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Short-range interactions and scaling near integer quantum Hall transitions
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We study the influence of short-range electron-electron interactions on scaling behavior near the integer
quantum Hall plateau transitions. Short-range interactions are known to be irrelevant at the renormalization
group fixed point which represents the transition in the noninteracting system. We find, nevertheless, that
transport properties change discontinuously when interactions are introduced. Most importantly, in the ther-
modynamic limit the conductivity at finite temperature is zero without interactions, but nonzero in the presence
of arbitrarily weak interactions. In addition, scaling as a function of frequencyv and temperatureT is deter-
mined by the scaling variablev/Tp ~wherep is the exponent for the temperature dependence of the inelastic
scattering rate! and not byv/T, as it would be at a conventional quantum phase transition described by an
interacting fixed point. We express the inelastic exponentp and the thermal exponentzT in terms of the scaling
dimension2a,0 of the interaction strength and the dynamical exponentz ~which has the valuez52),
obtainingp5112a/z andzT52/p.
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I. INTRODUCTION

In this paper we study the effects of short-range inter
tions on the nature of the transitions between quantized
plateaus in a disordered two-dimensional electron
~2DEG!.1 These transitions are generally believed to
prime examples of continuous quantum phase transitio
that is to say, examples of quantum critical phenomena2–5

We focus here on samples with sufficiently strong disor
that fractional quantum Hall states do not intervene, so
the transitions are directly from one integer Hall plateau
another. Recently, Shahar and collaborators have prese
an analysis of transport measurements that would seem
indicate an absence of a true quantum Hall liquid–insula
phase transition.6 The full implications of this are unclear a
present, but we presume that this is an indication of the
ficulty of reaching the asymptotic quantum critical regime
certain classes of disordered systems and will not consid
further in this paper.

The existence of quantized Hall plateaus is intimately
lated to the presence of disorder. In a single-particle desc
tion, all states are localized except for those at a single c
cal energy near the center of each Landau level. Thus
quantum phase transition is an unusual insulator to insul
transition with no intervening metallic phase. The critic
point itself is quasimetallic, exhibiting anomalous diffusion7

Associated with each transition between plateaus insxy there
is a peak insxx which in principle becomes infinitely shar
at zero temperature~see however Ref. 6! and whose peak
value is universal and close to8 0.5e2/h. However, as we
PRB 610163-1829/2000/61~12!/8326~8!/$15.00
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discuss below, since we have the peculiar circumstance
the set of extended states has measure zero, the z
temperature limit is quite singular in the absence of inter
tions. In the noninteracting casesxx is actually rigorously
zero in the limit of large sample size at all values of t
magnetic field, including the critical values, for any nonze
temperature. Moreover, it has been argued previously, u
a combination of renormalization group techniques and
merical calculations,9 that interactions of sufficiently shor
range are perturbatively irrelevant at the noninteracting fix
point. Hence systems with short-range interactions scale
this singular noninteracting limit. We show in this paper th
although interactions are irrelevant in this sense, they ge
ate a nonzero critical value ofsxx and determine the natur
of temperature and frequency scaling near the critical po
We expect that interactions have similar consequences
other delocalization transitions at which they are forma
irrelevant, although behavior in a different category is po
sible if interactions are sufficiently strongly irrelevant. W
note that irrelevant interactions which control dynamic
properties at a quantum critical point have been encounte
previously, in the theory of metallic spin glasses.10

In contrast to short-range, model interactions, true C
lomb interactions are believed to be relevant at the nonin
acting fixed point.9 Hence one expects that the true critic
point is interacting. One of the persistent mysteries in t
problem is the fact that the experimentally observed value
the correlation exponentn at the interacting fixed point ap
pears to agree rather well with that predicted by numer
simulations of the noninteracting fixed point.9,11 That is, the
8326 ©2000 The American Physical Society
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correlation length exponent does not appear to change
though the value of the dynamical critical exponentz is be-
lieved to change fromz51 for long-range interactions toz
52 for the short-range case.4 In the following, we do not
consider this issue, and instead restrict our attention to sh
range interactions. The Coulomb interaction can be m
short range by placing a metallic screening gate~ground
plane! nearby. Such a situation was successfully realized
Van Keulset al.12 although they did not study the quantu
critical point, but rather the insulating phase at densities w
below the 0→1 plateau transition. They observed that t
variable range hopping exponent changed from the Ef
Shklovskii value expected for long-range interactions to
Mott value expected for short-range interactions.

The remainder of the paper is organized as follows.
summarize the scaling description of the quantum Hall p
teau transitions in the next section, and discuss in Sec. III
pathologies associated with the finite temperature scaling
havior of the conductance in the noninteracting theory. Fr
Sec. IV onward, systems with short-range interactions
considered. We first describe dephasing in the critical reg
and the emergence of a long coherence time, and deter
the inelastic exponentp and the thermal exponentzTÞz in
terms of the scaling dimension of the interactions. The di
culties arising from a direct application of conventional sc
ing ideas are discussed. In Sec. V, finite temperature sca
is analyzed in the presence of short-range interactions.
show that, although short-range interactions are formally
relevant, they control aspects of the critical behavior. W
demonstrate that the critical conductivity is nonzero provid
interactions are not too strongly irrelevant. Finally, we co
struct new scaling variables and examine to what extent c
ductance scaling can be forced into the conventional sca
framework. Finite frequency scaling atT50 is discussed in
Sec. VI and the general scaling in temperature and freque
in Sec. VII. Concluding remarks are presented in Sec. V

II. PLATEAU TRANSITIONS AND SCALING THEORY

The integer quantum Hall transition~IQHT! is driven by
varying the location of the chemical potentialm relative to
the critical valuemc . Throughout this paper we denote th
distance from the critical point byd5um2mcu. Sincemc is
dependent on magnetic fieldB, the transition is often reache
experimentally by changingB while keeping electron densit
fixed. In the largeB limit, mc lies near the center of th
Landau levels. A body of experimental data, reviewed
example in Ref. 4, can be summarized by the statements
~i! on either side of the transition (dÞ0) the Hall conduc-
tivity is quantized and the dissipative conductivity has t
limit sxx→0 at zero temperature;~ii ! at the transition (d
50) the Hall conductivity is unquantized andsxx remains
finite at zero temperature, so that the critical state is cond
ing.

Critical behavior is cut off in the presence of a fini
length scale. In this event, the transition has a finite widthd*
within which the Hall conductivity deviates from the qua
tized values andsxx is nonzero. This width is

d*

d0
;minF S L0

L D 1/n

,S T

T0
D 1/zTn

,S v

v0
D 1/znG , ~2.1!
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whereL, T, andv are the finite system size, temperature, a
measurement frequency in a specific experimental situat
andd0 , L0 , T0, andv0 are microscopic scales. The variou
exponents appearing in Eq.~2.1! have the following mean-
ing: n is the exponent of the single divergent length sca
the localization lengthj;d2n; z is the dynamical exponen
defining the length scale introduced by a finite frequen
Lv;v21/z; and zT is the thermal exponent governing
temperature-dependent length scaleLw;T21/zT. In the con-
ventional dynamical scaling description of a quantum ph
transition in which interactions are relevant and scale t
finite strength at the transition,zT is expected to be the sam
as z. All the three regimes in Eq.~2.1! have been probed
experimentally,2,13–15as well as the regime in which electri
field strength sets the cutoff.16 Summarizing the results in th
form in which they appear in the literature, we haven52.3
60.1, 1/zTn50.4260.04, and 1/zn50.4160.04. This sug-
gests thatzT5z51, which is consistent with the interpreta
tion that the Coulomb interaction is relevant at the transiti
More generally,zT andz may be independent exponents a
quantum phase transition. We show in the following that t
is the case at the IQHT if the interaction scales to zero at
critical point. This happens for short-range interactions a
could be realized experimentally by screening out the lo
ranged Coulomb interaction with nearby ground planes
gates.

We now turn to recent theoretical developments. T
Hamiltonian of interest describes interacting electrons m
ing in a two-dimensional random potential in the presence
a magnetic field:

H5(
i

F 1

2m S pW i1
e

c
AW D 2

1Vimp~rW i !G1
1

2 (
iÞ j

V~rW i2rW j !,

~2.2!

whereAW is the external vector potential,Vimp is the one-body
impurity potential, andV is the two-body interaction poten
tial. We write

V~rW i2rW j !5
u

urW i2rW j ul
, ~2.3!

whereu andl parametrize the strength and the range of
interaction.17 The existence of the IQHT in the model is n
dependent on interactions, and the noninteracting theory,
tained by settingu50, provides a simplified but concret
model that has allowed extensive quantitati
calculations.18,19 A good understanding of the main featur
of the noninteracting critical point has emerged: the sta
localization length exponent has the valuen'2.3360.03
and the dynamical exponent isz5d52. However, the rel-
evance of the free electron model to the IQHT in real ma
rials depends on the nature and the effects of electronic
teractions.

Imagine starting with a system at the noninteracting fix
point ~NIFP!, and switching on the interaction. One can a
whether this interaction is a relevant or irrelevant pertur
tion in the renormalization group~RG! sense. Such a stabil
ity analysis of the NIFP has been performed.9 For the un-
screened Coulomb interaction,l51 in Eq. ~2.3!, u has RG
scaling dimension 1 and is therefore a relevant perturbat
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8328 PRB 61WANG, FISHER, GIRVIN, AND CHALKER
The resulting flow away from the NIFP presumably leads
another, interacting fixed point~IFP! at which the effective
interaction strength is finite. Critical phenomena in this ca
should be described by conventional dynamical sca
theory with two independent critical exponents,z andn, and
zT5z. While one expects thatz51 on general grounds with
Coulomb interactions,20 the value ofn is unknown and may
be different from the value at the NIFP. Nevertheless, a s
nario whereby Coulomb interaction changesz but notn from
the noninteracting values has been conjectured.9,21 An alter-
native possibility22,23 is that there are two divergent length
at the critical point, with different exponents.

We shall not consider long-range Coulomb interactio
further. Instead, we focus on the case of short-range inte
tions havingl.2. As mentioned above, this case is phy
cally relevant when the IQHT is studied in the presence
ground planes or metallic gates. It has been shown tha
screened Coulomb interactions withl.21x4s , x4s.0.65,
the RG dimension ofu is 2a52x4s , so that interactions
are an irrelevant perturbation.9 Notice that, in particular, the
dipole-dipole interaction hasl53 and thus belongs to thi
class of interactions. Moreover, forx4s.l22.0, the inter-
action is still irrelevant with the scaling dimension2a52
2l.9,24 In all these cases, the effective interaction scales
zero at the transition in the asymptotic limit. The NIFP
therefore stable against interactions. As a result,n'2.33 and
z52. It turns out, though, that short-range interactions,
though irrelevant, control the finite temperature behavior
the conductance. As we shall see, the scaling function for
conductance is discontinuous at zero interaction stren
when written in terms of a natural set of scaling variabl
We will show that the scaling theory thus becomes unc
ventional, and a third independent critical exponent, the th
mal exponentzT , emerges in the scaling arguments. T
value ofzT is set by the scaling dimensiona of the interac-
tion strength: consideration of the dephasing time in the c
cal regime leads tozT52z/(z12a). SincezT determines the
transition width in the temperature scaling regime@cf. Eq.
~2.1!#, experiments can, in principle, determine the scal
exponenta. We find, on the other hand, that the frequen
scaling of the conductance in this case is conventional, w
z5d52, whered is the spatial dimension of the system. W
argue that quantum critical scaling behavior of this kind m
be a general feature of finite temperature transport near q
tum critical points, when interactions are irrelevant. The c
tral feature is the existence of a time scale, the depha
time tf;T2p wherep5112a/z, which is longer than the
single characteristic time,\/T, at a conventional quantum
phase transition. The long coherence time results from
underlying free fermion description and its associated infin
number of conservation laws. As a result, forv,TÞ0, the
v/T scaling in conventional quantum phase transitions4 is
replaced byv/Tp scaling.25

III. NONINTERACTING THEORY, uÄ0

A. TÄ0

We begin by describing the finite size scaling of the ze
frequency conductance in the absence of interactions.26 Con-
sider a 2D square sample of sizeL3L. At T50, the dimen-
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sionless conductance should depend only onL/j. Measuring
the conductance in units ofe2/h, we write

g~d,L !5G0~dL1/n!. ~3.1!

The scaling functionG0 has the limiting behavior

G0~X!5H gc , X→0

0, X→`,
~3.2!

where gc is a critical conductance at the transition. Th
quantity is expected to be universal for a given geometry
boundary conditions.8,29–31 In phase coherent, squar
samples under periodic transverse boundary conditionsgc
.0.5. The behavior ofG0(X) is known from numerical work
in various settings,27,28and in most detail for square sample
from transfer matrix calculations of the two-terminal Lan
auer conductance:30,31 the results of these are sketched
Fig. 1~a!. It decays exponentially for largeX, according to
G0(X);exp(2cXn), wherec is a constant. Hence, in the lim
L→`, g is zero for alld exceptd50 at which it has the
finite valuegc , as shown in Fig. 1~b!. We will denote the
conductance in the thermodynamic limit, the quantity of
terest throughout the paper, by suppressing theL dependence
in its argument. Thus

g~d!5H gc , d50

0, otherwise.
~3.3!

B. TÅ0

For noninteracting electrons, the conductivity atTÞ0 is

sxx~d,T,L !5E dES 2
] f

]EDG0~EL1/n!, ~3.4!

whereG0 is theT50 conductance scaling function given
Eq. ~3.1!, and f (E) is the Fermi-Dirac distribution function

f ~E!5
1

eb(E2d)11
. ~3.5!

Equation~3.4! is a convolution of the derivative of the Ferm
function ~which has widthkBT) with the T50 conductance
scaling function~which has widthL21/n), as illustrated in
Fig. 2. In the limitL→`, Eqs.~3.3! and ~3.4! imply that

sxx~d,T!50 ~3.6!

FIG. 1. ~a! The conductance scaling function defined in E
~3.2!, for the noninteracting theory.~b! The behavior of the conduc
tance in the noninteracting theory, in the thermodynamic limit
zero temperature.
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for anyd if TÞ0: within the noninteracting theory, the con
ductivity vanishes for all values of the Fermi energy at fin
temperature. This strange result follows from the fact that
set of conducting states is of measure zero for this transit

IV. SHORT-RANGED INTERACTION, uÅ0

For the conductivity to be nonzero at finite temperatu
near the transition, interactions are necessary, and we
examine the effect of short-range interactions. Sinceu is an
irrelevant coupling in the RG sense, the transitions atT50
are described by the noninteracting fixed point. In genera
such a fixed point, provided the density of states is finitez
5d in d dimensions, and so for the IQHTz52. Under a RG
length scale transformationb, u transforms according tou8
5b2au, and energy scalese transform ase85bze.

A. Naive scaling atdÄ0

The finite temperature conductivity at criticality is e
pected to have the scaling form

sxx~T,u!5b22dG8~bzT,b2au!. ~4.1!

Choosing the scale factorb5T21/z, we obtain a new scaling
function

sxx~T,u!5G~uTa/z!. ~4.2!

Equation~3.6! implies, settingu50, thatG(X50)50.
If u were a conventional irrelevant scaling variableG

would have a power series expansion and one could wri

sxx~T,u!5G~0!1(
l 51

`

~uTa/z! lGl~0!. ~4.3!

SinceG(0)50, Eq.~4.3! implies thatsxx(T→0,u)50. This
result would, paradoxically, exclude the existence of a c
ducting critical state. In fact, as we show in the followin
sections,G(X) is a discontinuous function of its argumentX
at X50 so that

sxx~TÞ0, u50!5G~X50!50, ~4.4!

sxx~T→0, uÞ0!5G~X→0!5gc . ~4.5!

This discontinuous behavior is shown schematically in F
3.

FIG. 2. The convolution of (2] f /]E) with G0 in the thermody-
namic limit leads to a vanishing conductivity at finite temperature
the noninteracting theory.
e
n.

s
w

at

-

.

B. Dephasing in the critical regime by interactions

For TÞ0, interactions, relevant or irrelevant in the R
sense, will cause transitions between single-particle state32

This leads to a finite quasiparticle dephasing rate33 tw

5T2p. At a quantum phase transition, the exponentp that
enters the dephasing rate should not be taken from those
simple disordered metals in the large conductance regi
for it is the decay time of the critical eigenstates that matte
This should be determined by the underlying critical ph
nomena. A natural scaling form for the dephasing rate is

h

tw
5TY8~bzT,b2au!, ~4.6!

where the prefactorT is determined by the engineering d
mension of 1/tw . Settingb5T21/z, we have

h

tw
5TY~uTa/z!. ~4.7!

As u is an irrelevant coupling~perturbation! which scales
toward zero under renormalization group scale transform
tions, the unperturbed state~noninteracting fixed point! is
therefore analytically connected to the perturbed state in
presence ofu. Thus, a perturbative expansion inu is justified.
To lowest order, 1/tw;u2 from a Fermi’s golden rule esti
mate of the inelastic scattering rate. Thus, the expected l
ing scaling behavior is

1

tw
;ueff

2 T;u2T112a/z, ~4.8!

or

tw;T2p, p511
2a

z
. ~4.9!

For the case of a quantum Hall transition in the presence
screening gate, we havez52 anda.0.65, and we obtain
p.1.65.

C. Dephasing length and thermal exponentzT

For a conventional quantum phase transition~with finite
interaction strength at the fixed point!, there is one length
scale (j;d2n) and one time scale (V21;jz;d2zn) away
from criticality. There are no finite correlation length or tim
scales at criticality.4 In such a critical system at finite tem
peratureT, one expects to have one characteristic time\/T,
the significance of which is particularly clear in imagina
time, where it sets a finite size in the time direction,
shown in Fig. 4. However, in the present case, we have

FIG. 3. Discontinuity of the scaling functionG(X), Eq. ~4.2!, at
X50.
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8330 PRB 61WANG, FISHER, GIRVIN, AND CHALKER
tained an additional~real! time tw , which is much larger
than\/T asT→0, providedp.1(a.0), which is the case
if interactions are irrelevant. For further discussion of qua
tum critical transport in the incoherent long time limit s
Ref. 5.

We now turn to the dephasing lengthLw associated with
tw . The irrelevance of the interaction at the NIFP allows
to view the system in terms of weakly interacting diffusi
quasiparticles. The dephasing length that cuts off the ph
coherent dc transport is thus

Lw5ADtw;T2p/2, ~4.10!

whereD is the diffusion constant at the noninteracting cri
cal point, obtained from the wave vectorq and frequencyv
dependent coefficientD(q,v) in the limit first q→0 and
thenv→0. Thus, anomalous diffusion7 present in the oppo
site limit will not enter our discussion. We show below th
even thoughu is irrelevant in the RG sense, the importa
length scale introduced by temperature isLw , so that

Lw;T21/zT, ~4.11!

zT5
2

p
5

2z

z12a
. ~4.12!

This length enters the scaling of the transition width in E
~2.1!. For the IQHT in the presence of short-range inter
tions, we thus obtainzT.1.21.

V. TEMPERATURE SCALING OF CONDUCTIVITY NEAR
CRITICALITY

To calculate the conductivity in the presence of a fin
dephasing length, we follow the standard procedure and
vide the system intoLw3Lw phase coherent blocks. Tran
port within each block can be described by phase cohe
single-electron transport using the underlying noninterac
theory. The disorder-averaged conductivity that we are in
ested in can be obtained by averaging over the phase co
ent blocks. The outcome of this exercise is that the sys
sizeL in Eq. ~3.4! should be replaced byLw , which leads to

FIG. 4. Schematics of the time and length scales close t
quantum phase transition. The correlation volume~in space and
time! is indicated by the full line for an interacting fixed point. Th
corresponding volume is indicated by a dashed line in the c
where interactions are irrelevant and a~real! coherence time,tw

@\/T, emerges.
-
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se
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sxx~d,T,u!5E dES 2
] f

]EDG0~ELw
1/n!, ~5.1!

whereG0 is a scaling function. Although the precise pha
coherent geometry appropriate for this averaging proced
is unclear, this scaling function is expected to have the sa
qualitativebehavior asG0 in Eq. ~3.4!. Note that this discus-
sion omits contributions to transport from variable ran
hopping, which will in fact dominate whenG0 is very small.

Let x5b(E2d). We then have

sxx~d,T,u!52E dx
] f ~x!

]x
G0~xkBTLw

1/n1dLw
1/n!,

~5.2!

where f (x)51/(ex11).

A. At criticality: dÄ0, T\0

We first study the behavior of the critical conductivity
low temperatures. Atd50, the second term in the argume
of G0 in Eq. ~5.2! vanishes, leading to

sxx~d50,T,u!52E dx
] f ~x!

]x
G0@x~T/T0!12p/2n#,

~5.3!

where T0;(u2/D)1/(2n2p) is a constant determined by th
bare interaction strength and the diffusion constant. To
derstand the behavior ofsxx that results from Eq.~5.3!, one
should compare the width of the thermal window, det
mined by 2(] f /]x), with the width of the window over
which electrons are mobile, determined by the scaling fu
tion G0(X) @see Fig. 1~a!#. There are two different low-T
behaviors forsxx , depending on the value ofp/2n.

1. pË2n: the case of IQHT

For p,2n, the argument of the scaling function in E
~5.3! approaches zero asT→0. Thus, using Eq.~3.2!, we
have

sxx~d50, T→0,u!.G0~X→0!5gc . ~5.4!

In this case, the low-T conductance is finite@cf. Eq. ~4.5!#
~despite the fact that the set of conducting states is of m
sure zero! and has a value comparable to the critical pha
coherent conductance in the noninteracting theory. Hence
teractions control the low-temperature behavior, even tho
they are irrelevant in the RG sense. The quantum Hall tr
sition with short-range interactions produced by a screen
gate falls into this category sincep.1.65 andn.2.33 so
that p/2n.0.35.

2. pÌ2n

For sufficiently irrelevant interactions~largea), the con-
dition p.2n may be satisfied. In this case, the argument
G0 in Eq. ~5.3! diverges asT→0 for fixed x. TakingG0(X)
from Eq. ~3.2!,

sxx~d50,T,u!.E dxG0@x~T0 /T!p/2n21#

;Tp/2n21. ~5.5!
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Thus the critical conductivity vanishes asT→0 according to
a universal power law. Note that the power law expon
cannotbe obtained using naive scaling with irrelevant co
plings by following the approach discussed in Sec. III
Again, this vanishes because the set of conducting states
measure zero. The difference between the results for the
casesp,2n andp.2n will be further elucidated below.

B. Transition width: dÅ0, TÅ0

Hereafter, we specialize top,2n ~case 1 above! which is
appropriate for the quantum Hall transition with short-ran
interactions. FordÞ0 and smallT, the first term in the ar-
gument of theG in Eq. ~5.2! can be ignored, leading to

sxx~d,T!.G0~dLw
1/n!. ~5.6!

Making use of Lw;T2p/25T21/zT from Eqs. ~4.12! and
~4.10!, this can be rewritten as

sxx~d,T!5G0S cd

T1/zTnD . ~5.7!

The transition width is determined by the value ofd at which
the scaling variable in Eq.~5.7! is of order 1. We obtain

d* ;T1/zTn. ~5.8!

We can viewd* as the width of the energy window of state
whose localization length exceeds the phase cohere
length. If the width of this window exceeds the energy w
dow defined by the Fermi function through the temperat
~i.e., if zTn.1 or equivalentlyp,2n), then the conductivity
will scale to a finite value as discussed above. Conversel
the energy window of states is narrower than the temp
ture, the conductivity becomes sensitive to the fact that
set of conducting states is of measure zero.

At large argument, the scaling function in Eq.~5.6! falls
off exponentially withLw /j, being controlled by the cross
over to the noninteracting localized phase. But the inter
tion u, although irrelevant at the critical fixed point, will giv
rise to conduction by variable range hopping in the localiz
phase. Becauseu is dangerously irrelevant in this sense, va
able range hopping will not be part of the universal crosso
scaling function in Eq.~5.6!, but will only set in whenLw

exceeds the hopping lengthRhop. Naive scaling suggests tha
the ratio of this longer crossover length toj will diverge as a
power inj.

From Eq.~5.8! we deduce the temperature scaling exp
nentk for the case of short-range interactions,

k5
1

zTn
.0.36. ~5.9!

Interestingly, because the value ofzT happens to be close t
1—the expected value with long-range Coulom
interactions—the value ofk is quite close to the correspond
ing valuek.0.42 as well, provided thatn is indeed the same
in both cases. This suggests that temperature scaling o
transition width will not be dramatically altered by the pre
ence of a screening gate and careful measurements will
t
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to be made to see the change in the exponent. An impor
feature of Eq.~5.6! is that it implies that the correct therma
scaling variable is

Lw

j
↔ 1

TjzT
, ~5.10!

and the thermal scaling function has the form

sxx~d,T!5G0~@TjzT#21/zTn!. ~5.11!

These results suggest that by choosing appropriate sca
variables, the conductivity can be expressed in terms o
scaling function that is free of singularities in the limit o
small scaling arguments. This will allow a description
transport within the conventional scaling framework, desp
the fact that the scaling functionG(X) of Eq. ~4.2! is discon-
tinuous.

C. Conventional scaling framework

The basic scaling form at the noninteracting fixed po
reads

sxx~d,T,u!5G8~b1/nd,bzT,b2au!. ~5.12!

At scaleb5j, one writes

sxx~d,T,u!5G~Tjz,uj2a!, ~5.13!

where, as we have shown earlier, the scaling function ha
discontinuity when its second argument approaches zero
view of Eqs.~5.10! and~5.11!, it is convenient to change th
scaling variables according to

~Tjz,uj2a!→~Lw /j,uj2a!. ~5.14!

This is possible because

Lw

j
5

1

~Tjz!p/2~uj2a!
. ~5.15!

Hence, we can write as an alternative to Eq.~5.13!

sxx~d,T,u!5Greg~Lw /j,uj2a!, ~5.16!

in which Greg is a regular scaling function when its secon
argument is taken to zero. Specifically,

Greg~Lw /j,0!5Greg~dn/T1/zT,0!5G0~d/T1/zTn!, ~5.17!

where use has been made of Eq.~5.6! in the last step and the
behavior ofG0(X) is shown in Fig. 1~a!. It is perhaps impor-
tant to note that the change of variables in Eq.~5.14! has not
removed the singularity associated with the scaling funct
in Eq. ~5.13!. Instead, it simply makes the singularity ina
cessible in Eq.~5.16!, sinceu→0 impliesLw→`.

VI. FREQUENCY SCALING AT TÄ0

A. Noninteracting case,uÄ0

For studying the frequency scaling, we start by return
to the noninteracting theory.25 Scaling implies

sxx~d,v!5G08~b1/nd,bzv!. ~6.1!
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Puttingb5j leads to

sxx~d,v!5G0~vjz!. ~6.2!

The behavior of the scaling function in Eq.~6.2! is expected
from the Mott formula to be

G0~X!5H X2 lnd21 X, X→0

const, X→`,
~6.3!

and has been studied numerically.35 Thus the natural fre-
quency scaling variable isvjz, in contrast to the temperatur
scaling variableTjzT, which appears in Eqs.~5.11! and
~5.12!.

B. Short-range interactions,uÅ0

Including u as in Eq.~5.13!, we write

sxx~d,v!5G~vjz,uj2a!. ~6.4!

This function has a nonsingular limit, i.e.,G(X,Y→0)
5G0(X). Thus we conclude that frequency scaling is co
ventional, so long asp,2n. Anticipating that this is the cas
for the IQHT with short-range interactions, further subtlet
that occur in the opposite limit (p.2n) will not be dis-
cussed here. The transition width forvÞ0 but T50 is de-
termined by settingvjz(d* )51, giving

d* ~T50,v!;v1/zn. ~6.5!

This should be contrasted withd* (T,v50);T1/zTn where
zT52/p, Eq. ~5.8!.

C. Irrelevance of frequency dephasing

A finite frequency can also lead to dephasing through
teractions. Foru50, the only length scale introduced by
finite frequency is

Lv5AD/v. ~6.6!

However, whenuÞ0, there is a frequency-induced depha
ing time tw(v) which can be accounted for by includingv
in the discussion of Sec. III B. Following Eqs.~4.6!–~4.9!,
one obtain,

1

tw~v!
;u2vp ~6.7!

at T50. This leads to another frequency-dependent len
scale in the diffusive regime,Lv

u 5ADtw(v). Thus

Lv
u ;AD/u2v21/zT. ~6.8!

The ratio of the two lengths is

Lv
u

Lv
;v2(z2zT)/zzT. ~6.9!

Provided interactions are irrelevant, so thata.0 and zT
,2 from Eq. ~4.12!, this ratio diverges in the limitv→0.
The fact thatLv

u @Lv ensures that frequency dephasing
sults only in corrections to scaling of the conductivity, and
irrelevant in the asymptotic limit.
-

s

-

-

th

-

VII. GENERAL TEMPERATURE AND FREQUENCY
SCALING

In this section, we discuss the general scaling behavio
the conductivity as a function of both frequency and te
perature. We start with the basic scaling form at the NIF

sxx~d,T,v,u!5G~Tjz,vjz,uj2a!. ~7.1!

We convert to new scaling variables as in Eq.~5.15!. Then

sxx~d,T,v,u!5Greg~Lw /j,vjz,uj2a!, ~7.2!

whereGreg(X,Y,Z) is continuous inZ at Z50. Let

Greg~Lw /j,vjz,0!5G0~Lw /j,vjz!. ~7.3!

Thus forj@1 we have

sxx~d,T,v,u!5A~TjzT,vjz!. ~7.4!

Now consider the approach to the critical point atd50. As
j→`, one argument ofG0 diverges and the other approach
zero, but the scaling variable

~Lw /j!zvjz5
v

Tp ~7.5!

remains finite forv,TÞ0. ~We have usedzT52/p and z
52.! Thus at the critical point

sxx~d50,T,v,u!5A~vtw!5AS v

TpD . ~7.6!

We see thatv/Tp;v/T1.65 is the scaling variable at critical
ity, in contrast to the conventional situation in which th
interactionu scales to a finite value at the fixed point and t
scaling variable isv/T.

VIII. SUMMARY

We have shown that, in the presence of short-range C
lomb interactions, the integer quantum Hall transition is
quantum phase transition of an unconventional kind. We fi
that the interactions, though irrelevant, are responsible
the existence of a finite critical conductivity. In addition, th
conventionalv/T scaling at criticality is replaced byv/Tp

scaling, wherep is a critical exponent controlling the inelas
tic dephasing time. As a result, there exist two independ
dynamical scaling exponentszTÞz for temperature and fre
quency, respectively. The dynamic exponents determine
physical length scales associated withT and v: (Lw ,Lv)
;(T21/zT,T21/z). These unconventional results follow from
the fact that, though short-range interactions are irrelevan
the critical point, the physical behavior is discontinuous
the interaction strength in the noninteracting limit. Asso
ated with this is the existence of a coherence time m
longer than the conventional quantum coherence time\/T,
as interactions scale to zero and the system scales towar
noninteracting fixed point. We have shown that the scal
exponentzT ~or p) is completely determined by the scalin
dimension of the leading irrelevant interaction. The phys
discussed here may in fact be quite general for quantum c
cal transport phenomena such as the conventional Ander
Mott metal-insulator transitions, whenever the interactio
scale to zero at the fixed point.

For the IQHT with short-range interactions, we have t
set of critical exponents
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n.2.3, zT.1.2, z52, ~8.1!

which describe the scaling with sample size, temperat
and frequency according to Eq.~2.1!.

This behavior can be checked experimentally, for e
ample, by looking for a change in the temperature scaling
the transition width whose exponent will change fro
k.0.42 to k.0.36, or by looking at the frequen
cy/temperature scaling described in Eq.~7.6! where a larger
change in exponent is expected. The experimental requ
ment is that the long-range Coulomb interaction betwe
electrons at large distances be screened, so that they int
via a residual, short-range interacting potential.
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