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Dissipationless Transport in Low-Density Bilayer Systems
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In a bilayer electronic system the layer index may be viewed as the z component of an isospin- 1
2 . An

XY isospin-ordered ferromagnetic phase was observed in quantum Hall systems and is predicted to exist
at zero magnetic field at low density. This phase is a superfluid for opposite currents in the two layers.
At B � 0 the system is gapless but superfluidity is not destroyed by weak disorder. In the quantum
Hall case, weak disorder generates a random gauge field which probably does not destroy superfluidity.
Experimental signatures include Coulomb drag and collective mode measurements.

PACS numbers: 73.40.Hm, 73.20.Dx, 75.10.Hk, 75.10.Lp
In quantum well structures containing two separate two-
dimensional electron gases in close proximity, an elec-
tron is described in terms of its position in the plane, its
spin, and its layer index. The latter can be regarded as an
isospin- 1

2 , denoted by m, with the two layers being the two
eigenstates of mz . States with spontaneous XY isospin-
ferromagnetic order have been observed in quantum Hall
systems [1] at total Landau level filling factor n � 1 and
were predicted to exist at B � 0 for sufficiently low elec-
tron density [2]. The origin of isospin ferromagnetism is a
favorable Coulomb exchange energy just as in the ordinary
Stoner instability.

For layer separation d � 0 the isospin polarized phase
breaks an SU(2) symmetry, and the problem maps onto the
Stoner instability [1]. For d . 0, and in the absence of tun-
neling between the layers, there is an easy-plane anisotropy
since the direct Coulomb energy favors polarization in the
XY plane (�mz� � 0) in order to avoid the cost of charge
imbalance between the layers that occurs for �mz� fi 0.
The angle of the magnetization m�r� relative to the x axis
is then described by a field w�r�. Because the “charge”
conjugate to the phase w is mz , the Goldstone mode [3]
associated with the broken U(1) symmetry at finite d cor-
responds to superfluid currents which are opposite to each
layer [1,4,5].

In this paper we study transport properties of the easy-
plane isospin ferromagnet, focusing on the effects of dis-
order. At B � 0 we find that disorder weakens but does
not destroy the “gapless isospin” superfluidity. The lack of
time-reversal symmetry in the quantum Hall effect (QHE)
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case causes disorder to induce a random gauge field which
frustrates the system, but the Kosterlitz-Thouless transition
probably survives weak disorder. The effect of random in-
terlayer tunneling is a separate and different question [6].

For B � 0 it is difficult to quantify the range of
parameters, particularly rs, in which the isospin fer-
romagnetic state is the prevailing phase. It should lie
between the low rs paramagnetic range and the very
high rs range, where the system forms a bilayer Wigner
crystal. For a single layer, Monte Carlo calculations [7]
find a ferromagnetic transition in the rs � 20 30 range,
and Wigner crystallization at rs � 37 6 5 [8]. The en-
ergy differences among the various possible phases are,
however, very small [7] so that a definitive statement
is not possible—in fact, earlier calculations [8] did
not find a ferromagnetic transition. For a double layer
system, Hartree-Fock (HF) theory predicts the existence
of a broken symmetry isospin ferromagnetic phase [2].
HF tends to overestimate the stability of broken sym-
metry states, but its predictions are often qualitatively
correct and such states frequently do occur at values of
rs larger than predicted. While quantum Monte Carlo
calculations are needed to obtain the precise density at
which a B � 0 bilayer system will undergo the sponta-
neous isospin ferromagnetic transition, it is reasonable
to assume, based on existing HF analysis [2], that such
a transition should occur at rs � 20 30, a regime now
realizable in hole systems [9].

An HF analysis of the isospin polarized phase starts with
an Hubbard-Stratanovich decomposition of the Coulomb
interaction, leading to the action
S �
Z
dt dr

(
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1
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c1�i= 2 AaSz�2c�r� 2 rs�r�V �1�
H �r� 2 rz�r�V �2�

H �r� 2 Vexm ? c1
s �r�Sss0cs0�r�

1
1
2
Vexm2 1

1
2

Z
dr0 n�r�Vs�r 2 r0�n�r0� 1

1
2

Z
dr0mz�r�Va�r 2 r0�mz�r0�

)
(1)
In Eq. (1) c1,c are fermionic fields for the electrons. The
symmetric and antisymmetric densities are rs 	 c1

s cs
and rz 	 c1

s S
z
ss0c 0

s , with Si being the Pauli matrix

for the ith component of the isospin (i � x, y, z). The
fields n�r�, m�r� are auxiliary Hubbard-Stratanovich fields
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describing symmetric and antisymmetric densities. We
are interested in the response of the system to a weak
antisymmetric vector potential Aa, which is thus included
in the action (a factor of ec is absorbed in Aa). In momen-

tum representation, Vs�q� �
2pe2

q and Va�q� � 2pe2d
(for small q). For simplicity, we assume here that the true
electron spin is fully aligned due to the Stoner instability
and can be ignored (see, however, [10]).

In momentum representation, for small q, the symmet-
ric Hartree potential is V

�1�
H � Vs�q�n�q� while the anti-

symmetric is V
�2�
H � Va�q�mz�q�. The Fock potential Vex

is approximated in Eq. (1) to be local, thereby neglecting
the exchange contribution to the gradient terms which con-
tribute to the isospin stiffness. We comment on the actual
value of Vex and on consequences of its nonzero range be-
low. In the system’s response to Aa the symmetric field
n�r� does not play any role and we omit it from following
expressions.

For fixed values of m and n, the action (1) describes
noninteracting electrons under the influence of a space
and time dependent scalar potential V

�1�
H , vector poten-

tial Aa, and Zeeman field V
�2�
H ẑ 1 Vexm. In an x 2 y

ordered state, the saddle point for the bosonic fields is
n�r� � mz�r� � 0, and jm�r�j � M , a nonzero constant.
Conventional approximation schemes [HF, random phase
approximation (RPA)] do not reliably obtain M . Here
we first assume full polarization (M � n, as predicted by
HF), and later discuss the case of partial polarization.

Because of an assumed lack of interlayer tunneling, the
action (1) possesses a U(1) symmetry [3]. Thus, in equi-
librium the system picks an arbitrary direction for m. We
write m � M �cos�w�r��x̂ 1 sin�w�r��ŷ� 1 mz ẑ, where
w is the angle between the planar component of the mag-
netization and the x̂ axis, and we expect w to be constant in
the ground state and slowly varying in low-energy excita-
tions. The energy cost of a deviation from the equilibrium
magnetization is then expressed in terms of w and mz and
should vanish for a uniform shift in w�r�.

We now integrate over the fermionic fields and expand
the familiar tr log� � term to second order in w and mz .
Within RPA the expansion is given in terms of the response
functions xi 	 2�riri� and xo 	 2�rzry�. The effect
of a slowly varying Aa on the x’s can be separated out by
means of a Gorkov approximation, where Aa is approxi-
mated not to vary in the range of r 2 r0 and t 2 t0 in
which the response function is appreciable [11]. The ef-
fect of Aa is then incorporated by the “minimal coupling”
prescription i=w ! �i=w 2 Aa�, and the response func-
tions are calculated for Aa � 0. The RPA action is then
(omitting the zeroth order term)

SRPA �
1
2

Z
dv

Z
dr

(
rsji=w 2 Aaj2

1
e2

G
m2
z 1 2xoVexM

3 �Vex 1 2pe2d�mzw

)
, (2)
140
where [12]

rs 	 2 lim
q,v!0

q22�1 1 xyVex�VexM
2, (3)

1
G

	 2 lim
q,v!0

�1 1 xz�2pe2d 1 Vex�� �2pe2d 1 Vex� .

(4)

The response functions xo ,xz ,xy are response func-
tions of noninteracting electrons in a Zeeman field
VexM x̂. For small q,v,

xz � xy

� 2
1
2

"
M

D 2 v 2 Dq2 1
M

D 1 v 2 Dq2

#
, (5)

xo � 2
1
2

"
iM

D 2 v 2 Dq2 2
iM

D 1 v 2 Dq2

#
,

where D 	 MVex is the energy cost for flipping a spin,
and the value of D is discussed below. The U(1) invari-
ance of the problem is the reason for 1 1 xyVex being
O �q2�. The equation of motion for mz , derived from (2),
is the Josephson-type relation �w � 2pe2dmz .

The integral over mz can now be carried out, resulting
in an action in terms of w and A only, which is more
transparent in space and time representation:Z
dt

Z
dr

�w2

2

"
1

2pe2d
1

1
Vex

#

1
MD

2
j�i= 2 Aa�wj2. (6)

Equation (6) is the action of a two-dimensional super-
fluid, withMD being the superfluid “spin stiffness.” If
MD . 0, the bilayer system responds to the vector po-
tential Aa as a superfluid, and an antisymmetric current
flows without dissipation. Equation (6) reveals the exis-
tence of a longitudinal Goldstone mode that carries anti-
symmetric density and satisfies the dispersion relation

v2 � MD

"
1

2pe2d
1

1
Vex

#21

q2. (7)

This Goldstone mode corresponds to the spin wave for
the pseudospin ferromagnet (much like the spin wave of
the real ferromagnet [5,13]) modified by the presence of
easy-plane anisotropy.

Within RPA, the response functions xy ,xz are

xy�q,v� � xz�q,v� �
X
ab

1
2
j�ajrqjb�j2

3

(
f�ea 1 D� 2 f�eb�

v 1 D 1 ea 2 eb 1 ih

1
f�ea� 2 f�eb 1 D�

v 2 D 1 ea 2 eb 1 ih

)
, (8)

where ja�, jb� are single particle eigenstates of the spin-
independent noninteracting Hamiltonian, ea , eb are the
corresponding single particle energies, rq is the density
operator, and f�e� is the Fermi function.
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Setting v � 0 and expanding to second order in q, we
find that for a clean system with full isospin polarization
(2D . m, m being the chemical potential)

MD �
Z
k,kF

dk

"
1
m
2

k2

2m2D

#
�
n
m

√
1 2

m

2D

!
.

(9)

This energy cost is the sum of single particle energies of
eigenstates jk� of electrons in a Zeeman magnetic field that
precesses in space in a constant rate=w and is composed of

one part �=w�2

2m originating from the antisymmetric current
induced by the precession of the field, and a second part,
2

�k?=w�2

2m2D , which reflects the slowing down of the symmet-
ric motion due to the field precession. There is no Galilean
invariance for antisymmetric currents so MD fi n
m.

The disorder potential can be separated into symmet-
ric and antisymmetric parts. The symmetric part affects
D much like nonmagnetic disorder does in a conventional
superconductor. For weak symmetric disorder (kFl ¿ 1,
and hence Dt ¿ 1), the disorder-averaged matrix ele-
ments in (8) are

j�ajrqjb�j2 �
1

n�ē�
D�ē�q2

�D�ē�q2�2 1 �ea 2 eb�2 , (10)

where ē � 1
2 �ea 1 eb�, D is the diffusion constant, n is

the density of states, and jea 2 ebj ,
1
t . Substituting in

(8) and paying attention to the dependences of n and D on
ē we find that the effect of symmetric disorder on the spin
stiffness (9) is of order 1
Dt.

Antisymmetric disorder modifies the capacitive energy
term in (1) to be 2pe2d

R
dr�mz�r� 2 mz,dis�r��2 with

random mz,dis. As is known from studies of, e.g., Joseph-
son junction arrays, such a randomization in the equilib-
rium distribution of mz reduces the superfluid density and
can, if strong enough, induce vortex-antivortex pairs de-
stroying the superfluidity even at zero temperature. Here,
since there are gapless Fermi surface excitations even in
the superfluid, the resultant disordered phase may possi-
bly be a normal Fermi liquid with no long-range interlayer
phase coherence.

Realistically, the disorder potential is made of compa-
rable symmetric and antisymmetric components. For weak
disorder, then, antisymmetric currents flow without dis-
sipation, although the superfluid density is suppressed.
Strong disorder eventually destroys the superfluidity.

The superfluid spin stiffness MD is also suppressed
by finite temperature. Just as in an ordinary supercon-
ductor, its temperature dependence originates both from
the Fermi functions in (8) and from thermal fluctuations
of vortex-antivortex pairs in w�r�. The spin stiffness, and
with it long-range order and antisymmetric dissipationless
transport, disappear entirely above a Kosterlitz-Thouless
(KT) transition temperature, whose precise value depends
on both effects.

An experimental probe of superfluidity of antisymmetric
currents is the transresistance, or drag resistance, denoted
by rD. In a drag measurement a current I1 is driven in one
of the layers, while no current is allowed to pass through
the second layer (I2 � 0) which develops a voltage V2.
Then, rD 	 2V2
I1. For two identical layers, rD is the
difference between the symmetric and antisymmetric re-
sistances. In our case the latter vanishes. Thus, the trans-
resistance equals the symmetric one, and the voltages on
the two layers should be equal in magnitude and direction.
Since the superfluidity disappears at the KT transition tem-
perature, rD would go down with increasing temperature.
Note that for weakly coupled Fermi liquid bilayer systems
rD is opposite in sign to the intralayer resistance, and its
magnitude increases with temperature. If the superfluid
mode is lost due to disorder, the antisymmetric resistance
becomes appreciable, and the sign of rD presumably be-
comes opposite to that of the intralayer resistance.

The excitation of the sound mode (7) is another experi-
mental probe. In the absence of isospin ferromagnetism,
a double layer system has an antisymmetric acoustic plas-
mon mode, which is overdamped by disorder as q ! 0
[14]. Here, however, the sound mode (7) is an under-
damped Goldstone mode. A density sweep experiment
through the transition will therefore exhibit a sharp mode
at low density which will get overdamped (at long wave-
lengths) above the transition density. Another distinction
between these two collective modes is their behavior when
d ! 0. In that limit the Goldstone mode will have a
long wavelength quadratic q2 dispersion, since the U(1)
isospin symmetry changes into an SU(2), whereas the nor-
mal acoustic plasmon mode tends toward the single particle
dispersion yFq.

So far we have taken the exchange Fock potential to
be local, and employed RPA. The U(1) symmetry of the
approximate actions (2)and (6) is exact. However, other
features of our analysis are not, of which we expect two
to be most important. First, as a consequence of its finite
range, the Fock potential renormalizes the dispersion re-
lation of the electrons e�k�. The sum (8) should then be
evaluated with the renormalized energy dispersion, leading
to the replacements 1

m !
≠2e

≠k2 and k
m !

≠e

≠k in the integral
in (9), and affecting the spin stiffness.

Second, it is conceivable that the Stoner phase is only
partially isospin polarized, in contrast to the HF prediction
of full polarization. Interestingly, for such a state, and in
the absence of disorder and electron-electron interaction,
the q2 term in the sum (8) vanishes (i.e., D � 0), due
to the constant density of states. Spin stiffness is then in-
duced by the deviation of n from a constant, caused by the
renormalization of the energy dispersion by interaction.
Similarly, in the presence of symmetric disorder, D ~

��Dn�0�m1D
2� 2 �Dn�0�m2D
2��, where a prime denotes
differentiation with respect to energy. Again, the energy
dispersion must deviate from parabolic for D to be
nonzero.

The physics of the isospin ferromagnet at filling factor
n � 1 in the QHE regime is quite different from that at
B � 0. In the presence of interlayer phase coherence, the
141



VOLUME 84, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 3 JANUARY 2000
finite isospin stiffness leads to an energy gap for symmetric
excitations and a QHE plateau [1,4,5].

Because of the energy gap for symmetric excitations,
the fermions can be reliably integrated out [1,4,5] to yield
a Euclidean action which is a functional of the unit vector
ŝ�r� 	 m�r�
n�r�. The Hamiltonian density is

H �
1
2
r̄≠ms

n≠ms
n 1

e2

2G
�n�r�sz�2

1 Vs�r�dn�r� 1 Va�r� �n0 1 dn�r��sz�r� . (11)

G is the double layer capacitance per unit area (including
Hartree and exchange contributions), Vs,a are the symmet-
ric and antisymmetric parts of the disorder potential, and
r̄ � 1 K is the exchange-induced spin stiffness [4,5].

The quantization of the Hall conductivity imposes a con-
straint relating the symmetric fermion density to the topo-
logical (Pontryagin) density of the field s [1,4,5]:

dn�r� �

√
h
e2 sxy

!
1

8p
emneabcs

a≠ms
b≠ns

c. (12)

Taking advantage of the easy-plane anisotropy and not-
ing that the XY phase angle field w contains vortex singu-
larities, we integrate out the massive sz fluctuations and
find that the lack of time-reversal symmetry causes the dis-
order potential to generate a gauge field yielding, in the
high temperature classical limit, a 2D XY model with ran-
dom Dzyaloshinskii-Moriya interaction

Z
dr

r̄

2
j=w 1 aj2 1

X
j

�lVa�Rj� 2 Vs�Rj�Qj�Mj ,

(13)

where Qj � 61 is the vorticity of the jth vortex (“meron”
[4,5]),Mj � 61 is a flavor index indicating the sign of sz

in the vortex core, l is a nonuniversal constant related to
the core size, and we have dropped various irrelevant terms
(e.g., a random contribution to r̄). The gauge field is a 	
GVa

4pr̄e2 J1, where J1 � 2
h
e2sxye

mn≠nVs is proportional to
the symmetric Hall current. The GVa term is the local
density imbalance. If there is a Hall current flowing when
there is a density imbalance, then more current is flowing
in one layer than the other and the superfluid mode [4,5]
J2 � r̄�=w 1 a� is necessarily excited. This is the physi-
cal interpretation of the gauge potential a which causes
these currents to flow. The field f in (13) contains both
singular and smooth parts, and thus the first term in (13)
mediates a logarithmic interaction between the merons. In
the SU(2) symmetric quantum Hall ferromagnet, studied
by Green [13], a symmetric disorder potential was mapped
onto a random vector potential coupled to a two compo-
nent order parameter (corresponding, in our problem, to
sy ,sz). In the present case, fluctuations in sz are al-
ready integrated out, and a combination of both Vs and
142
Va is mapped onto a random vector potential coupled to
the phase field w.

The gauge field a is random with a finite cor-
relation length. Ensemble averaging over a closed
contour ≠g of perimeter L gives �

H
≠g a ? dr� � 0, and

��
H
≠g a ? dr�2� � Lu with u � 1. This is the gauge

glass model for which it is known that the KT transition
is destroyed in the limit of strong disorder [15]. For
weak disorder the phase diagram has proven difficult
to determine [16], but it is likely that the KT transition
survives. Note that in order to have an isolated flux
quantum through a single plaquette, the vector potential
would have to fall off like 1
r and it follows that the
random potential Vs,a would have to diverge.

To conclude, our results call for an experimental search
via light scattering and drag transport for the B � 0 phase
coherent state in large rs bilayer hole systems, and for a
study of how superfluidity in this phase and its analog at
n � 1 is affected by disorder.
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