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Quantum theory of quantum Hall smectics
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We propose a quantum stripe~smectic! coupled-Luttinger-liquid model for the anisotropic states which
occur in two-dimensional electron systems with high-index partial Landau-level filling,n* 5n2@n#. Pertur-
bative renormalization-group calculations establish that interaction terms neglected in this model are relevant
—probably driving the system into an anisotropic Wigner crystal—but for 0.4&n* &0.6 only below tempera-
tures which are outside of the experimentally accessible range. We argue that the Hall conductance of the
ground state flows toward@n#e2/h and (@n#11)e2/h, respectively, on the low- and high-filling-factor sides of
this range, consistent with recent observations. A semiclassical theory of smectic state transport properties,
which incorporates Luttinger-liquid effects in the evaluation of scattering amplitudes, accounts for the magni-
tude of the dissipative resistivities atn* 51/2, for theirn* dependence, and for the observation of nonlineari-
ties of opposite sign in easy and hard direction resistivities.
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I. INTRODUCTION

Recent transport experiments1–3 have established a qual
tative difference between low-energy states of tw
dimensional electron systems with large and small index p
tially filled Landau levels. For Landau-level filling factor
n,4 ~orbital Landau-level indices smaller thanN52), iso-
tropic quantum-Hall fluid states occur at fractional values
n. ForN>2, on the other hand, experiments have discove
regions of strongly anisotropic dissipative transport n
half-odd-integer filling factors, bracketed by reentra
integer-quantum Hall effect regions with Hall conductiviti
@n#(e2/h) and (@n#11)(e2/h). This dependence onN is
presumably due to subtle changes in the effective inte
tions among the electrons of the partially filled Landau lev
In this paper we describe a theory which accounts qua
tively and often semiquantitatively for the principal facts u
covered by this series of experiments.

Following Lilly et al.,1 we start from the assumption tha
the true ground state is close to the unidirectional char
density-wave states proposed forN>2 on the basis of
Hartree-Fock calculations by Koulakovet al.4 and Moessner
and Chalker.5 In Sec. II we derive a model of coupled on
dimensional chiral Luttinger-liquid electron systems for th
state. The derivation provides microscopic expressions
the interaction parameters of the model, which are lo
ranged because of the long range of the underlying Coulo
interaction between electrons. This model neglects smal
terstripe backscattering terms. In Sec. III we demonstrate
these terms are technically relevant, but near half-fill
(0.4&n* &0.6) only at inaccessibly low temperatures. O
side this range, however, observable Wigner crystal insta
ties are predicted. In Sec. III we present an estimate of
n* dependence of the temperature below which Wigner c
tal states are expected to form. Transport physics in the
teresting stripe state regime nearn* 51/2 is considered in
PRB 610163-1829/2000/61~8!/5724~10!/$15.00
-
r-

f
d
r
t

c-
l.
-

e-

or
g
b

n-
at
g
-
li-
e

s-
n-

Sec. IV. We present a semiclassical theory in wh
Luttinger-liquid effects are incorporated into the evaluati
of scattering amplitudes, and which describes experiment1–3

semiquantitatively. This theory makes a number
parameter-free quantitative predictions which are in good
cord with observations. In particular, the product of easy a
hard direction resistivities in this theory is independent
disorder strength and has a value which agrees well w
experiments. Moreover, Luttinger-liquid effects lead to
natural explanation of the nonlinear transport effects
served experimentally.

Several recent papers6–9 have explored the properties o
interacting electron systems in higher Landau levels. T
basic framework of our theory has much in common with t
work of Fradkin and Kivelson,10 whose approach intrigu
ingly suggests11 a similarity between the strong correlatio
physics of quantum-Hall and doped Mott insulator system
These authors have emphasized the intimate relation
~based on shared symmetry properties! between unidirec-
tional charge-density-wave states and smectic liquid cry
states. We have followed their lead in referring to the ani
tropic high-Landau-level states as quantum Hall smect
Both theories identify the electron stripes as one-dimensio
electron systems, and use bosonization techniques to
scribe the low-energy exctiations of their left- and righ
going states. The most important difference in our work
that stripe position and shape fluctuations are identified
croscopically with the same low-energy excitations. They
not separate low-energy degrees of freedom. Our theory
be developed in terms of either standard Luttinger-liquid b
son fields or equivalently in terms of stripe width and po
tion fields. We find one set of gapless collective modes
quantum Hall smectics, which encompasses all of the lo
energy degrees of freedom. A physical consequence of
difference is that in our theory, the quantum Hall smec
ground state isalways unstableto the formation of either an
5724 ©2000 The American Physical Society
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electron or a hole Wigner crystal, depending on the sign
1/22n* .

II. QUANTUM SMECTIC MODEL

The smectic state of Hartree-Fock theory4,5 is a single
Slater determinant with alternating occupied and em
guiding-center occupation-number stripes as illustrated s
matically in Fig. 1. These states spontaneously break tr
lational and rotational symmetry. For largeN they tend to
have lower energy than isotropic fluid states, because
electrostatic energy penalty, which usually thwarts the ph
separation11 favored by exchange interactions and by ele
tronic correlations, is small4,5 when the density wave perio
is comparable to the cyclotron orbit diameters of indexN

FIG. 1. Schematic illustration of the Hartree-Fock theory sm
tic state. This state is a local minimum of the Hartree-Fock ene
functional for any value ofn* and any Landau-level index. A
filling factor n* , the occupied Landau-gauge single-particle sta
have guiding centers in stripes of widthan* , shaded in this figure
which repeat with perioda. The state can be viewed as consisting
periodically repeated electron stripes or hole stripes. The Hart
Fock single-particle eigenvalues lie below the Fermi level for gu
ing centers in the stripes, and above the Fermi level for guid

centers outside the stripes. We take thex̂ direction to be along the

stripes and theŷ direction to be across the stripes. In a magne
field, the guiding center is related to the wave vector byk5y/ l 2,
wherel is the magnetic length. Each stripe has right- and left-go
Hartree-Fock quasiparticles at its top and bottom edges, res
tively. In the Luttinger-liquid theory for the one-dimension
stripes, the local Fermi momentum for left- and right-going state
each stripe is elevated to a quantum field. Because of the conne
between guiding center and momentum, these fields also des
the thermal and quantum fluctuations of the shapes and positio
the electron and hole stripes. The number of right- and left-go
states in any channel is related to its Fermi wave vector byrn,6

5kF,6 /2p. The strongest momentum-conserving interaction ter
not included in the noninteracting boson limit of the Luttinge
liquid theory are those in which electrons scatter from left- to rig
going states in one electron stripe, or hole stripe, and from righ
left-going states in a different stripe of the same type.
f

y
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s-
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electrons. We can consider these states to be compose
either electron or hole stripes with right- and left-going qu
siparticles at opposite edges.

Small fluctuations in the positions and shapes of
stripes can be described in terms of particle-hole excitati
near the stripe edges. The residual interactions, ignore
Hartree-Fock theory, which scatter into these low-ene
states fall into two classes: ‘‘forward’’ scattering interactio
which conserve the number of electrons on each edge
every stripe, and ‘‘backward’’ scattering processes which
not. The latter processes involve large momentum tran
and will be smaller in magnitude~see below!. The quantum
smectic model described in this section includes forw
scattering only. These interactions are bilinear in the o
dimensional~1D! electron densities associated with the c
ral currents at the stripe edges,rna(x), with a56. As ex-
plained in Fig. 1, these densities are proportional to
‘‘elastic’’ field una(x)5a2p l 2rna(x) @with l 5(\c/eB)1/2

the magnetic length#, which measures the transverse d
placement of a stripe edge relative to its presumed equ
rium position,yn6

0 5a(n6n* /2). The quadratic Hamiltonian
which describes theclassical energetics for small fluctua
tions has the general form

H05
1

2l 2Ex,x8
(
n,n8

una~x!Dab~x2x8;n2n8!un8b~x8!

5
1

2l 2Eq
ua~2q!Dab~q!ub~q!, ~1!

where*q[*d2q/(2p)2. Here theqy integral is over the in-
terval (2p/a,p/a), and a high-momentum cutoffL;1/l is
implicit on qx .

Symmetry considerations further constrain the form of
elastic kernel. In position space the kernel must be real
symmetric, so thatDab(q)5Dab* (2q)5Dba* (q). This im-
plies D21(q)5D12* (q) and ImDaa(q)50. Parity invari-
ance ~under x,n,1↔2x,2n,2), implies, moreover,
D21(q)5D22(q). Thus the elastic kernel is fully specifie
by one real functionD21(q) and one complex function
D12(q). In the g-ology notation of the 1D electron-ga
literature,12,13 these amplitudes correspond tog4 andg2, re-
spectively. Finally, provided the broken translational and
tational invariance in the smectic occur spontaneously,
classical Hamiltonian must be invariant underuna(x)
→una(x)1const and ]xuna(x)→]xuna(x)1const. This
symmetry determines the form ofD(q)5(abDab(q) at
small wave vector,

D~q!5Kxqx
41Kyqy

21 . . . , ~2!

the characteristic form for smectic elasticity.
A quantum theory of the quantum Hall smectic is ob

tained by imposing Kac-Moody commutation relations
the chiral densities:

@rna~x!,rn8b~x8!#5
i

2p
ada,bdn,n8]xd~x2x8!. ~3!

This commutator together withH0 fully specifies the quan-
tum dynamics. Electron operators in the chiral edge mo
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are related to the 1D densities via the usual bosonic ph
fieldscna;eifna, with rna5a]xfna/2p. It is a notable fea-
ture of the strong-field regime that the Luttinger-liqu
bosonic fieldsfn,6(x) fully determine the stripe position
and shape fluctuations. In terms of the bosonic fields,
local center of thenth stripe is

Yn~x!5an1
un,1~x!1un,2~x!

2

5an1
l 2@]xfn1~x!1]xfn2~x!#

2
, ~4!

and the local width of thenth stripe is

Wn~x!5an* 1un,1~x!2un,2~x!

5an* 1 l 2@]xfn1~x!2]xfn2~x!#. ~5!

We also remark that even thoughH0 has a quadratic form
there is no limit in which a free fermion description of th
smectic @with Dab(n);dabdn0] is valid. The interactions
which are responsible for the broken symmetry play an
sential role.

Quantum properties of the smectic can be computed f
the imaginary-time action,

S05E
x,t

1

4p (
n,a

ia]tfn,a]xfn,a1E
t
H0

5
1

2Eq,v
fa~2q,2v!Ma,b~q,v!fb~q,v!, ~6!

where, in an obvious matrix notation,

M ~q,v!5~ ivqx/2p!sz1~qxl !
2D~q!. ~7!

Correlation functions follow from Wick’s theorem and th
momentum-space correlator^fafb&5M21, with

M21~q,v!5szM~q,2v!sz /detM~q,v!. ~8!

Due to the spontaneous breaking of translational and
tational symmetry in the smectic, one expects gapless G
stone modes at zero wave vector. The collective-mode
persion is readily obtained by setting detM(q,ivq)50,
giving vq5v(q)qx , with a velocity

v~q!5~2p l 2!@D21
2 ~q!2uD12~q!u2#1/2. ~9!

At small wave vectors, the mode velocity vanishes:v2(q)
;qy

21qx
4 . Internal consistency requires that these s

modes donot restore the symmetries assumed to have b
broken in the smectic state. To examine this we consider
complex smectic order parameter,F;eiQu, which describes
the charge-density orderdr5ReFeiQy with Q52p/a the
ordering wave vector. The average^F& can be readily com-
puted using the quantum harmonic theory, and atT50 one
finds ^F&;exp(2Q2I), with

I;E
q
uqxuD21~q!/v~q!. ~10!

With D21 nonzero atq50, the integrals converge at smallq,
so that the Debye-Waller factor (e2Q2I) and smectic order
se
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parameter are nonvanishing. Evidently, these harmo
quantum fluctuations are insufficient to destroy the brok
symmetries in the smectic.14

The effect of the neglected backscattering interactio
considered in Sec. III, depends sensitively on the elastic c
stantsat qx50. In this limit the relevant excited states a
simply Slater determinants with straight stripe edges d
placed from those of the Hartree-Fock theory ground st
By evaluating the expectation value of the microsco
Hamiltonian in a state with arbitrary stripe edge location
we find that

Dab~qx50,qy!5dabD01ab
a

4p2l 2

3(
n

eiqyanG~yna
0 2y0b

0 !, ~11!

where the value of the constantD0 is such that(abDab(q
50)50. HereG(y) is the interaction potential between tw
electrons located in guiding center states a distancey apart:

G~y!5U~0,y/ l 2!2U~y/ l 2,0!, ~12!

U~q,k!5E dp

2p
e2(q21p2) l 2/2Veff

N ~q,p!e2 ipkl2. ~13!

The two terms in Eq.~12! are direct and exchange contribu
tions. In Eq.~13!, Veff

N (q,p) is the Fourier transform of the
effective 2D electron interaction which incorporates for
factors9 dependent on the Landau-level indexN and the
ground subband wave function of the host semiconduc
heterojunction or quantum well. The smectic states h
relatively long periods proportional to the indexN cyclotron
orbit radii. Explicit calculations4,9 show thata*6l for N
>2. It follows that the exchange contribution toG(y) is
small, and thatG(y) decreases with stripe separation in t
relevant range. With unscreened Coulomb interactions,G(y)
diverges logarithmically at largey, so it is convenient to
introduce a metallic screening plane. This changes
large-y behavior toy22, making the sum overn in Eq. ~11!
convergent. As shown below, however, we do not find t
our conclusions change qualitatively when a screening pl
is absent. In Fig. 2 we plotG(y) for N52 for the cases of
thin 2D electron systems separated from metallic screen
planes byd5 l andd55l . Note thatG(y) is monotonically
decreasing with positive curvature in the range of interes

III. BACKSCATTERING INTERACTIONS

We now consider the ‘‘backward’’ scattering electron i
teractions, ignored above. The bare matrix elements for th
interactions will fall off exponentially with increasing mo
mentum transfer and with increasing separation between
interacting stripes, so we choose here to focus on the sm
est momentum transfer. We explicitly discuss only the c
of backscattering15 across electron stripes and across h
stripes, as illustrated schematically in Fig. 1. For a pair
stripes separated byma, backscattering across an electro
stripe can be expressed in a bosonized form
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S15E
x,t

(
n,m

um$exp@ iun,m~x,t!#1H.c.%, ~14!

where

un,m5~fn,12fn,2!2~fn1m,12fn1m,2!. ~15!

Hole backscattering takes a similar form. Since the effect
backscattering across electron and hole stripes are equiv
under a particle-hole transformation (n* ↔12n* ), we focus
exclusively on the former.

The effects of backscattering can be deduced by im
menting a simple renormalization-group~RG! scheme. Spe-
cifically, we integrate out ‘‘fast’’ boson modesf in a shell,
with L/b,uqxu,L andv,qy unrestricted, and then resca
qx85bqx andv85bv leavingqy unchanged. With an appro
priate rescaling off, this RG transformation leaves the ha
monic smectic actionS0 invariant. Stability of the smectic
fixed point in the presence of backscattering can be teste
considering the lowest order RG flow equation

]um /]t5~22Dm!um , ~16!

with t5 ln b. Using Eqs.~15! and ~8!, we find the following
expression for the scaling dimension:

Dm54E
2p

p d~qa!

2p
sin2~mqa/2!W~qx50,q!. ~17!

HereW is a ‘‘weight’’ function:

FIG. 2. Interaction matrix elementG(y) vs dimensionless sepa
ration y/ l 5ql for the case of interactions in a zero-width 2D lay
screened by a parallel metallic layer and with a Landau-level in
N52. d is the distance to the metallic layer, andG is in units of
e2/e'200 meV nm for 2D electron systems formed near the s
face of a GaAs crystal. The Luttinger model g-ology parame
which characterizes interactions between stripes separated byna in
the 2D electron layer is;G(na). G(y) is simply related to the
elastic constants in terms of which the chiral Luttinger mode
developed in the text. Metallic screening layers are sometim
present in experimental samples, but are introduced here main
a convenience sinceG varies logarithmically withy at largey if
they are not present and various sums over stripe indices do
converge. The limitd→` can be taken at the end of the calculatio
if appropriate.G vanishes fory→0 because its direct and exchan
contributions cancel.
of
ent

-

by

W~q!5
@D21~q!1ReD12~q!#

@D21
2 ~q!2uD12~q!u2#1/2

. ~18!

If the scaling dimensionDm,2, the smectic phase isun-
stable. Fortunately,Dm only depends on the elastic constan
at qx50, so that we can use the microscopic expressi
discussed at the end of Sec. II for its evaluation.

If the weight functionW(qy)<1 in Eq. ~17!, then Dm
,2, and backscattering is relevant. To understand the de
dence ofW(qy) on filling factor it is useful to consider
qya50,p, so thatD12 is real and the expression forW
simplifies. Forq50, smectic elasticity impliesD211D12

50, so thatW(qy50)50. Whenqya5p, one has

D12~qya5p!5(
n

~21!na

4p2l 2
$G@an1a~12n* !#

2G~an1an* !%. ~19!

Note thatD12(qya5p) vanishes, and the weight functio
equals 1 forn* 51/2. ProvidedG(y) is monotonically de-
creasing with positive curvature fory*a, D12(qyp) will
be negative for alln* ,1/2, implyingW(qya5p),1. If the
weight function is monotonic inqya, the backscattering in-
teractions will thus be relevant. Using Eqs.~11! and~12!, we
have computedW(qy) for a range of values ofN, n* , andd,
and have always found that it is indeed monotonic; the ty
cal behavior is illustrated in Fig. 3. For the sake of defini
ness we have ignored the finite width of the ground subb
wave function in these calculations. Numerically calculat
scaling dimensions form51, N52, andd510l are plotted
in Fig. 4. Forn* .1/2, W(qya5p).1, so that the electron
backscattering amplitude scaling dimension increases, e
tually crossing above 2, as seen in Fig. 4. The dependenc
the calculated scaling dimension on the distance to
screening plane is illustrated in Fig. 5 for the casesN52 and
n* 50.5. As the distance to the screening plane increases
weighting function approaches 1 more rapidly asqya goes
from 0 top. However, the values atqya50,p are fixed at 0
and 1, respectively, and the curves are monotonic at all
ues ofd. As a result the scaling dimension is only weak
dependent ond, and the interaction remains relevant for a
finite value ofd.

The most significant conclusion which follows from th
calculation is that forall n* , backscattering across eithe
electron or hole stripes is relevant, and will destabilize
smectic ground state. The ultimate fate of the ground s
will presumably depend on the relative magnitudes of
various backscattering interactions. For the interactions c
sidered above, the bare coupling constants will fall rapi
with increasing stripe separationm,

um;U~an/ l 2,ma/ l 2!, ~20!

so thatm51 will dominate. If each electron stripe is viewe
as a 1D conductor, this is a 2kF backscattering interaction
which tends to drive10 charge orderingalong the stripe, with
a wavelength corresponding to the 1D electron spacing.
thus strongly suspect that forn* ,1/2 the smectic will be
unstable to the formation of an electron Wigner crystal, w
one electron per unit cell. For a large Landau indexN, the
crystal would be highly anisotropic, compressed along thx
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5728 PRB 61A. H. MACDONALD AND MATTHEW P. A. FISHER
direction, with an aspect ratio proportional toN. For n*
.1/2, though, backscattering across the hole stripes
dominate, leading to an anisotropic hole Wigner crystal, w
one hole per unit cell. In either crystal phase there will,
contrast to the smectic case, be an energy gapEg for single-
particle excitations. Provided the crystalline order is pinn
by the boundaries, these Wigner crystal phases should
vanishing dissipative conductivitiessxx andsyy . However,
the hole Wigner crystal will have an extra Landau-level ed
state. The quantized Hall conductances of electron and
Wigner crystal states will besxy5@n#e2/h and@n11#e2/h,
respectively.

Of considerable interest is themagnitudeof the Wigner
crystal gap as a function ofn* . With a knowledge of the
dimensionless backscattering interactionu, this gap can be
estimated by integrating the RG flow equations. Specifica
under a RG transformation, the energy gap should resca

Eg~u!5b21Eg~b22Du!, ~21!

FIG. 3. Quantum Hall smectic Luttinger model parameters a
integrands of the expressions for the backscattering interaction
ing dimensions. This plot is for valence Landau-level indexN52
and screening layer distanced510l . g4(q) is in units ofe2/e, and
the collective excitation velocity forn* 50.5, vS(qx50,qyq) is in
units of e2/2pe\. The values of these units are approximate
200 meV nm and 4.83104 m/s, respectively, for 2D electron sys
tems formed near the surface of a GaAs crystal. Our scaling dim
sion results can be understood in terms of the properties of
weighting factorsW in the integrals, as discussed in the text.g4(q)
is related to the elastic constants in terms of which the chiral L
tinger model is developed in the text byD21(kx50,q)
5(a/4p2l 2)g4(q). The large value ofg4(q) for q→0 is due to the
long range of the underlying Coulomb interaction between e
trons.
ill
h

d
ve

e
le

,
as

with D5D1. When the interaction becomes of order
b22Du51, the energy gap should be roughly equal to t
characteristic Coulomb energyEc , giving

Eg~u!5~U/Ec!
1/(22D)Ec , ~22!

d
al-

n-
e

t-

-

FIG. 4. Scaling dimensions form51 electron scattering and
hole 2kF scattering and electron and hole impurity scattering ve
ces ~dashed lines! for a range of filling factors nearn* 51/2. For
this calculation the distance to the screening plane was chosen
d510l . Electron-scattering vertices are an increasing function
the filling factor, and hole vertices are a decreasing function of
filling factor, as discussed in the text. The interaction terms
relevant for scaling dimensions smaller than 2, while impurity ter
are relevant for scaling dimensions smaller than 1.5. The intere
scattering rate is enhanced at low energies when the impurity in
action scaling dimension is smaller than 1.0. Interaction terms w
m larger than 1 are more relevant, but have bare coupling const
which are smaller by several orders of magnitude. Interaction te
with larger momentum transfers than those discussed here also
much smaller bare coupling constants.

FIG. 5. Dependence ofm51, n* 51/2 electron and hole back
scattering amplitude scaling dimensions (D1,e5D1,h5D1) on dis-
tance between the two-dimensional electron system and the mo
metallic screening plane. Hered is in units of the magnetic lengthl.
For d→0, D approaches 16/3p, the value which can be calculate
analytically for the case of interactions only between neare
neighbor chiral edge modes. As explained in the text,D increases
with d, but only slowly, and is smaller than 2 for arbitrarily larged.



e

d

-

ng

ll

m

th
-
re

f
n
s

th

tes
ck

e

a-
las-

ger

ary

g
the

ef-
er-

-
des
ec-
ds

-
r
ter-

at

tic
ter-
cts
the

ing
ed.

om

p

-

on

PRB 61 5729QUANTUM THEORY OF QUANTUM HALL SMECTICS
with U5uEc the~dimensionful! backscattering strength. Th
n* dependence of the gap enters both throughU, which is
extremely small forn* near 1/2 because of the long perio
of the stripe lattice, and the scaling dimensionD, which is
maximal atn* 51/2. ~For n* .1/2 the same applies to back
scattering across hole stripes.! Both effects conspire to
strongly reduce the gap magnitude near half-filling. Usi
the above estimates, it is possible to obtain then* depen-
dence of the gap explicitly. TakingEc50.3e2/ l , the order of
the maximum correlation energy per electron in a partia
filled Landau level, the resulting gap forN52 andd510l is
shown in Fig. 6. Notice that the Wigner crystal gap plu
mets rapidly to extremely small values nearn* 51/2, drop-
ping below the range accessible to dilution fridges over
filling factor range 0.4&n* &0.6, where anisotropic trans
port is observed in low-temperature experiments. In this
gion the Wigner crystal states will be inaccessible~melted at
experimental temperatures!, and the anisotropic transport o
the smectic phase should be unmasked. Outside this ra
the Wigner crystal will be pinned by even weak impuritie
resulting in quantized Hall plateaus. Forn* 50.3, the gap
values estimated here are typical1,2 of those found on the
reentrant integer quantum Hall plateaus which bracket
anisotropic transport regimes.

FIG. 6. Estimated single-particle energy gap of the anisotro
Wigner crystal state,Eg , as a function of partial filling factorn*
for a model with an orbital Landau-level indexN52 and a distance
to the screening plane ofd510l . For this model the bare back
scattering matrix element vanishes forn* ;0.43 and 0.57. These
results were obtained with the choiceEc50.3e2/ l . The energy gaps
are in units ofe2/e l , which has a typical value;100 K/kB . Eg /kB

is smaller than;10 mK, the base temperature scale for a diluti
fridge, for 0.4&n* &0.6. Eg /kB approaches;1 K, the energy gap
observed on reentrant integer quantum Hall plateaus, forn* ;0.25
and 0.75.
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We remark that electron and hole Wigner crystal sta
are also the ground states in the Hartree-Fo
approximation.9,10,17 In that approximation, however, th
gaps are orders of magnitude larger;Ec.0.3 e2/e l over a
wide range of filling factors. The Hartree-Fock approxim
tion is expected to be reasonably accurate for the nearly c
sical Wigner crystal states which occur in the tails ofN<1
Landau levels. Evidently quantum fluctuations have a lar
importance for theseN>2 crystal states.

IV. ANISOTROPIC TRANSPORT PROPERTIES

Transport nearn* 51/2 in the smectic regime will be
strongly influenced by impurities, which are in fact necess
to obtainany transport in the ‘‘hard’’y direction. The domi-
nant effect will presumably come from impurity scatterin
across electron or hole stripes, with the latter being
bottleneck whenn* ,1/2 and the former whenn* .1/2. For
weak impurity scattering it is possible to examine their
fects perturbatively. Consider, for example, impurity scatt
ing across electron stripes,

Himp5E
x
(

n
jn~x!ei (fn12fn2)1H.c., ~23!

with j(x) a complex random potential. Takingjn(x) to be
uncorrelated and Gaussian,

@jn* ~x!jn8~x8!#ens5Ddnn8d~x2x8!, ~24!

a simple RG perturbative in the varianceD is possible. One
finds ]D/]t5(322De)D, with the scaling dimension of the
operatorei (f12f2) given by

De5E
2p

p d~qa!

2p
W~qx50,q!. ~25!

Here W is the same‘‘weight’’ function as in Eq. ~17!. The
filling factor dependence ofDe can be understood from con
siderations similar to those for the backscattering amplitu
detailed in the previous section. For 1D noninteracting el
tronsDe51, so that disorder is relevant and eventually lea
to localization. For the smectic we can estimateDe as a
function of filling n* ; the result of this calculation was in
cluded in Fig. 4. At alln* impurity scattering across eithe
electron or hole stripes is more relevant than in the nonin
acting electron case.

In the strict zero-temperature limit, we thus expect th
impurities~aided by interactions! will ultimately drive local-
ization for alln* , except rightat then* 51/2 plateau transi-
tion. However, samples in which quantum Hall smec
physics is observed have extremely weak impurity scat
ing, so that it might be possible to ignore localization effe
at accessible temperatures. More specifically, consider
dimensionless disorder strengthD5Dl /Ec

2 , with Ec the
Coulomb energy scale. ProvidedD!1, there should be a
large temperature range over which impurity backscatter
can be treated perturbatively and localization effects ignor
To see this, it is convenient to introduce aneffective
temperature-dependent disorder strength that follows fr
the RG: Deff(T)5(T/Ec)

2De23D, which increases upon

ic
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cooling. ProvidedDeff(T),1, localization effects should b
negligible, and Boltzmann transport should be operative.

A key parameter in a Boltzmann approach is the impu
scattering rateGe (Gh) across an electron~hole! stripe.
Within a simple free-fermion golden-rule calculation, o
expectsGe

05cDEc ~with c an order 1 constant!, which is
independent of temperature. But under the RG transfor
tion the scattering rate rescales as

Ge~D,T!5b21Ge~b322DeD,bT!. ~26!

Running the RG until bT5Ec gives G(D,T)
5(T/Ec)G(Deff ,Ec). Using the free-fermion result atT
5Ec , one has

Ge~T!5cTDeff~T!5Ge
0~T/Ec!

2De22. ~27!

This should be valid provided thatDeff,1. For a noninter-
acting 1D electron gasDe51 so thatGe is temperature in-
dependent. In contrast, Luttinger-liquid effects in t
quantum-Hall smectic give a temperature dependence to
Boltzmann scattering rate—generally increasing upon co
ing. Equivalently, the impurity mean free path varies w
temperature, in marked contrast to low-temperature meta
transport.

In the Boltzmann approach to transport in the quant
Hall smectic that we develop below, quantum interferen
effects between successive interedge impurity backscatte
events are ignored. This is valid provided,Ge is not large
compared toGf , whereGf is the electron phase breakin
rate. Within a single chiral edge mode, forward scatter
interactions will rapidly dephase an electron. A simple p
turbative calculation for the electron self-energy is expec
to give the formGf5c8Tuf

2, with uf a dimensionless for-
ward scattering amplitude andc8 of order 1. Sinceuf is also
of order 1 this impliesGf5cfT. Comparing with Eq.~27!,
one sees that it is thus legitimate to ignore interference
tween successive impurity backscattering events provi
Deff(T) is not large compared to 1. For temperatures l
enough thatDeff(T) is large, quantum interference effec
cannot be neglected, and one expects an onset of localiz
~except rightat n* 51/2). In a strong field, the leading one
loop weak-localization effects will not be operative, so th
two-loop interference processes will drive the localization

With this preamble in hand, we proceed to develop
semiclassical Boltzmann transport theory for the quantu
Hall smectic phase. Some features of the following disc
sion are related to the analysis of transport in a perio
potential by Aizuri and Volkov.18 We assume that the
charge-density wave itself is pinned and immobilized
both the edges of the sample and weak impurities wh
couple to the electrons within the stripes. In this case, c
lective sliding motion of the charge density will be abse
and the electrical transport will be dominated by sing
particle interedge electron tunneling. It is convenient to ch
acterize the nonequilibrium current-carrying state by sepa
local steady-state chemical potentialsmn6 for left- and right-
going electrons in each stripe. Due to the discrete tran
tional symmetry of the smectic, the steady-state chem
potential must increase byeEya upon translation by one pe
riod, with Ey the y component of a~uniform! electric field.
y
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Taking the zero of chemical potential as the center of thn
50 electron stripe, we can thus write

mn,15neEya1m/2,

mn,25neEya2m/2. ~28!

Here the chemical potential drops across electron and
stripes arem andeEya2m, respectively. An electric fieldEx

in the x̂ direction induces a steady flow in momentum spa
which moves each electron stripe to smallery ~for Ex.0),
lowering the chemical potential on right-going edges a
raising it on left-going edges. This disequilibrium induces
tunneling current across both electron and hole stripes, wh
attempts to restore equilibrium:

ṁn,152eExvF1
mn,22mn,1

te
1

mn11,22mn,1

th
,

ṁn,25eExvF1
mn,12mn,2

te
1

mn21,12mn,2

th
. ~29!

Here we have introduced interedge scattering times, rela
to the rates above viaGe51/te andGh51/th , for tunneling
across electron and hole stripes, respectively. The ele
field Ex induces a drift in the wave vector of the electrons
each chiral edge mode,\ k̇52eEx . In Eq. ~29! vF is a
‘‘Fermi velocity,’’ which relates changes in the edge chem
cal potential to wave vector:vF5]m/]k. This velocity is
determined by the ‘‘on-site’’ piece of the smectic elastic co
stants as,vF52p l 2D21(qx50,n50).

In the steady stateṁn,650, so that

m~te
211th

21!5
eEya

th
2eExvF , ~30!

relating the unknown parameterm to the electric fields. The
current in thex̂ direction is due to the imbalance betwee
left- and right-going electrons in each stripe:

I x5
e2

h FLy

a G~2m/e!. ~31!

In Eq. ~31! the contribution from each stripe is given by th
familiar expression for the quantum Hall current, and t
factor in square brackets is the number of electron stripe
a sample with widthLy . The current in theŷ direction is
equal to the tunneling current across the hole stripes,

I y5
eLx

vFh

eEya2m

th
, ~32!

with Lx the sample width. The first factor on the right-han
side of Eq.~32! is the charge per unit energy in a chiral 1
electron system of lengthLx .

Inserting Eq.~30! into Eqs.~31! and ~32! to eliminatem
gives the desired expressions for the conductivity matrix

sxx5
e2

h

vFteth

a~te1th!
,

syy5
e2

h

a

vF~te1th!
, ~33!
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syx52sxy5
e2

h S @n#1
te

te1th
D .

Inverting the conductivity matrix gives the following expre
sions for the resistivities:

reasy5
h

e2

1

te~@n#11!21th@n#2

a

vF

rhard5
h

e2

1

te~@n#11!21th@n#2

vFteth

a
~34!

rhall5
h

e2

1

te~@n#11!21th@n#2
~@n#11!te1@n#th ,

wherereasy5rxx , rhard5ryy , andrhall5rxy .
Equation~34! relates the dissipative and Hall resistivitie

to the two scattering ratesGe andGh . The dependencies o
temperature and filling factorn* enter through these scatte
ing rates, in the form established above:

Ge5
1

te
5Ge

(0)~kBT/Ec!
2De22,

Gh5
1

th
5Gh

(0)~kBT/Ec!
2Dh22. ~35!

Here the free-fermion scattering rates across electron
hole stripesGe

(0) andGh
(0) depend on the impurity scatterin

strength~andn* ) but not the temperature.Ec is the Coulomb
energy scale which serves as a high-energy cutoff. The s
ing dimensionsDe and Dh depend sensitively onn* , as
shown in Fig. 4. As we shall see, these equations desc
much of the phenomenology1–3 of transport in quantum Hal
stripe states.

Remarkably, forn* 51/2 this theory makes two param
eter free quantitative predictions:

reasyrhard5~h/e2!2
1

$~@n#11!21@n#2%2
~36!

and

rhall5
h

e2

2@n#11

~@n#11!21@n#2
. ~37!

Notice that the scattering times have completely dropped
of these expressions. Interestingly, the Hall resistivity an
5@n#11/2 is predicted to deviate noticeably from~the clas-
sical value! (h/e2)/(@n#11/2). The most extensive exper
mental data are for@n#54. In this case, the value predicte
for the product ofreasy and rhard appears to agree with th
published data to within better than a factor of 2, provid
one accounts for the particular current paths16 appropriate for
the sample geometry. Experimental verification of the p
dicted @n# dependence of this product would help establ
the efficacy of this transport theory.

At n* 51/2, Eq.~34! predicts a weak temperature depe
dence of the dissipative resistivities. Specifically, due
Luttinger-liquid effects which drive anenhancementof the
nd

al-

be

ut

d

-
h

-
o

interedge scattering rate upon cooling~sinceDe/h,1 at n*
51/2), the resistivity in the hard direction should dro
slowly with cooling whereasreasyshould rise.

It is interesting to consider the predicted dependence
the resistivities on the filling factor. Forn* ,1/2, the elec-
tron stripes are narrower than the hole stripes and a f
fermion evaluation of the relaxation times would giveth

.te . SinceDe decreases andDh increases with increasing
1/22n* , the relaxation rate ratio is expected to increase
yond its free-fermion value at lower temperatures. Forth

@te we have thatrhard5(h/e2)(vFte /a)/@n#2. Sincete de-
creases ever more rapidly upon cooling for larger 1/22n* ,
the hard resistivity is expected to be large at experime
temperatures only over a narrow interval surroundingn*
51/2. Backscattering interactions ignored in this Boltzma
transport theory will only tend to enhance this effect, acti
in concert with impurity scattering.

In the same regime of filling factor, withth@te , the Hall
resistivity approaches (h/e2)/@n#. Moreover, one hasreasy

5(h/e2)/@n#2(vFth /a) in this limit. Thus reasy also de-
creases with 1/22n* , because of both bare matrix eleme
and scaling dimension tendencies. Interestingly, forn*
&0.4 the scaling dimension for scattering across hole strip
Dh , becomeslarger than 1~see Fig. 4!. This implies thatGh

actually decreases upon cooling in this regime, strongly
hancing the one-dimensional nature of the electron stri
and driving localization. But forn* &0.4 one really must
include the strong effects of electron~backscattering! inter-
actions which drive the Wigner crystal instability—agai
this acts in concert with impurity affects. Upon coolin
within this Wigner crystal regime, the dissipative resistiviti
should rapidly vanish leaving a quantized Hall resistance
follows from particle-hole symmetry thatte(n* )5th(1
2n* ), so similar conclusions can be reached for transp
properties atn* .1/2.

In Fig. 7, we plot thereasyandrhard filling factor depen-
dencies predicted by this model for@n#54 andd-correlated
disorder model. Here we have takenT50.003e2/ l and Ec

50.3e2/ l . The disorder strength was chosen to gi
rhard/reasy510 atn* 50.5. Notice thatreasyhas a maximum
at n* 51/2, not the minimum seen in many experimen
Within the Boltzmann theory this feature depends on
details of the disorder model used; models with only sm
angle scattering at zero magnetic field tend to give elect
relaxation times which decrease and hole relaxation tim
which increase more rapidly with 1/22n* , changing the
shape of these curves. In addition, current-path correctio16

might be essential in producing the apparentreasyminimum
at n* 51/2 in experiments. No plausible disorder model
this theory givesrhard results which drop to zero as strong
with increasing 1/22n* as in experiments; we believe tha
backscattering interactions and localization, both effects
glected here, are playing an important role in driving t
resistivities to small values away fromn* 51/2.

The transport theory described above can be readily g
eralized to account for the nonlinear transport featur
which are present experimentally—notably atn* 51/2. The
voltage drop across a stripe, given byVy5aEy/2 at n*
51/2, can be readily incorporated into the RG scaling a
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proach for the scattering rates. Not surprisingly, the resul
dependence on voltage is the same as that on temper
obtained above:

Ge;Ge
(0)~Vy /Ec!

2De22,

Gh;Gh
(0)~Vy /Ec!

2Dh22. ~38!

This expression is valid in low-temperature or high-volta
limits, with kBT!Vy . The nonlinear differential resistivity
in the hard direction can now be obtained by using the
pression for the tunneling current across stripes from
~34!: I y5(e2/h)GeVyLx /vF . One thereby obtains

]Vy

]I y
;I y

a , ~39!

with an exponenta52(12De)/(2De21). Using the value
of De50.756 calculated from theory atn* 51/2 for the case
@n#54 andd510l ~see Fig. 4!, gives the estimatea50.93.
Calculations for models with more remote screening pla
will give larger values forDe ~but always smaller than 1, a
explained above! and smaller positive values fora. Notice
that a positive exponent implies an enhancement of the h
axis resistivity when driven nonlinear—consistent with t
experimental findings in Ref. 1. This increase in resistivity
due to a voltage suppression of the correlation-induced in
layer tunneling enhancement—and as such is a rather d
experimental indication of nontrivial Luttinger-liquid corre
lations of the chiral edge channels.

FIG. 7. Linear transport coefficients calculated from the Bol
mann transport theory forN52 and d510l , using a model of
d-correlated disorder. The disorder strength was chosen to gi
ration of hard to easy direction resistivities equal to 10 atn* 50.5,
and the temperature was chosen to be 100 times smaller tha
microscopic interaction strength as explained in the text. Interac
and localization effects neglected in this Boltzmann theory are
pected to strongly suppress these resistivities at low tempera
outside of the interval 0.4&n* &0.6.
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A similar calculation can be performed for nonlineariti
in the easy axis current. Atn* 51/2 Vx}GeI x whereI x is the
easy-direction current. In this caseVy}nI x is the Hall volt-
age. It follows that

]Vx

]I x
;I x

b , ~40!

with an exponentb52(De21). For N52 andd510l , we
obtain b520.48; smaller negative values are found f
models with more remote screening planes. In this theory
easy-direction resistivity is suppressed when driven non
ear with the current, a property which is also consistent1 with
experimental findings. We emphasize that these power l
hold only in the low-temperature or high-voltage limits;
careful comparison of the theoretical dependence on volt
to temperature ratio with experiment could provide a stro
test of this transport theory.

V. SUMMARY

Recent experiments1–3 have established a consistent set
transport properties for high-mobility two-dimensional ele
tron systems with high orbital index (N>2) partially filled
Landau levels which differ from those in the low orbit
index (N<1) fractional quantum Hall regime. At largeN,
the dissipative resistivities are large, strongly anisotrop
and non-linear for 0.4&n2@n#&0.6 within each Landau
level. This anisotropic transport regime is bracketed by
gions of reentrant integer quantum Hall plateaus. In this
per we have presented a theory which is able to accoun
most features of these experiments. The theory starts f
the unidirectional charge-density-wave~smectic! state of
Hartree-Fock theory,4,5 in which the electrons reside in per
odically spaced stripes with a spontaneously chosen orie
tion. Forward and backscattering interactions, neglected
the Hartree-Fock theory, are included by retaining the lo
energy electron excitations at the stripe edges. These fo
set of coupled 1D chiral modes, easily described w
bosonization techniques. We find that~i! for smectic states in
quantum Hall systems, the chiral boson degrees of freed
coincide with stripe position and width degrees of freedo
~ii ! backscattering interactions which drive the system
ward electron or hole Wigner crystal states are always
evant, but only below inaccessibly low temperatures in
anisotropic transport regime; and~iii ! a semiclassical Boltz-
mann transport theory for the smectic state is able to acco
for the magnitude of the anisotropic dissipative resistivit
and for the sign of the nonlinearities which appear at hig
transport currents.
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