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Dual vortex theory of strongly interacting electrons: A non-Fermi liquid with a twist
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As discovered in the quantum Hall effect, a very effective way for strongly repulsive electrons to minimize
their potential energy is to aquire nonzero relative angular momentum. We pursue this mechanism for inter-
acting two-dimensional electrons in zero magnetic field, by employing a representation of the electrons as
composite bosons interacting with a Chern-Simons gauge field. This enables us to construct a dual description
in which the fundamental constituents are vortices in the auxiliary boson fields. The resulting formalism
embraces a cornucopia of possible phases. Remarkably, superconductivity is a generic feature, while the Fermi
liquid is not. We identify a dualZ2 symmetry which, when broken~unbroken!, leads to spin-charge confine-
ment ~separation!. Many aspects of our earlier discussions of the nodal liquid find surprising incarnations in
this new framework.
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I. INTRODUCTION

Fermi liquid theory is the cornerstone of the mode
theory of metals, as well as band theories of insulators
semiconductors. This theory—as with most perturbat
theories—is informed by the assumption that the kinetic
ergy is the dominant scale. As a result, the theory is c
structed in momentum space, where the kinetic energ
diagonalized. This leads to strong kinematic constra
which circumscribe corrections to the underlying free f
mion behavior.1 In this paper, our point of departure is
different extreme limit in which the interaction must be de
with at the outset, and the kinematic constraints might, c
sequently, be inoperative.2 Hence, we are forced to adopt
nonperturbative approach. As is often the case in nonpe
bative problems—for example, the quantum Hall effect3 and
the one-dimensional electron gas4—it is advantageous to
adopt areal spaceapproach. Here, this also enables us
gain a vantage point from which to focus on the strong el
tron interaction.

The past few decades have witnessed the discovery
number of physical systems in which the interaction ene
is comparable to or greater than the kinetic energy. Th
materials exhibit strange behavior which is not readily c
tured within the conventional Fermi liquid framework. Th
high-Tc cuprate superconductors5 are the most famous ex
ample, but there are certainly others, such as heavy-ferm
materials6 and high-mobility 2DEGs at larger s .7 Ironically,
even 3He—the birthplace of Fermi liquid theory—falls i
this category.8 The analysis of such systems may require
approach of the type propounded in this paper.

Following the above reasoning, we are led to search fo
means of incorporating strong electron-electron repuls
from the outset. As discovered by Laughlin,9 the spatial
separation due to the centrifugal barrier for nonzero ang
PRB 610163-1829/2000/61~9!/6307~13!/$15.00
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momentum is a very effective way for particles to lower th
Coulomb energy. We consider strongly interacting electro
moving in the two-dimensional~2D! continuum, and assum
that these strong interactions include a hard core which
vents the crossing of electron trajectories. Some of the res
ing physics is reminiscent of the quantum Hall effect: pa
of particles tend to spin around one another. There are, h
ever, some significant differences: time-reversal symmetr
not explicitly broken, and further, the kinetic energy is n
quenched. Nevertheless, our investigations in the remain
of this paper and elsewhere10 lead us to suspect that strong
repulsive electrons in the 2D continuum can form ap-wave
(px6 ipy) superconductor.

To develop a low-energy effective field theory, we fir
use only the noncrossing constraint on the fermion wo
lines. This is a sufficient condition to allow the use of stat
tical transmutation11,12 to realize up and down-spin electron
as bosonic fields interacting with a Chern-Simons gauge fi
which attaches flux tospin. Without additional assumptions,
we can then pass to a dual theory of vortices in the up-
down-spin bosonic fields. In this way, we argue that many
our previous results on the nodal liquid13,14hold with a much
wider range of validity. With this approach, we believe th
we gain an unfettered view of the entire phase diagram
this infinitely strongly interacting fermionic system.

Since our dual theory is of Ginzburg-Landau form,
phase structure can be analyzed by considering the con
sation of various fields. If no vortex field condenses, t
system is superconducting with a nonzero angular mom
tum pairing state withpx1 ipy symmetry.15 Since vortex
condensation typically implies charge ordering, it is usua
driven by a periodic potential or long-range Coulomb inte
actions. In their absence we thus conjecture that the gen
state of the strongly interacting system is superconduct
This is an astonishing conclusion, given the lack of a p
6307 ©2000 The American Physical Society
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pable ‘‘pairing mechanism.’’ Evidently, strongly repulsiv
interactions essentially force electrons of opposite spin
‘‘rotate’’ about one another and introduce strong superc
ducting correlations. Other ordered phases result when
vortex fields condense. For example, a spin- or char
density wave results if both the up- and down-spin vor
fields condense.

A basic feature ofany superconductor isspin-charge
separation.16 To access spin-charge separation in thepx
1 ipy superconductor within our dual Ginzburg-Landau fo
mulationrequiresconsideration of ‘‘paired’’ vortex compos
ites. When these composite bosons condense, they ca
stroy the superconductivity—but spin-charge separa
survives. Specifically, if a vortex in the down-spin bos
field pairs with a vortex in the up-spin boson field and th
pair condenses, translational symmetry is spontaneously
ken by the formation of a crystalline state ofspinlesscharge
e solitons. The spin sector is gapped except for chiral e
states, so that this phase is aT-violating nodal liquid~i.e., a
chiral spin liquid!. Alternatively, if a vortex in the down-spin
boson field pairs with anantivortex in the up-spin boson
field and this pair condenses, a transition occurs into a f
gapped superconductor, such as a superconductor
tightly bound pairs. If both types of vortex pairs conden
an analogous spin-liquid results. In each of these pha
time reversal invariance is spontaneously broken.

With the inclusion of an ionic potential acting on the ele
trons, however,T-invariant phases are possible, and e
pected. Indeed, by allowing for terms in the dual Ginzbu
Landau theory which break rotational invariance, gapp
modes in the spin sector can go soft at finite momentum.
a uniaxial potential, gapless modes naturally appear at
points in momentum space. At these two points the vort
anti-vortex field is critical, and can be conveniently referm
onized as two Dirac fields. These can be identified as
nodal quasiparticles of apx superconducting phase. Sim
larly, an ionic potential with square symmetry leads to fo
low-energy points in momentum space, and thereby a fo
fold Dirac theory recovering the spectrum ofdx22y2 quasi-
particles~see below and Sec. VI for a discussion of som
subtleties of thed-wave case!. Within our theory, a~very!
strong local repulsion acting in concert with an ionic pote
tial with square symmetry are the essential ingredients
high temperatured-wave superconductivity. In theabsence
of the ionic potential, strongT-violating pairing with px
1 ipy symmetry is expected. This is the pairing symmetry
the A phase of a superfluid 3-He film.17

An appealing feature of our dual Ginzburg-Landau fo
mulation is that it gives a clear meaning to spin-charge se
ration ~and spin-charge confinement! in two-dimensional
electron systems. Indeed, we identify an Ising-likeZ2 sym-
metry which when unbroken leaves spin and charge sepa
Spin-charge confinement is driven by an Ising ordering tr
sition.

Remarkably, although our theory is intimately tied to
real-space picture, Fermi surface physics isnot lost, as evi-
denced by the nodal quasiparticles. The phase diagram w
results from this analysis contains a plethora of fascina
states, including superconducting states of pairing symm
px ,px1 ipy ,dx22y2,dxy , and their quantum disordered cou
terparts. These states are characterized by a separatio
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tween the characteristic scales of the charge and spin
even—when theZ2 symmetry is unbroken—true spin-charg
separation.

In Sec. II, we first discuss the statistical transmutat
which obviates the need for a local pair field. Constructin
dual theory, we describe the standard antiferromagnetic
charge-density-wave states which result from the conde
tion of single vortices. In Sec. III, we discuss paired vortic
and theZ2 symmetry which distinguishes their condensati
from that of individual vortices. When this symmetry is u
broken, spin and charge separate. In Sec. IV, we discuss
phase diagram which results from the condensation of pa
vortices. This phase diagram revolves about apx6 ipy super-
conducting state. In Sec. V, we show how time-reversal~T!
invariant superconducting states such aspx or dxy can arise
in this model. The momentum-space structure and conco
tant phenomenology of BCS-likedxy or dx22y2 supercon-
ductors is recovered. We find that the physics of the no
liquid reappears in a new guise: the nodons are vortices
vortex field whose fermionic statistics result from their inte
action with a Chern-Simons gauge field. In Sec. VI, we
rive, ultimately, at a phase diagram which is the synthesis
ideas of duality and vortex condensation common to fi
theories of the quantum Hall effect as well as our ear
work on nodal liquids, but is almost entirely orthogonal
the underlying conceit of Fermi liquid theory.

II. FERMIONS, FLUX ATTACHMENT, AND DUALITY

We focus throughout on spinful electrons moving in t
two-dimensional continuum, interacting via a spi
independent interaction. We assume that the electr
electron repulsion is strong enough that no two electrons
ever be coincident. Precisely this ‘‘hardcore’’ constra
makes it possible to transform the interacting tw
dimensional electron gas into a mathematically equival
system of interacting spinfulbosons, by attaching ‘‘statisti-
cal’’ flux with an appropriate Chern-Simons gauge fie
Such a ‘‘bosonization’’ scheme for 2Dspinlesselectrons has
been particularly illuminating in the context of the fraction
quantum Hall effect.3,12 With spin there is considerable free
dom in how one attaches the flux tubes to convert fermi
into bosons. We adopt a scheme in which flux is attache
the spin of the electrons, and define

ca~r!5ba~r!expF ieaE
r8

Q~r2r8!2Sz~r8!G , ~1!

with a ‘‘charge’’ e↑51 ande↓521. Here

Sz~r!5@n↑~r!2n↓~r!#/2 ~2!

is the z component of the spin density operator withna

5ca
†ca5ba

†ba ~no sum ona), andQ(r) denotes the angle
that r makes with thex axis. The boson operators satis
canonical commutators,@ba(r),bb

†(r8)#50 for rÞr8. Due to
the non-crossing constraint, the ‘‘onsite’’ commutators ne
not be specified.

An advantage of the above scheme for flux attachmen
that with zero total spin,Stot

z 50 ~as assumed hereafter!, the
statistical flux ‘‘seen’’ by the Chern-Simons bosonsvanishes
on average. For spinless electrons this happy situation
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quires the presence of a strong external magnetic field~as in
the FQHE, see Ref. 3!. As for Abelian bosonization in one
spatial dimension,12 the above choice of a spin quantizatio
axis masks the underlying spin-rotational invariance. But
we shall see, it is possible to restore explicit SU~2! symmetry
by a subsequent ‘‘refermionization.’’

After transforming to boson operators, the partition fun
tion for the Hamiltonian of 2D interacting electrons can
expressed as a functional integral over bosonic fields an
statistical gauge fieldam , with associated~Euclidean! La-
grangian density

L5ba* ~]t2 ieaa0!ba2
1

2me
ba* ~¹2 ieaa!2ba2Lcs .

~3!

In the ‘‘Coulomb gauge’’] ia
i50 the Chern-Simons term i

Lcs5( i /2p)a0(e i j ] ia j ), but can be cast into a more conv
nient gauge invariant form

Lcs~am!5 i
1

4p
emnlam]nal . ~4!

The form of the electron interaction term~not shown! is un-
changed under ‘‘bosonization’’ due to the equivalence of
fermion and boson densitiesc†c5b†b.

We now implement the standard (211)-dimensional du-
ality transformation18 which exchanges bosons~theba’s! for
vortices in the bosonic fields—arriving at a description
terms of vortex field operators, denotedFa . To illuminate
this, it is instructive to briefly consider an alternate repres
tation in terms of boson world lines:

Lwl5
1

2
~Jm

a !21 ieaJm
aam2Lcs~am!. ~5!

Here Jm
a denotes a bosonic three-current~with m running

over 211 space-time coordinates! for spin componenta.
The first term measures the length of the space-time w
lines and represents the kinetic energy. The Chern-Sim
coupling generates a sign change when two world lines
change, transforming to fermions. To implement duali
these three currents are expressed in terms of two ga
fields am

a , one for each spin component:

Jm
a5

1

2p
emnl]nal

a . ~6!

In this way, charge conservation (]mJm
a50) is automatically

satisfied. The dual Lagrangian can be obtained by inser
this expression intoLwl , and integrating out the Chern
Simons field am. Electron chargequantization is imple-
mented by the vortex operatorsFa , which are minimally
coupled toam

a .
The final dual form consists of two Ginzburg-Landa

theories, coupled via a Chern-Simons term

Ldual5(
a

LGL~Fa ,am
a !1Lcs~am

↑ 2am
↓ !, ~7!

LGL~F,am!5
1

2
u~]m2 iam!Fu21V~F!1

1

2
~ f mn!2, ~8!
s
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with a ‘‘potential’’ that can be expanded asV(F)5r uFu2
1uuFu41•••.

Since the Chern-Simons term only involvesspincurrents,
it is extremely convenient to introduce charge and spin ga
fields

am
r 5am

↑ 1am
↓ ; am

s5am
↑ 2am

↓ ~9!

~and corresponding field strengths,f mn
r , f mn

s ). As with Abe-
lian bosonization in one dimension, charge and spin curre
defined byJm

r 5Jm
↑ 1Jm

↓ and Jm
r 5Jm

↑ 2Jm
↓ , are given by de-

rivatives of the charge and spin fields, respectively,

Jm
r 5

1

2p
emnl]nal

r ; Jm
s5

1

2p
emnl]nal

s. ~10!

Longer range Coulomb interactions can be readily incor
rated by adding a term bilinear in the electron charge d
sity: e i j ] iaj

r . In this dual representation,Fa
† creates a vortex

in theelectronwave function—effectively increasing the an
gular momentum ofall spin a electrons by one unit. An
important feature ofLdual is that there are precisely as man
positive as negative circulation~electron! vortices~for each
spin species!, implying a relativistic form forFa .

It is instructive to briefly mention how these dual field
couple to an external electromagnetic fieldAm . As usualAm

couples directly to the total electrical current,Jm
r , so that

from Eq. ~10! one has

LA5
1

2p
Amemnl]nal

r . ~11!

It is also convenient to introduce an external ‘‘spin’’ gau
field Am

s , which couples to the total~z component! spin cur-
rent Jm

s :

L A
s5

1

2p
Am

semnl]nal
s . ~12!

The dual Ginzburg-Landau representation can be fr
fully employed to describe various possible phases of spin
2D electrons satisfying the ‘‘noncrossing’’ constraint. F
instance, imagine a phase in which the~electron! vortices are
absent in the ground state~except as virtual fluctuations!,
which corresponds to takingr large and positive in the abov
Ginzburg-Landau description. Being massive,Fa can be
safely integrated out, leaving an effective theory

Leff5
1

2
~ f mn

r !21Lcs~am
s !, ~13!

which describes massless charge fluctuation, and spin
tuations gapped~in the bulk! by the Chern-Simons term
This is a superconducting phase, which can be verified
noting that the pair field operator (c↑c↓) creates a (211
space-time! monopole of strength two in the fieldBm

r

5emnl]nal
r . Since the gauge fieldam

r is massless, the energ
cost to make a free monopole is finite~monopoles interact
via 211 Coulomb force!, so that the pair field exhibits true
ODLRO. Due to the Chern-Simons term, this supercondu
ing phase exhibits a quantized Hall ‘‘spin-conductance
sxy

s 51, a signature of a spontaneous breakdown of ti
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reversal invariance. This follows by noting that the Lagran
ian with spin ‘‘gauge’’ field,Leff1L A

s , depends quadrati
cally on botham

r andam
s , so that they can be integrated out

give

Leff1L A
s52 isxy

s 1

4p
emnlAm

s]nAl
s , ~14!

with sxy
s 51. Following the analysis in Ref. 19, one ca

readily verify that a 2D BCS superconductor withpx1 ipy
pairing symmetry has precisely such a value for the qu
tized spin conductance~also see below in Sec. IV!. The spin
state of the pair is then presumably a triplet withsz50. This
is the phase of a 2D superfluid 3-He A film.

Before discussing spin-charge separation, which is a
neric property of a 2D superconductor, it is instructive
consider phases described in the dual theory when vort
created byFa proliferate, and condense:^Fa&Þ0. As we
shall see, in contrast to thepx1 ipy superconducting phase
these phases typically exhibit crystalline order, sponta
ously breakingtranslationalsymmetry. To see this, note tha
upon vortex condensation, the dual ‘‘flux’’e i j ] iaj

a is quan-
tized in units of 2p, which corresponds to quantization o
charge in units of the electron chargee. By analogy with the
Abrikosov flux lattice phase of a type II superconductor, o
expects a breakdown of translational symmetry with spin
~and down! electrons forming an ordered lattice. Dependi
on the relative phase between the density wave of spin
and down electrons, this will be either a charge density w
~CDW! state or an antiferromagnet~AF!. In the presence of a
commensurate background periodic potential from the i
in the solid, one expects these density wave states to l
resulting in insulating behavior.

These ‘‘crystalline’’ phases can presumably be energ
cally stabilized by a longer-range repulsive interaction
tween the electrons, in addition to the ‘‘noncrossing’’ co
straint ~which is required to make our 2D bosonizatio
scheme legitimate!. In their absence, our dual Ginzburg
Landau representation~fortified by subsequent analysis b
low and physical reasoning! strongly suggests that the pre
dominant ground state is thepx1 ipy ~or px2 ipy)
superconductor. Given that spin-up and spin-down electr
prefer a state of nonvanishing relative angular momentum
minimize Coulomb repulsion, anl 561 orbital angular mo-
mentum state is clearly favored by the kinetic energy.
such, it seems that incorporating local Coulomb repulsion
forcing electrons of opposite spin into a relative angular m
mentum state is avery effective electronic mechanism fo
high temperature superconductivity.

III. SPIN-CHARGE SEPARATION

The phases described above are not the only poss
phases for 2D electrons satisfying the noncrossing constr
Composite order parameters can also condense, thereby
ing to charge and/or spin insulators. We focus on the co
binations

Fr5F↑F↓ ; Fs5F↑F↓
† , ~15!
-
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which, as we shall see, are exceedingly interesting from
phenomenological standpoint. These order parameters
condense without breaking theZ2 symmetry

F↑,↓→2F↑,↓ , ~16!

so we can havêFr,s&Þ0 while F↑,↓50.
In the following we presume thatFr andFs describe the

soft modes at low energies, and thatFa remains massive. As
we shall see, this leads naturally to a separation of low
ergy spin and charge degrees of freedom. Our motivation
this is two-fold. First, spin-charge separation is a gene
property of a superconductor such as thepx1 ipy state dis-
cussed above, and it is instructive to exhibit this separa
within the present Ginzburg-Landau framework. But se
ondly, in many Mott insulators of interest the charge degr
of freedom freeze out at much higher energy scales than
energies on which local moments and spin order develo
This is typified by the undoped cuprate materials, with ins
lating behavior setting in on the scale of electron volts~the
‘‘Hubbard’’ U) much higher than the antiferromagnetic o
dering temperature. In order to capture these two very dif
ent energy scales within the present framework, it is essen
to transform to the charge and spin vortex fieldsFr andFs .
Indeed, in the description of the antiferromagnetic insula
discussed above driven by condensation ofFa , charge or-
dering and local moment formation necessarily take place
the sameenergy scale, since the dual flux tubes in the
vortex fields are electrons carryingboth charge and spin.

Under the assumption that both fieldsFa remain massive,
one can write down an effective theory for the soft mod
Fr,s by integrating outF↑,↓ . Below we illustrate how this
can be done, by regularizing the theory on a lattice. But m
generally, the form of the effective theory is essentially d
tated by symmetries, involving three contributions:

Leff5Lr1Ls1Lint , ~17!

with a charge sector

Lr5
1

2
u~]m2 iam

r !Fru21r ruFru21uruFru4

1
1

2
~ f mn

r !21
1

2p
Amemnl]nal

r , ~18!

a spin sector

Ls5
1

2
u~]m2 iam

s !Fsu21r suFsu21usuFsu4

1
1

2
~ f mn

s !21 i
1

4p
emnlam

s]nal
s , ~19!

and subdominant interaction terms involving many deriv
tives ~see, e.g., below!. The charge sector has the Ginzbur
Landau form, with minimal coupling to the charge gau
field am

r , and Am is the physical electromagnetic potentia
The Chern-Simons term lives solely in the spin sector.

Some insight into the genesis of such a Lagrangian m
be obtained by considering a lattice version of Eq.~8! and
dropping theam

↑,↓ for simplicity. Writing Fa5eiua, we have
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S5K(
^ i , j &

cos~u i
a2u j

a!, ~20!

wherei and j denote sites of a (211)-dimensional~Euclid-
ian! space-time lattice and a sum overa is understood. We
now introduce charge and spin fieldsur,s:

u↑,↓5
1

2
~ur6us!1

p

2
s, ~21!

wheres561 is an Ising ‘‘spin’’ variable. By introducings,
we can treatur,s as angular variables since the action
invariant underur,s→ur,s12p,s→2s. The action can
then be rewritten as

S5K(
^ i , j &

sisjcos
1

2
~u i

r2u j
r!cos

1

2
~u i

s2u j
s!, ~22!

since sin(p/2)(si2sj )50 and cos(p/2)(si2sj)5sisj . Let us
now consider the effect of integrating out thesi ’s. If we are
in the symmetric phase in which theZ2 is unbroken, this can
be done perturbatively inK, as in the high-temperature ex
pansion for the Ising model. To leading order inK, which
corresponds to decoupled free spins, one has^sisj&5d i j ,
which implies an effective action of the form

Seff5K2(
^ i , j &

@11cos~u i
r2u j

r!#@11cos~u i
s2u j

s!#

5K2(
^ i , j &

$cos~u i
r2u j

r!1cos~u i
s2u j

s!

1cos~u i
r2u j

r!cos~u i
s2u j

s!%. ~23!

Upon making the identificationsFr5eiur,Fs5eius and re-
storing the gauge fields~minimally coupled! the first two
terms are seen to be lattice versions of the continu
Ginzburg-Landau theories inLr and Ls , respectively. The
last term generates a gradient interaction term between
charge and spin sectors.

When theZ2 symmetry is unbroken, as it is by assum
tion in Eq. ~17!, spin and charge separate, as we now arg
In thepx1 ipy superconducting state, which can be describ
by either Eq.~8! with r ↑,↓.0 or Eq.~17! with r r,s.0, the
low-energy excitations are the gapless superfluid modeam

r ,
which carries charge but no spin. At finite energy, there
also the quanta ofFs , which are fermionic and carry spin
1/2 by virtue of their coupling to the Chern-Simons gau
field am

s . They do not couple directly to the electromagne
field, so we assign them quantum numbersq50,s51/2. As
we shall see in the next section, these neutral fermionic s
1/2 excitations are thep-wave analog of ‘‘nodons,’’ intro-
duced in Ref. 13 for ad-wave superconductor.

When r r,0 andFr condenses, the dual fluxe i j ] iaj
r be-

comes quantized into ‘‘flux-tubes,’’ by direct analogy with
type II Ginzburg-Landau superconductor. Each one of th
dual ‘flux tubes’’ carries one unit of electric charge, but
spin. We refer to these spinless chargee solitons as
‘‘holons.’’ 21 We thus see that provided theZ2 symmetry in
Eq. ~16! is unbroken, spin and charge are separated. On
other hand, when theZ2 symmetry is broken by the conden
sation ofF↑,↓ , the spin and charge are confined. SinceF↑,↓
m

he

e.
d

e

in

e

e

couples toam
r 6am

s , this condensation locks the spin an
charge together, leaving only the electron in the spectrum

To summarize, states of higher symmetry have less
stricted spectra. The original dual representation in Eq.~8!
has a U(1)3U(1) gauge symmetry, corresponding to ind
pendent rotations ofF↑ andF↓ ;

Fa→FaeiLa; am
a→am

a1]mLa , ~24!

with two arbitrary functionsLa . This gauge symmetry
emerges when the conserved electron three-currents are
pressed as a curl of the gauge fieldsam

a . Breaking down this
large symmetry corresponds to ‘‘localization’’ or ‘‘quantiza
tion’’ of charge and/or spin. When the full symmetry is com
pletely broken, both charge and spin become quantized
gether, and all the excitations have quantum numbers of
electron, withq/21s an integer~as in the antiferromagnetic
insulator mentioned in Sec. II!. But if this symmetry is only
partially broken by condensation ofFr andFs , leaving an
unbrokenZ2, both charge~e! and spin~1/2! become quan-
tized, but excitations exist with any combination of the
quantum numbers. This will be nicely illustrated in the ne
section where we employ the dual description, Eq.~17!, to
examine the properties of someT-breaking spin-charge sepa
rated phases.

IV. PHASES WITH BROKEN T

Having established the form of Eq.~17! under the as-
sumption of an unbrokenZ2 symmetry, and the concomitan
spin-charge separation, we explore possible phases w
emerge from this effective theory. We first focus on pha
which ~spontaneously! break time reversal invariance. As w
shall see, these emerge naturally for electrons in jelliu
moving in the absence of ionic potentials. In the followin
sections we consider the effects of ionic potentials wh
break rotational invariance and naturally drive transitio
into time reversal invariant phases.

As already discussed, the phase in the absence of e
spin or charge vortices is apx1 ipy superconductor. Since
the charge and spin sectors have effectively decoupled u
the assumption of the unbrokenZ2 symmetry, it is possible
to consider them separately. If the vortices in the cha
sector proliferate and condense,^Fr&Þ0, the fielde i j ] iaj

r

becomes quantized in ‘‘dual’’ flux tubes, as discussed abo
Each of these ‘‘flux’’ tubes carries chargee, but no spin.
These chargee spinless ‘‘holons’’ are expected to crystallize
by direct analogy with the Abrikosov flux-lattice. Thi
chargee crystal will presumably lock to any underlying ioni
potential. With gapless spin-carrying edge states still pres
this electrically insulating phase is thepx1 ipy analog of the
nodal liquid. Once again, energetic stabilization of this cr
talline phase presumably requires the presence of apprec
Coulomb repulsion between electrons on the scale of
mean electron spacing~in addition to the ‘‘noncrossing’’
constraint!.

But suppose the spin vortices condense, in the absenc
charge vortices? Due to the dual Anderson-Higgs mec
nism,am

s becomes massive rendering the Chern-Simons t
ineffective, and leading to a spin-gap both in the bulkandat
the edge. This implies ‘‘spin-insulating’’ behavior withsxy

s
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50. How can we understand this fully spin gapped superc
ducting phase? To this end it is convenient to briefly co
sider a BCS description of the quasiparticles in apx1 ipy
superconductor:

HBCS5(
k

ekcka
† cka1Dkck↑

† c2k↓
† 1H.c., ~25!

with dispersion ek5(k2/2me)2m and gap functionDk
5vD(kx1 iky). In terms of a two-component spinor,c1(r)
5c↑(r) andc2(r)5c↓

†(r), this can be rewritten in the form
of a Dirac equation with~Euclidean! Lagrangian

LBCS5c†$]t1tz@~2] j
2/2me!2m#1 ivDt j] j%c, ~26!

with j 5x,y. This gives the usual BCS quasiparticle disp
sion Ek56Aek

21(vDk)2. As in Ref. 13, one can define
gauge invariant charge neutral quasiparticle~a ‘‘nodon’’!, by
transforming c→exp(itzw/2)c, with w the phase of the
complex pair-field. Spin and charge are thereby separa
with the z component of spin being the conserved U~1!
‘‘charge’’ in the Dirac theory: 2Sz5c†c. Since the source
field Am

s couples to the conserved spin current, it can
readily incorporated into the above Dirac equation via
‘‘minimal coupling’’ prescription;]m→]m2 iAm

s .
In the presence of a boundary, say aty50 with boundary

conditionsca(x,y50)50, one can readily show from th
above Dirac theory that a chiral fermion edge mode ex
only for positive chemical potential,m.0. In this BCS limit
one clearly hassxy

s 51. But at very strong coupling whenm
changes sign, the ground state changes to a pa
‘‘molecular’’ 22,23 limit with zero sxy

s 50. Right at the tran-
sition, there are gapless bulk quasiparticle excitations
scribed by amasslessDirac theory@at m50 in Eq.~26!# with
a ‘‘node’’ at zero momentum. To access the molecular lim
of the px1 ipy superconductor presumably requires a ve
strong~and unphysical! attractive interaction between elec
trons, enabling up and down spin electrons to form a fin
angular momentumboundstate~with l 51). The attractive
interaction must overcome the centrifugalrepulsionbetween
the two electrons~present due to the noncrossing constrain!.

A direct connection between the molecularpx1 ipy su-
perconductor and the phase described by the dual th
when the spin vortex condenses,^Fs&Þ0, can be estab
lished by refermionizing the spin sector of the Ginzbu
Landau theory and showing its equivalence to the Di
theory Eq.~26!. To illustrate this we insteadbosonizethe
Dirac theory. In the BCS limit of thepx1 ipy superconductor
with m positive, the massive relativistic Dirac fermion,c,
can be converted to a relativistic bosonF, via a Chern-
Simons transformation

LBCS5
1

2
u~]m2 iam2 iAm

s !Fu21M2uFu2

1UuFu41Lcs~am!2Lcs~Am
s !. ~27!

Here M.0 can be equated with the Dirac massm. Indeed,
the spectrum of this massive boson field,F, is vk

56AM21k2—the same form as the BCS quasiparticle d
persion,Ek . SinceF is massive it can be safely integrate
n-
-

-

d,

e
a

ts

ed

e-

t
y

e

ry

-
c

-

out. The only remaining dependence on the source fieldAm
s

is through the last Chern-Simons term, which has been
cluded to give the correct result for the spin Hall conduct
ity sxy

s 51.
Remarkably, Eq.~27! preciselycoincides with thespin

sector of the dual Ginzburg-Landau theory,Ls in Eq. ~19!.
Indeed, with inclusion of the source term,L A

s in Eq. ~12!, the
full Lagrangian in the spin sectorL(Am

s)5Ls1L A
s can be

conveniently rewritten by shiftingam
s→am

s1Am
s as

Ls~Am
s !5

1

2
u~]m2 iam

s2 iAm
s !Fsu21r suFsu21usuFsu4

1Lcs~am!2Lcs~Am
s !. ~28!

This is identical to LBCS under the identification:F5Fs ,
am5am

s andM25m25r s . The upshot is that a simple refe
mionization of the spin sectorLs , gives directly the BCS
quasiparticle LagrangianLBCS in Eq. ~25!. The spin carrying
but charge neutral vortex fieldFs is thus seen to be equiva
lent to a ‘‘nodon’’ destruction operator.

By such a refermionization procedure, we can infer t
properties of the vortex condensed phase^Fs&Þ0, with r s

negative. This corresponds to takingm negative and entering
the molecular limits of thepx1 ipy superconductor. The
critical point atr s50, with massless but uncondensedFs ,
is equivalent to the single massless Dirac field~with m50!
centered at zero momentum.Without recourse to refermion-
ization, vortex condensation̂Fs&Þ0 directly implies a
mass for am

s and a vanishing spin Hall conductivit
sxy

s 50—the correct value for thepx1 ipy molecular super-
conductor. This internal consistency gives us some co
dence in the more general validity of the dual Ginzbu
Landau formulation.

An alternate route from the BCS to molecular limit
possible by implementing aduality transformation on the
bosonic theoryLs , which interchanges the two phases. Th
can be achieved by expressing the bosonic three-curren
the conserved spin (Fs

†Fs5c†c) as the curl of a gauge
field am and integrating outam . After shifting am→am

1Am
s one thereby obtains

Ldual5
1

2
u~]m2 iam2 iAm

s !fu21r fufu21uufu41Lcs~am!.

~29!

Heref creates a vortex in the fieldFs . Notice that the dual
theory has the same form asLs in Eq. ~28!, except for the
absence of the Chern-Simons term inAm

s . Under duality, the
‘‘ordered’’ phase withr s,0 ~and ^Fs&Þ0) maps into the
‘‘disordered’’ phase forf with r f.0. In this phase~the
molecular limit! the dual theory correctly predictssxy

s 50,
due to the absence of theAm

s Chern-Simons term. In terms o
the original Dirac field this duality is a particle/hole transfo
mation c→c†, which changes the sign of the Dirac ma
m→2m. The self-dual point where bothf andFs are criti-
cal, corresponds to themasslessDirac theory.

From thepx1 ipy molecular superconducting phase wi
sxy

s 50, it is possible to also proliferate and condense
chargevortex ^Fr&Þ0, which describes a fully spin-gappe
crystalline phase of spinless chargee ‘‘holons.’’
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The four phases which emerge from the spin-charge s
rated Lagrangian in Eq.~17! as one varies the mass terms,r r

and r s , are summarized in Fig. 1. The two phases withr r

.0 are superconducting, with apx1 ipy pairing symmetry.
The difference between these two superconductors lies in
spin sector, which exhibits a quantized Hall conductance
spinwhenr s.0. Within a standard BCS description of suc
a p-wave superconductor, the sign of the chemical poten
m corresponds directly to the sign ofr s . A positive chemical
potential corresponds to the usual weak coupling lim
whereas negativem requires a strong attractive interactio
and leads to a phase with tightly bound~real space! Cooper
pairs. In this latter ‘‘molecular’’ phase of Cooper pairs, t
Hall spin conductance vanishes. Whenr r is taken negative,
on the other hand, the compositeFr vortices ~with flux
hc/e) proliferate and condense—thereby destroying the
perconductivity. The spin sector in the resulting spin liqu
~or ‘‘nodal liquid’’ ! insulating phases remains the same as
the corresponding superconductor. Condensation ofFr vor-
tices leads to a dual analog of the Abrikosov flux lattice—
lattice of chargee spinless bosons. Both of these insulati
holon crystal phases have a spin gap in the bulk, but gap
spin carrying edge states exist in the ‘‘chiral’’ nodal liqu
with positive r s .

In all four of the above phases in Fig. 1 time revers
invariance is spontaneously broken, reflecting the underly
px1 ipy ‘‘pairing’’ symmetry. In each case, this symmetr
breaking is taking place in thespinsector of the theory. The
charge sector described by the simple Ginzburg-Lan
theory ~with no Chern-Simons term! is manifestly time re-
versal invariant. A natural question that arises is whether
spin-charge separated dual vortex theory in Eq.~17! can de-
scribe time reversal invariant phases, such as adx22y2 super-
conductor or nodal liquid. Clearly adx22y2 phase requires
the breakdown of rotational invariance, either spontaneou
or by the presence of an ionic potential. Moreover, since
dx22y2 superconductor exhibits gapless nodal excitatio
with finite momentum~on the Fermi surface in weak cou
pling BCS!, it is necessary to access Fermi surface physic
nonzero momenta in the dual formulation. This can
readily achieved as we now discuss.

V. ‘‘FERMI SURFACE,’’ px , AND Dx2Ày2 PHASES

A. px state

In this section we imagine introducing an ionic potent
with the lattice symmetry. The simplest case is a uniax
perturbation, as might be appropriate, e.g., in a quasi-o

FIG. 1. The phase diagram in ther r-r s plane. Here, nodal liquid
is denoted asNL, andsxy

s is the spin Hall conductivity.
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dimensional superconductor such as the cuprate ladder
terials~the more interesting generalization to square symm
try will be returned to later!. For simplicity, we take the
symmetry axes alongx andy. Physically, it is clear that such
a potential favors the formation of areal ~non-T-breaking!
paired state such aspx or py . This can be seen by conside
ing the two-body problem deep in the molecular limit. In th
presence of the lattice potential, angular momentum is
longer a good quantum number~only discrete6p rotations
and reflections are symmetry operations! and thepx6 ipy
states will generally be mixed. Coupling the two via a sm
‘‘tunneling’’ perturbation, as appropriate for aweak ionic
potential, splits the two initially degenerate levels into no
degeneratepx or py eigenstates. The system then conden
into the lower of the two states. In the BCS limit the effec
are more subtle, as we now illustrate.

As alluded to in the previous section, a distinguishi
characteristic of the BCS theory of unconventional superc
ductors is the presence of gapless quasiparticle excitation
the intersections of the nodal lines of the pair wave funct
with the Fermi surface. For thepx case, this occurs at two
antipodal points in momentum spacek56K ŷ, and the re-
sulting gapless quasiparticles can be cast into the form
two Dirac species~see below!. The multiplicity of Dirac fer-
mions signals the emergence oftwo conserved U~1! charges
in the low-energy limit. Essentially, because of phase sp
restrictions, the spin at each nodal point is separa
conserved—equivalently, one may view the two conserv
charges as spin and~quasi!momentum, the latter obtaining
due to the absence of momentum-nonconserving umkl
processes for generically situated nodal wave vectors.

In the dual theory of Eq.~17!, total spin conservation is
manifest owing to the transverse nature of the spin curr
Jm

s5(1/2p)emnl]nal
s . Momentum conservation is als

clear, but apparently on a very different footing—it follow
from the space-time Galilean invariance of the model. A
parently, to describe the BCS limit, a connection must
made between the internal@U~1! or SU~2!# symmetry of the
model and the external space-time translational symmetr
is quite remarkable that such a connection can indeed
clarified, as we now show.

To see how the finite momentum physics can emerge
the dual theory, first recall the quasiparticle structure of
px1 i epy superconductor in the BCS limit. This is describe
by Eq. ~25! with m.0 andDk5vDkx1 i eky ~only the sym-
metry, and not the particular form of this gap function
important in what follows!. The low energy quasiparticle
occur nearkx50,ky56K, whereK[A2mem. To focus on
these two regions in momentum space, next define ‘‘slow
varying’’ quasiparticle fieldsf sa via

c↑~x!; (
s56

1

A2
~ f s↑2 i f s↓!eisKy, ~30!

c↓~x!; (
s56

1

A2
~ i f 2s↑

† 1 f 2s↓
† !eisKy. ~31!

One thereby obtains the Lagrange density



a-

n

ion

hi
m

ve
h
m
a

-
e

l’
au

y-

ate
wo

ns,

the

the
s.

.
ua-

he

ion.
in
try

re-

uld

ns

of
al

is

e
t

ve,
es
ine

6314 PRB 61LEON BALENTS, MATTHEW P. A. FISHER, AND CHETAN NAYAK
Lp1 i ep5 (
s56

f s
†@]t1 ivDtx]x1 isvFty]y1smtz# f s ,

~32!

wherevF5K/me ,m5eK and, following Eq.~26!, we have
introduced Pauli matricestW which act in thea5↑,↓ space.
Equation ~32! has the form of two decoupled Dirac equ
tions, and thereby displaystwo manifest U~1! symmetries.
Note from Eq.~31! that thef ↓ fields are defined as Hermitia
conjugates relative to thef ↑ fields in Eq.~30!. This implies
that the overall U~1! rotation,f s→eix f s , corresponds to spin
(Sz) conservation. Therelative U~1!, f s→eisx f s , embodies
instead translational symmetry, or momentum conservat

The conserved densities are determined by No¨ethers theo-
rem

S1
z 5 f 1

† f 15cK↑
† cK↑2c2K↓

† c2K↓ , ~33!

S2
z 5 f 2

† f 25c2K↑
† c2K↑2cK↓

† cK↓ . ~34!

These arechiral spin densities, closely analogous to the c
ral densities encountered in one-dimensional Fermi syste
The total spin densitySz5S1

z 1S2
z .

We are now in a position to bosonize thepx1 i epy BCS
model. The two flavors of Dirac particlesf 6 may be traded
for two complex boson fieldsF6 by attaching flux in a va-
riety of ways. The most natural, however, is to introduce
single gauge field, attaching one flux quantum to each o
all (Sz) U~1! charge. This choice ensures both that all t
resulting bosonic fields commute at different space-ti
pointsand that the gauge field has the same physical me
ing as theam

s defined previously. In particular,

Sz5
1

2p
“3as. ~35!

With this choice, the bosonized Lagrangian is

Lp1 i ep5(
s

uD0Fsu21vD
2 uD1Fsu21vF

2 uD2Fsu2

1W~F6!1Lcs~as!2Lcs~As!, ~36!

whereDm5]m2 i (am
s1Am

s). Here we have included an ex
ternal spin gauge fieldAm

s for bookkeeping purposes. Th
potentialW is dictated by symmetry to take the form

W~F6!5m2@ uF1u21uF2u2#1u@ uF1u2

1uF2u2#21vuF1F2u2. ~37!

The final term in Eq.~36! is dictated by requiringsxy
s 51 in

the px1 i epy phase wherem2.0.
Remarkably, the selection of two such nonzero ‘‘noda

points occurs fairly naturally in our dual Ginzburg-Land
theory once uniaxial~rectangular! anisotropy is included.
Consider the modified version of Eq.~28!,

Ls5uD0Fsu21uD1Fsu21cuD2Fsu2

1
d

2
uD2Fsu21r suFsu21usuFsu4

1Lcs~as!2Lcs~As!. ~38!
.

-
s.

a
r-

e
e
n-

’

For simplicity, we have included only a single symmetr
breaking term, the coefficientc,1, which favors fluctua-
tions along they axis over thex axis. The coefficientd.0 is
included for stability purposes.

As c is decreased from one~zero anisotropy!, the energy
cost for fluctuations ofFs with spatial variations alongy
becomes more and more reduced. Whenc changes sign and
becomes negative, the lowest energy fluctuations bifurc
away from the origin in momentum space and move to t
points k56K ŷ, with K5Aucu/d. From this point on, it is
appropriate to focus on the low-energy field configuratio
viz.,

Fs~x!;F1eiKy1F2e2 iKy. ~39!

The physical meaning of Eq.~39! is clear from the above
‘‘reverse engineering’’ of the field content of thepx1 i epy
superconductor—compare with Eqs.~30!,~31!. Naively in-
serting Eq.~39! in Eq. ~38! and neglecting rapidly oscillating
terms in the usual way gives an effective Lagrangian for
Fs6 fields. This hasprecisely the form of Eq.~36!, with
vD

2 511ucu, vF
252ucu, m25r s2c2/2d, u5us , and v

52us . These values~particularlyu andv! should, however,
not be taken too seriously, as they certainly depend upon
simplistic treatment of fluctuations and higher-order term

With this identification in hand, we conclude that Eq.~38!
provides a unified description of thepx6 ipy andpx states in
an intrinsically anisotropic system. Forc,0, the equiva-
lence to Eq.~36! allows a refermionization to the form in Eq
~32!. It is natural to associate the critical point of these eq
tions (m50) with the spin structure of thepx superconduct-
ing state and its nodal-liquid–holon lattice counterpart. T
refermionized double Dirac form in Eq.~32! is our primary
result for the uniaxially anisotropic model.

Issues of time-reversal symmetry merit some discuss
Ideally, a general formulation of the problem should conta
T-non-invariant terms only through spontaneous symme
breaking. However, generically both Eq.~36! and Eq.~32!
breakT. In the fermionic formulation, Eq.~32!, fortunately,
the explicit symmetry breaking can be easily restored by
quiring m250. Furthermore, allT-preserving perturbations
of this form can be shown to be irrelevant, so that thepx
state is locally stable.10 From the point of view of Eq.~36!,
this is remarkable. Indeed, a direct mean-field analysis wo
suggest that a gapless state occursonly along the critical line
m250, requiring tuning of a parameter. These conclusio
can be reconciled by noting that constraints upon Eq.~36! in
a T-invariant system are not at all obvious. Only because
the ability to refermionize are we able to identify the critic
line m250 as containing aT-invariant manifold. If time re-
versal is explicitly or spontaneously broken, a critical state
indeed nongeneric, and the spectrum of Eq.~36! correctly
reproduces that of the Dirac theory for small nonzerom2

.0 ~i.e., px1 i epy with e!1). Similar subtleties render th
analysis of Eq.~36! problematic form2,0. We suspect tha
this region represents rather more exoticT-violating states,
and do not consider it further.

Another physical route away from the BCS-px phase is
via a molecularpx state. Indeed, as we have argued abo
deep into the molecular limit, uniaxial anisotropy guarante
a px state. To tune through such a transition, we may imag



’’
he
c
e

on
e

-
t t
l

is

th

a

t

ci
o
ed
e
ss
ry
ni
l
re
-

b
-
e
e

o
al

a

l

ng
e

nsi-

lu-
de-
-
n,

ex-
-
at
r

ly-

ed

-

to
se
the

e

here

e-
the

rived

tic
e

PRB 61 6315DUAL VORTEX THEORY OF STRONGLY INTERACTING . . .
introducing a finite-range attraction into the ‘‘noncrossing
model which favors tighter pair binding. In such a model t
px–BCS state naturally undergoes a transition into a mole
lar px state as the attraction is increased. From the conv
tional BCS point of view, we would expect such a transiti
to be described by taking the chemical potential through z
in a px quasiparticle Hamiltonian, i.e., Eq.~25! with Dk
5vkx . For this model, asm passes from positive to nega
tive, the quasiparticle nodes converge and coalesce a
origin, becoming massive form,0. Precisely at the critica
point, one expects a spectrumv2'v2kx

21ky
4/4me

2 . This un-
conventional non-Lorentz invariant form is precisely what
obtained at small wave vectors from Eq.~38! at the point
where c5r s50. Just as the gaplesspx state occurs only
along a line in mean-field theory but comprises a phase in
gauge model, it appears that the critical state atc5r s50
~see Fig. 2! in reality forms a phase boundary despite appe
ing as a multicritical point in the mean-field treatment.

Given the existence of thepx molecular state, there mus
be another critical line separating this from thepx6 ipy mo-
lecular phase. As neither state contains gapless spin ex
tions or possesses a nonzerosxy

s , we have been unable t
discriminate between them within the GL model. View
from the point of view of self-consistent BCS theory, th
transition would appear to be a simple first-order level cro
ing of two-particle bound states. Some prelimina
modeling10 suggests that a continuous transition in the u
versality class of the quantum transverse-field Ising mode
also possible, the Ising order parameter reflecting the p
ence or absence ofT breaking. The full proposed phase
diagram in the spin-sector is indicated in Fig. 2.

B. Square symmetry andd wave

We have seen how a BCS-likepx state with gapless
modes at nonzero momentum can emerge from the spin
son Lagrangian in Eq.~28! in the presence of uniaxial an
isotropy. If the underlying crystal lattice has square symm
try, however, thepx or py states are much less likely, and w
expect instead thatd-wave pairing is favored. Indeed, tw
particles in a fourfold rotationally invariant lattice potenti
interacting with a hard core will generally have ad-wave
ground state in the limit of a strong potential. For a we
anisotropy, however, thepx6 ipy states are likely lower in
energy. One thereby expects a transition upon increasing
tice coupling betweenp-wave andd-wave pairing. In the
molecular limit this presumably occurs as a level crossi
i.e., a first order phase transition. In the BCS-like regim

FIG. 2. The phase diagram as a function of increasing lat
potential with uniaxial anisotropyVlattice and short-range attractiv
pairing forceUattractive.
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however, the nature of the transitions or sequence of tra
tions between these states is less clear.

Rather than attempting to fully characterize this evo
tionary process, we will content ourselves instead with
termining the spin Lagrangian of thed-wave states them
selves. Following the logic of the previous subsectio
consider the simplest modification of Eq.~28! appropriate for
square anisotropy,

Ls5uD0Fsu21cuDiFsu21d1uD2Fsu2

1d2~ uD1
2Fsu21uD2

2Fsu2!1r suFsu2

1usuFsu41Lcs~as!2Lcs~As!. ~40!

Hered2 is a measure of the anisotropy, and low-energy
citations are pushed to finite momentum ifc becomes nega
tive. Forc,0 andd2,0, the lowest energy modes occur
four points k5(6K,0),(0,6K), precisely as expected fo
the low-energy excitations in adxy superconductor~the mo-
menta appropriate fordx22y2 are obtained ford2.0). We fix
c,0 andd2,0 and consider decreasingr s .

Once again, it is appropriate to focus on the four slow
varying fieldsF js( j 51,2,s56), defined by

Fs~x!;(
js

F jse
isK j •x, ~41!

where K15(K,0), K25(0,K), and K5Aucu/@2(d11d2)#.
As for thep-wave case, an effective theory can be develop
for the F js fields. It takes the form

Leff5(
js

uD0F jsu21vF
2 uD jF jsu21vD

2 ue j j 8D j 8F jsu2

1W̃~F1,26!1Lcs~as!2Lcs~As!. ~42!

Neither the precise values ofvF ,vD nor the form ofW̃ is
critical to this discussion. Whatis significant, however, is the
fact that Eq.~42! takes the form of four interacting relativis
tic complex bosons coupled to a single U~1! Chern-Simons
gauge field. As before, the effect of this gauge coupling is
attach identical flux to all spin quanta, transmuting the
bosons into four species of Dirac fermions. Furthermore,
spin Hall conductivitysxy

s 51 in the massive phase„i.e., for
r s2c2/@4(d11d2)#.0 in mean-field theory…, as deter-
mined by the last term in Eq.~42!. This is in agreement with
the value in thepx6 ipy phase. Here, this value gives som
indication of the structure of thesigns of the four Dirac
masses in the refermionized version of Eq.~42!. Each mas-
sive Dirac equation gives a contribution of61/2 to sxy

s ,
depending upon the sign of its mass term, so apparently t
must be three positive and one negative~or vice versa!
masses in the Dirac theory. As the quadratic term inW̃ is
tuned to zero, all four bose~and hence Dirac! fields are ex-
pected to go critical. This is the natural candidate for a tim
reversal invariant point, and we speculate that it describes
nodal quasiparticles~nodons! in a dxy superconductor and
relatives such as the nodal liquid.13 The appropriate fermi-
onic representation for the nodons in these states was de
independently in Ref. 13. Fordxy symmetry, it can be ob-
tained as before from Eq.~25! by defining
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c↑~x!5(
js

djs↑eisK j •x, ~43!

c↓~x!5(
js

djs↓
† e2 isK j •x. ~44!

The ~massless! nodon Lagrangian is then

Lnodon5 (
s56

d1s
† @]t1svFtzi ]11svDtxi ]2#d1s

1d2s
† @]t1svFtzi ]21svDtx]1#d2s , ~45!

where as in earlier equations thetW matrices act in thea
5↑,↓ subspace. For an alternate, explicitly SU~2! invariant
formulation, see Ref. 13. Equation~45! has the desired form
of four Dirac equations~for s56, j 51,2). The identifica-
tion of Eq.~45! is supported by the excellent corresponden
between the quantum numbers and momenta of the gap
modes of Eq.~42! and those of the nodons. In either cas
there are four conserved U~1! currents, the charges~time
components! of which are chiral spin densities, i.e., spin de
sities for particles with momenta along6K1 ,6K2. Mass
terms taking Eq.~45! away from criticality can also be
added, and take the form ofdis

† tydis operators. The explicitly
break time-reversal invariance, so that as for thepx phase,
we expect thedxy ~and analogouslydx22y2) state to be lo-
cally stable.

Given the complexity of the arguments in this section
seems appropriate to summarize what has been learned
have studied how momentum space structure emerges
the bosonic Ginzburg-Landau theory of the spin sector
doing so, we have not assumed~as in previous work on the
nodal liquid! local superconductivity, but proceeded inste
on very general grounds. Once the soft modes ofFs move to
nonzero momenta, any incipient critical points can invaria
be expressed in terms of multiple Dirac fields. When
associated Dirac masses vanish, a time-reversal invarian
grangian is possible, and two such theories were identi
with the px anddxy nodal states. Furthermore, uniaxial a
square lattice anisotropies were seen to favor approp
critical states, even in very naive treatments of the Lan
theory. These arguments provide a partial derivation of
~45! for a generic time-reversal invariantd-wave ~supercon-
ductingor nodal liquid! state, contingent only on the origina
hard-core assumption used to allow the Chern-Simons
attachment.

VI. DISCUSSION

In this paper, we have suggested that spin-charge sep
tion is a generic consequence of strong repulsion betw
electrons in two dimensions. We are driven inexorably
this conclusion by the following logic.~1! We note that if
there are repulsive interactions which are strong enoug
prevent electron trajectories from intersecting, then we m
transmute the electrons into hard-core bosons interac
with a Chern-Simons gauge field which attaches flux to sp
~2! Since the up- and down-spin boson currents are se
rately conserved, they can be written as the curls of t
auxiliary gauge fields.~3! Using Eqs.~1! and~2!, we formu-
e
ss
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late an equivalent dual theory which is of Ginzburg-Land
form. The auxiliary gauge fields are minimally coupled
vortex fields.~4! The Ginzburg-Landau theory contains aZ2

symmetry which, if broken by vortex condensation, leads
spin-charge confinement, translational symmetry break
and ‘‘conventional’’ ordered phases such as the AF a
CDW. ~5! In order to study phases with spin and char
physics at different scales and without translational symm
try breaking, we contemplateZ2-symmetric phases in which
vortex pairs condense. A phase diagram of spin-charge s
rated states is the upshot of crossing the rubicon fed by th
five tributaries.

By eschewing a conventional momentum-space appro
which assumes a Fermi surface, we have constructed a
fective field theory which does not fall under the rubric
Fermi liquid theory. The basic excitations of our theory a
topological solitonsin vortex condensates.24 They are in no
sense adiabatically connected to the electron and hole e
tations of a free Fermi gas. They are also rather differ
from the ‘‘holon’’ and ‘‘spinon’’ concepts which are intro
duced to solve the Gutzwiller constraint.25 These objects are
strongly coupled and do not appear to be solitonlike in ch
acter. The topological spinless chargee excitation in our
Ginzburg-Landau theory~a ‘‘holon’’ ! has an antiparticle
with opposite charge, and at low energies can decouple f
the neutral spin 1/2 fermionic ‘‘nodon’’ excitation. More
over, the ‘‘holon’’ already exists as a finite energy excitati
within the Mott insulator—doping is not required.

Contrasting the present work with our earlier construct
of the nodal liquid, we see that the ‘‘holon’’ field is identica
to the charged soliton of the nodal liquid but the nodon
which descended from anassumedquasiparticle at the node
of a dx22y2 superconductor—is now a concept which na
rally arises from the spatially nonuniform softening of
vortex-anti-vortex pair field. Our nodon and holon fields a
properly seen as analogous to the charge and spin soliton
the one-dimensional electron gas or the fractionally cha
quasiparticles in the quantum Hall effect.

Despite the surprising ease with which our dual Ginzbu
Landau formulation captures spin-charge separation and
perconductivity, the Fermi liquid phase seems to be miss
Generally, a dual vortex description of a Fermi liquid is po
sible, as illustrated nicely for the case ofspinlesselectrons.
After transforming to spinless bosons via Chern-Simons
implementing a duality transformation, one readily obtain
simple dual Ginzburg-Landau theory. This theory closely
sembles Eq.~8!, but with only a single vortex fieldF, which
is minimally coupled to a single gauge field with Cher
Simons dynamics. But more importantly, the theory is no
relativistic ~i.e., there is a nonzero chemical potential! and
the gauge field necessarily has a nonzero average, as the
flux equals the number of electrons. So a vortex ‘‘vacuum
phase—thepx1 ipy superconductor for spinful electrons—
not accessible without spin. The Wigner crystal phase
spinless electrons corresponds simply to condensing
single vortex field^F&Þ0. In the Fermi liquid phase this
vortex field must remain uncondensed, but with the vortic
in a fluid state. This fluid of vortices presumably coexis
with the fluid of particles~the Chern-Simons bosons whic
are the dual flux tubes!—the particle motion acting to
scramble the vortex phase and vice versa. Related manip
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tions suggest that a Fermi liquid state is possible in the s
ful case as well, although we think it likely that this does n
obtain in the experimental systems of interest.

As we have argued, the presence of electrons spinn
around one another is tantamount to significant~finite angu-
lar momentum! pairing correlations. The kinetic energ
clearly favors lower angular momentum, which suggests
predominance ofpx1 ipy pairing, at least in the absence
significant ionic potentials. Naively, this reasoning mig
suggest that quantum Hall systems with spinful electr
could exhibit high-temperature superconductivity. Howev
the presence of the strong orbital magnetic field presuma
precludes this possibility. But there are quantum Hall s
tems which apparently do exhibit high temperature ‘‘pse
dospin’’ superfluidity.26 In particular, double-layer quantum
Hall systems with total fillingn51 do exhibit evidence of a
‘‘transverse superfluid’’ phase, with superfluid currents
the two layers flowing readily inoppositedirections~effec-
tively negating the effects of the magnetic field!. It has been
suggested that this phase will disorder via a finite tempe
ture Kosterlitz-Thouless transition, withTKT in the 1/2
Kelvin range—a superfluid transition driven by Coulomb r
pulsion. Thepx1 ipy state studied here is loosely analogo
to this ‘‘~111!’’ quantized Hall state under the interchange
charge and spin.

In the canonical approach to strongly interacting elect
systems near a Mott insulating phase, the very first step
project onto a simpler tight binding model, oftentimes w
one orbital per unit cell. When modeling the undoped c
prate superconductors a further projection to a reduced
bert space with one electron per site is usually adopted.
resulting spin Hamiltonian is much more tractable than
full system of interacting electrons, but we maintain th
very important physics is irretrievably lost under these p
jections. For instance, the spin-charge separation that we
cess readily within our dual Ginzburg-Landau formulation
strongly interacting electrons in the 2Dcontinuum is cer-
tainly not present in the Heisenberg spin Hamiltonian. P
simply, it is exceedingly difficult to ascertain if spin an
charge separate after projecting away the charge. We
however, within our continuum approach, still describe M
insulating physics by including a commensurate ionic pot
tial which locks the charge order. In this way it is possible
describe Mott insulators which have gapped excitations
exhibit spin-charge separation. Indeed much, if not all, of
interesting physics accessible within the dual Ginzbu
Landau formulation is inaccessible, and probably n
present, in the overworkedt-J model.

An apparent limitation of our approach is that we do n
have a specific microscopic model which is described by
effective field theory and we do not knowhow strongthe
interactions must be to invalidate Fermi liquid theory. Ne
ertheless, we expect that, since many of the phases
excitation gaps, they should be stable to small perturbat
and there should be a universality class of models wh
exhibit the same ‘‘universal’’ and robust properties~such as
spin-charge separation!. Indeed, as emphasized previous
the only formal requirement for obtaining the dual formula
tion is the ‘‘hard-core’’ part of the repulsion.

The physics of the Ginzburg-Landau formulation sha
some tantalizing similarities with the cuprate high-Tc mate-
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rials. As discussed above, the crucial assumption of unb
ken Z2 symmetry appears most natural for systems with
large native disparity between charge and spin order
scales. This is indeed the case for the cuprates near
half-filled Mott-insulating states. Precisely at half-filling
charge fluctuations begin to become quantized~acquire a
gap! at very high temperatures of ordereV ~the HubbardU),
while for spins the characteristic ordering energy scale
significantly lower of orderJ ~with local moment formation
occurring somewhat higher!. As in our previous work,13,14

we hypothesize that this Mott phase comprises a spin-ch
separated insulator described by Eq.~17!. As the electron
density at half-filling is commensurate with the underlyin
CuO2 plane periodicity, the charge sector~as well as the spin
sector! is in effectively zero dual magnetic field.

The Ginzburg-Landau theories for charge and spin s
gest a behavior in the temperature-doping plane illustrate
Fig. 3. At half filling, both vortex fields have zero extern
flux and make transitions from their ‘‘normal’’ states at hig
temperatures to their ‘‘Meissner’’ states at low temperatu
The associated mean-field transition temperatures, rou
Tc

r MF;U andTc
s MF*J, are shown in Fig. 3. BelowTc

s MF ,
the spin bosonFs begins to develop amplitude fluctuation
representing local moment formation. At somewhat low
temperatures this amplitude softens particularly n
(6p/2,6p/2), and the refermionized Dirac fields subs
quently order into an AF* phase~see Ref. 14 for details!.
Doping x introduces a dual external flux“3ar}f0x into
the charge sector only—the spin bosonFs is largely unaf-
fected and in particularTc

s MF presumably decreases on
weakly. The dual flux in the Ginzburg-Landau theory forFr

introduces a dual mean-field ‘‘Hc2’’ line, or rapidly decreas-
ing Tc

r MF(x). Within a mean-field treatment a holon lattic
phase would be expected below this line, in direct analo
with the Abrikosov flux lattice. But with fluctuations the ho
lon lattice phase should be separated fromTc

r MF(x) by a
crossover regime analogous to the strongly-fluctuating ‘‘v
tex liquid’’ state in type II superconductors. In the cupra
context, this is a regime of strong dynamical charge fluct
tions and can be thought of as a ‘‘holon liquid,’’ comprise
of chargee bosons. TheTc

r MF(x) line then represents a
crossover from a metallic phase above~with ‘‘unquantized’’
charge! to the holon liquid which manifests~dynamical!
charge ‘‘quantization’’ in units ofe ~compared to dynamica

FIG. 3. Illustrative and schematic phase diagram of cuprate
perconductors considered within the present dual Ginzburg-Lan
framework. The~unconventional! antiferromagnet, holon lattice
and superconducting phases are indicated by AF*, HL, and
respectively.
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‘‘flux quantization’’ in the vortex liquid!. Remarkably, our
Ginzburg-Landau formulation suggests that spin-cha
separation, effectively present belowTc

r MF(x), can occur on
very high interaction energy scales~e.g., of orderU). Upon
further cooling the holon liquid one expects these boson
condense, provided their density is sufficiently incommen
rate with the underlying crystal potential to avoid char
ordering~into, for example, a holon lattice phase!. This is the
superconducting state, expected to bed wave with a strong
fourfold ionic potential. The predominant effect upon coo
ing throughTc

s MF above the superconducting phase, sho
be a reduction of low energy spin fluctuations and no
formation in the electron spectral function, with a lesser
fect in the charge sector due to weak spin-charge coupli

In connection with the cuprates, interlayer tunnelling is
great interest. Within the present framework this can
treated perturbatively in the interlayer hopping streng
which might be adequate for many physical properti
Thornier questions concerning coherentc-axis motion pre-
sumably require a three dimensional generalization of
results~see comment below!. We should strongly emphasiz
that the present discussion is very much a preliminary ap
cation of the ideas of this paper, although the picture in F
3 is suggestive.

Our primary conclusion concerning the ubiquity of spi
charge separation and superconductivity driven by v
strong repulsion has potential implications for a mu
broader class of other strongly interacting systems. In a
tion to the cuprates, other systems include: the heavy
mion superconductors,6 quasi-one-dimensional organic s
perconductors, low carrier 2DEG’s with very larger s in
semiconductor MOSFET’s and heterostructures,7,28 super-
conductivity in Sr2RuO4 with possible px1 ipy pairing
symmetry,27 the normal and superfluid phases of 3-He~the A
phase with apx1 ipy pairing symmetry29!, and perhaps mos
intriguingly the magnetic states ofsolid 3-He.8,30 In many of
.
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these systems one is also very much interested in the
three-dimensional limit, particularly for 3-He. Unfortunatel
the Chern-Simons approach transforming fermions i
bosons by flux attachment is restricted to strictly tw
dimensional systems. But it is possible to transform betw
fermions and bosons in three dimensions by binding ‘‘sta
tical’’ magnetic monopoles to the particles.31 Unfortunately,
this introduces an unphysical internal statistical magne
field ~in contrast to the pure gauge coupling within Cher
Simons theory!. But by attaching monopoles tospin, the
monopole fields from the up spin electrons and the a
monopole fields from the down spin electrons will large
cancel ~exactly on the average!. Moreover, particle-vortex
duality transformations are also possible in three dimensi
~i.e., ‘‘electric-magnetic’’ duality!, so it should be possible to
obtain an entirely bosonic~but approximate! dual description
of 3D electrons with a ‘‘noncrossing’’ constraint. Perha
this approach might be useful in modeling some 3D stron
correlated systems.

If, as we have suggested, strongly-interacting spin-1/2
mions do not form a Fermi liquid, then our effective fie
theory represents a new paradigm for correlated electron
havior. If, as we have further hypothesized, superconduc
ity is a prevalent attribute of the phases ensconced in
theory, then it is a paradigm which includes a new route
superconductivity. For these reasons, we submit that that
scenario could have far-reaching implications for the cupr
superconductors and other strongly-interacting electron
tems.
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