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We study the influence of short-range electron-electron interactions on scaling behavior near the integer
quantum Hall plateau transitions. Short-range interactions are known to be irrelevant at the renormalization
group fixed point which represents the transition in the noninteracting system. We find, nevertheless, that
transport properties change discontinuously when interactions are introduced. Most importantly, in the ther-
modynamic limit the conductivity at finite temperature is zero without interactions, but nonzero in the presence
of arbitrarily weak interactions. In addition, scaling as a function of frequem@nd temperatur@ is deter-
mined by the scaling variable/TP (wherep is the exponent for the temperature dependence of the inelastic
scattering rateand not byw/T, as it would be at a conventional quantum phase transition described by an
interacting fixed point. We express the inelastic expopearid the thermal exponent in terms of the scaling
dimension— a<0 of the interaction strength and the dynamical exporetwhich has the valug=2),
obtainingp=1+2a/z andzr=2/p.

[. INTRODUCTION discuss below, since we have the peculiar circumstance that
the set of extended states has measure zero, the zero-
In this paper we study the effects of short-range interactemperature limit is quite singular in the absence of interac-
tions on the nature of the transitions between quantized Hations. In the noninteracting case,, is actually rigorously
plateaus in a disordered two-dimensional electron gagero in the limit of large sample size at all values of the
(2DEG).! These transitions are generally believed to bemagnetic field, including the critical values, for any nonzero
prime examples of continuous quantum phase transitiongemperature. Moreover, it has been argued previously, using
that is to say, examples of quantum critical phenonfefa. a combination of renormalization group techniques and nu-
We focus here on samples with sufficiently strong disordemerical calculation$, that interactions of sufficiently short
that fractional quantum Hall states do not intervene, so thatange are perturbatively irrelevant at the noninteracting fixed
the transitions are directly from one integer Hall plateau topoint. Hence systems with short-range interactions scale into
another. Recently, Shahar and collaborators have presentéds singular noninteracting limit. We show in this paper that
an analysis of transport measurements that would seem #adthough interactions are irrelevant in this sense, they gener-
indicate an absence of a true quantum Hall liquid—insulatoate a nonzero critical value ef,, and determine the nature
phase transitiof.The full implications of this are unclear at of temperature and frequency scaling near the critical point.
present, but we presume that this is an indication of the dif\We expect that interactions have similar consequences near
ficulty of reaching the asymptotic quantum critical regime inother delocalization transitions at which they are formally
certain classes of disordered systems and will not consider itrelevant, although behavior in a different category is pos-
further in this paper. sible if interactions are sufficiently strongly irrelevant. We
The existence of quantized Hall plateaus is intimately renote that irrelevant interactions which control dynamical
lated to the presence of disorder. In a single-particle descripproperties at a quantum critical point have been encountered
tion, all states are localized except for those at a single critipreviously, in the theory of metallic spin glassés.
cal energy near the center of each Landau level. Thus the In contrast to short-range, model interactions, true Cou-
guantum phase transition is an unusual insulator to insulatdomb interactions are believed to be relevant at the noninter-
transition with no intervening metallic phase. The critical acting fixed poinf Hence one expects that the true critical
point itself is quasimetallic, exhibiting anomalous diffusfon. point is interacting. One of the persistent mysteries in this
Associated with each transition between plateaus,inthere  problem is the fact that the experimentally observed value of
is a peak ino, which in principle becomes infinitely sharp the correlation exponent at the interacting fixed point ap-
at zero temperaturésee however Ref.)6and whose peak pears to agree rather well with that predicted by numerical
value is universal and close®®.5?/h. However, as we simulations of the noninteracting fixed poftit* That is, the
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correlation length exponent does not appear to change evavhereL, T, andw are the finite system size, temperature, and
though the value of the dynamical critical exponens be- measurement frequency in a specific experimental situation,
lieved to change fronz=1 for long-range interactions to  anddy, Lo, Ty, andw, are microscopic scales. The various
=2 for the short-range caden the following, we do not exponents appearing in E(.1) have the following mean-
consider this issue, and instead restrict our attention to shoring: v is the exponent of the single divergent length scale,
range interactions. The Coulomb interaction can be madée localization lengtiE~ 6~ 7; z is the dynamical exponent
short range by placing a metallic screening géageound defining the length scale introduced by a finite frequency,
plane nearby. Such a situation was successfully realized by ,~w =% and z; is the thermal exponent governing a
Van Keulset al*? although they did not study the quantum temperature-dependent length scale~ T~ 2. In the con-
critical point, but rather the insulating phase at densities wellzentional dynamical scaling description of a quantum phase
below the 0—1 plateau transition. They observed that thetransition in which interactions are relevant and scale to a
variable range hopping exponent changed from the Efrosfinite strength at the transition; is expected to be the same
Shklovskii value expected for long-range interactions to theas z. All the three regimes in Eq(2.1) have been probed
Mott value expected for short-range interactions. experimentally>*3~*°as well as the regime in which electric
The remainder of the paper is organized as follows. Weield strength sets the cutdff.Summarizing the results in the
summarize the scaling description of the quantum Hall plaform in which they appear in the literature, we have 2.3
teau transitions in the next section, and discuss in Sec. Ill the-0.1, 1£;v=0.42+0.04, and 1Zv=0.41+0.04. This sug-
pathologies associated with the finite temperature scaling beyests thazy=z=1, which is consistent with the interpreta-
havior of the conductance in the noninteracting theory. Fromion that the Coulomb interaction is relevant at the transition.
Sec. IV onward, systems with short-range interactions ar@lore generallyzr andz may be independent exponents at a
considered. We first describe dephasing in the critical regimguantum phase transition. We show in the following that this
and the emergence of a long coherence time, and determingthe case at the IQHT if the interaction scales to zero at the
the inelastic exponerg and the thermal exponemt+#z in  critical point. This happens for short-range interactions and
terms of the scaling dimension of the interactions. The diffi-could be realized experimentally by screening out the long-
culties arising from a direct application of conventional scal-ranged Coulomb interaction with nearby ground planes or
ing ideas are discussed. In Sec. V, finite temperature scalingates.
is analyzed in the presence of short-range interactions. We We now turn to recent theoretical developments. The
show that, although short-range interactions are formally irHamiltonian of interest describes interacting electrons mov-
relevant, they control aspects of the critical behavior. Weing in a two-dimensional random potential in the presence of
demonstrate that the critical conductivity is nonzero providech magnetic field:

interactions are not too strongly irrelevant. Finally, we con-
2

struct new scaling variables and examine to what extent con- 1/, e. - 1 -
ductance scaling can be forced into the conventional scaling H:Z om| Pit EA + Vimp(ri) |+ 5 24] V(ri=ry,
framework. Finite frequency scaling @at=0 is discussed in 2.2

Sec. VI and the general scaling in temperature and frequency
in Sec. VII. Concluding remarks are presented in Sec. Vlll.whereA is the external vector potential;n, is the one-body
impurity potential, andV is the two-body interaction poten-

Il. PLATEAU TRANSITIONS AND SCALING THEORY tial. We write

The integer quantum Hall transitigthQHT) is driven by o u
varying the location of the chemical potentjal relative to V(ri—ry)= AT (2.3
the critical valueu.. Throughout this paper we denote the Iri—rjl

distance from the critical point by=|u— u|. Sincencis \haray anda parametrize the strength and the range of the

dependent on magnetic fiek the transition is often reached 02 tion17 The existence of the IQHT in the model is not
experimentally by changing while keeping electron density dependent on interactions, and the noninteracting theory, ob-

f_'xe?j' Inlthellargega I(;m't’f'u“c Ile_s ne?rltzetcenter of Ejhi tained by settingu=0, provides a simplified but concrete
andau Ieveis. ody Of experimental data, reviewed 10y, 4o “that has allowed extensive quantitative

example in Ref. 4, can be summarized by the statements thal, -, 4tiongl8.19 A good understanding of the main features

('|)'on.e|ther S.'de of the tran§|t|(.)n§é.&0) the HaI'I ponduc— of the noninteracting critical point has emerged: the static
tivity is quantized and the dissipative conductivity has thelocalization length exponent has the value-2.33+0.03
limit o—0 at zero t.elmp.erature(ji) ‘?t the transition.é and the dynamical exponent I=d=2. Howevér, the rel-
%Q) the Hall conductivity is unquantlze_d ang rémains  eyance of the free electron model to the IQHT in real mate-
finite at zero temperature, so that the critical state is conduc?-Ials depends on the nature and the effects of electronic in-
ng. S . ... teractions.

Critical behavpr is cut off in thg presence .Of a.f|n|te Imagine starting with a system at the noninteracting fixed
Ie_ng_th sca_lle. In this event, the_tr_an5|t|0_n has a finite wiith point (NIFP), and switching on the interaction. One can ask
v_v|th|n which the Ha_II conductivity _dev!ates_ from the quan- whether this interaction is a relevant or irrelevant perturba-
tized values andryy is nonzero. This width is tion in the renormalization groufRG) sense. Such a stabil-
5t L\ Yv [ T\ Yerv [ | Yev ity analysis of the NIFP has been perfornteBor the un-
_Nmm[(_") <_) (_) } (2.1)  screened Coulomb interaction=1 in Eq.(2.3), u has RG
%o L To wo scaling dimension 1 and is therefore a relevant perturbation.
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The resulting flow away from the NIFP presumably leads to H(X)
another, interacting fixed poirftFP) at which the effective g, g,
interaction strength is finite. Critical phenomena in this case
should be described by conventional dynamical scaling
theory with two independent critical exponerzgnd v, and
z1=2z. While one expects that=1 on general grounds with > >
Coulomb interaction®’ the value ofv is unknown and may (@) (b)
be different from the value at the NIFP. Nevertheless, a sce-
nario whereby Coulomb interaction changesut notv from FIG. 1. (8 The conductance scaling function defined in Eq.
the noninteracting values has been conjectdrédin alter-  (3.2), for the noninteracting theoryb) The behavior of the conduc-
native possibility>?®is that there are two divergent lengths tance in the noninteracting theory, in the thermodynamic limit at
at the critical point, with different exponents. zero temperature.

We shall not consider long-range Coulomb interactions
further. Instead, we focus on the case of short-range interasionless conductance should depend only6fi Measuring
tions having\ >2. As mentioned above, this case is physi-the conductance in units @/h, we write
cally relevant when the IQHT is studied in the presence of
ground planes or metallic gates. It has been shown that for 9(8,L)=Go(SLM). 3.1
screened Coulomb interactions wikh>2+ X,g, X45=0.65,
the RG dimension ofi is —a=—X,s, S0 that interactions
are an irrelevant perturbatidriNotice that, in particular, the X0
dipole-dipole interaction has=3 and thus belongs to this Go(X) = e
class of interactions. Moreover, fag>\—2>0, the inter- 0

action is still irrelevant with the scaling dimensieha=2 h . itical duct t the t it Thi
—\.%%4In all these cases, the effective interaction scales tg''¢'c de 1S @ criical conductance at he transition. 1his

zero at the transition in the asymptotic limit. The NIFP is ggﬁggg’r's egg:(;iieodntg%g_eslur:lr\]/ersr?;lgoer acgg)'\rllz?egn?omset%?end
therefore stable against interactions. As a resu#2.33 and y y P S

z=2. It turns out, though, that short-range interactions, al_samples under periodic transverse boundary conditiggs,

though irrelevant, control the finite temperature behavior of 95 The beha"";rzg%(x? is known fr_om numerical work
various settingé!?®and in most detail for square samples

the conductance. As we shall see, the scaling function for th ! : .
om transfer matrix calculations of the two-terminal Land-

conductance is discontinuous at zero interaction strengt 031 X
when written in terms of a natural set of scaling variables 24¢" conductance:™ the resglts of these are ske.tched n
We will show that the scaling theory thus becomes uncon!:'g' 1(a). It decays expont_antlally for largk, accc_)rdmg _to_
ventional, and a third independent critical exponent, the thergO(X)Ne).(p(_CXV)’ wherecis a constant. Her)ce,'ln L
mal exponentz;, emerges in the scaling arguments. The"_ﬁ_oo' g is zero for all 5 e_xceptézo at Wh.'Ch it has the
value ofzg is set by the scaling dimensian of the interac- finite valuegc., as shown in Fig. C.b)..V\/.e will denot.e the_
tion strength: consideration of the dephasing time in the criti-CondUCtanCe in the thermodynamic I|m|t,. the quantity of in-
cal regime leads tar=2z/(z+ 2«). Sincez; determines the f[er.est throughout the paper, by suppressing thiependence
transition width in the temperature scaling regifieé. Eqg. in its argument. Thus
(2.1)], experiments can, in principle, determine the scaling

exponenta. We find, on the other hand, that the frequency 9(5):r
scaling of the conductance in this case is conventional, with

z=d=2, whered is the spatial dimension of the system. We

argue that quantum critical scaling behavior of this kind may B. T#0

be a general feature of finite temperature transport near quan- . ) o )
tum critical points, when interactions are irrelevant. The cen- For noninteracting electrons, the conductivityTat 0 is
tral feature is the existence of a time scale, the dephasing
time 7,~T~ P wherep=1+2a/z, which is longer than the
single characteristic time;/T, at a conventional quantum
phase transition. The long coherence time results from the ) ) ] _ _
underlying free fermion description and its associated infinitéVherego is the T=0 conductance scaling function given in
number of conservation laws. As a result, forT#0, the EQ. (3.1), andf(E) is the Fermi-Dirac distribution function
/T scaling in conventional quantum phase transitfoiss
replaced byw/TP scaling®®

The scaling functiorgy has the limiting behavior

(3.2

, o X—oo,

J., 6=0

. 3.3
0, otherwise. 33

of

- a_E) Go(ELY™), (3.9

Ou(8,T,L)= J dE

f(E)= (3.9

efE=D 41

I1l. NONINTERACTING THEORY, u=0 Equation(3.4) is a convolution of the derivative of the Fermi
A T=0 function (which has widthkgT) with the T=0 conductance
T scaling function(which has widthL*””), as illustrated in
We begin by describing the finite size scaling of the zero-Fig. 2. In the limitL —o0, Egs.(3.3) and(3.4) imply that
frequency conductance in the absence of interacib®n-
sider a 2D square sample of sizexL. At T=0, the dimen- oy(6,T)=0 (3.6
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9 (X

~ KT %

° »
0 X

-
0 E
) ) ] FIG. 3. Discontinuity of the scaling functiof(X), Eq. (4.2, at
FIG. 2. The convolution of £ 9f/JE) with G, in the thermody-  x_q.

namic limit leads to a vanishing conductivity at finite temperature in
the noninteracting theory. B. Dephasing in the critical regime by interactions

For T#0, interactions, relevant or irrelevant in the RG

for any & if T#0: within the noninteracting theory, the con- : > . .
y 9 y sense, will cause transitions between single-particle states.

ductivity vanishes for all values of the Fermi energy at finite2.”. o L .
y 9y his leads to a finite quasiparticle dephasing 3}3ate¢

temperature. This strange result follows from the fact that thé[ “p. At a quantum phase transition, the exponprihat

set of conducting states is of measure zero for this transition .
enters the dephasing rate should not be taken from those for

simple disordered metals in the large conductance regime,

IV. SHORT-RANGED INTERACTION, u#0 for it is the decay time of the critical eigenstates that matters.

For the conductivity to be nonzero at finite temperaturesThls should be determined by the underlying critical phe-

near the transition, interactions are necessary, and we nofiPmena. A natural scaling form for the dephasing rate is
examine the effect of short-range interactions. Sinég an h

irrelevant coupling in the RG sense, the transition3 at0 —=TY'(b*T,b™“u), (4.6
are described by the noninteracting fixed point. In general at Te

such a fixed point, provided the density of states is firite, where the prefactol is determined by the engineering di-
=d in d dimensions, and so for the IQHZ=2. Under a RG  mension of 1#,. Settingb=T"?, we have

length scale transformatidn, u transforms according ta’

—ph«@ I — K h
b~ “u, and energy scalestransform as’ =b%e. D Tyt 4.7)
To
A. Naive scaling até=0 As u is an irrelevant couplingperturbation which scales
The finite temperature conductivity at criticality is ex- toward zero under renormalization group scale transforma-
pected to have the scaling form tions, the unperturbed stat@oninteracting fixed pointis
therefore analytically connected to the perturbed state in the
(T, U) = b2=9G’ (b?T,b~“u). (4.2 presence ofl. Thus, a perturbative expansiontiris justified.

To lowest order, H¢~u2 from a Fermi’s golden rule esti-
Choosing the scale factbr=T~? we obtain a new scaling mate of the inelastic scattering rate. Thus, the expected lead-

function ing scaling behavior is
— alz 1
T T,U) = G(uT?), (4.2 U T uPT 2 4.9

(2

Equation(3.6) implies, settingu=0, thatG(X=0)=0.
If u were a conventional irrelevant scaling varialge
would have a power series expansion and one could write

or
. 2a
T‘p"’T s p=1+ 7 (49)

axx(T,u)=G(0) +|21 (uT*?)!G,(0). (4.3 For the case of a quantum Hall transition in the presence of a
N screening gate, we hawe=2 and «=0.65, and we obtain
Sinceg(0)=0, Eq. (4.3 implies thato,(T—0u)=0. This P=1.65.
result would, paradoxically, exclude the existence of a con-

ducting critical state. In fact, as we show in the following C. Dephasing length and thermal exponenty
sectionsG(X) is a discontinuous function of its argumext For a conventional quantum phase transitioith finite
atX=0 so that interaction strength at the fixed pointhere is one length
scale ¢~ &%) and one time scale(} 1~ ¢~ 5 %") away
ox(T#0, u=0)=G(X=0)=0, (4.4 from criticality. There are no finite correlation length or time
scales at criticality. In such a critical system at finite tem-
oy (T—0, u#£0)=G(X—0)=g,. (4.5)  peratureT, one expects to have one characteristic thi€,

the significance of which is particularly clear in imaginary
This discontinuous behavior is shown schematically in Figtime, where it sets a finite size in the time direction, as
3. shown in Fig. 4. However, in the present case, we have ob-
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of
O rulsT0)= | dE(—&—E)gc)(ELJ’V), 5.0
Bh

; where G, is a scaling function. Although the precise phase

coherent geometry appropriate for this averaging procedure

To is unclear, this scaling function is expected to have the same

N qualitativebehavior agj, in Eq. (3.4). Note that this discus-
v sion omits contributions to transport from variable range
Vo hopping, which will in fact dominate wheg, is very small.

0 ' T Let x=B(E—6). We then have

L /

(Qf(X) 1lv 1lv
(6, T, u)=— | dX——Go(xkgTL,""+6L,""),
FIG. 4. Schematics of the time and length scales close to a X

quantum phase transition. The correlation volutime space and (5.2
time) is indicated by the full line for an interacting fixed point. The wheref(x)=1/(e*+1).

corresponding volume is indicated by a dashed line in the case

where interactions are irrelevant and(raa) coherence timer, A. At criticality: 6=0, T—0

>h/T, emerges.

We first study the behavior of the critical conductivity at
tained an additionalrea) time 7,, which is much larger low temperatures. Ab=0, the second term in the argument
than#/T asT—0, providedp>1(a>0), which is the case of G in Eq. (5.2) vanishes, leading to
if interactions are irrelevant. For further discussion of quan-

'Ic:L;g; cSriticaI transport in the incoherent long time limit see Tl 5=0.T,u)= _f dXa;():()go[x(T/To)l—p/ZV]’
We now turn to the dephasing length, associated with (5.3

7,. The irrelevance of the interaction at the NIFP allows USwhere To~ (u2/D)¥("~P) is a constant determined by the
to view the system in terms of weakly interacting diffusive pare interaction strength and the diffusion constant. To un-
guasiparticles. The de_phasing length that cuts off the phasgerstand the behavior @f,, that results from Eq(5.3), one
coherent dc transport is thus should compare the width of the thermal window, deter-
mined by — (9f/dx), with the width of the window over
Ly=yDr,~T P2 (410 which electrons are mobile, determined by the scaling func-
. e . ) .. tion Go(X) [see Fig. 1@)]. There are two different low-
whereD is the diffusion constant at the noninteracting criti- ’ .
cal point, obtained from the wave vectgrand frequencyw behaviors forayy, depending on the value @i2y.
dependent coefficienD(q,w) in the limit first g—0 and
thenw—0. Thus, anomalous diffusidpresent in the oppo- _ o
site limit will not enter our discussion. We show below that, For p<<2v, the argument of the scaling function in Eq.
even thoughu is irrelevant in the RG sense, the important (5.3 approaches zero a6—0. Thus, using Eq(3.2, we

1. p<2w: the case of IQHT

length scale introduced by temperature.js, so that have
T 419 Ty 6=0, T—0U)=Gy(X—0) =g, (5.4)
¢ ' :
In this case, the loviF conductance is finit¢écf. Eq. (4.5)]
2 27 (despite the fact that the set of conducting states is of mea-
ZT:E: %0 (4.12  sure zerp and has a value comparable to the critical phase

coherent conductance in the noninteracting theory. Hence in-

This length enters the scaling of the transition width in Eg.{€ractions control the low-temperature behavior, even though

(2.1). For the IQHT in the presence of short-range interaciN€y are irrelevant in the RG sense. The quantum Hall tran-

tions, we thus obtaiz,;=1.21. sition with short-range interactions produced by a screening
gate falls into this category singe=1.65 andv=2.33 so

that p/2v=0.35.
V. TEMPERATURE SCALING OF CONDUCTIVITY NEAR

CRITICALITY 2. p>2v

To calculate the conductivity in the presence of a finite For sufficiently irrelevant interactiongarge ), the con-
dephasing length, we follow the standard procedure and didition p>2» may be satisfied. In this case, the argument of
vide the system intd. ., XL, phase coherent blocks. Trans- G, in Eq. (5.3) diverges asT—O0 for fixed x. Taking Go(X)
port within each block can be described by phase cohereritom Eq. (3.2),
single-electron transport using the underlying noninteracting
theory. The disorder-averaged conductivity that we are inter- _ 2m—1
ested in can be obtained by averaging over the phase coher- Tyl 0= O,T,u):f dxGo[X(To/T)P ]
ent blocks. The outcome of this exercise is that the system
sizeL in Eq. (3.4) should be replaced bly,,, which leads to ~TPRv=1 (5.5
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Thus the critical conductivity vanishes @s-0 according to  to be made to see the change in the exponent. An important
a universal power law. Note that the power law exponenfeature of Eq(5.6) is that it implies that the correct thermal
cannotbe obtained using naive scaling with irrelevant cou-scaling variable is

plings by following the approach discussed in Sec. Ill A.

Again, this vanishes because the set of conducting states is of L, 1

measure zero. The difference between the results for the two T Tem (5.10
caseyp<2v andp>2v will be further elucidated below.

and the thermal scaling function has the form
B. Transition width: 6#0, T#0 O 8, T)=Go([TEZT]~ Vo), (5.11)

Hereafter, we specialize <2v (case 1 abovewhich is . . .
appropriate for the quantum Hall transition with short-rangeThese results suggest that by choosing appropriate scaling

interactions. Fod#0 and smallT, the first term in the ar- vaiables, the conductivity can be expressed in terms of a

: : : scaling function that is free of singularities in the limit of
gument of thej in Eq. (5.2) can be ignored, leading to small scaling arguments. This will allow a description of

transport within the conventional scaling framework, despite
the fact that the scaling functiaf(X) of Eq. (4.2) is discon-

Making use ofL,~T P2=T~ from Egs. (4.12 and tnuous.
(4.10, this can be rewritten as

(8, T)=Go(SL ). (5.6)

C. Conventional scaling framework

S The basic scaling form at the noninteracting fixed point
axx(0,T) =Gy =l B (5.7 reads
_ (Rl z —a
The transition width is determined by the valuesoét which (6, T,u)=G"(b™"5,0T,b™ “u). (5.12
the scaling variable in E(5.7) is of order 1. We obtain At scaleb= ¢, one writes
S* ~Tlerv (5.8) O 6, T,U)=G(TE4UE™ ), (5.13

where, as we have shown earlier, the scaling function has a

whose localization length exceeds the phase coherenégscontinu”y when its seconql argument_approaches zero. In
length. If the width of this window exceeds the energy win- VIEW of Eqs_.(5.10) and(5._1]), itis convenient to change the
dow defined by the Fermi function through the temperatureScallng variables according to
(i.e., if zry>1 or equivalentlyp<2v), then the conductivity Z, —a —a
will scale to a finite value as discussed above. Conversely, if (TEUE )= (Lo lEue™). (.19
the energy window of states is narrower than the temperafhis is possible because
ture, the conductivity becomes sensitive to the fact that the
set of conducting states is of measure zero. L, 1
At large argument, the scaling function in E&.6) falls ?: W (5.19
off exponentially withL /&, being controlled by the cross-
over to the noninteracting localized phase. But the interacHence, we can write as an alternative to E§j13
tion u, although irrelevant at the critical fixed point, will give
rise to conduction by variable range hopping in the localized Txx(6,T,U)=Gref L /EUE), (5.19
phase. Becausum_s dar]gerously irrelevant in Fh's SENSE, var;, \vhich Greq IS @ regular scaling function when its second
able range hopping will not be part of the universal crossove([irgument isgtaken to zero. Specifically
scaling function in Eq(5.6), but will only set in whenL,, ' '
exceeds the hopping leng,. Naive scaling suggests that Gred Lo/ £,0)=Gred 8"ITH21,0)=Go(8ITY21), (5.17)
the ratio of this longer crossover lengthgavill diverge as a
power iné. where use has been made of Eg}6) in the last step and the
From Eq.(5.8) we deduce the temperature scaling expo-behavior ofGy(X) is shown in Fig. 1a). It is perhaps impor-
nent x for the case of short-range interactions, tant to note that the change of variables in Exj14) has not
removed the singularity associated with the scaling function

We can views* as the width of the energy window of states

1 in Eqg. (5.13. Instead, it simply makes the singularity inac-
K= ZT—V20-36- (5.9  cessible in Eq(5.16), sinceu—0 impliesL ,— .
Interestingly, because the value z3f happens to be close to VI. FREQUENCY SCALING AT T=0

1—the expected value with long-range Coulomb
interactions—the value of is quite close to the correspond-
ing valuex=0.42 as well, provided thatis indeed the same ~ For studying the frequency scaling, we start by returning
in both cases. This suggests that temperature scaling of t{ the noninteracting theofy. Scaling implies

transition width will not be dramatically altered by the pres- L ,

ence of a screening gate and careful measurements will need oy 6,0)=Go(b™"6,b%w). (6.1)

A. Noninteracting case,u=0



8332

Puttingb= ¢ leads to
oux(6,0) = Go(w§?). (6.2

The behavior of the scaling function in E@.2) is expected
from the Mott formula to be

X2Ind=1X, X—0
Go(X)=

const, 6.3

X—00,

and has been studied numericaffyThus the natural fre-

guency scaling variable i® &%, in contrast to the temperature

scaling variableT&*T, which appears in Eqgs(5.11) and
(5.12.

B. Short-range interactions,u#0

Includingu as in Eq.(5.13, we write

oxx(0,0) = G(w&" ug™ ). (6.9

This function has a nonsingular limit, i.eG(X,Y—0)

=Gy(X). Thus we conclude that frequency scaling is con-
ventional, so long ap<<2v. Anticipating that this is the case
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VIl. GENERAL TEMPERATURE AND FREQUENCY
SCALING

In this section, we discuss the general scaling behavior of
the conductivity as a function of both frequency and tem-
perature. We start with the basic scaling form at the NIFP,

O 6, T, 0,u)=G(TE, w& uéE™ ). (7.0
We convert to new scaling variables as in E§.15. Then

Oxx(0,T,0,u) =G Lo 1§, wE%UE™ ), (7.2
whereG(X,Y,Z) is continuous inZ atZ=0. Let
Gred Lo/ &, 0&,0)=Go(L /&, w&?). (7.3
Thus foré>1 we have
o6, T,0,u)= A(TET,w&). (7.4

Now consider the approach to the critical pointsat 0. As
&—, one argument ofj, diverges and the other approaches
zero, but the scaling variable

(Lo 0t =25 (7.9

for the IQHT with short-range interactions, further subtletiesemains finite forw,T#0. (We have used;=2/p and z

that occur in the opposite limitp(>2v) will not be dis-
cussed here. The transition width fer=0 but T=0 is de-
termined by settingo&%(6*) =1, giving

5 (T=0,0)~ 0. (6.5

This should be contrasted with* (T,w=0)~ T where
zr=2Ip, Eq. (5.9.

C. Irrelevance of frequency dephasing

=2.) Thus at the critical point

(7.6

O-XX( 5: OvT!wlu):A(wT¢):A(% .

We see thaty/ TP~ w/T1%is the scaling variable at critical-
ity, in contrast to the conventional situation in which the
interactionu scales to a finite value at the fixed point and the
scaling variable iso/T.

VIIl. SUMMARY

A finite frequency can also lead to dephasing through in-

teractions. Fou=0, the only length scale introduced by a

finite frequency is

L,=VD/w.

(6.6)

However, whernu#0, there is a frequency-induced dephas-

ing time 7,(w) which can be accounted for by including
in the discussion of Sec. Ill B. Following Eq&t.6)—(4.9),
one obtain,

1

To(®)

(6.7

—W2eP

at T=0. This leads to another frequency-dependent lengt

scale in the diffusive regime,,= D 7,(w). Thus

LY~ D/u?w Vo, (6.9
The ratio of the two lengths is

LU

[ e (6.9

w

Provided interactions are irrelevant, so that-0 and z;
<2 from Eq.(4.12), this ratio diverges in the limito—0.

We have shown that, in the presence of short-range Cou-
lomb interactions, the integer quantum Hall transition is a
quantum phase transition of an unconventional kind. We find
that the interactions, though irrelevant, are responsible for
the existence of a finite critical conductivity. In addition, the
conventionalw/T scaling at criticality is replaced by/TP
scaling, wherg is a critical exponent controlling the inelas-
tic dephasing time. As a result, there exist two independent
dynamical scaling exponents# z for temperature and fre-
quency, respectively. The dynamic exponents determine the
physical length scales associated withand w: (L, ,L,)
~ (T~ Y21 T-%) These unconventional results follow from

fthe fact that, though short-range interactions are irrelevant at

the critical point, the physical behavior is discontinuous in
the interaction strength in the noninteracting limit. Associ-
ated with this is the existence of a coherence time much
longer than the conventional quantum coherence tirfig,

as interactions scale to zero and the system scales toward the
noninteracting fixed point. We have shown that the scaling
exponentz; (or p) is completely determined by the scaling
dimension of the leading irrelevant interaction. The physics
discussed here may in fact be quite general for quantum criti-
cal transport phenomena such as the conventional Anderson-
Mott metal-insulator transitions, whenever the interactions

The fact thatL!!>L, ensures that frequency dephasing re-scale to zero at the fixed point.

sults only in corrections to scaling of the conductivity, and is

irrelevant in the asymptotic limit.

For the IQHT with short-range interactions, we have the
set of critical exponents
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