis, remain massi.ve
and down electrons, this will be either a charge density wave . .an write down an effective theory for the soft moées
(CDW) state or an antiferromagn@F). In the presence of a @, , by integrating outb, | . Below we illustrate how this

commensurate background periodic potential from the ion%an be done, by regularizing the theory on a lattice. But more

in the solid, one expects these density wave states to IOCléenerally, the form of the effective theory is essentially dic-

resulting 'E‘ msula’;mq’behawor. .tated by symmetries, involving three contributions:
These “crystalline” phases can presumably be energeti-

cally stabilized by a longer-range repulsive interaction be-
tween the electrons, in addition to the “noncrossing” con-
straint (which is required to make our 2D bosonization with a charge sector

scheme legitimade In their absence, our dual Ginzburg-

Landau representatioffortified by subsequent analysis be- _

low and physical reasonifgtrongly suggests that the pre- £p=§|((9,rla,ﬂ)q’p|2+fp|q’p|2+ Uy @, |*
dominant ground state is the+ip, (or px—ipy)

superconductor. Given that spin-up and spin-down electrons 1 )

prefer a state of nonvanishing relative angular momentum to +§(ffw) + ﬂAﬂfuvxé’vaﬁa (18)
minimize Coulomb repulsion, aln=*+1 orbital angular mo-

mentum state is clearly favored by the kinetic energy. Asa spin sector

such, it seems that incorporating local Coulomb repulsion by

forcing electrons of opposite spin into a relative angular mo- 1 . ) ) 4
mentum state is &ery effective electronic mechanism for Lo= §|(‘9u_'au)¢’a| 1| Do "+ U Py

high temperature superconductivity.

Lo+ L5=—1 €unATTAY, (14)

S —
Ixy 40

with o

Leff: Lp+£0'+[’int1 (17)

1 T N2 1 (o o
+§(fw) +'_4waxaﬂf7vaw (19
I1l. SPIN-CHARGE SEPARATION

%nd subdominant interaction terms involving many deriva-

phases for 2D electrons satisfying the noncrossing constraintf.\/ez(se?’ €9, tl)ilo)/v.The (ihargel'sector hhas tI;le Ginzburg-
Composite order parameters can also condense, thereby leadidau form, with- minimal coupling to the charge gauge

ing to charge and/or spin insulators. We focus on the comti€ld &, , andA,, is the physical electromagnetic potential.
binations The Chern-Simons term lives solely in the spin sector.

Some insight into the genesis of such a Lagrangian may
: be obtained by considering a lattice version of E). and
Q=00 P,=;D, (15 dropping theal;* for simplicity. Writing ® ,= €', we have

The phases described above are not the only possib



PRB 61 DUAL VORTEX THEORY OF STRONGLY INTERACTING . .. 6311

. couples toa,+aj, this condensation locks the spin and
S= KUE‘> cod 67— 6}), (20 charge together, leaving only the electron in the spectrum.
! To summarize, states of higher symmetry have less re-
wherei andj denote sites of a (2 1)-dimensionalEuclid-  stricted spectra. The original dual representation in @By
ian) space-time lattice and a sum oweris understood. We has a U(1)xU(1) gauge symmetry, corresponding to inde-
now introduce charge and spin field%“: pendent rotations ob; and® ;

a”%(apt 0)+ 35, (21) C o @ et ai—ait A, (24

. ) i i i . with two arbitrary functionsA,. This gauge symmetry
wheres=*1 is an Ising “spin” variable. By introducing,  emerges when the conserved electron three-currents are ex-
we can treat0”” as angular variables since the_ action ISpressed as a curl of the gauge ﬁea:b Breaking down this
invariant under 6”7 — 6”7+ 2m,s——s. The action can |grge symmetry corresponds to “localization” or “quantiza-
then be rewritten as tion” of charge and/or spin. When the full symmetry is com-

1 1 pletely broken, both charge and spin become quantized to-
S=K>, SiSjCO$(0i”— glf))cc)%(gi”_ 07), (22)  gether, and all the excitations have quantum numbers of the

({0 electron, withg/2+s an integer(as in the antiferromagnetic
since sin2)(s—s;) =0 and cost/2)(s—s)=ss . Let us insu_Iator mentioned in Sec.)lll_3ut if this symmetry ?s only
now consider the effect of integrating out thés. If we are partially broken by condensation @.P and®,,, leaving an
in the symmetric phase in which tiZ& is unbroken, this can qnbrokenZz, b,Oth chargg(e) a_nd spin(1/2) pecqme quan-
be done perturbatively if, as in the high-temperature ex- 1Z€d. but excitations exist with any combination of these
pansion for the Ising model. To leading orderKn which quantum numbers. This will be nicely |IIus_tr§1ted in the next
corresponds to decoupled free spins, one {ws)=d;; , section where we employ the dual description, ELy), to

which implies an effective action of the form examine the properties of soriebreaking spin-charge sepa-
rated phases.

=K?2 P gP T 9
Sei=K 02” [1+cod, 01)][1+C01 4 61 )] IV. PHASES WITH BROKEN T

Having established the form of Eql7) under the as-

=K22, {cog 6/ — 0f)+cog 6 — 67) sumption of an unbroked, symmetry, and the concomitant
D spin-charge separation, we explore possible phases which
+cog 6 — 0f)cos 67— 6))}. (23)  emerge from this effective theory. We first focus on phases

) ) which (spontaneouslybreak time reversal invariance. As we

Upon making the identificationd ,=e'%,&,=e'% and re-  shall see, these emerge naturally for electrons in jellium,
storing the gauge fieldsminimally coupled the first two  moving in the absence of ionic potentials. In the following
terms are seen to be lattice versions of the continuumections we consider the effects of ionic potentials which
Ginzburg-Landau theories if, and £, respectively. The break rotational invariance and naturally drive transitions
last term generates a gradient interaction term between thato time reversal invariant phases.
charge and spin sectors. As already discussed, the phase in the absence of either

When theZ, symmetry is unbroken, as it is by assump- spin or charge vortices is p,+ip, superconductor. Since
tion in Eq.(17), spin and charge separate, as we now arguethe charge and spin sectors have effectively decoupled under
In the p,+ip, superconducting state, which can be describedhe assumption of the unbrokéty symmetry, it is possible
by either Eq.(8) with r; ;>0 or Eq.(17) with r, ,>0, the  to consider them separately. If the vortices in the charge
low-energy excitations are the gapless superfluid mafle  sector proliferate and condenseh ) #0, the field¢;;d;al
which carries charge but no spin. At finite energy, there ar&yecomes quantized in “dual” flux tubes, as discussed above.
also the quanta ob,, which are fermionic and carry spin- Each of these “flux” tubes carries charge but no spin.
1/2 by virtue of their coupling to the Chern-Simons gaugeThese charge spinless “holons” are expected to crystallize,
field a;, . They do not couple directly to the electromagneticby direct analogy with the Abrikosov flux-lattice. This
field, so we assign them quantum numbersO,s=1/2. As  chargee crystal will presumably lock to any underlying ionic
we shall see in the next section, these neutral fermionic spipotential. With gapless spin-carrying edge states still present,
1/2 excitations are th@-wave analog of “nodons,” intro- this electrically insulating phase is tipg+ip, analog of the
duced in Ref. 13 for a-wave superconductor. nodal liquid. Once again, energetic stabilization of this crys-

Whenr ,<0 and®, condenses, the dual flu;9,a} be- talline phase presumably requires the presence of appreciable
comes quantized into “flux-tubes,” by direct analogy with a Coulomb repulsion between electrons on the scale of the
type Il Ginzburg-Landau superconductor. Each one of thesgiean electron spacingn addition to the “noncrossing”
dual ‘flux tubes” carries one unit of electric charge, but no constraint.
spin. We refer to these spinless chargesolitons as But suppose the spin vortices condense, in the absence of
“holons.” 2! We thus see that provided ti symmetry in  charge vortices? Due to the dual Anderson-Higgs mecha-
Eq. (16) is unbroken spin and charge are separated. On thenism,a;, becomes massive rendering the Chern-Simons term
other hand, when th&, symmetry is broken by the conden- ineffective, and leading to a spin-gap both in the barid at
sation of®, |, the spin and charge are confined. Sidecg, the edge. This implies “spin-insulating” behavior Wiihiy
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=0. How can we understand this fully spin gapped superconeut. The only remaining dependence on the source ﬂﬁld
ducting phase? To this end it is convenient to briefly conds through the last Chern-Simons term, which has been in-
sider a BCS description of the quasiparticles ip,a-ip,  cluded to give the correct result for the spin Hall conductiv-
superconductor: ity o5,=1.

Remarkably, Eq(27) preciselycoincides with thespin
sector of the dual Ginzburg-Landau theogy, in Eq. (19).
Indeed, with inclusion of the source terf in Eq. (12), the
full Lagrangian in the spin sectof(A7)=L,+ L can be
conveniently rewritten by shifting;;—ay + A7 as

Hpcs= Ek ekcﬁack,ﬁ AkcchT,kl +H.c.,, (25

with dispersion e,=(k?/2m,)—u and gap functionA,
=v,(ketiky). In terms of a two-component spinog;(r)

=cy(r) and wz(r)ch(r), this can be rewritten in the form 1 _ _ ) ) .
of a Dirac equation witEuclidean Lagrangian Lo(A)= §|(f9,r iay, —IAD) D [“+1 | D, [*+uy| D,
Locs= Y+ 7[(—d72me) — p]+ivaTa} g, (26) +Les(a,) — Les(AY). (28)

with j=x,y. This gives the usual BCS quasiparticle disper-This is identical to Lgcs under the identificationd =®,,
sion Ey= + e+ (v,K)2. As in Ref. 13, one can define a a,=aj, andM?=pu?=r,,. The upshot is that a simple refer-
gauge invariant charge neutral quasipartidénodon”), by ~ mionization of the spin sectof,,, gives directly the BCS
transforming — exp(7¢/2)y, with ¢ the phase of the quasiparticle Lagrangiafgcsin Eq.(25). The spin carrying
complex pair-field. Spin and charge are thereby separate®ut charge neutral vortex field,, is thus seen to be equiva-
with the z component of spin being the conservedl)l) lentto a “nodon” destruction operator.
“charge” in the Dirac theory: &= ¢"y. Since the source By such a refermionization procedure, we can infer the
field A7 couples to the conserved spin current, it can beProperties of the vortex condensed phadg,)+0, withr,
readily incorporated into the above Dirac equation via ahegative. This corresponds to takipgnegative and entering
“minimal coupling” prescription;d, —d,—iA. the molecular limits of thep,+ip, superconductor. The

In the presence of a boundary, sayat0 with boundary ~ Critical point atr,=0, with massless but uncondenséd,
conditionsc,(x,y=0)=0, one can readily show from the S equivalent to the single massless Dirac fieldth n.=0)
above Dirac theory that a chiral fermion edge mode exist§entered at zero momentuMiithoutrecourse to refermion-
only for positive chemical potentigly>0. In this BCS limit ~1zation, vortex condensatiof®,)#0 directly implies a
one clearly hasr§,= 1. But at very strong coupling whem ~ Mass for a; and a vanishing spin Hall conductivity
changes sign, the ground state changes to a pairefixy=0—the correct value for thp,+ip, molecular super-
“molecular” 2223 limit with zero oS, =0. Right at the tran- conductor. This internal consistency gives us some confi-
sition, there are gapless bulk quasiparticle excitations dedénce in the more general validity of the dual Ginzburg-
scribed by anassles®irac theory[at x=0 in Eq.(26)] with ~ Landau formulation. o
a “node” at zero momentum. To access the molecular limit An alternate route from the BCS to molecular limit is
of the p,+ip, superconductor presumably requires a Verypossib_le by impIeme_ntin_g duality transformation on the_
strong (and unphysicalattractive interaction between elec- Posonic theoryC,, which interchanges the two phases. This
trons, enabling up and down spin electrons to form a finite@n be achieved by expressing the bosonic three-current for
angular momentunboundstate(with |=1). The attractive the conserved spind;®,=4¢'y) as the curl of a gauge
interaction must overcome the centrifugapulsionbetween field a, and integrating outa, . After shifting a,—a,
the two electrongpresent due to the noncrossing constjaint +A,, one thereby obtains

A direct connection between the moleculay+ip, su- 1
perconductor and the phase described by the dual theory, _— i ATy 42 2 4
when the spin vortex condensgsh,)#0, can be estab- Laua 2|(a" |, TSI ST Ul G Lo r,).
lished by refermionizing the spin sector of the Ginzburg- (29
Landau theory and showing its equivalence to the Dira
theory EQ.(26). To illustrate this we insteatiosonizethe
Dirac theory. In the BCS limit of the, +ip, superconductor
with u positive, the massive relativistic Dirac fermiott,
can be converted to a relativistic bosdn, via a Chern-
Simons transformation

9-|ere¢> creates a vortex in the field# . Notice that the dual
theory has the same form &5, in Eq. (28), except for the
absence of the Chern-Simons termAfy. Under duality, the
“ordered” phase withr ,<0 (and(®,)#0) maps into the
“disordered” phase for¢ with r,>0. In this phasethe
molecular limiy the dual theory correctly predictsiy=0,

1 due to the absence of thg, Chern-Simons term. In terms of
Escs:§|((9,r ia,—iA7)D|*+M?|P|? the original Dirac field this duality is a particle/hole transfor-
mation ¢— ', which changes the sign of the Dirac mass
+U[D[*+ Leg(@,) — Les(A7). (277 #——a. The self-dual point where both and®, are criti-
cal, corresponds to thmassles®irac theory.
HereM >0 can be equated with the Dirac mass Indeed, From thep,+ip, molecular superconducting phase with

the spectrum of this massive boson field, is wy a§y=0, it is possible to also proliferate and condense the
=+ M?+k’>—the same form as the BCS quasiparticle dis-chargevortex(®,)# 0, which describes a fully spin-gapped
persion,Ey. Since®d is massive it can be safely integrated crystalline phase of spinless chargéholons.”
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a~

dimensional superconductor such as the cuprate ladder ma-

p+pNL p+ip SC terials(the more interesting generalization to square symme-
BCS regime BCS regime try will be returned to later For simplicity, we take the
o =1 o5=1 symmetry axes alongandy. Physically, it is clear that such
? v a potential favors the formation of al (non-T-breaking
r paired state such as or p,. This can be seen by consider-
[4 . . .
p+ip NL pHip SC ing the two-body pro_blem deep in the molecular limit. In_the
molecular regime molecular regime presence of the lattice potential, angular momentum is no
o=0 c:=0 longer a good quantum numbgnly discrete* 7r rotations

and reflections are symmetry operatiprasd thep,*ip,

FIG. 1. The phase diagram in the-r,, plane. Here, nodal liquid ~ States will generally be mixed. Coupling the two via a small

is denoted adlL, andos, is the spin Hall conductivity. “tunneling” perturbation, as appropriate for weak ionic
potential, splits the two initially degenerate levels into non-

The four phases which emerge from the spin-charge sepalegenerat®, or p, eigenstates. The system then condenses
rated Lagrangian in Eq17) as one varies the mass terms,  into the lower of the two states. In the BCS limit the effects
andr,,, are summarized in Fig. 1. The two phases with ~are more subtle, as we now illustrate.
>0 are superconducting, with @ +ip, pairing symmetry. As alluded to in the previous section, a distinguishing
The difference between these two superconductors lies in theharacteristic of the BCS theory of unconventional supercon-
spin sector, which exhibits a quantized Hall conductance fogductors is the presence of gapless quasiparticle excitations at
spinwhenr ,>0. Within a standard BCS description of such the intersections of the nodal lines of the pair wave function
a p-wave superconductor, the sign of the chemical potentiawith the Fermi surface. For thg, case, this occurs at two
w corresponds directly to the signiof. A positive chemical  antipodal points in momentum spake= =Ky, and the re-
potential corresponds to the usual weak coupling limit,sulting gapless quasiparticles can be cast into the form of
whereas negativgw requires a strong attractive interaction two Dirac speciegsee below. The multiplicity of Dirac fer-
and leads to a phase with tightly boutréal spackCooper  mions signals the emergencetafo conserved (1) charges
pairs. In this latter “molecular” phase of Cooper pairs, thein the low-energy limit. Essentially, because of phase space
Hall spin conductance vanishes. Whepis taken negative, restrictions, the spin at each nodal point is separately
on the other hand, the composie, vortices (with flux  conserved—equivalently, one may view the two conserved
hc/e) proliferate and condense—thereby destroying the sueharges as spin an@uas)jmomentum, the latter obtaining
perconductivity. The spin sector in the resulting spin liquiddue to the absence of momentum-nonconserving umklapp
(or “nodal liquid”) insulating phases remains the same as irprocesses for generically situated nodal wave vectors.
the corresponding superconductor. Condensatio® pfror- In the dual theory of Eq(17), total spin conservation is
tices leads to a dual analog of the Abrikosov flux lattice—amanifest owing to the transverse nature of the spin current
lattice of chargee spinless bosons. Both of these insulatingJ7 = (1/27)e¢,,\d,a7. Momentum conservation is also
holon crystal phases have a spin gap in the bulk, but gaplessear, but apparently on a very different footing—it follows
spin carrying edge states exist in the “chiral” nodal liquid from the space-time Galilean invariance of the model. Ap-
with positiver . parently, to describe the BCS limit, a connection must be

In all four of the above phases in Fig. 1 time reversalmade between the interndl(1) or SU(2)] symmetry of the
invariance is spontaneously broken, reflecting the underlyingnodel and the external space-time translational symmetry. It
pxtipy “pairing” symmetry. In each case, this symmetry is quite remarkable that such a connection can indeed be
breaking is taking place in the&pin sector of the theory. The clarified, as we now show.
charge sector described by the simple Ginzburg-Landau To see how the finite momentum physics can emerge in
theory (with no Chern-Simons terinis manifestly time re-  the dual theory, first recall the quasiparticle structure of the
versal invariant. A natural question that arises is whether thg, +iep, superconductor in the BCS limit. This is described
spin-charge separated dual vortex theory in @g) can de- by Eq.(25) with ©>0 andA,=uv \ky +ieky (only the sym-
scribe time reversal invariant phases, such dga,2 super-  metry, and not the particular form of this gap function is
conductor or nodal liquid. Clearly €2 2 phase requires important in what follows The low energy quasiparticles
the breakdown of rotational invariance, either spontaneouslyccur neak,=0, ky==K, whereK= V2mgu. To focus on

or by the presence of an ionic potential. Moreover, since thehese two reglons in momentum space, next define “slowly
dy2—y2 superconductor exhibits gapless nodal excitations/arying” quasiparticle fields, via

with finite momentum(on the Fermi surface in weak cou-
pling BCYS), it is necessary to access Fermi surface physics at

nonzero momenta in the dual formulation. This can be 1 f it )eisKy 30
readily achieved as we now discuss. CT(X)NS:i _2( s ifs))en, (30
V. “FERMI SURFACE,” p,, AND D,2_,» PHASES
1 .
o b 000~ 3 g+l @
In this section we imagine introducing an ionic potential -

with the lattice symmetry. The simplest case is a uniaxial
perturbation, as might be appropriate, e.g., in a quasi-onéne thereby obtains the Lagrange density
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. ) ) For simplicity, we have included only a single symmetry-
Lotiep= Z+ fs[d,+ivaT oy +isverdy+smr]fs, breaking term, the coefficient<1, which favors fluctua-
= (32) tions along they axis over thex axis. The coefficienti>0 is
included for stability purposes.

wherevg=K/me,m=eK and, following Eq.(26), we have As c is decreased from ongero anisotropy the energy
introduced Pauli matrices which act in thea=1,| space. cost for fluctuations ofP, with spatial variations alongy
Equation(32) has the form of two decoupled Dirac equa- becomes more and more reduced. Whkeashanges sign and
tions, and thereby displaytsvo manifest U1l) symmetries. becomes negative, the lowest energy fluctuations bifurcate
Note from Eq.(31) that thef | fields are defined as Hermitian away from the origin in momentum space and move to two
conjugates relative to the, fields in Eq.(30). This implies  pointsk= =Ky, with K= \/W From this point on, it is
that the overall 1) rotation,fs— €'Xf5, corresponds to spin appropriate to focus on the low-energy field configurations,
(89 conservation. Theelative U(1), fs—e'SXfg, embodies viz,,
instead translational symmetry, or momentum conservation.

The conserved densities are determined bgtNers theo- O (X)~P e+ _e 1KY, (39
rem
. : : The physical meaning of Eq39) is clear from the above
Si=f fi=ckCki—Clk Cky (33 “reverse engineering” of the field content of thg+iep,
.ot : : superconductor—compare with Eq®0),(31). Naively in-
Si=ff_=cy;Cok;—Ck Ck - (34 serting Eq(39) in Eq.(38) and neglecting rapidly oscillating

. . - . terms in the usual way gives an effective Lagrangian for the
These arehiral spin densities, closely analogous to the chi g)ai fields. This haspreciselythe form of Eq.(36), with

ral densities encountered in one-dimensional Fermi systems; 2 5 5
The total spin densit§?=S" + - . vy=1+lc|, vE=2/c|, m*=r,—c%2d, u=u,, and v

We are now in a position to bosonize thg+iep, BCS =2u,. These vaIue(;parncuIarIyu andv) :_should, however,
model. The two flavors of Dirac particlds. may be traded not b? tgken too seriously, as Fhey Ce“a'F"y depend upon the
for two complex boson field® .. by attaching flux in a va- S|mp!|st|c Frgatmgnt OT quptuanns and higher-order terms.
riety of ways. The most natur_al, however, is to introduce a With this identification in hand, we conclude that E§8)

single gauge field, attaching one flux quantum to each Overprowdes a unified description of thrg.* ip, andpy states in

all (S U(1) charge. This choice ensures both that all the?" intrinsically anisotropic system. F@r<0, the equiva-

resulting bosonic fields commute at different space-timéence to Eq(36) allows a refermionization to the form in Eq.

pointsand that the gauge field has the same physical mean(-.32)' It is natural to associate the critical point of these equa-

: O A . . tions (m=0) with the spin structure of thp, superconduct-
ing as thea,, defined previously. In particular, ing state and its nodal-liquid—holon lattice counterpart. The

refermionized double Dirac form in E§32) is our primary

1
SZ:2—V><a". (35 result for the uniaxially anisotropic model.
m Issues of time-reversal symmetry merit some discussion.
With this choice, the bosonized Lagrangian is Ideally, a general formulation of the problem should contain

T-non-invariant terms only through spontaneous symmetry
breaking. However, generically both E6) and Eq.(32)
breakT. In the fermionic formulation, Eq32), fortunately,

the explicit symmetry breaking can be easily restored by re-
FW(P L)+ Leg(a%) = Le(A7), (36)  quiring m?=0. Furthermore, alll-preserving perturbations
of this form can be shown to be irrelevant, so that fhe
state is locally stabl&® From the point of view of Eq(36),

this is remarkable. Indeed, a direct mean-field analysis would
suggest that a gapless state ocamly along the critical line

£p+iep:§ |Do@ |2+ 03D P2+ vE|D,d |2

whereD ,=d,—i(a;+A;). Here we have included an ex-
ternal spin gauge field\; for bookkeeping purposes. The
potentialW is dictated by symmetry to take the form

2_ .. . .
WD ) =m|® . |2+|d |21+ u[|d . |2 m“=0, requiring tuning _of a parameter. These conclpsmns
(®-) @[+ T+ ull®] can be reconciled by noting that constraints upon(B86). in
+|®_|22+v| D, D _|2 (37)  aT-invariant system are not at all obvious. Only because of

the ability to refermionize are we able to identify the critical
' 5 line m?>=0 as containing &-invariant manifold. If time re-
the p,+iep, phase wheren”>0. versal is explicitly or spontaneously broken, a critical state is
Remarkably, the selection of two such nonzero “nodal” jhdeed nongeneric, and the spectrum of E2p) correctly
points occurs fajrly_ naturally in our .dual Gin;bqrg-Landau reproduces that of the Dirac theory for small nonzetd
theory once umap_al(rectarygula)r anisotropy is included. - (i.e., pxt+iep, with e<1). Similar subtleties render the
Consider the modified version of E(28), analysis of Eq(36) problematic form?<0. We suspect that
this region represents rather more exoliwiolating states,
and do not consider it further.
d o ) . Another physical route away from the BG§-phase is
+ §|D D o[ “+1 4| D o[+ U, | D via a moleculamp, state. Indeed, as we have argued above,
deep into the molecular limit, uniaxial anisotropy guarantees
+ Le(a%) — Le(A?). (39 ap, state. To tune through such a transition, we may imagine

The final term in Eq(36) is dictated by requiringr§y=1 in

[’U:|D0q)a'|2+|Dl(D0'|2+C|D2(DU|2
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U, active however, the nature of the transitions or sequence of transi-
pHip SC PoSC tions between these states is less clear.
m"lei“_la(; regime molecular regime Rather than attempting to fully characterize this evolu-
%= c,=0 tionary process, we will content ourselves instead with de-
termining the spin Lagrangian of théwave states them-
p+ip SC p. SC Viatice selves. Following the logic of the previous subsection,
BCS regime BCS regime consider the simplest modification of E&8) appropriate for
o,=1 o5,=0 square anisotropy,
. . . . . — 2 2 2 2
FIG. 2. The phase diagram as a function of increasing lattice L,=|Do®,|*+¢|D;®,|°+dy| DD,
potential with uniaxial anisotropy.:icc @nd short-range attractive 2 2 2 2 2
pairing forceuattractive- +d2(|D1(I)U| +|D2¢)U| )+ rgl(bg|
+ UU| q)0'|4+ Ecs( ag) - Ecs(AU)- (40)

introducing a finite-range attraction into the “noncrossing” ] )

model which favors tighter pair binding. In such a model theHered, is a measure of the anisotropy, and low-energy ex-
p,—BCS state naturally undergoes a transition into a molecugéitations are pushed to finite momentunctibecomes nega-
lar p, state as the attraction is increased. From the converfive. Forc<0 andd,<0, the lowest energy modes occur at
tional BCS point of view, we would expect such a transitionfour pointsk=(+K,0),(0+K), precisely as expected for
to be described by taking the chemical potential through zer§e low-energy excitations in d,, superconductofthe mo-

in a p, quasiparticle Hamiltonian, i.e., Eq25) with A, ~ Menta appropriate faf_,> are obtained fod,>0). We fix
=vky. For this model, ag. passes from positive to nega- ¢<0 andd,<0 and consider decreasing .

tive, the quasiparticle nodes converge and coalesce at the Once again, it is appropriate to focus on the four slowly-
origin, becoming massive fqu<0. Precisely at the critical varying fields®;s(j=1,2s=*), defined by

point, one expects a spectrunf~v?k;+kj/4m5. This un-

conventional non-Lorentz invariant form is precisely what is D (X)~ >, CDJ-Se‘SKi'X, (41)
obtained at small wave vectors from E@8) at the point is

wherec=r,=0. Just as the gaplegs, state occurs only B B _ 2@ dy)]
along a line in mean-field theory but comprises a phase in th here K, =(K,0), K,=(0K), andK= [c[/[2(d,+d;)].

gauge model, it appears that the critical stateatr,=0 s for thep-wave case, an effective theory can be developed

(see Fig. 2in reality forms a phase boundary despite appearlcor the @ fields. It takes the form
ing as a multicritical point in the mean-field treatment.
i i 2 2

Given the existence of the, _molet_:ular state, there must geﬁzz |D0q)js|2+vF|qu)js|2+UA|Ejj’Dj’q)js|2
be another critical line separating this from thg+ip, mo- is
lecular phase. As neither state contains gapless spin excita-
tions or possesses a nonzerQ,, we have been unable to
discriminate between them within the GL model. Viewed Neither the precise values ofs v, nor the form ofW is

from _t_he point of view of self-chS|ste_nt BCS theory, the critical to this discussion. Whag significant, however, is the
transition would appear to be a simple first-order level cross;

ing of two-particle bound states. Some preliminaryfaCtthat Eq.(42) takes the form of four interacting relativis-

modelind® suggests that a continuous transition in the uni-i€ complex bosons coupled to a singl¢ll) Chern-Simons

versality class of the quantum transverse-field Ising model i§2-9° field. As before, the effect of this gauge coupling is to
y q 9 attach identical flux to all spin quanta, transmuting these

also possible, the Ising order parameter reflecting the Pr€%osons into four species of Dirac fermions. Furthermore, the
ence or absence df breaking. The full proposed phase- <Di s a4 T ) '
pin Hall conductivityo,, =1 in the massive phadee., for

diagram in the spin-sector is indicated in Fig. 2. y )
'ag ! b 1S Ihdl n g r,—c?/[4(d;+d,)]>0 in mean-field theory as deter-
mined by the last term in Eq42). This is in agreement with
B. Square symmetry andd wave the value in thep,+ip, phase. Here, this value gives some

We have seen how a BCS-likp, state with gapless indicatior_1 of the stru_ctu_re of the_igns of the four Dirac
modes at nonzero momentum can emerge from the spin b&2@sses in the refermionized version of E4@). Each mas-
son Lagrangian in Eq28) in the presence of uniaxial an- Sive Dirac equation gives a contribution 6f1/2 to o}, ,
isotropy. If the underlying crystal lattice has square symmedepending upon the sign of its mass term, so apparently there
try, however, thep, or p, states are much less likely, and we Must be three positive and one negatie vice versa
expect instead that-wave pairing is favored. Indeed, two masses in the Dirac theory. As the quadratic termWris
particles in a fourfold rotationally invariant lattice potential tuned to zero, all four bos@nd hence Dirgcfields are ex-
interacting with a hard core will generally havedavave  pected to go critical. This is the natural candidate for a time-
ground state in the limit of a strong potential. For a weakreversal invariant point, and we speculate that it describes the
anisotropy, however, thp,*ip, states are likely lower in nodal quasiparticlegnodons$ in a d,, superconductor and
energy. One thereby expects a transition upon increasing latelatives such as the nodal liquitiThe appropriate fermi-
tice coupling betweemp-wave andd-wave pairing. In the onic representation for the nodons in these states was derived
molecular limit this presumably occurs as a level crossingindependently in Ref. 13. Fad,, symmetry, it can be ob-
i.e., a first order phase transition. In the BCS-like regimeained as before from E@25) by defining

FW( Dy 00 )+ Log(@%) — Lo A7). (42)
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CT(X):% dis ek, (43
cl(x)=% dl e isKix, (44)
The (masslessnodon Lagrangian is then
Loodor= 2, A1 07 Svp 91+ 503 71 9]s
+diJd,+svprlid,+sv,™d1]dps,  (45)

where as in earlier equations thematrices act in thex
=1,| subspace. For an alternate, explicitly @Uinvariant
formulation, see Ref. 13. Equati¢d5) has the desired form
of four Dirac equationgfor s==,j=1,2). The identifica-
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late an equivalent dual theory which is of Ginzburg-Landau
form. The auxiliary gauge fields are minimally coupled to
vortex fields.(4) The Ginzburg-Landau theory contain&a
symmetry which, if broken by vortex condensation, leads to
spin-charge confinement, translational symmetry breaking,
and “conventional” ordered phases such as the AF and
CDW. (5) In order to study phases with spin and charge
physics at different scales and without translational symme-
try breaking, we contemplat&,-symmetric phases in which
vortex pairs condense. A phase diagram of spin-charge sepa-
rated states is the upshot of crossing the rubicon fed by these
five tributaries.

By eschewing a conventional momentum-space approach
which assumes a Fermi surface, we have constructed an ef-
fective field theory which does not fall under the rubric of
Fermi liquid theory. The basic excitations of our theory are
topological solitonsn vortex condensatéd.They are in no

tion of Eq.(45) is supported by the excellent correspondencesense adiabatically connected to the electron and hole exci-
between the quantum numbers and momenta of the gapletstions of a free Fermi gas. They are also rather different
modes of Eq.(42) and those of the nodons. In either case,from the “holon” and “spinon” concepts which are intro-

there are four conserved(l) currents, the charge@ime

duced to solve the Gutzwiller constrafiitThese objects are

componentgof which are chiral spin densities, i.e., spin den- strongly coupled and do not appear to be solitonlike in char-

sities for particles with momenta alongK,,*K,. Mass

terms taking Eq.(45 away from criticality can also be
added, and take the form dfsrydis operators. The explicitly
break time-reversal invariance, so that as for phephase,

we expect thed,, (and analogouslyl,._,2) state to be lo-
cally stable.

Given the complexity of the arguments in this section, it

acter. The topological spinless chargeexcitation in our
Ginzburg-Landau theoryfa “holon”) has an antiparticle
with opposite charge, and at low energies can decouple from
the neutral spin 1/2 fermionic “nodon” excitation. More-
over, the “holon” already exists as a finite energy excitation
within the Mott insulator—doping is not required.
Contrasting the present work with our earlier construction

seems appropriate to summarize what has been learned. Wéthe nodal liquid, we see that the “holon” field is identical
have studied how momentum space structure emerges frott the charged soliton of the nodal liquid but the nodon—
the bosonic Ginzburg-Landau theory of the spin sector. Inhich descended from assumedjuasiparticle at the nodes

doing so, we have not assuméak in previous work on the

of ad,2_2 superconductor—is now a concept which natu-

nodal liquid local superconductivity, but proceeded insteadrally arises from the spatially nonuniform softening of a

on very general grounds. Once the soft mode® gimove to

vortex-anti-vortex pair field. Our nodon and holon fields are

nonzero momenta, any incipient critical points can invariablyproperly seen as analogous to the charge and spin solitons of
be expressed in terms of multiple Dirac fields. When thethe one-dimensional electron gas or the fractionally charge
associated Dirac masses vanish, a time-reversal invariant Lguasiparticles in the quantum Hall effect.

grangian is possible, and two such theories were identified Despite the surprising ease with which our dual Ginzburg-
with the p, andd,, nodal states. Furthermore, uniaxial and Landau formulation captures spin-charge separation and su-
square lattice anisotropies were seen to favor appropriateerconductivity, the Fermi liquid phase seems to be missing.
critical states, even in very naive treatments of the Landagenerally, a dual vortex description of a Fermi liquid is pos-
theory. These arguments provide a partial derivation of Egsible, as illustrated nicely for the case sffinlesselectrons.

(45) for a generic time-reversal invariadtwave (supercon-

After transforming to spinless bosons via Chern-Simons and

ductingor nodal liquid state, contingent only on the original implementing a duality transformation, one readily obtains a
hard-core assumption used to allow the Chern-Simons flugimple dual Ginzburg-Landau theory. This theory closely re-

attachment.

VI. DISCUSSION

sembles Eq(8), but with only a single vortex field, which
is minimally coupled to a single gauge field with Chern-
Simons dynamics. But more importantly, the theory is non-
relativistic (i.e., there is a nonzero chemical potentiahd

In this paper, we have suggested that spin-charge separte gauge field necessarily has a nonzero average, as the dual
tion is a generic consequence of strong repulsion betweeffux equals the number of electrons. So a vortex “vacuum”
electrons in two dimensions. We are driven inexorably tophase—thep,+ip, superconductor for spinful electrons—is

this conclusion by the following logicll) We note that if

not accessible without spin. The Wigner crystal phase of

there are repulsive interactions which are strong enough tepinless electrons corresponds simply to condensing the
prevent electron trajectories from intersecting, then we magingle vortex field(®)+#0. In the Fermi liquid phase this
transmute the electrons into hard-core bosons interactingortex field must remain uncondensed, but with the vortices
with a Chern-Simons gauge field which attaches flux to spinin a fluid state. This fluid of vortices presumably coexists
(2) Since the up- and down-spin boson currents are sepavith the fluid of particles(the Chern-Simons bosons which
rately conserved, they can be written as the curls of tware the dual flux tubgs-the particle motion acting to

auxiliary gauge fields(3) Using Egs.(1) and(2), we formu-

scramble the vortex phase and vice versa. Related manipula-
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tions suggest that a Fermi liquid state is possible in the spin-
ful case as well, although we think it likely that this does not BRARR
obtain in the experimental systems of interest.

As we have argued, the presence of electrons spinning
around one another is tantamount to significdimite angu-
lar momentum pairing correlations. The kinetic energy
clearly favors lower angular momentum, which suggests the
predominance op,+ip, pairing, at least in the absence of
significant ionic potentials. Naively, this reasoning might
suggest that quantum Hall systems with spinful electrons
could exhibit high-temperature superconductivity. However,
the presence of the strong orbital magnetic field presumabl erconductors considered within the present dual Ginzburg-Landau

recludes this possibility. But there are quantum Hall sys . . -
P P y q y framework. The(unconventional antiferromagnet, holon lattice,

temS.V\,l,h'Ch appargntéy do e)fh'b't high temperature pseu-and superconducting phases are indicated by AF*, HL, and SC,
dospin” superfluidity?® In particular, double-layer quantum

. .. - : tively.
Hall systems with total fillingp=1 do exhibit evidence of a respectively
“transverse superfluid” phase, with superfluid currents in

FIG. 3. lllustrative and schematic phase diagram of cuprate su-

rials. As discussed above, the crucial assumption of unbro-

the two layers flowing readily imppositedirections(effec- ken 7. symmetry appears most natural for svstems with a
tively negating the effects of the magnetic fieltt has been 2 S| Ty app ySte .
large native disparity between charge and spin ordering

tSL:Jr?agis(;i?e:Iri]tit-mlsu?g:ssetr\g:lsgigr?rd\?vritl\;a ai:]lnlttﬁeteln;g ®'8cales. This is indeed the case for the cuprates near their
. . Lo KT half-filled Mott-insulating states. Precisely at half-filling,
Kelvin range—a superfluid transition driven by Coulomb re-

pulsion. Thep,+ip, state studied here is loosely analogousCharge fluctuations begin to become quantizedquire a
. X y .
to this “(111)” quantized Hall state under the interchange of gap at very high temperatures of ordeY (the HubbardJ),

charge and spin. while for spins the characteristic ordering energy scale is

i . . significantly lower of orded (with local moment formation
In the canonical approach to strongly interacting electron

systems near a Mott insulating phase, the very first step is t§lccurring somewhat highrAs in our previous work?*
project onto a simpler tight binding model, oftentimes with e hypothesize that this Mott phase comprises a spin-charge

; . . separated insulator described by Ef7). As the electron
one orbital per unit cell. When mo‘?'e"f.‘g the undoped cu density at half-filling is commensurate with the underlying
prate superconductors a further projection to a reduced Hil: oo s .
) T CuO, plane periodicity, the charge sectas well as the spin

bert space with one electron per site is usually adopted. The L X S
Sectoj is in effectively zero dual magnetic field.

resulting spin Hamiltonian is much more tractable than the The Ginzburg-Landau theories for charge and spin sug-
full s_ystem of mtergctlng_elec_trons, but we maintain thatgestabehavior in the temperature-doping plane illustrated in
very important physics is |rre_tr|evably lost und_er these Ioro'Fig. 3. At half filling, both vortex fields have zero external
jections. Eor Instance, the spl_n—charge separation that_ We afiix and make transitions from their “normal” states at high
cess readily within our dual Ginzburg-Landau formulation Oftemperatures to their “Meissner” states at low temperature
strongly interacting electrons in the 28bntinuumis cer- : . o i
. 4 ) X oo The associated mean-field transition temperatures, roughly
tainly not present in the Heisenberg spin Hamiltonian. Pu PMF_ ) and T MF=1J are shown in Fia. 3. Below? MF
simply, it is exceedingly difficult to ascertain if spin and Ce spin bosomlg bggihs to develop am%litljde quctCuatié)ns
charge separate after projecting away the charge. We can, . o . '
however, within our continuum approach, still describe Mott[ﬁ&resrearlﬂ?gsloﬁls mgmeﬁ‘ttu(fgm?gﬁgh SAt Sgr?mgﬁt lor\]"éjr
|_nsulat_|ng physics by including a commensurate |on|c'poten-(+ p/2 - 12), and the eefermionized Dirgc fields )s/ubse—
tial which locks the charge order. In this way it is possible to —th = Wd it AE* oh Ref. 14 for det
describe Mott insulators which have gapped excitations an uently order ('jn 0 an d Ip asésee; f eY. o or e_aﬂs
exhibit spin-charge separation. Indeed much, if not all, of th hopw;}g X Introduces ? ua ext_erna u ,X? OC¢|0X mt(;
interesting physics accessible within the dual GinzburgiN® charge sector only—the spin bosdn is largely unaf-

- . MF
Landau formulation is inaccessible, and probably not€cted and in particulaim™ presumably decreases only

present, in the overworkedJ model. weakly. The dual flux in the Ginzburg-Landau theory g

An apparent limitation of our approach is that we do not!ntroduces a dual mean-fieldH," line, or rapidly decreas-
have a specific microscopic model which is described by outd T¢ ™ (x). Within a mean-field treatment a holon lattice
effective field theory and we do not knohow strongthe ~ Pphase would be expected below this line, in direct analogy
interactions must be to invalidate Fermi liquid theory. Nev-With the Abrikosov flux lattice. But with fluctuations the ho-
ertheless, we expect that, since many of the phases halen lattice phase should be separated fral""(x) by a
excitation gaps, they should be stable to small perturbationerossover regime analogous to the strongly-fluctuating “vor-
and there should be a universality class of models whicliex liquid” state in type Il superconductors. In the cuprate
exhibit the same “universal” and robust propertigsich as  context, this is a regime of strong dynamical charge fluctua-
spin-charge separatipnindeed, as emphasized previously, tions and can be thought of as a “holon liquid,” comprised
the onlyformal requirement for obtaining the dual formula- of chargee bosons. TheT?MF(x) line then represents a
tion is the “hard-core” part of the repulsion. crossover from a metallic phase abawéth “unquantized”

The physics of the Ginzburg-Landau formulation sharesharge to the holon liquid which manifestédynamical
some tantalizing similarities with the cuprate high-mate- charge “quantization” in units o& (compared to dynamical
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“flux quantization” in the vortex liquid. Remarkably, our these systems one is also very much interested in the full
Ginzburg-Landau formulation suggests that spin-chargéhree-dimensional limit, particularly for 3-He. Unfortunately,
separation, effectively present beld{@MF(x), can occur on the Chern-Simons approach_ transf_orming ferrr_lions into
very high interaction energy scalés.g., of ordefU). Upon  bosons by flux attachment is restricted to strictly two-
further cooling the holon liquid one expects these bosons tgimensional systems. But it is possible to transform between
condense, provided their density is sufficiently incommensufeérmions and bosons in three dimensions by binding “statis-
rate with the underlying crystal potential to avoid chargetical” magnetic monopoles to the partlclé]sUnfqrtunately, _
ordering(into, for example, a holon lattice phas@&his is the t_hls |r_1troduces an unphysical internal st_atlsthal_ magnetic
superconducting state, expected tochwave with a strong f|¢ld (in contrast to the pure gauge coupling Wlth_ln Chern-
fourfold ionic potential. The predominant effect upon cool- Simons theory But by attaching monopoles tspin the
ing throughT? MF above the superconducting phase, shouldmonopole f_|elds from the up spm_electrons and_ the anti-
be a reduction of low energy spin fluctuations and nodafMonopole fields from the down spin electrons will largely
formation in the electron spectral function, with a lesser ef-CaNcel (éxactly on the averageMoreover, particle-vortex
fect in the charge sector due to weak spin-charge couplingé’,ua“t‘}’ trans_formatlon_s ,felre al_so pos_suble in three dlr_nen5|0ns
In connection with the cuprates, interlayer tunnelling is of -6+ “€lectric-magnetic” duality, so it should be possible to
great interest. Within the present framework this can bePPt@in an entirely bosonidut approximatedual description

treated perturbatively in the interlayer hopping strength,Of,3D electrons.with a “nonc_rossing”.constraint. Perhaps
which might be adequate for many physical properties.th's approach might be useful in modeling some 3D strongly
Thornier questions concerning cohereraxis motion pre-  correlated systems. _ _ _

sumably require a three dimensional generalization of our T @ We have suggested, strongly-interacting spin-1/2 fer-

results(see comment belowWe should strongly emphasize mions do not form a Fermi liquid, then our effective field

that the present discussion is very much a preliminary alop”'gheory represents a new paradigm for correlated electron be-

cation of the ideas of this paper, although the picture in Figpa\{ior. If, as we have' further hypothesized, supercond.uctiv—
3 is suggestive. ity is a prevale_nt attrlbut_e of th_e phases ensconced in our
Our primary conclusion concerning the ubiquity of spin- theory, then it is a paradigm which includes a new route to

charge separation and superconductivity driven by ver upercpnductivity. For these rt_aasc_)ns,_we_submit that that our
strong repulsion has potential implications for a muchscenario could have far-reaching |mpI|cat|on§ for the cuprate
broader class of other strongly interacting systems. In addigUPerconductors and other strongly-interacting electron sys-
tion to the cuprates, other systems include: the heavy fer€Ms:
mion superconductofs quasi-one-dimensional organic su-
perconductors, low carrier 2DEG’s with very large in
semiconductor MOSFET’s and heterostructur&s super-
conductivity in SgRuQ, with possible p,+ip, pairing
symmetry?’ the normal and superfluid phases of 3ifee A
phase with g,+ip, pairing symmetr$?), and perhaps most
intriguingly the magnetic states eblid 3-He®*° In many of
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