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We propose a quantum strigemecti¢ coupled-Luttinger-liquid model for the anisotropic states which
occur in two-dimensional electron systems with high-index partial Landau-level fillihg; v—[ v]. Pertur-
bative renormalization-group calculations establish that interaction terms neglected in this model are relevant
—probably driving the system into an anisotropic Wigner crystal—but foe@%=<0.6 only below tempera-
tures which are outside of the experimentally accessible range. We argue that the Hall conductance of the
ground state flows toward:]e?/h and ( »]+ 1)e?/h, respectively, on the low- and high-filling-factor sides of
this range, consistent with recent observations. A semiclassical theory of smectic state transport properties,
which incorporates Luttinger-liquid effects in the evaluation of scattering amplitudes, accounts for the magni-
tude of the dissipative resistivities at = 1/2, for theirv* dependence, and for the observation of nonlineari-
ties of opposite sign in easy and hard direction resistivities.

I. INTRODUCTION Sec. IV. We present a semiclassical theory in which
Luttinger-liquid effects are incorporated into the evaluation
Recent transport experimehts have established a quali- of scattering amplitudes, and which describes experimiehts
tative difference between low-energy states of two-semiquantitatively. This theory makes a number of
dimensional electron systems with large and small index parparameter-free quantitative predictions which are in good ac-
tially filled Landau levels. For Landau-level filling factors cord with observations. In particular, the product of easy and
v<4 (orbital Landau-level indices smaller th&@=2), iso-  hard direction resistivities in this theory is independent of
tropic quantum-Hall fluid states occur at fractional values ofdisorder strength and has a value which agrees well with
v. ForN=2, on the other hand, experiments have discovereéxperiments. Moreover, Luttinger-liquid effects lead to a
regions of strongly anisotropic dissipative transport neamatural explanation of the nonlinear transport effects ob-
half-odd-integer filling factors, bracketed by reentrantserved experimentally.
integer-quantum Hall effect regions with Hall conductivities ~ Several recent papé&r§ have explored the properties of
[v](e?/h) and (v]+1)(e¥h). This dependence ol is interacting electron systems in higher Landau levels. The
presumably due to subtle changes in the effective interadsasic framework of our theory has much in common with the
tions among the electrons of the partially filled Landau levelwork of Fradkin and Kivelsod® whose approach intrigu-
In this paper we describe a theory which accounts qualitaingly suggests a similarity between the strong correlation
tively and often semiquantitatively for the principal facts un- physics of quantum-Hall and doped Mott insulator systems.
covered by this series of experiments. These authors have emphasized the intimate relationship
Following Lilly et al, we start from the assumption that (based on shared symmetry propeitiéetween unidirec-
the true ground state is close to the unidirectional chargetional charge-density-wave states and smectic liquid crystal
density-wave states proposed fdI=2 on the basis of states. We have followed their lead in referring to the aniso-
Hartree-Fock calculations by Koulaket al* and Moessner  tropic high-Landau-level states as quantum Hall smectics.
and Chalker. In Sec. Il we derive a model of coupled one- Both theories identify the electron stripes as one-dimensional
dimensional chiral Luttinger-liquid electron systems for thiselectron systems, and use bosonization techniques to de-
state. The derivation provides microscopic expressions foscribe the low-energy exctiations of their left- and right-
the interaction parameters of the model, which are longyoing states. The most important difference in our work is
ranged because of the long range of the underlying Coulomthat stripe position and shape fluctuations are identified mi-
interaction between electrons. This model neglects small ineroscopically with the same low-energy excitations. They are
terstripe backscattering terms. In Sec. Il we demonstrate thafot separate low-energy degrees of freedom. Our theory can
these terms are technically relevant, but near half-fillingbe developed in terms of either standard Luttinger-liquid bo-
(0.4<v*=<0.6) only at inaccessibly low temperatures. Out-son fields or equivalently in terms of stripe width and posi-
side this range, however, observable Wigner crystal instabilition fields. We find one set of gapless collective modes for
ties are predicted. In Sec. lll we present an estimate of thquantum Hall smectics, which encompasses all of the low-
v* dependence of the temperature below which Wigner crysenergy degrees of freedom. A physical consequence of this
tal states are expected to form. Transport physics in the indifference is that in our theory, the quantum Hall smectic
teresting stripe state regime negf=1/2 is considered in ground state islways unstabléo the formation of either an
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electrons. We can consider these states to be composed of

2 either electron or hole stripes with right- and left-going qua-
siparticles at opposite edges.

} """"""""""""" T Small fluctuations in the positions and shapes of the
stripes can be described in terms of particle-hole excitations

near the stripe edges. The residual interactions, ignored in

a(1-v) 4 Hartree-Fock theory, which scatter into these low-energy

states fall into two classes: “forward” scattering interactions

Y { which conserve the number of electrons on each edge of

Lo L every stripe, and “backward” scattering processes which do
not. The latter processes involve large momentum transfer
1 1 and will be smaller in magnitudésee below. The quantum
smectic model described in this section includes forward
scattering only. These interactions are bilinear in the one-
dimensional(1D) electron densities associated with the chi-
ral currents at the stripe edges,,(x), with a==*=. As ex-
plained in Fig. 1, these densities are proportional to an
“elastic” field Up,(X)=a2m?pn,(x) [with |=(Ahc/eB)*?
u\ E the magnetic length which measures the transverse dis-

o _ placement of a stripe edge relative to its presumed equilib-

FIG. 1. Schematic illustration of the Hartree-Fock theory smec-jym position,yﬂi=a(ni v*[2). The quadratic Hamiltonian

tic state. This state is a local minimum of the Hartree-Fock energyynhich describes thelassical energetics for small fluctua-
functional for any value ofv* and any Landau-level index. At tions has the general form

filling factor »*, the occupied Landau-gauge single-particle states
have guiding centers in stripes of widéh*, shaded in this figure, 1

whlph repeat with period. The statg can be V|eweq as consisting of |_|0:_2 , 2 una(X)DaB(X_ X' :n— n’)unrﬁ(x’)
periodically repeated electron stripes or hole stripes. The Hartree- 2190 x.x"

Fock single-particle eigenvalues lie below the Fermi level for guid-

ing centers in the stripes, and above the Fermi level for guiding

centers outside the stripes. We take xheirection to be along the = ﬁ qua(_Q)DaB(q)uﬂ(q)* @

stripes and thé/ direction to be across the stripes. In a magnetic

field, the guiding center is related to the wave vectorklyy/I2, Wherequfdzq/(Zw)z. Here theq, integral is over the in-
wherel is the magnetic length. Each stripe has right- and left-goingterval (— 7/a, w/a), and a high-momentum cutoff ~ 1/ is
Hartree-Fock quasiparticles at its top and bottom edges, respefmplicit on gy .

tively. In the Luttinger-liquid theory for the one-dimensional — Symmetry considerations further constrain the form of the
stripes, the local Fermi momentum for left- and right-going states inglastic kernel. In position space the kernel must be real and

each stripe is elevated to a quantum field. Because of the connectigymmetric, so thaD ,4(q)=D*4(—q)=D%_(q). This im-
between guiding center and momentum, these fields also descrilgj “h f “

av

ies D_ =D* and InD =0. Parity invari-
the thermal and quantum fluctuations of the shapes and positions +(Q) (9 aa(0) Y

. ; -~ ance (under x,n,+<—x,—n,—), implies, moreover
the electron and hole stripes. The number of right- and left-goin _ - ' e ! o
states in any channel is related to its Fermi wave vectop by gD2+(q)_ D_(q). Thus the elastic kernel is fully specified

=Kg + /2. The strongest momentum-conserving interaction ’[erméz)y one real functionD, (q) _and one complex function
not included in the noninteracting boson limit of the Luttinger- [_)Jr,(q).llznlgthe g-ology notation of the 1D electron-gas
liquid theory are those in which electrons scatter from left- to right-literature; =" these amplitudes corresponddg andgy, re-
going states in one electron stripe, or hole stripe, and from right- tPectively. Finally, provided the broken translational and ro-
left-going states in a different stripe of the same type. tational invariance in the smectic occur spontaneously, the
classical Hamiltonian must be invariant unde,,(x)

electron or a hole Wigner crystal, depending on the sign of ~Una(X) +const and d,Una(X)— dxUna(x) +const. - This
1/2— p* . symmetry determines the form dd(q)=ZX,zD,4(0) at

small wave vector,

Il. QUANTUM SMECTIC MODEL D(q)=Kyas+K, a2+ ..., %)

The smectic state of Hartree-Fock thebtyis a single  the characteristic form for smectic elasticity.
Slater determinant with alternating occupied and empty A quantumtheory of the quantum Hall smectic is ob-
guiding-center occupation-number stripes as illustrated scheained by imposing Kac-Moody commutation relations on
matically in Fig. 1. These states spontaneously break transhe chiral densities:
lational and rotational symmetry. For lardgéthey tend to
have lower energy than isotropic fluid states, because the i
electrostatic energy penalty, which usually thwarts the phase [Pna(X),pnrp(X)]= ﬁ“%ﬁém"?x&x_x,)- ©)
separatioh' favored by exchange interactions and by elec-
tronic correlations, is smélP when the density wave period This commutator together witkl, fully specifies the quan-
is comparable to the cyclotron orbit diameters of indéx tum dynamics. Electron operators in the chiral edge modes
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are related to the 1D densities via the usual bosonic phagegarameter are nonvanishing. Evidently, these harmonic
fields ¢, ~ €' %ne, with p,,= adydn./27. Itis a notable fea- quantum fluctuations are insufficient to destroy the broken
ture of the strong-field regime that the Luttinger-liquid symmetries in the smectfé.

bosonic fields¢, .(x) fully determine the stripe position The effect of the neglected backscattering interactions,
and shape fluctuations. In terms of the bosonic fields, theonsidered in Sec. Ill, depends sensitively on the elastic con-

local center of thenth stripe is stantsat g,=0. In this limit the relevant excited states are
simply Slater determinants with straight stripe edges dis-
V()= Un,+(X) Uy —(X) placed from those of the Hartree-Fock theory ground state.

n(X)=an+ . . X .

2 By evaluating the expectation value of the microscopic

) Hamiltonian in a state with arbitrary stripe edge locations,

1T 0xn+(X) + dxpn—(X) ] we find that
=an+ 5 , (4)

and the local width of theth stripe is a
P D.1p(0h=00y) = Do+ aB o —
Wi (X)=ar* + Uy 1 (X)—Up ~(X)

=av* +17[ gy (X) = dxpn—(X)]. (5) x> ey, —y3,), (11
We also remark that even thoudt, has a quadratic form, "

there is no limit in which a free fermion description of the \where the value of the constabt, is such that= , 4D . 5(q
smectic[with D,z(n)~J,46n0] is valid. The interactions =0)=0. Herel'(y) is the interaction potential between two

which are responsible for the broken symmetry play an eselectrons located in guiding center states a distanapart:
sential role.

Quantum properties of the smectic can be computed from T(y)=U(0y/12)—U(y/I2,0), (12)
the imaginary-time action,

1 dp 2, .22 iok2
S=| == iar97¢n‘ar9x¢n’a+J’H0 U(q,k)=fze (@pI28(q,p)e PK. (13)
X, T n,a T
1 The two terms in Eq(12) are direct and exchange contribu-
=5 qw¢a(_q1_w)Ma,ﬁ(qw)d),B(qaw)a (6)  tions. In Eq.(13), VY(q.p) is the Fourier transform of the

effective 2D electron interaction which incorporates form

where, in an obvious matrix notation, factors dependent on the Landau-level indék and the
i 5 ground subband wave function of the host semiconductor
M(q,w) = (i way/2m) o*+ (1) “D(q). (7) " heterojunction or quantum well. The smectic states have
Correlation functions follow from Wick's theorem and the relatively long periods proportional to the indekcyclotron
momentum-space correlatop, ¢ ) =M"*, with orbit radii. Explicit calculation%® show thata=6l for N
=2. It follows that the exchange contribution 1&y) is
M~ (q,w)=0o,M(q,— w)o,/deM(q,w). (8) small, and thal’(y) decreases with stripe separation in the

, ) relevant range. With unscreened Coulomb interactibiig)
Due to the spontaneous breaking of translational and MOdiverges logarithmically at largg, so it is convenient to

tational symmetry in the smectic, one expects gapless Goldpoduce a metallic screening plane. This changes the
stone modes at zero wave vector. The collective-mode d'slargey behavior toy*2 making the sum oven in Eq. (11)

persion is readily obtained by setting défq,iwy)=0,

N i ; convergent. As shown below, however, we do not find that
giving wg=v(0)qy, with a velocity

our conclusions change qualitatively when a screening plane
_ N2 B 29172 is absent. In Fig. 2 we pldf(y) for N=2 for the cases of
v(Q)=(2m)[D3, ()~ D+ - (@[T ©) thin 2D electron systems separated from metallic screening
At small wave vectors, the mode velocity vanishe$(q) planes byd=| andd=>5I. Note thatl'(y) is monotonically
~q§+ ge. Internal consistency requires that these softdecreasing with positive curvature in the range of interest.
modes donot restore the symmetries assumed to have been

broken in the smectic state. To examine this_ we cons_ider the IIl. BACKSCATTERING INTERACTIONS
complex smectic order parametdr;~ e'U which describes
the charge-density ordetp=Rede'®Y with Q=2m/a the We now consider the “backward” scattering electron in-

ordering wave vector. The averag®) can be readily com- teractions, ignored above. The bare matrix elements for these
puted using the quantum harmonic theory, and at0 one  interactions will fall off exponentially with increasing mo-
finds (®)~exp(—Q?), with mentum transfer and with increasing separation between the
interacting stripes, so we choose here to focus on the small-
est momentum transfer. We explicitly discuss only the case
Iqu|qX|D2+(q)/”(q)' (10 of backscatteriny across electron stripes and across hole
stripes, as illustrated schematically in Fig. 1. For a pair of
With D, nonzero aj=0, the integrals converge at small  stripes separated bya, backscattering across an electron
so that the Debye-Waller factoe(?™") and smectic order stripe can be expressed in a bosonized form
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0 ' ' [D2:(q)+ReD, _(q)]
A W(a)=—— 212"
\ — d=l [D3,(@)—[D4_(a)|*]
N\ -——-d=3l If the scaling dimensiom\ ,<2, the smectic phase ign-
\ stable Fortunately A, only depends on the elastic constants
\ at q,=0, so that we can use the microscopic expressions
\ | discussed at the end of Sec. Il for its evaluation.
\ If the weight functionW(qy)<1 in Eq. (17), thenA,
. <2, and backscattering is relevant. To understand the depen-
NS ] dence ofW(qy,) on filling factor it is useful to consider

RN gya=0,m, so thatD, _ is real and the expression fai
i simplifies. Forg=0, smectic elasticity implie®,, +D, _
] =0, so thatW(q,=0)=0. Whengya= m, one has

(18

3.0

1.0

—_————————
d

0.0 :
0.0 5.0 10.0 15.0 20.0

ql (-D"a

D, (qga=m)=

+ (qy ) ; 4772|2
rationy/l=ql for the case of interactions in a zero-width 2D layer

screened by a parallel metallic layer and with a Landau-level index —TI'(an+av*)}. (19
N=2. d is the distance to the metallic layer, ahdis in units of Note thatD+,(qya= ) vanishes, and the weight function

2/ _
e“/e~200 meV nm for 2D electron systems formed near the surequals 1 forv* = 1/2. ProvidedI'(y) is monotonically de-

face of a GaAs crystal. The Luttinger model g-ology parameter ; ith it i f D il
which characterizes interactions between stripes separated ly creasing with positive curvature for=a, D _(qym) wi

the 2D electron layer is-I"(na). I'(y) is simply related to the be _negative for ‘_i“’*<1/2’ ir_npllyingW(qya= m)<1. I_f th?
elastic constants in terms of which the chiral Luttinger model isWeight function is monotonic im,a, the backscattering in-
developed in the text. Metallic screening layers are sometimeferactions will thus be relevant. Using E$1) and(12), we

present in experimental samples, but are introduced here mainly &8@ve computedV(qy) for a range _Of values d¥, V*,. andd, .
a convenience sincE varies logarithmically withy at largey if ~ and have always found that it is indeed monotonic; the typi-

they are not present and various sums over stripe indices do né@al behavior is illustrated in Fig. 3. For the sake of definite-
converge. The limitl— o can be taken at the end of the calculation, ness we have ignored the finite width of the ground subband
if appropriateI’ vanishes foy— 0 because its direct and exchange wave function in these calculations. Numerically calculated
contributions cancel. scaling dimensions fom=1, N=2, andd= 10 are plotted
in Fig. 4. Forv*>1/2, W(qya=m)>1, so that the electron
] backscattering amplitude scaling dimension increases, even-
S = - nZ’n Un{ €XHi 6 m(X, 7)]+H.C}, (149 tually crossing above 2, as seen in Fig. 4. The dependence of
Y the calculated scaling dimension on the distance to the
screening plane is illustrated in Fig. 5 for the caSes2 and
v* =0.5. As the distance to the screening plane increases, the
Onm=(Pn+ = Pn )~ (dnim+— Pnsm-). (15  weighting function approaches 1 more rapidly s goes
. - . m . However, the val =0,7 are fix
Hole backsc_:atterlng takes a similar form. Sl_nce the effects Ogr?d 10, :gszectoive?y,eantd ?heacuuer\sleaiy Zreong o(taoni s ita;I(I)val-
backscattermg across electron and hole stripes are equwaqunéS ofd. As a result the scaling dimension is only weakly
under a particle-hole transformation*(>1—»*), we focus dependent o, and the interaction remains relevant for any
exclusively on the former. ' ' finite value ofd.

Th_e effec_ts of backscatt_erlng can be deduced by imple- The most significant conclusion which follows from this
”.“?”“”9 a S|.mple renormzillzatlon-grouﬁG) sch_eme. Spe- calculation is that forall v*, backscattering across either
C|_f|caIIy, we integrate out “fast bos_on modeg in a shell, electron or hole stripes is relevant, and will destabilize the
with A/b<|qX|,<A andw,qy unrestricted, and then rescale giqctic ground state. The ultimate fate of the ground state
9x=bag andw’=bw leavingqy, unchanged. With an appro- i presumably depend on the relative magnitudes of the
priate rescaling ofp, this RG transformation leaves the har- \4ious backscattering interactions. For the interactions con-
monic smectic actior, invariant. Stability of the smectic ~ sjgered above, the bare coupling constants will fall rapidly
fixed point in the presence of backscattering can be tested kyjth increasing stripe separation,
considering the lowest order RG flow equation

um~U(av/l2,mall?), (20)

Myl dt=(2—A)Upy, (16) i ) L
so thatm=1 will dominate. If each electron stripe is viewed
with t=Inb. Using Egs.(15) and(8), we find the following as a 1D conductor, this is akg backscattering interaction,

. ) , _ {T'lan+a(1l—v*)]
FIG. 2. Interaction matrix elemeiiit(y) vs dimensionless sepa-

where

expression for the scaling dimension: which tends to driv€ charge orderinglongthe stripe, with
a wavelength corresponding to the 1D electron spacing. We
= d(qa) . thus strongly suspect that far* <1/2 the smectic will be
Ap= wa o SIF(MAa2W(d,=00). (17 nstable to the formation of an electron Wigner crystal, with

one electron per unit cell. For a large Landau indé&xthe
HereW is a “weight” function: crystal would be highly anisotropic, compressed alongxthe
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— g, [¢] =2 d=
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v

FIG. 4. Scaling dimensions fom=1 electron scattering and
hole Z¢ scattering and electron and hole impurity scattering verti-
ces(dashed linesfor a range of filling factors near* =1/2. For
this calculation the distance to the screening plane was chosen to be
d=10. Electron-scattering vertices are an increasing function of
the filling factor, and hole vertices are a decreasing function of the
filling factor, as discussed in the text. The interaction terms are
relevant for scaling dimensions smaller than 2, while impurity terms
are relevant for scaling dimensions smaller than 1.5. The interedge
scattering rate is enhanced at low energies when the impurity inter-
action scaling dimension is smaller than 1.0. Interaction terms with
m larger than 1 are more relevant, but have bare coupling constants
which are smaller by several orders of magnitude. Interaction terms

~ FIG. 3. Quantum Hall smectic Luttinger model parameters andyith |arger momentum transfers than those discussed here also have
integrands of the expressions for the backscattering interaction scajyych smaller bare coupling constants.

ing dimensions. This plot is for valence Landau-level indéex 2
and screening layer distande=101. g,(q) is in units ofe?/ e, and ] ] ]
the collective excitation velocity for* =0.5, vs(q,=0g,q) is in ~ With A=A,. When the interaction becomes of order 1,
units of e¥/2mek. The values of these units are approximately b> “u=1, the energy gap should be roughly equal to the
200 meV nm and 4.810" m/s, respectively, for 2D electron sys- characteristic Coulomb enerdg, giving

tems formed near the surface of a GaAs crystal. Our scaling dimen-

sion results can be understood in terms of the properties of the

weighting factoraV in the integrals, as discussed in the te(q) Eg(u)= (U/E)YCYME,, (22)

is related to the elastic constants in terms of which the chiral Lut-
tinger model is developed in the text by,,(k,=0,)

= (a/47%1?)g,(q). The large value ofj4(q) for q—0 is due to the
long range of the underlying Coulomb interaction between elec-
trons.

direction, with an aspect ratio proportional d For v* 1.80 - 1
>1/2, though, backscattering across the hole stripes will
dominate, leading to an anisotropic hole Wigner crystal, with ¢ N=2 v'=1/2
one hole per unit cell. In either crystal phase there will, in T

contrast to the smectic case, be an energytgafor single- 175 .
particle excitations. Provided the crystalline order is pinned
by the boundaries, these Wigner crystal phases should have
vanishing dissipative conductivitias,, and o, . However,

the hole Wigner crystal will have an extra Landau-level edge 170 . . .
state. The quantized Hall conductances of electron and hole 0.0 50 13]? 15.0 200

Wigner crystal states will ber,,=[v]e’/h and[ v+ 1]e?/h,

respectively. FIG. 5. Dependence afi=1, v* =1/2 electron and hole back-

Of considerable interest is theagnitudeof the Wigner  scattering amplitude scaling dimensions;¢=A;,=A;) on dis-
crystal gap as a function of*. With a knowledge of the tance between the two-dimensional electron system and the model's
dimensionless backscattering interactianthis gap can be metallic screening plane. Hedgs in units of the magnetic length
estimated by integrating the RG flow equations. SpecificallyFord—0, A approaches 1643, the value which can be calculated

under a RG transformation, the energy gap should rescale &g8alytically for the case of interactions only between nearest-
neighbor chiral edge modes. As explained in the tAxincreases

Eg(u)=b E4(b? 2u), (21)  with d, but only slowly, and is smaller than 2 for arbitrarily large
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107 | . . . We remark that electron and hole Wigner crystal states

i are also the ground states in the Hartree-Fock
approximatior?’'®” In that approximation, however, the
gaps are orders of magnitude largeE.=0.3 e?/el over a
wide range of filling factors. The Hartree-Fock approxima-
tion is expected to be reasonably accurate for the nearly clas-
sical Wigner crystal states which occur in the tailsNo& 1
Landau levels. Evidently quantum fluctuations have a larger
107 | ] importance for thes&l=2 crystal states.

IV. ANISOTROPIC TRANSPORT PROPERTIES

w L Transport nearv* =1/2 in the smectic regime will be
strongly influenced by impurities, which are in fact necessary
to obtainanytransport in the “hard”y direction. The domi-
nant effect will presumably come from impurity scattering
107 ¢ . across electron or hole stripes, with the latter being the
i bottleneck when* <1/2 and the former when* >1/2. For
weak impurity scattering it is possible to examine their ef-
fects perturbatively. Consider, for example, impurity scatter-
ing across electron stripes,

/\ /\ Himpsz En(x)el(Pnt =)t Hc, (23
10 : s s xn

0.30 0.40 0.50 0.60
\Y with §(x) a complex random potential. Takirg,(x) to be

. . . , _uncorrelated and Gaussian,
FIG. 6. Estimated single-particle energy gap of the anisotropic

Wigner crystal stateE,, as a function of partial filling factop* * , _ ,
for a model with an or?:)ital Landau-level indék=2 and a distance [£5 (X)&nr(X") Jens= Dy S(X=X"),
to the screening plane af=10. For this model the bare back-
scattering matrix element vanishes fof ~0.43 and 0.57. These
results were obtained with the choiEe=0.3?/1. The energy gaps
are in units ofe?/ el , which has a typical value- 100 K/kg . Eq/ks

is smaller tham~10 mK, the base temperature scale for a dilution

(24)

a simple RG perturbative in the varianteis possible. One
finds 9D/ ot=(3—2A,)D, with the scaling dimension of the
operatore'(+~¢-) given by

fridge, for 0.4 v* <0.6. E, /kg approaches-1 K, the energy gap _ |7 d(qa) _

9 A= W(q,=0,q). (25
observed on reentrant integer quantum Hall plateausy*¥er0.25 —w 2T
and 0.75.

, . . . Here W is the same*“weight” function as in Eq.(17). The
Wlth U =UuE, the(dimensionfu) backscattering strength. The fjjing factor dependence df, can be understood from con-
v depelndenci ]?f tDe gap e/r21trf)rs both thfl’Orl:gf;NhICh N q siderations similar to those for the backscattering amplitudes
extremely small forn™ near 1/2 because of the long period yetaijeq in the previous section. For 1D noninteracting elec-

of the stripe lattice, and the scaling dimensidnwhich is _ . ;
. ' . tronsA,=1, so that disorder is relevant and eventually leads
m m * * m _ e '
aximal at* = 1/2. (For »* >>1/2 the same applies to back to localization. For the smectic we can estimdig as a

scattering across hole strippsBoth effects conspire to functi  fill *- th it of thi lculati .
strongly reduce the gap magnitude near half-filling. Using unction ot fifing v, E resuft ot this calculation was in
the above estimates, it is possible to obtain tHedepen- cluded in Fig. 4. AF allv' impurity scattering across elther
dence of the gap explicitly. Taking,=0.3?/I, the order of ele_ctron or hole stripes is more relevant than in the noninter-
the maximum correlation energy per electron in a partiallycting electron case. o

filled Landau level, the resulting gap fof=2 andd=10is N the strict zero-temperature limit, we thus expect that
shown in Fig. 6. Notice that the Wigner crystal gap p|um_|mpur|t|es(a|ded by interactionswill ultimately drive local-
mets rapidly to extremely small values nesr= 1/2, drop- ization for all v*, except rightat the »* = 1/2 plateau transi-
ping below the range accessible to dilution fridges over thdion. However, samples in which quantum Hall smectic
filling factor range 0.4 v* <0.6, where anisotropic trans- Physics is observed have extremely weak impurity scatter-
port is observed in low-temperature experiments. In this reing, so that it might be possible to ignore localization effects
gion the Wigner crystal states will be inaccessipiteelted at ~ at accessible temperatures. More specifically, consider the
experimental temperaturesand the anisotropic transport of dimensionless disorder strengb="DI/EZ, with E, the

the smectic phase should be unmasked. Outside this rangépulomb energy scale. Providddi<1, there should be a
the Wigner crystal will be pinned by even weak impurities, large temperature range over which impurity backscattering
resulting in quantized Hall plateaus. Fof =0.3, the gap can be treated perturbatively and localization effects ignored.
values estimated here are typicalbf those found on the To see this, it is convenient to introduce affective
reentrant integer quantum Hall plateaus which bracket théemperature-dependent disorder strength that follows from
anisotropic transport regimes. the RG: Dog(T)=(T/Ey)?*e 3D, which increases upon
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cooling. ProvidedD .«(T) <1, localization effects should be Taking the zero of chemical potential as the center ofrthe

negligible, and Boltzmann transport should be operative. =0 electron stripe, we can thus write
A key parameter in a Boltzmann approach is the impurity _ 2
scattering ratel’, (I'y) across an electrorthole) stripe. M+ =nega+tul2,

Within a simple free-fermion golden-rule calculation, one
: S _=neEa—ul/2. 28

expectsl"2=cDEC (with ¢ an order 1 constapntwhich is _ Kn, _ Ba-u (28)

independent of temperature. But under the RG transformaHere the chemical potential drops across electron and hole

tion the scattering rate rescales as stripes areu andeEja— u, respectively. An electric field,
in the x direction induces a steady flow in momentum space
I'o(D,T)=b T'y(b3 22eD,bT). (26)  which moves each electron stripe to smapeffor E,>0),

) ) ) lowering the chemical potential on right-going edges and
Running the RG until bT=E. gives I'(D,T) raising it on left-going edges. This disequilibrium induces a
=(T/Ec)I'(Dest,Ec). Using the free-fermion result & tunneling current across both electron and hole stripes, which

=E, one has attempts to restore equilibrium:
_ _70 20¢—2 . _— _—
F(T)=CcTDey(T)=Ia(T/Ec)" e “. (27 fin = —eEwpt M, — Pne | Mot - Mn,+'
e
This should be valid provided th&.4<1. For a noninter-
acting 1D electron gad.=1 so thatl', is temperature in- . Mn+—Mn—  Mn—1+— Mn—
dependent. In contrast, Luttinger-liquid effects in the =" T + ™ (29)

guantum-Hall smectic give a temperature dependence to the
Boltzmann Scattering rate_genera”y increasing upon CooiHere we have introduced interedge Scattering times, related
ing. Equivalently, the impurity mean free path varies withto the rates above viB,=1/7, andI'y=1/7,, for tunneling
temperature, in marked contrast to low-temperature metalli@cross electron and hole stripes, respectively. The electric
transport. field E, induces a drift in the wave vector of the electrons in

In the Boltzmann approach to transport in the quantumeach chiral edge modéik=—eE,. In Eq. (29) vf is a
Hall smectic that we develop below, quantum interference‘Fermi velocity,” which relates changes in the edge chemi-
effects between successive interedge impurity backscatteringal potential to wave vectow = du/dk. This velocity is
events are ignored. This is valid providdd, is not large  determined by the “on-site” piece of the smectic elastic con-
compared tol",, whereT', is the electron phase breaking stants asyr=21%D;, (q,=0n=0).
rate. Within a single chiral edge mode, forward scattering |n the steady statg, . =0, so that
interactions will rapidly dephase an electron. A simple per- '
turbative calculation for the electron self-energy is expected ., ;. °eEa
to give the formI' ,=c'Tu?, with u; a dimensionless for- p(7e "+ 1 )= T—h—eEva, (30
ward scattering amplitude ared of order 1. Sincay; is also lating th K he electric fields. Th
of order 1 this implied” ,=c,T. Comparing with Eq(27), relating t eun npwn -pargmetﬁrto the gectrlc lelds. The
one sees that it is thus legitimate to ignore interference becurrent in thex direction is due to the imbalance between
tween successive impurity backscattering events providelft- and right-going electrons in each stripe:
Dei#(T) is not large compared to 1. For temperatures low 2

. ; e’ Ly

enough thatD«(T) is large, quantum interference effgcts_ |X:F (= ule). (32
cannot be neglected, and one expects an onset of localization a

(except rightat »* =1/2). In a strong field, the leading one- |n Eq. (31) the contribution from each stripe is given by the

loop weak-localization effects will not be operative, so thatfamiliar expression for the quantum Hall current, and the

two-loop interference processes will drive the localization. factor in square brackets is the number of electron stripes in
With this preamble in hand, we proceed to develop &, g5mnje with widthL, . The current in they direction is

semlclassu_:al Boltzmann transport theory for thg qua_ntuméqual to the tunneling current across the hole stripes,
Hall smectic phase. Some features of the following discus-

sion are related to the analysis of transport in a periodic el, eEa—pu
potential by Aizuri and VolkoV® We assume that the ly=—p ——
charge-density wave itself is pinned and immobilized by

both the edges of the sample and weak impurities whichyith L, the sample width. The first factor on the right-hand
couple to the electrons within the stripes. In this case, colside of Eq.(32) is the charge per unit energy in a chiral 1D
lective sliding motion of the charge density will be absent,electron system of length, .

and the electrical transport will be dominated by single- Inserting Eq.(30) into Egs.(31) and(32) to eliminateu
particle interedge electron tunneling. It is convenient to chargives the desired expressions for the conductivity matrix:
acterize the nonequilibrium current-carrying state by separate

UFh Th ’ (32)

2
local steady-state chemical potentigls. for left- and right- Uxx:e_ _UFTeTh
going electrons in each stripe. Due to the discrete transla- h a(7e+ )
tional symmetry of the smectic, the steady-state chemical o2 a

potential must increase BE,a upon translation by one pe-

P S 33
riod, with E, the y component of guniform) electric field. Wooh ve(Tet 1) 33
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2 interedge scattering rate upon coolitginceA.,<1 at v*

: =1/2), the resistivity in the hard direction should drop

_ o o _ slowly with cooling whereag,s,should rise.

Inverting the conductivity matrix gives the following expres- |t is interesting to consider the predicted dependence of

sions for the resistivities: the resistivities on the filling factor. Far* <1/2, the elec-
tron stripes are narrower than the hole stripes and a free-

e
Oyx= 7Oy~

[1]+—=

TeT Th

peasy:% 1 a fermion. evaluation of the relaxgtion times would givg
e? ro([v]+1)%+ 7 [v]? VF >r1,. SinceA, decreases and,, increases with increasing

1/2—v*, the relaxation rate ratio is expected to increase be-

h 1 UETeTh yond its free-fermion value at lower temperatures. Fpr

Pr e v+ D24 v @ (34 > 7, we have thapha=(h/e?) (v 7e/a)/[v]”. Sincer, de-

creases ever more rapidly upon cooling for larger-1/2 ,
h 1 the hard resistivity is expected to be large at experimental

Phal=— 5 2([,,]+1)7-e+[,,]7-h, temperatures only over a narrow interval surroundirg
e Te([v]+ 1)+ [ V] =1/2. Backscattering interactions ignored in this Boltzmann

WHETe peasy™ Pxx» Phard=Pyy» ANAPhai= Py transport theory will only tend to enhance this effect, acting

Equation(34) relates the dissipative and Hall resistivities IN CONCert with impurity scattering. _
to the two scattering ratés, andT',,. The dependencies on N the same regime of f2|II|ng factor, with,>7¢, the Hall
temperature and filling factar* enter through these scatter- resistivity approachesh(e?)/[v]. Moreover, one hageasy

ing rates, in the form established above: =(h/€?)/[v]*(veTy/a) in this limit. Thus pessy also de-
creases with 1/2 v*, because of both bare matrix element

and scaling dimension tendencies. Interestingly, fdr
=0.4 the scaling dimension for scattering across hole stripes,
Ay, becomedarger than 1(see Fig. 4. This implies thafl"},

1 _ actually decreases upon cooling in this regime, strongly en-
Fh:T_h:FgO)(kBT/Ec)ZAh g (39 hancing the one-dimensional nature of the electron stripes
and driving localization. But forv* 0.4 one really must
Nflclude the strong effects of electrdhackscatteringinter-
actions which drive the Wigner crystal instability—again,

; . his acts in concert with impurity affects. Upon cooling
energy scale which serves as a high-energy cutoff. The scafjynin this Wigner crystal regime, the dissipative resistivities

. ; , % "
ing dimensionsA. and A, depend sensitively on*, as should rapidly vanish leaving a quantized Hall resistance. It

shown in Fig. 4. As we shall see, these equations describt% .
- ! . llows from particle-hole symmetry that(v*)=7,(1
much of the phenomenolo§y’ of transport in quantum Hall —v*), so simililr conclusionsycan bg reacheéd f)or trhagnsport

stripe states. : .
Remarkably, forv* =1/2 this theory makes two param- proper'gles ap* >1/2. -
eter free quantitative predictions: In Fig. 7, we plot thepeasyand phar filling factor depen-
dencies predicted by this model for]=4 and-correlated
1 disorder model. Here we have tak@m0.00%%/| and E.
)? 5 > (36)  =0.%%1. The disorder strength was chosen to give
[P+ D)%+ [ Phard Peasy= 10 atv* =0.5. Notice thapeas,has a maximum
and at v*=1/2, not the minimum seen in many experiments.
Within the Boltzmann theory this feature depends on the
h 2[v]+1 details of the disorder model used; models with only small
Phall:g ﬁ (37) angle scattering at zero magnetic field tend to give electron
v]+1)°+[v] ; - - i X
relaxation times which decrease and hole relaxation times
Notice that the scattering times have completely dropped outhich increase more rapidly with 1/2v*, changing the
of these expressions. Interestingly, the Hall resistivitywat shape of these curves. In addition, current-path correcfions
=[v]+1/2 is predicted to deviate noticeably frafhe clas-  might be essential in producing the apparggi, minimum
sical valug (h/e?)/([v]+1/2). The most extensive experi- at v* =1/2 in experiments. No plausible disorder model in
mental data are fdrv]=4. In this case, the value predicted this theory giveg,q results which drop to zero as strongly
for the product ofpe,syand ppaq appears to agree with the with increasing 1/2- v* as in experiments; we believe that
published data to within better than a factor of 2, providedbackscattering interactions and localization, both effects ne-
one accounts for the particular current pattappropriate for  glected here, are playing an important role in driving the
the sample geometry. Experimental verification of the pretesistivities to small values away fromt = 1/2.
dicted[ v] dependence of this product would help establish The transport theory described above can be readily gen-
the efficacy of this transport theory. eralized to account for the nonlinear transport features,
At v* =1/2, Eq.(34) predicts a weak temperature depen-which are present experimentally—notably:ét=1/2. The
dence of the dissipative resistivities. Specifically, due tovoltage drop across a stripe, given by=akE /2 at v*
Luttinger-liquid effects which drive aenhancemenof the  =1/2, can be readily incorporated into the RG scaling ap-

1
Pe=— =T (kT/E)? 2,

e

Here the free-fermion scattering rates across electron a
hole stripesI"(?) andI"{”) depend on the impurity scattering
strength(andv*) butnotthe temperatureE, is the Coulomb

PeasyPhard— ( h/e?



5732 A. H. MACDONALD AND M

ATTHEW P. A. FISHER PRB 61

0.10 . . . A similar calculation can be performed for nonlinearities
in the easy axis current. At* =1/2V,=I" |, wherel, is the
easy-direction current. In this casg=vl, is the Hall volt-

0.08 age. It follows that

Vv
g “~18, (40)
~ 006 X
g with an exponenB=2(A,—1). ForN=2 andd=10, we
= obtain 8= —0.48; smaller negative values are found for
Q 0.04 models with more remote screening planes. In this theory the
easy-direction resistivity is suppressed when driven nonlin-
ear with the current, a property which is also consistesith

0.02 experimental findings. We emphasize that these power laws

' hold only in the low-temperature or high-voltage limits; a
careful comparison of the theoretical dependence on voltage
to temperature ratio with experiment could provide a strong

0.00 ——==1 : e i

0.30 040 050 060 test of this transport theory.
AY

FIG. 7. Linear transport coefficients calculated from the Boltz-
mann transport theory foN=2 and d=10, using a model of
S-correlated disorder. The disorder strength was chosen to give
ration of hard to easy direction resistivities equal to 1@%# 0.5,

V. SUMMARY

Recent experiments® have established a consistent set of
®ansport properties for high-mobility two-dimensional elec-
tron systems with high orbital indexN=2) partially filled

and the temperature was chosen to be 100 times smaller than theyndau levels which differ from those in the low orbital
microscopic interaction strength as explained in the text. Interactiony, qex (N<1) fractional quantum Hall regime. At largs
and localization effects neglected in this Boltzmann theory are eXihe dissipative resistivities are large, strongly anisotropic,

pected to strongly suppress these resistivities at low temperatur
outside of the interval 04 v* <0.6.

proach for the scattering rates. Not surprisingly, the resultin

&hd non-linear for 0.4 v—[v]=0.6 within each Landau

level. This anisotropic transport regime is bracketed by re-
gions of reentrant integer quantum Hall plateaus. In this pa-

%er we have presented a theory which is able to account for

dependence on voltage is the same as that on temperatyigs; features of these experiments. The theory starts from

obtained above:
Te~T OV Eg)2he2,

I ~T OV, [E.)?4n 2, (38)
This expression is valid in low-temperature or high-voltage
limits, with kgT<V,.. The nonlinear differential resistivity
in the hard direction can now be obtained by using the ex
pression for the tunneling current across stripes from Eq
(34): 1,=(€’/h)I'VyL,/ve. One thereby obtains

N,

al,

I (39
with an exponentr=2(1—A,)/(2A.—1). Using the value
of A,=0.756 calculated from theory at = 1/2 for the case
[v]=4 andd=10 (see Fig. 4, gives the estimate=0.93.

Calculations for models with more remote screening planes

will give larger values forA, (but always smaller than 1, as
explained aboveand smaller positive values far. Notice

the unidirectional charge-density-waWsmectig state of
Hartree-Fock theor§? in which the electrons reside in peri-
odically spaced stripes with a spontaneously chosen orienta-
tion. Forward and backscattering interactions, neglected in
the Hartree-Fock theory, are included by retaining the low-
energy electron excitations at the stripe edges. These form a
set of coupled 1D chiral modes, easily described with
bosonization techniques. We find th{gtfor smectic states in
quantum Hall systems, the chiral boson degrees of freedom
coincide with stripe position and width degrees of freedom;
(ii) backscattering interactions which drive the system to-
ward electron or hole Wigner crystal states are always rel-
evant, but only below inaccessibly low temperatures in the
anisotropic transport regime; aiiii ) a semiclassical Boltz-
mann transport theory for the smectic state is able to account
for the magnitude of the anisotropic dissipative resistivities
and for the sign of the nonlinearities which appear at higher
transport currents.
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