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Z2 gauge theory of electron fractionalization in strongly correlated systems
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~Received 25 October 1999!

We develop a new theoretical framework for describing and analyzing exotic phases of strongly correlated
electrons which support excitations with fractional quantum numbers. Starting with a class of microscopic
models believed to capture much of the essential physics of the cuprate superconductors, we derive a new
gauge theory—based upon adiscreteIsing or Z2 symmetry—which interpolates naturally between an antifer-
romagnetic Mott insulator and a conventionald-wave superconductor. We explore the intervening regime, and
demonstrate the possible existence of an exotic fractionalized insulator, the nodal liquid, as well as various
more conventional insulating phases exhibiting broken lattice symmetries. A crucial role is played by vortex
configurations in theZ2 gauge field. Fractionalization is obtained if they are uncondensed. Within the insulat-
ing phases, the dynamics of theseZ2 vortices in two dimensions is described, after a duality transformation, by
an Ising model in a transverse field, the Ising spins representing theZ2 vortices. The presence of an unusual
Berry’s phase term in the gauge theory leads to a doping-dependent ‘‘frustration’’ in the dual Ising model,
being fully frustrated at half filling. TheZ2 gauge theory is readily generalized to a variety of different
situations, in particular, it can also describe three-dimensional insulators with fractional quantum numbers. We
point out that the mechanism of fractionalization ford.1 is distinct from the well-known one-dimensional
spin–charge separation. Other interesting results include a description of an exotic fractionalized supercon-
ductor in two or higher dimensions.
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I. INTRODUCTION
Strongly interacting many-electron systems in low dime

sions can exhibit exotic properties, most notably the prese
of excitations with fractional quantum numbers. In these
stances the electron is ‘‘fractionalized,’’ effectively splin
tered into consituents which essentially behave as free
ticles. The classic example is the one-dimensional~1D!
interacting electron gas,1 which exhibits many anomalou
properties such as the separation of the spin and the ch
of the electron. Electron ‘‘fractionalization’’ is also predicte
to occur in two-dimensional~2D! systems in very strong
magnetic fields that exhibit the fractional quantum H
effect.2 Recent experiments have given strong support
evidence of fractionalization both in quantum Hall system3

and in carbon nanotubes.4 Motivated by these examples, se
eral authors have proposed the possibility of electron fr
tionalization in various other experimental systems. Perh
the most tantalizing was the suggestion by Anderson5 of
‘‘spin-charge separation’’ in cuprate high-Tc materials.
However, this suggestion is currently surrounded by con
erable controversy, in part because the 1D electron gas
the fractional quantum Hall effect appear to be rather spe
situations which do not readily generalize. Indeed, in 1D
Fermi liquid breaks down even at weak coupling and in
quantum Hall regime the kinetic energy is strongly quench
by a time reversal breaking magnetic field.

In this paper, we will explore theoretically the possibili
of electron fractionalization in strongly correlated systems
spatial dimensionsd.1 in the presence of time revers
symmetry. Our primary motivation is the cuprates, althou
we expect our results to be of significance to a variety
other strongly interacting systems. Early attempts6–8 to
implement theoretically Anderson’s suggestion of 2D sp
charge separation typically started with either a quant
PRB 620163-1829/2000/62~12!/7850~32!/$15.00
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spin model or thet-J model. Slave boson/fermion represe
tations of the spin and electron operators were employe
obtain a mean field ‘‘saddlepoint’’ exhibiting spin-charg
separation. The slave boson/fermion representation in
duces a gauge symmetry,U(1) in the simplest formulations
and requires inclusion of a corresponding gauge field. Fl
tuations about the mean field theory lead to a strongly in
acting gauge theory about which very little is reliab
known. It is then quite difficult to reach any definitive con
clusions about the true low energy behavior, in particu
whether spin-charge separation survives beyond the m
field level. An alternate more recent approach,9,10 describes
strongly correlated electron systems in 2D in a dual langu
where the vortices in the many-electron wave function
the fundamental degrees of freedom. In this approach, in
lating phases can be obtained by condensing vortices. F
tionalized insulators arise upon condensingpairs of vortices.

In this work we introduce a new gauge theory approa
which enables us to reliably address issues of fractional
tion. In contrast to the slave boson/fermion representat
our gauge symmetry isdiscrete, in fact, an Ising orZ2 gauge
symmetry. This has several advantages. First, gauge the
with discrete symmetry are much simpler to analyze th
those with continuous symmetries,11 so it is possible for us to
make definitive statements about low energy physics. Bu
addition, the pureZ2 gauge theory in 211 space-time di-
mensions is dual to the three-dimensional (3D) classical
Ising model, which implies the existence oftwo distinct
quantum phases.12 In one of these two phases ‘‘charges’’ a
deconfined, in marked contrast to the pure 211 dimensional
U(1) gauge theory which is always in a confining phase13

The presence of deconfinement allows us to demonstrate
existence of insulating phases exhibiting electron fraction
7850 ©2000 The American Physical Society
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PRB 62 7851Z2 GAUGE THEORY OF ELECTRON . . .
ization, and to describe their basic properties. Remarka
fractionalization in ourZ2 gauge theory approach is phys
cally equivalent to vortex pairing in the earlier du
formulation.9,10 We demonstrate this equivalence by comb
ing the standard boson-vortex duality14 with the Ising duality
mentioned above.

In addition to the fractionalized phases, our approach
lows us to readily access the more conventional confi
phases and the concomitant confinement transitions. Fur
more, theZ2 gauge theory can be readily generalized to
scribe a variety of different situations, arbitrary spatial
mensions, spin-rotation noninvariant systems, etc. Som
these generalizations are explored towards the end of
paper. For the most part, we concentrate on spin-rota
invariant electronic systems in 2D. An overview and su
mary of our main results may be found at the end of Sec

In the context offrustratedquantum spin models, Rea
and Sachdev15 have demonstrated the possibility of diso
dered phases with fractionalization of spin. Specifically,
Sp(2N) antiferromagnet at largeN and the related quantum
dimer model16,17 were shown to reduce to aZ2 gauge theory
when frustration was present. In the deconfined phase o
gauge theory free propagating spinons~spin 1/2 excitations!
would be possible. Somewhat similarly, in the slave-ferm
representation of the conventional Heisenberg magnet w
introduces anSU(2) gauge invariance, Wen18 proposed ob-
taining fractionalization of spin by pairing and condensi
pairs of spinons. This reduces the gauge symmetry dow
Z2. In contrast, we show explicitly that the convention
Heisenberg spin model can bedirectly written as aZ2 gauge
theory coupled to fermionic spinons, even in the absenc
any frustration. The key observation is that, with fermion
spinons, the local constraint of single occupancy is equ
lent to the constraint of anodd number of fermions per site
This latter constraint can be implemented with a discreteZ2
gauge field. Such aZ2 gauge description may also be o
tained with the Majorona fermion representation of Heis
berg spins.19

The basic physics underlying our description of electr
fractionalization is perhaps most readily understood ind
52. At the heart of quantum mechanics is wave-parti
dualism. For a many-body system of interacting bosons~with
chargeQe , for example! this dualism implies that in addition
to the conventional ‘‘particle’’ framework, a description d
veloped in terms of wave functions is possible. In 2D th
dual wave description focuses on point like singularities
the phase of the complex wave function—the familiar vo
ces with circulation quantized in units ofQv . A fundamental
property of such vortices is that the product of their quant
of circulation and the particle charge is a constant,

QeQv5H.c. ~1!

It is this simple identity which underlies the two known e
amples of fractionalization in two dimensions, and is at
heart of theZ2 gauge theory developed in this paper. In
~BCS! superconductor, the pairing of electrons to form
Cooper pair with chargeQe52e, implies a ‘‘halving’’ of the
flux quantum,Qv5 1

2 (hc/e), which is tantamount to ‘‘vortex
fractionalization.’’ The second example of 2D fractionaliz
tion occurs in the fractional quantum Hall effect.2 In the n
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51/3 state three vortices bind to each electron forming
‘‘composite boson’’ with total circulationQv53(hc/e),
which then condenses. The above identity implies the e
tence of topological excitations in this condensate with el
trical charge1

3 e the celebrated Laughlin quasiparticles.
The route to electron fractionalization that we explore

this paper isphysicallyequivalent to apairing of vortices,
precisely as in earlier work by Balentset al.9,10But the math-
ematical implementation is rather different. Balentset al. ar-
gued that a pairing and condensation of conventionalQv
5hc/2e BCS vortices in a singlet superconductor results
an exotic fractionalized insulator. As Eq..~1! demonstrates,
this insulator should support spinless chargee excitations.
Our analysis begins by noting that such an excitation can
thought of as ‘‘one half’’ of a Cooper pair. We implemen
this fractionalization by formally re-expressing the Coop
pair creation operator as theproductof two ‘‘chargon’’ op-
erators,b†, each creating a spinless, chargee boson. This
change of variables introduces alocal Z2 symmetry, since it
is possible to change the sign ofb† on any given lattice site
while leaving the Cooper pair operator invariant. This is t
origin of a local Ising, orZ2, gauge symmetry, describe
mathematically in terms of aZ2 gauge field. In the exotic
fractionalized insulator, there are strange gapped excitat
which are vortices in theZ2 gauge field. These excitations
which we refer to as ‘‘visons’’ because they can be rep
sented in terms of Ising spins, are the remnant of theun-
paired hc/2e BCS vortices, which survive in the fractiona
ized insulator. As we shall see, when the visons conde
they drive ‘‘confinement,’’ thereby destroying fractionaliza
tion. These visons will play an absolutely central ro
throughout this paper, since any insulator with gapped vis
is necessarilyfractionalized.

Motivated by the cuprate superconductors, we will foc
on a particular class of microscopic lattice models desig
to capture much of the physics believed essential to th
materials.~Our description of fractionalization is, howeve
more general and is not restricted to these models.! The mod-
els describe electrons hopping on a lattice with inclusion
strong spinand pairing fluctuations, and are quite similar t
models introduced and analyzed numerically by Assa
et al.20 and to models considered more recently by Bale
et al.9 Many microscopic models of the cuprates, such as
t –J model, incorporate spin fluctuations from the outset. O
reasons for similarly incorporating ‘‘microscopic’’ pairin
fluctuations are twofold. First, as the superconducting ph
is a well-established and reasonably well-understood par
the high-Tc phase diagram, just like the antiferromagnet,
serves as a useful point of departure to access more puz
regions of the phase diagram. This point of view was a
advocated in Ref. 21. But there are also more microsco
reasons to include pairing fluctuations from the outset.
particular, as emphasized, for instance in Ref. 6, a spin–
interaction term as in thet –J model can be suggestivel
rewritten in terms of electron operators as

Sr•Sr 852 1
2 ~cr↑

† cr 8↓
†

2cr↓
† cr 8↑

†
!~H.c!1 1

4 r rr r 8 , ~2!

with r r5cr
†cr . For antiferromagnetic exchange the first ter

is anattractivepairing interaction in thedx22y2 ~or extended-
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s) wave channel. As in BCS theory, this interaction may
decoupled~in a functional integral! with a complex auxillary
pair field h i j as

(
^rr 8&

Ju2h rr 8u
21@h rr 8arr 8~cr↑cr 8↓2cr↓cr 8↑!1c.c.#. ~3!

Herearr 8511 for bonds along thex direction, and equals
21 for bonds along they direction. With^h&Þ0, this cor-
responds to a superconducting phase withdx22y2 symmetry.
But more generally,h can be decomposed into an amplitu
and a phase,h5Deiw. Ignoring fluctuations in the amplitud
leads to a model of the type we consider below, withlocal
fluctuatingd-wave pairing correlations.

Further motivation for inclusion of such pairing fluctu
tions is provided by resonating valence bond~RVB!
ideas.5,22 The wave function for a RVB Mott insulator can b
obtained from the wave function of a superconductor
Gutzwiller projecting into a subspace with exactly one el
tron per site. Some mean field theories of the RVB state
equivalent to starting out with just the superconducting wa
function. Gauge field fluctuations about the mean field so
tion are supposed to carry out this highly nontrivial proje
tion and destroy the superconductivity. A natural physi
route to achieve this end is to include strongphasefluctua-
tions of the mean field order parameter. Indeed, in a rec
preprint23 it was argued that fluctuations about the mean fi
theory of thed-wave RVB state24 are formallyequivalentto
a theory of a phase-fluctuatingd-wave superconductor.

With these motivations, we consider generalized Hubb
type models of the form

H5H01HJ1Hu1HD , ~4!

with

H052t (
^rr 8&

cra
† cr 8a1H.c., ~5!

HJ5J (
^rr 8&

Sr•Sr 8 , ~6!

Hu5(
r

u~Nr2N0!2, ~7!

HD5(
r

~eiwrpr1H.c.!, ~8!

with the locald-wave pair field defined as

pr5(
r 8er

D rr 8~cr↑cr 8↓2cr↓cr 8↑!. ~9!

Here,cra denotes an electron operator at siter of ~say! a 2D
square lattice with spin polarizationa5↑,↓. The electron
density and spin operators are the usual bilinears:r r

5cra
† cra andSr5

1
2 cr

†scr with s a vector of Pauli matrices
The termHu is an on-site repulsion. Strong local tendenc
for dx22y2 pairing are incorporated through the termHD . In
the definition ofpr in Eq. ~9!, the summation is over the fou
nearest neighbors of the siter andD rr 85D for bonds along
the x direction andD rr 852D for bonds along they direc-
e
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-
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e
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-
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tion. With this choice, the operatorpr destroys adx22y2 pair
of electronscentered at the siter.

As discussed above, this anomalous term can be obta
by decoupling a local spin exchange interaction—which
attractive in thed-wave pairing channel—with a comple
Hubbard–Stratanovich field. Here, we keep the amplitudeD
fixed, but include~quantum! fluctuations of the local pair
field phase,w r . This phase is canonically conjugate to th
Cooper pair number operator,nr :

@w r ,nr 8#5 id rr 8 . ~10!

Due to the anomalous term inHD , the two densitiesr r and
nr are not separately conserved. Theconservedelectrical
charge density is simply the sum of the Cooper pair a
electron densities,

Nr52nr1r r . ~11!

It is this total density that enters into the local on-site Hu
bard interaction term. Thec numberN0 plays the role of a
chemical potential, determining the overall electrical dens

This Hamiltonian describes interacting electrons in a s
tem with strong local pairing and spin fluctuations. Sincew r
is a dynamicalquantum field, these pairing fluctuations d
not necessarily lead to a superconducting ground state
addition to the pairing interaction terms, the above Ham
tonian includes interactions in the spin singlet~u! and spin
triplet ~J! particle/hole channels. The Hamiltonian retains t
important global symmetries, corresponding to conserva
of spin and electrical charge. It is worth emphasizing that
theoretical description of electron fractionalization that w
develop below isnot in the least restricted to this particula
Hamiltonian.

A. Overview

Due to the length of this paper, we first provide a br
synopsis of our approach and of the key results. We s
with the observation of Kivelson and Rokhsar25 that, in an
appropriate sense, a~singlet! superconductor already ha
separation of spin and charge. If one imagines inserting
electron into the bulk of a superconductor, its charge g
screened out by the condensate to leave behind a ne
spin-carrying excitation—a ‘‘spinon.’’ A mathematica
implementation of this idea21 essentially amounts to bindin
half of a Cooper pair to an electron to produce a neu
spinon. Following these ideas, we first split the Cooper p
operator into two pieces, each piece creating an excita
with chargee but spin zero. These are the same quant
numbers as the ‘‘holon.’’ But since this object seems to
defined rather differently, and in any event isnot directly tied
to the doping of a Mott insulator, we prefer to refer to it as
‘‘chargon.’’ The squareof the chargon operator creates th
Cooper pair. Next, we define a neutral spinon operator
multiplying the chargon and electron operators. Chang
variables from the electrons and Cooper pairs to charg
and spinons introduces a degree of redundancy in the
scription. Specifically, all physical observables are invari
under alocal change in thesign of the spinon and chargon
operators. This implies that the resulting theory must hav
local Z2 gauge invariance.
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In Sec. II, we carefully re-express the above model
terms of the chargon and spinon operators, paying spe
attention to the localZ2 gauge symmetry. Following tech
niques familiar from slave boson/fermion theories, we der
an action in terms of the chargon and spinon fields coup
to a fluctuatingZ2 gauge field. This takes the form

S5Sc1Ss1SB , ~12!

Sc52tc(̂
i j &

s i j ~bi* bj1c.c.!, ~13!

Ss52(̂
i j &

s i j ~ t i j
s f̄ ia f j a1t i j

D f i↑ f j↓1c.c.!2(
i

f̄ ia f ia .

~14!

Here Sc describes the charge dynamics withbi[e2 if i the
chargon field defined on ad11 dimensional space-time la
tice labeled by i , j , . . . ,. The spin is carried by the
~Grassmann-valued! spinon fields,f i and f̄ i , also living on
the lattice sites. The chargon and spinon fields are ‘‘m
mally coupled’’ to an IsingZ2 gauge fields i j 561 living on
the linksof the space-time lattice. The form of the charge a
spin actions,Sc and Ss , could have been guessed on sy
metry grounds@the global chargeU(1), the global spin
SU(2) and thelocal Z2 gauge symmetry#, but the derivation
in Sec. II shows the presence of an additional termSB . This
is a ‘‘Berry phase’’ term that takes the form

SB52 i (
i , j 5 i 2 t̂

N0F2p l i j 2
p

2
~12s i j !G . ~15!

Here t refers to the time direction, andl i j is an integer on
each temporal link defined in terms of thef ands fields as

l i j 5IntFF i j

2p
1

1

2G , ~16!

with F i j the gauge invariant phase difference across the t
poral link,

F i j 5f i2f j1
p

2
~12s i j !. ~17!

The symbol Int refers to the integer part. The Berry pha
term simplifies considerably for integerN0. For even integer
N0, we simply havee2SB51, while for odd integerN0,

e2SB5 )
i , j 5 i 2 t̂

s i j , N0 odd. ~18!

A rough estimate of the dimensionless couplingstc ,ts,tD

in terms of the parameterst,u,J,D of the original micro-
scopic Hamiltonian may be obtained in the physically int
esting limit of largeu and smallt near half filling:

tc;SAtu

J D 1/3A t

u
; ts;S J

t D tc ; tD;
D

t
tc . ~19!

We will, however, regard these coupling strengths as p
nomenological input parameters for theZ2 gauge theory.

A great deal of physics is contained in the simple-looki
action, Eq.~12!. Consider varying the dimensionless charg
ial

e
d

i-

d
-

-

e

-

e-

coupling, tc , which represents the degree of charge fluct
tions, and for simplicity specializing to half filling withN0
51. Surprisingly, in the limit of vanishing chargon couplin
tc50, the full Z2 gauge theory action can be shown to
formally equivalent~see Sec. IV! to the Heisenberg antifer
romagnetic spin model. Increasingtc from zero introduces
charge fluctuations into the Heisenberg model. In the limit
large tc , the chargons will condense, resulting in a conve
tional dx22y2 superconductor. Thus, the aboveZ2 gauge
theory action has the remarkable property of interpolat
between the Heisenberg antiferromagnet in one limit an
dx22y2 superconductor in the opposite limit. Determining t
properties of this model in the intervening regime~with tc of
order 1! is an extremely interesting question in the context
the cuprate materials, and will be one of the prime focuse
our analysis. Specifically, within the presentZ2 gauge theory
we will explore the different possible routes between the
two limits ~which depend on the parameters in the actio!.
Most important, for certain parameter regimes we will de
onstrate the possibility of obtaining an exotic fractionaliz
insulating phase, dubbed the nodal liquid in previous work21

intervening between the antiferromagnet and thedx22y2 su-
perconductor. For other parameter regimes, a number of
ventional insulating phases~i.e., with no fractionalization!
are accessible, including various phases with spin Pei
and/or charge order.

To gain a simple understanding of these results it is
tremely convenient to integrate out the chargons to give
effective action depending only on the spinons and theZ2
gauge fields. This is legitimate provided the chargons a
gapped, as they will be inall of the insulating phases~with
N051). The most important effect of this integration will b
to generate a ‘‘kinetic’’ term for theZ2 gauge fields:

Ss52K(
h

F)
h

s i j G . ~20!

Here, the product is of theZ2 gauge fields around an eleme
tary plaquette of the space-time lattice, and this produc
then summed over all plaquettes. Clearly,Ss is the direct
Ising analog of theFmn

2 term which enters the Lagrangian o
ordinaryU(1) electromagnetism. The value of the parame
K is determined by the chargon coupling, increasing mo
tonically with tc . The full effective action appropriate to th
insulating phases is simply

S5Ss1Ss1SB . ~21!

Since the onset of superconductivity will occur at some cr
cal value of order one,tc* '1, the validity of the effective
action requirestc,tc* . Near this limit, but on the insulating
side,K will also be of order one.

There are several limits in which the properties of th
effective action may be reliably analyzed. A schematic ph
diagram is shown in Fig. 1. As mentioned above, withK
5tc50 the action describes the Heisenberg antiferromag
which in 2D exhibits Ne´el long-ranged order at zero tem
perature. The opposite limit of largeK is far more interest-
ing, though. Indeed, whenK5`, fluctuations of theZ2
gauge fields i j are frozen, and one can sets i j '1 on all the
links. This results in a phase with deconfined spinons pro
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7854 PRB 62T. SENTHIL AND MATTHEW P. A. FISHER
gating freely with the gapless ‘‘d-wave’’ dispersion, the
‘‘nodal liquid.’’ Similarly, the chargons are also deconfine
and exist as gapped excitations in this insulating phase.
nodal liquid is thus a genuinely ‘‘fractionalized’’ insulato
within which the electron has splintered into two pieces t
propagate independently. On reducingK from `, the nodal
liquid continues to be stable until a certain critical valueKc
of order one, where the gauge field undergoes a confinem
transition. ForK,Kc the chargons and spinons are no long
legitimate excitations, but rather are confined together
form the electron~or other composites built from the electro
such as magnons or Cooper pairs!. This corresponds to a
conventional insulating phase. As we argue in Sec. IV,
confinement transition is accompanied by breaking of tra
lational symmetry leading to spin-Peierls order, at least
small spinon couplingsts,tD. This may be understood from
the limit whents,tD50. Then, as we show in Sec. IV, we a
left with a pureZ2 gauge theory with the Berry phase ter
SB which isexactlydual to the fully frustrated Ising model in
a transverse magnetic field. Ordering the Ising spins in
dual global Ising model leads to confinement. Physically,
Ising spins represent vortices in theZ2 gauge field, namely
the vison excitations mentioned in the previous subsecti
This same model also arose in the studies of Sachdev
co-workers16,17 on frustrated largeN quantum antiferromag
nets. Numerical studies16 show that the ordering in the Isin
model is accompanied by breaking of translational symm
try. The nature of the confined phase~s! at large spinon cou-
pling remains uncertain at present.

These results demonstrate the possibility of two altern
routes between an antiferromagnet and ad-wave supercon-
ductor. In one instance, as the chargon hoppingtc is in-
creased towards the critical value for the onset of superc
ductivity tc* , the value of the parameterK stays smaller than
the critical value for deconfinement,Kc . In this case, all of
the insulating phases preceding the superconductor are ‘‘
ventional,’’ with confinement of chargons and spinons. A
ternately, ifK exceedsKc before the transition into the su
perconductor, the fractionalized nodal liquid phase w
occur, sandwiched between thed-wave superconductor and
conventional insulator. Since both the superconducting
the deconfinement transitions occur whentc ~and henceK) is
of order one, the deconfinement boundary is expected to
‘‘near’’ the onset of superconductity. It is thus difficult t

FIG. 1. Schematic zero temperature phase diagram of the i
lating phases showing the three limits mentioned in the text.
horizontal axis measures the strength of the couplingK obtained by
integrating out the chargons. The vertical axis is a measure of
spinon couplingsts,tD. Here AF denotes the Heisenberg antiferr
magnet, SP denotes an insulator with broken translational and
tional invariances such as a spin-Peierls state, and NL denote
nodal liquid with fractionalized excitations
he
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ascertain which of these two scenarios will be realized. T
precise phase diagram interpolating between the antifero
gent and superconductor will likely depend sensitively
various microscopic details.

Considerable further insight is provided into the mech
nism of electron fractionalization in an alternate dual form
lation in which we trade the chargon fields for thehc/2e
vortices which occur in a conventional superconductor.
Appendix B, we show how this may be done following sta
dard duality transformations for the classical thre
dimensionalXY model. Starting with the fullZ2 gauge
theory in Eq.~12!, the resulting dual theory is a lattice actio
for the hc/2e vortices coupled to the spinons. The vortic
see a fluctuatingU(1) gauge fielda whose circulation is the
total electrical three current. Further, thehc/2e vortices have
a long-ranged statistical interaction with the spinons: Whe
spinon encircles such a vortex, its wave function acquire
phase ofp. In the present formulation, ap flux of the Z2
gauge fields is effectively attached to each vortex. As th
spinons are minimally coupled tos, they acquire the ex-
pected phase ofp upon encircling each vortex. Mathemat
cally, this flux attachment is implemented by an analog o
Chern–Simons term for the Ising group. Quite remarkab
this Ising Chern–Simons term emerges automatically fr
the duality transformation in Appendix D.

This dual representation of theZ2 gauge theory is in fact
essentially identical to the vortex field theory introduced
Ref. 9 on a phenomenological basis starting with a B
superconductor. In that work, the statistical interaction
tween spinons and vortices was put in by hand, employin
U(1) Chern–Simons terms to attach flux to thespin of the
spinons. An advantage of the Ising Chern–Simons term
that it does not break spin-rotational invariance, and in fac
possible even for spinless electrons. Moreover, it enables
description of an exotic superconducing phase in which
Ising flux de-attaches from the vortices~see below!. In this
dual description, superconducting phases correspond to
tex vacuua, while insulating phases correspond to vor
condensates. Simply condensing thehc/2e vortices leads to
confined insulating phases. Accessing deconfined insula
phases requires condensation ofpaired vortices, without
condensation of single ones. In this way one obtains an
ternate dual description of the fractionalized nodal liqu
The Z2 gauge theory formulation suggests a mechanism
such vortex pairing: Since the chargons also have a lo
ranged statistical interaction withhc/2e vortices, their mo-
tion is ‘‘frustrated’’ in the presence of such vortices. Pairin
the vortices reduces this frustration, allowing the charge
propagate more easily, and lowering the kinetic energy.

Superconducting phases are readily accessed in eithe
Z2 gauge theory ‘‘particle’’ formulation of Eq.~12! or its
dual vortex counterpart. In the particle formulation, whentc
becomes large and the chargee chargons condense, the resu
is a dx22y2 superconductor, denoteddSC. This supercon-
ductor is conventional, perhaps surprising since BCS the
involves the condensate of a charge 2e Cooper pair. But as
we demonstrate in Sec. III, the chargon condensate supp
hc/2e vortices, and shares all other properties with a conv
tional BCS superconductor. It is interesting to ask if it
possible to have a superconductor where the chargonpairs
have condensed, while the single chargons have not. Su
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superconductor, which we labeldSC* , can be readily de-
scribed with the presentZ2 gauge theory formulation. As
detailed in Sec. VII,dSC* is a truly exotic superconductin
phase with many unusual properties.

The Z2 gauge theory is readily generalized to a wide v
riety of other situations. In particular, the particle formul
tion of Eq.~12! is valid in anyspatial dimension. In 3D there
again exist fractionalized insulating phases~and, of course,
confined ones! which can be accessed by the theory. R
markably, as we argue in Sec. VIII B, in contrast to the 2
case, a fractionalized insulator in 3D exists as a distinctfinite
temperature phase, separated by a classical phase tran
from the high temperature limit. For an anisotropic layer
three-dimensional material, it is also possible to have ano
3D fractionalized phase consisting of weakly coupled
phases, but this phase is destroyed by thermal fluctuation
is also of note that theZ2 gauge theory formulation seem
incapable of describing fractionalization in 1D. This ind
cates that the ‘‘solitonic’’ mechanism of fractionalization
d51 is qualitatively different than ‘‘vortex pairing’’ which
describes fractionalization in higher dimensions.

We conclude Sec. I with an outline of the rest of t
paper. Section II contains the formal derivation of theZ2
gauge theory from the microscopic models. For ease of
sentation, and as it is simpler, we will first provide the tec
nical details of the derivation for situations with locals-wave
pairing. ~In Appendix B, we show how situations wit
dx22y2 pairing, the case of interest for the cuprates, can
readily handled!. We next describe, in Sec. III, the physics
fractionalization and confinement in the simplest possi
context, that ofs-wave pairing with an even number of ele
trons per unit cell. We then consider in Sec. IV the mo
interesting situation ofd-wave pairing with an odd numbe
of electrons per unit cell. In Sec. V we formulate and d
velop the dual description in terms of vortices. The results
Sec. IV are reobtained in this representation. We then m
on in Sec. VI to show how doping away from half fillin
may be incorporated into the formalism. In Sec. VII, w
discuss the possibility of other exotic fractionalized phas
in particular the superconductorSC* mentioned above, in
both the particle and vortex formulations. In Sec. VIII w
discuss various generalizations of the theory, including s
tial dimensions other than two, finite temperature, and sit
tions with no spin rotational invariance. We also briefly d
cuss a useful analogy withZ2 lattice gauge theories o
classicalnematic systems. In Sec. IX, we discuss the re
tionship between this work and several other previous
proaches to fractionalization in strongly correlated syste
Contact will be made, when possible, with the earlier d
vortex descriptions of the nodal liquid, and with the sla
boson/fermion approaches. Section X contains a discus
of the experimental signatures of the various novel pha
described in earlier sections. We conclude with a summ
of our main results. Various appendices contain techn
details not presented in the main text.

II. MODELS AND Z2 GAUGE THEORY

To describe our techniques in the simplest possible c
text, we will start with a microscopic model that has loc
s-wave pairing correlations. This can be readily generaliz
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to other symmetries such asd wave ~see the end of Sec. II
and Appendix B!. Of course, with strong local on-site repu
sion ~positive u above! d-wave pairing fluctuations are pre
sumably more energetically viable, and also of central int
est in the context of cuprate superconductivity.

Consider then a generalized Hubbard type model,

H5H01Hu1HJ1HD , ~22!

with

H052t (
^rr 8&

cra
† cr 8a1H.c., ~23!

Hu5(
r

u~Nr2N0!2, ~24!

HJ5J (
^rr 8&

FSr•Sr 81
1

4
r rr r 8G , ~25!

HD5D(
r

~eiwrcr↑cr↓1H.c.!. ~26!

As earlier,cra denotes an electron operator at siter with spin
a and the electron density and spin operators are the u
bilinears:r r5cra

† cra andSr5
1
2 cr

†scr . This Hamiltonian is
essentially the same as Eq.~4! in Sec. I, except that it has
local s-wave pairing rather thand wave, and we have adde
a term proportional tor rr r 8 in HJ . These modifications have
been made to simplify both the derivation and the subsequ
analysis of theZ2 gauge theory. We return later to the mo
physically interesting case of locald-wave pairing.

Here,w r is the phase of a locals-wave Cooper pair field
and is canonically conjugate to the Cooper pair number
erator,nr : @w r ,nr 8#5 id rr 8 . As before, sincew r is adynami-
cal quantum field, these pairing fluctuations donot necessar-
ily lead to a superconducting ground state. Theconserved
electrical charge density is the sum of the Cooper pair
electron densities,

Nr52nr1r r . ~27!

A. Split the Cooper pair

We now proceed to split the Cooper pair into two piec
Consider an operatorbr defined as

br
†5sre

iwr /25eifr, ~28!

with sr561 an Ising ‘‘spin’’ variable. With this definition
the new field,

f r5
w r

2
1

p

2
~12sr !, ~29!

can be treated as a phase lying in the interval zero top,
with br invariant under the transformation:w r→w r12p and
sr→2sr . Thesquareof br

† creates a Cooper pair,

eiwr5~br
†!2, ~30!
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so thatbr
† creates a spinless excitation with chargee, essen-

tially one half of a Cooper pair. We refer to this operator
a chargon operator.

In order to separate out the charge and spin degree
freedom it will be extremely useful to define an electrica
neutral but spin carrying fermion operator~a spinon!:

f ra
† 5brcra

† . ~31!

This operator carries the spin of the electron, but is elec
cally neutral as verified by noting that it commutes with t
total electrical charge densityNr . On the other hand, the
chargon is electrically charged, and its phase is canonic
conjugate to the total electrical charge density,

@f r ,Nr 8#5 id rr 8 . ~32!

At this stage it is legitimate to implement an opera
change of variables in the full Hamiltonian, replacing t
electron and Cooper pair operators (w,n,c,c†) by chargons
and spinons (f,N, f , f †) This gives

H5H01Hu1HJ1HD , ~33!

with

H052t (
^rr 8&

br
†br 8 f ra

† f r 8a1h.c., ~34!

HD5D(
r

~ f r↑ f r↓1H.c.!, ~35!

with Hu unchanged andHJ of the same form as in Eq.~25!
but with spinon operators replacing the electron operat
r r5 f ra

† f ra andSr5
1
2 f r

†sf r .
There are several extremely important points to str

about this seemingly inoccuous change of variables. F
one can change the sign of both the chargon and sp
operators on any given siter,

br→2br , f ra→2 f ra , ~36!

without affecting the original Cooper pair or electron ope
tors. This implies that quite generally the transformed Ham
tonianmustalso be invariant under thislocal Ising Z2 sym-
metry, as can be readily checked in Eqs.~34! and ~35!. As
we shall shortly see, in a path integral formulation this lo
Z2 symmetry will be manifest in terms of aZ2 gauge field.
Second, because of this redundancy introduced into
change of variables, aconstraint must be imposed on th
Hilbert space spanned by the spinon and chargon opera

To understand the origin of this constraint, consider fi
the Hilbert space of the original Hamiltonian. In a numbe
diagonal basis, the Hilbert space on each siter is a direct
product of states with an arbitrary integer number of Coo
pairs (nr) and the four electron states consistent with Pa
empty, doubly occupied or singly occupied with an electr
of either spin. Since the chargon has only one half the cha
of the Cooper pair, the full Hilbert space spanned by
chargon and spinon operators is actually twice as large,
it is essential to project down into the physical Hilbert spa
of electrons and Cooper pairs. From Eq.~27!, it is clear that
this can be achieved by imposing a constraint that thesum
s
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~or difference! of the number of chargons (Nr) and spinons
(r r5 f ra

† f ra) on each site is an even integer:

~21!Nr1rr51. ~37!

This implies, for example, that a site with a single charg
but no spinon is unphysical and forbidden, whereas a spi
and chargon together~an electron! is allowed.

B. Path integral and Z2 gauge theory

The most convenient way to implement the constraint
the spinon and chargon Hilbert space is in a~Euclidian! path
integral representation of the partition function. To this e
we define a projection operator,

P5)
r

Pr , ~38!

with

Pr5
1

2
@11~21!Nr1rr#5

1

2 (
sr561

ei (p/2)(12sr )(Nr1rr ),

~39!

which projects into the physical Hilbert space. Here,s r5
61 is an Ising-like field andr r5 f ra

† f ra . As can be verified
directly from Eq. ~33!, this projection operator commute
with the chargon–spinon Hamiltonian,

@P,H#50, ~40!

so that the Hamiltonian does not cause transitions out of
physical Hilbert space.

The partition function can be written as

Z5Tr@e2bHP#, ~41!

where the trace is over the full Hilbert space spanned by
chargon and spinon operators (f,N, f , f †). A Euclidian path
integral representation can be obtained as usual by split
the exponential,

Z5Tr@~e2eHP!M#, ~42!

with M ‘‘time slices’’ and e5b/M . Here, we have inserted
projection operators into each time slice. Working with fe
mion coherent states and eigenstates of the chargon phaf,
a path integral representation can be readily derived, deta
in Appendix A, giving

Z5E )
ia

d f̄ iad fiadf i (
Ni52`

`

(
s i561

e2S, ~43!

where the integration is over Grassman numbersf and f̄ and
a c-number phasef in the interval zero to 2p. Here, i
5(r ,t) runs over the 211-dimensional space time lattic
with t51,2, . . . ,M time slices. The Euclidian action take
the form,

S5St
f 1St

f1e(
t51

M

H~Nt ,ft , f̄ t f t!, ~44!

with



A
av
fe

ng
d

of

ll

y

so

fo

ir
pi

h
ng
in

e
y

nd
uge

e

o-
rd

a-
–
.

n

lds

t

te
in-

is-
he
ng

-
d
op-

ant

a-
n

f

PRB 62 7857Z2 GAUGE THEORY OF ELECTRON . . .
St
f 5 (

r ,t51

M

@ f̄ t~st11f t112 f t!#, ~45!

St
f52 i (

r ,t51

M

NtFft2ft211
p

2
~12st!G . ~46!

Here, we have suppressed the explicitr anda subscripts on
the fields, displaying only the time-slice dependencies.
usual, the bosonic phase field and the Ising field both h
the expected periodic boundary conditions, whereas the
mions are antiperiodic:

ft5M115ft51 , sM115s1 , f M1152 f 1 . ~47!

Notice that the Ising variables live on the links connecti
adjacent time slices, and can thus be correctly interprete
a gauge field. In fact, the Ising fields is minimally coupled
to both spinons and chargons as the time component
gauge field. Moreover, the localZ2 symmetry of the Hamil-
tonian in Eq.~33!, is manifest in the path integral as a fu
fledged IsingZ2 gauge symmetry:

f ia→e i f ia , f̄ ia→e i f̄ ia , f i→f i1
p

2
~12e i !,

~48!

togetherwith a transformation of the gauge field,

s i j →e is i j e j . ~49!

Here, e i561, and s i j lives on the link connecting two
‘‘nearest neighbor’’ space-time lattice points, differing b
one time slice.

Our final goal is to beat the model into a form which al
includesZ2 gauge fields on thespatial links, so that space
and time end up on more equal footing. Our approach
lows closely the standard methods26 employed in slave fer-
mion or slave boson treatments of Heisenberg magnets. F
we perform a Hubbard–Stratanovich decoupling of the s
interaction terms in the Euclidian action:

e2eHJ5E )
^rr 8&

)
t

dx rr 8~t!dx rr 8
* ~t!e2Shs, ~50!

Shs5e (
^rr 8&

(
t

@2Jux rr 8u
22~Jx rr 8 f̄ ra f r 8a1c.c.!#.

~51!

Here,x rr 8(t) is a set of complex fields which live on eac
of the nearest neighbor spatial links. Next, a simple cha
of variables can be performed which eliminates the rema
ing quartic spinon–chargon interaction inH0 in Eq. ~34!:

x rr 8→x rr 82
t

J
br* br 8 , ~52!

where br* [eifr. The full Euclidian action then takes th
form, S5St

f 1St
f1Sr , with the spatial interactions given b

Sr5e(
t

~Hu1HD!1Sx , ~53!

with
s
e
r-

as

a

l-

st,
n

e
-

Sx5e (
^rr 8&

2Jux rr 8u
22@x rr 8~2tbr 8

* br1J f̄ ra f r 8a!1c.c.#.

~54!

The terms inSx correspond to the hopping of spinons a
chargons in the presence of a common fluctuating ga
field, x, on the near neighbor links.

Up to this stage, all of the formal manipulations that w
have performed have beenexact, so that the full Euclidian
action gives a faithful representation of the original micr
scopic electron Hamiltonian. But now, following standa
slave fermion/boson techniques, we perform an approxim
tion, treating the functional integral over the Hubbard
Stratanovich field,x, within a saddlepoint approximation
~While it might be possible to find an appropriate ‘‘large-N’’
generalization of the model for which this approximatio
becomes exact, we do not pursue this tack here.! The sim-
plest saddlepoint corresponds to setting all of the link fie
equal to a single real constant:x rr 85x0. The saddlepoint
value forx0 can~in principle! be obtained by integrating ou
the spinons~which are Gaussian! and the chargons~which
are not!. This saddlepoint respects two important discre
symmetries of the model, translational and time-reversal
variance. But the saddlepoint doesnot respect theZ2 gauge
symmetry in Eqs.~48! and ~49!. This serious flaw can be
easily remedied though by retaining a particular set offluc-
tuationsabout the saddlepoint. The simplest choice cons
tent with theZ2 gauge symmetry corresponds to allowing t
sign of x rr 8 to change, keeping the magnitude fixed, putti

x rr 85s rr 8x0 . ~55!

Here,s rr 8(t)561 is a set of Ising fields living on the spa
tial links of the space-time lattice. Within this restricte
manifold the theory consists of chargons and spinons h
ping on a space-time lattice, minimally coupled to anZ2
gauge field. Note that the fluctuations in themagnitudex0 of
the saddlepoint value ofx have been ignored in Eq.~55!—
these ‘‘massive’’ fluctuations are expected to be unimport
for the issues we address in this paper.

Hereafter we work under this fixed-magnitude approxim
tion. Within this approximation the full partition function ca
be expressed as a functional integral,

Z̃5E )
ia

d f̄ iad fiadf i (
Ni52`

`

)̂
i j &

(
s i j 561

e2S, ~56!

with Z2 gauge fieldss i j living on the near neighbor links o
the space-time lattice, and

S5St
f 1St

f1S01Su1SD , ~57!

with

St
f 5 (

i , j 5 i 1 t̂

@ f̄ ia~s i j f j a2 f i !#, ~58!

St
f52 i (

i , j 5 i 2 t̂

Ni S f i2f j1
p

2
~12s i j ! D , ~59!

Su5eu(
i

~Ni2N0!2, ~60!
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SD5eD(
i

~ f i↑ f i↓1 f̄ i↓ f̄ i↑!, ~61!

S052e (
i , j 5 i 1 x̂

s i j ~ t0bi* bj1J0 f̄ ia f j a1c.c.!, ~62!

where we have definedt052tx0 andJ05Jx0.
Notice that the full action is local in the integersNi , so

the summation can be performed independently at e
space-time point. A straightforward Poisson resummat
gives

(
Ni

e2(Su1St
f)5expF (

i , j 5 i 2 t̂

V~F i j !G , ~63!

where F i j 5f i2f j1(p/2)(12s i j ) is the gauge invarian
phase difference along a temporal link. Here, the perio
potentialV(F) is given by

eV(F)5 (
l 52`

`

e2(1/4eu)[F22p l ] 21 iN0(2p l 2F), ~64!

and we have dropped an overall multiplicative constant.
the limit of small eu, the sum overl will be dominated by
precisely one term which minimizesuF22p l u. This occurs
for integerl satisfyinguF22p l u,p or, equvalently,

l 5 intS F

2p
1

1

2D . ~65!

Moreover, for smalleu we may approximate

e2(1/4eu)(F22p l )2
;e(1/2eu)[12cos(F22p l )] , ~66!

5e(1/2eu)[12cos(F)] . ~67!

Within this approximation the sum overl becomes simply

eV(F)'e1(1/2eu)cos(F)1 iN0(2p l 2F), ~68!

with l given by Eq.~65!. We have again dropped an overa
multiplicative constant.

The full N sum in the action then leads to

(
Ni

e2(Su1St
f)5e( i , j 5 i 2 t̂ (1/2eu)s i j cos(f i2f j )2SB, ~69!

with the Berry phase termSB given by

SB52 iN0 (
i , j 5 i 2 t̂

~2p l i j 2F i j !, ~70!

52 iN0 (
i , j 5 i 2 t̂

F2p l i j 2
p

2
~12s i j !G . ~71!

In obtaining the last line, we have re-expressedF i j in terms
of f ands, and used theb-periodic boundary conditions o
f to drop the term involvingf i2f j . The Berry phase term
is theonly term in the action which depends on the~average!
occupation number per unit cell,N0. It simplifies consider-
ably for integerN0. For even integer N0, we simply have
e2SB51, while for odd integerN0,
ch
n

ic

n

e2SB5 )
i , j 5 i 2 t̂

s i j , N0 odd. ~72!

As we shall see, the Berry’s phase term will lead to sub
yet important differences between Mott insulators with o
integerN0 and band insulators with evenN0.

The Euclidian path integral is only identical to the Ham
tonian formulation in the stricte→0 limit. But since the
original lattice Hamiltonian is already an effective low e
ergy theory, the time continuum limit which involves arb
trarily high energies is not actually of interest. For the
reasons, hereafter we keepe finite, viewing it as an inverse
‘‘high energy’’ cutoff in the theory. Since the kinetic~t! and
interaction~u! energy scales are the largest in the theory, i
convenient to choose the value ofe so that the charge secto
of the theory is isotropic on the 211-dimensional space
time lattice. To this end, we require that the spatial charg
hopping strength equals the temporal one: 1/2eu52et0,
which implies

1

e
52At0u. ~73!

Note that the choice of the value ofe only modifies slightly
the physics at the highest energy scales, set byt andu. The
details of the model at these high energy scales will
significantly affect the low energy physics.27

With this choice ofe the full Euclidian action reduces to
a much simpler and more compact form,

S5Sc1Ss1SB , ~74!

with

Sc52tc(̂
i j &

s i j ~bi* bj1H.c!, ~75!

Ss5(̂
i j &

2~ t i j
s s i j f̄ i f j1c.c.!1d i j ~ tD f i↑ f i↓1c.c.2 f̄ i f i !,

~76!

and SB as defined above. Here, the dimensionless char
coupling strength is given in terms of the microscopic p
rameterst, u, andx0 to be

tc5et05Atx0

2u
. ~77!

The dimensionless spinon coupling along the nearest ne
bor spatial links is

t i j
s 5eJ05JA x0

8tu
, ~78!

whereast i j
s 521 along the neighboring temporal links. Sim

larly, the coupling constant for the spinon pairing is

tD5
D

A8txou
. ~79!

As will be shown in Sec. IV, for the physically interestin
case ofd-wave pairing near half filling, the parameterx0
may be roughly estimated to be
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x0;S tu

J2D 1/3

. ~80!

This can be used to obtain rough estimates of the three
mensionless coupling constants,tc , ts, andtD. For the most
part, however, we will treat these couplings as phenome
logical parameters.

The partition function involves an integration over th
on-site chargon phase (f i) and spinon Grassman field
( f̄ i , f i), as well as a summation over theZ2 gauge fields
(s i j 561) which live on the nearest neighbor links of th
Euclidian space time lattice. This ‘‘final’’ form for the theor
is exceedingly simple, consisting of chargons and spin
hopping around, minimally coupled to a dynamicalZ2 gauge
field. This form could have essentially been guessed just
ing knowledge of the field content~chargons and spinons!
and the required symmetries:U(1) charge conservation
SU(2) spin conservation and the localZ2 gauge symmetry.
Perhaps the only subtlety is the presence of the termSB in
the action when the filling factorN0 is not an even integer
Among the additional terms which are allowed by these sy
metries is a field strength term for theZ2 gauge field:

Ss52K(
h

F)
h

s i j G . ~81!

Here, the product denotes the gauge invariant product of
Ising fields around an elementary plaquette. This Ising fi
strength is then summed over all space-time plaque
Clearly,Ss is the direct Ising analog of theFmn

2 term which
enters the Lagrangian of ordinaryU(1) electromagnetism
Even though not present in the derivation presented here,
field strength term will be generated upon integrating out
chargon or spinon matter fields, as discussed below.

In Appendix B we show how the above analysis can
generalized to the case in which locald-wave pairing corre-
lations are incorporated from the outset as in the Hamilton
Eq. ~4!, rather thans-wave as assumed above. The derivat
of the effectiveZ2 gauge theory proceeds in much the sa
fashion, and one arrives at the same model except with
spinon action given instead by

Ss52(̂
i j &

s i j ~ t i j
s f̄ ia f j a1t i j

D f i↑ f j↓1c.c!2(
i

f̄ ia f ia .

~82!

Here, t i j
D denotes ad-wave pairing amplitude living on the

nearest neighbor spatial bonds, with amplitude1tD on the
x-axis bonds and2tD along they-axis bonds. Notice that the
Z2 gauge fields i j enters here because thed-wave pair field
lives on thelinks. This form exhibits the required IsingZ2
gauge symmetry, being invariant under the transformatio
Eq. ~48!. As shown in Sec. IV, a rough estimate of the va
ous coupling constants in this case is

tc;SAtu

J D 1/3A t

u
, ts;S J

t D tc , tD;
D

t
tc . ~83!

Herets andtD refer only to the spatial couplings. But we wi
once again regard these as phenomenological paramete
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III. FRACTIONALIZATION AND CONFINEMENT

Here in Sec. III we will analyze some of the phases wh
are described by theZ2 gauge theory model derived in Se
II. While theZ2 gauge formulation is valid in general dimen
sion, for concreteness and simplicity we specialize to t
dimensions, generalizing briefly to other dimensions in S
VIII A. Moreover, for illustrative purposes we focus first o
the simplest case with an even number of electrons per
~unit cell!, and presume the presence of locals-wave pairing
correlations. As we shall see, in this case the model
exhibit a conventional band insulator. More interesting,
certain parameter regimes, fractionalized insulating pha
also become possible. Note that the microscopic Hamilton
in Eq. ~22! allows for charge fluctuations even when the to
charge per site is even. In models of interacting electron
the idealizedlimit of a single band, an even charge per s
impliesno charge fluctuations, and is trivial. However, awa
from this idealized limit, even occupation does not imply
charge fluctuations, and may be nontrivial.

In Sec. IV we will turn to the more physically interestin
situation with anodd number of electrons per site. At tha
stage we will focus on locald-wave pairing correlations
which are more tenable in the presence of a large posi
on-site Hubbardu as well as being of direct relevance to th
cuprates. Doping away from half filling will be discussed
Sec. VI.

With even integerN0 and locals-wave pairing correla-
tions the full action consists of two contributions,S5Sc
1Ss , corresponding to the charge and spin sectors, res
tively,

Sc52tc(̂
i j &

s i j ~bi* bj1c.c.!, ~84!

Ss52(̂
i j &

t i j
s s i j ~ f̄ i f j1c.c.!2(

i
f̄ i f i ~85!

1tD(
i

~ f i↑ f i↓1c.c.!. ~86!

The first term, which describes the dynamics of the chargo
b* 5eif, minimally coupled to anZ2 gauge field, exhibits
the globalU(1) charge conservation symmetry. The spino
also carry theZ2 Ising ‘‘charge.’’ Due to thes-wave form of
the anomalous ‘‘pairing’’ term, the spinons, which are pair
into singlets, should be gapped out.

A. Correlated ‘‘band’’ insulators

We first consider electrically insulating states. When t
dimensionless chargon couplingtc is much smaller than
unity, the chargons cannot propagate at low energies a
charge gap results. In this case, with both spinons and c
gons gapped out, it is possible to integrate them out from
theory, leaving theZ2 gauge fields as the only remaining
field. This integration will generate additional terms in th
Lagrangian, depending ons, which will be local in space
time and must also be gauge invariant. The most impor
such term28 is simply,
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Ss52K(
h

F)
h

s i j G , ~87!

which describes a pureZ2 gauge theory.
Remarkably, this simple gauge theory exhibits a ph

transition as the couplingK is varied. Indeed, as shown orig
nally by Wegner,12,11 the pureZ2 gauge theory in 3D isdual
to the familiar three-dimensional Ising model:

Sdual52Kd(̂
i j &

v iv j , ~88!

with Ising spins,v i561, living on the sites of the dua
lattice. The dimensionless Ising model coupling,Kd , is sim-
ply related toK: tanh(Kd)5e22K. This form shows that the
high and low ‘‘temperature’’ phases are exchanged under
duality transformation. The details of this duality transform
tion are given in Appendix C.

As emphasized originally by Wilson,29 a direct character-
ization of the two phases of the pure gauge theory is give
terms of the correlator,

GC5K)C
s i j L , ~89!

where the average is for the pure gauge theory and the p
uct is taken around a closed loop in space time, denoteC.
For K,Kc the Wilson loop satisfies an ‘‘area law,’’ with
GC;exp(2cA), with loop areaA, andc a K-dependent con-
stant. WhenK.Kc , GC decays more slowly, only exponen
tially with the perimeterof the loop.

What do these two phases correspond to in phys
terms? Consider first the largeK limit, which is the high
temperature phase of the dual Ising model. AsK→` all of
the gauge field plaquette sums will be equal to11. In this
case it is possible to choose a gauge in which all of the Is
link variables are also unity,s i j 51. In this phase the char
gons and spinons canpropagateat energies above their re
spective gaps. Apparently, the Hamiltonian contains gap
excitations which carry the quantum numbers of spinons
chargons. The electron has effectively been fractionaliz
We denote this exotic insulating state with deconfined ch
gons and spinons asI* . It is exceedingly important to em
phasize that the splintering of the electron into spin a
charge carrying constituents is conceptually unrelated to
presence or absence of spin order. Indeed, electron frac
alization can occur even in the presence of strong spin–o
interactions which destroys spin-rotational invariance—
that case the states of the fermionicf particles cannot be
labeled by spin.

As the couplingK is reduced, so long as the gauge theo
is in its perimeter phase, the energy to separate parti
carrying theZ2 charge remains finite, even for infinite sep
ration. The chargons and spinons are deconfined. Fur
with K,`, configurations of theZ2 gauge theory with
plaquette products equal to21 will become possible. One
can think of such plaquettes as being ‘‘pierced’’ by nonze
‘‘ Z2 flux’’ or Z2 vorticity. Because the number of suc
plaquettes on any given elementary space-time cube is e
the fluxes form ‘‘tubes,’’ analogous to Abrikosov vortices
a type II superconductor, which propagate in space time
e
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particles. These particles can scatter and can anihillat
pairs, but since their number is conserved modulo 2 th
carry a conservedZ2 ‘‘charge.’’ We will refer to these
particle-likeZ2 vortices as ‘‘visons.’’ One can define a viso
‘‘three current,’’ j v , a field which lives on the links of the
dual lattice and takes one of two values, zero or one, wh
satisfies,

~21! j v5)
h

s i j , ~90!

with the plaquette pierced by the dual link. In the deconfin
phase,I* , these vison particles exist as gapped excitatio
in addition to the spinons and chargons. In terms of the d
Ising model,Sdual, the Ising spinsv i are essentially vison
creation operators. With the Ising model being disordered
large K, the visons~Ising spins! are gapped. Thus, the dis
tinct gapped excitations inI* are ~i! the chargons,~ii ! the
spinons and~iii ! the visons. An important property of thes
excitations is the existence of long-ranged ‘‘statistical’’ i
teractions between them. Specifically, when a chargon~or a
spinon! is adiabatically transported around a vison, it a
quires a geometrical phase factor ofp ~because the chargo
is minimally coupled to theZ2 gauge field!. Similarly, a
vison picks up ap phase factor upon encircling either
chargon or a spinon. Evidently, visons and chargons~or
spinons! are ‘‘relative semions.’’

As K is reduced further the gauge theory undergoe
phase transition atKc into its ‘‘area-law’’ phase. This im-
plies that the energy to separate two spinons or charg
inserted as ‘‘test’’ charges at spatial separation,R, grows
linearly with R. In this ‘‘confined’’ insulating phase, denote
I, free chargons and spinons do not exist in the spectr
The only allowed particle excitations are those that
‘‘charge neutral,’’ that is, invariant under theZ2 gauge trans-
formation. Any bound state with an even number of ch
gons plus spinons is neutral. In addition to the electron,
includes any composite built from electrons, such as a C
per pair or a magnon. In the phaseI these electron-like ex-
citations will be gapped. This phase is the familiar ‘‘ban
insulator’’ with an even number of electrons per unit cell.

Note that withK,Kc , the dual Ising model orderŝv i&
Þ0. This corresponds to a ‘‘condensation’’ of the vison
Remarkably,Z2 vortex condensation leads directly to
‘‘confinement’’ for the chargons and spinons. To understa
confinement directly in terms of the dual Ising model, co
sider the effect of inserting two static ‘‘test’’ chargons, sep
rated by a distanceR. Each chargon lives on a~spatial!
plaquette of the dual Ising model. Due to the geometri
phase factor between visons and chargons, the presence
chargon corresponds to a ‘‘frustrated plaquette’’ in the d
Ising model, that is, a plaquette with an odd number of ne
tive Ising couplings. To frustratetwo plaquettes, it suffices to
introduce an interconnecting string of negative Ising bon
In the ordered phase of the dual Ising model, the energy
this string will clearly be linear in its length, thereby confin
ing the two chargons.

It is worth drawing a very important distiction betwee
the Ising gauge theory considered here, and the gauge t
ries introduced by Baskaran and Anderson7 and generalized
and extensively studied by several authors.8 In the simplest
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version of these theories, the spin itself is effectively fra
tionalized, decomposed into a bilinear of spinful~complex!
fermion operators, rather than splitting the Cooper pair i
two chargons as discussed above. These spinful fermion
erators, the spinons, are minimally coupled to a comp
U(1) gauge field. But in contrast to theZ2 gauge field which
exhibits both a confined and deconfined phase, theU(1)
theory has only asingle phase.13 In this phase, point-like
monopole excitations in 211-dimensional space time alway
proliferate, and drive spinon confinement.26 The electron is,
then, ultimatelynot expected to be fractionalized in thes
theories.

B. Superconducting phases

We now turn to a description of superconductivity with
the Z2 gauge theory. Since the spinons will be gapped i
singlets within the superconducting phase, it is legitimate
integrate them out, generating once again a field stren
term for the gauge field as in Eq.~87!. When the dimenson
less chargon ‘‘hopping’’ amplitude,tc , increases and be
comes much larger than unity, one expects the chargon
condensê eif&Þ0. For largeK so that the gauge field i
effectively frozen, this chargon condensation transition
simply a 3D classicalXY transition. Since the chargon ca
ries electric chargee, in this phase the chargeU(1) summe-
try is broken, and a Meissner effect results. But the char
also carriesZ2 charge, so that theZ2 gauge symmetry is also
spontaneously broken. Within a conventional BCS desc
tion of superconductivity, the order parameter~the Cooper
pair! carries charge 2e, so one might be tempted to conclud
that this ‘‘chargon condensate’’ is perhaps some sort of
otic unconventional superconducting phase. In particula
is not a priori clear that the chargon condensate can sup
a conventionalhc/2e BCS vortex.

To highlight the confusion, it is instructive to focus on th
regime with largeK, where a good description of the groun
state can be obtained by settings i j 51 on every link, and
taking the chargon phasef i as a space-time independe
constant. Consider placing anhc/2e vortex at the~spatial!
origin. Upon encircling thisU(1) vortex at a large distance
the phase of the chargon wave function must wind byp.
This is of course not possible with a smoothly varying pha
field, but requires the introduction of a ‘‘cut’’ running from
the vortex to spatial infinity across which the phase jumps
p. The energy of this cut is, however, linear in its leng
with a line tension proportional totcu^eif&u2. It thus appears
thathc/2e vortices are themselves confined, and not allow
in the superconducting chargon condensate. But imag
changing the sign of all theZ2 gauge fields,s i j , which
‘‘cross’’ the cut. This corresponds to placing aZ2 vortex at
the origin. These sign changes ‘‘unfrustrate’’ theXY cou-
plings across the cut, so that the line tension vanishes.
thus apparent that a bound state of aZ2 vortex and thehc/2e
U(1) vortex ~in the phase of the chargon! can exist within
the chargon condensate. It is this bound state which co
sponds to the elementary BCS vortex in the conventio
description of a superconductor.

It is worth emphasizing that both the ‘‘naked’’hc/2e
U(1) vortex and theZ2 vortex, the vison, are confined in th
superconducting phase. For example, the energy cost to
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aparttwo Z2 vortices also grows linearly with separation. T
see this, introduce two visons by changing the sign of theZ2
gauge field along an interconnecting ‘‘line.’’ Due to th
chargon condensate which breaks theZ2 gauge symmetry
making the gauge field ‘‘massive,’’eachnegative bond costs
an energy 4tc , implying linear confinement.

Thus the distinct massive excitations@apart from the
Anderson–Higgs plasma mode necessitated by theU(1)
symmetry breaking# in the chargon condensate are t
spinons and the BCShc/2e vortices. This is exactly that is
required in a conventional superconducting phase. Furt
since the spinons are minimally coupled to theZ2 gauge
field, there is a long range statistical interaction between
spinons and the BCS vortices. In effect, a spinon ‘‘sees’’
Z2 vortex, which is bound to thehc/2e vortex, as a source o
‘‘Ising flux.’’ This too is what is required in a conventiona
superconductor. Thus, the chargon condensate does in
describe a conventional superconducting phase, den
hereafter asSC.

A schematic phase diagram is shown in theK –tc plane in
Fig. 2. The transition from the fractionalized insulatorI*
into SC is essentially a superconductor-insulator transit
for the chargee chargons. These exist as finite energy ex
tations inI* , superconducting order is obtained if they co
dense. On the other hand, the transition from the conv
tional insulator I into SC can be viewed as a
superconductor–insulator transition for charge 2e Cooper
pairs. This can be seen by considering theK50 limit, where
it is possible to integrate out theZ2 gauge field and arrive a
an effective theory of Cooper pair hopping:

Spair522t2(̂
i j &

cos@2~f i2f j !#. ~91!

IV. ODD NUMBER OF ELECTRONS PER UNIT CELL
WITH d-WAVE PAIRING

Having explored the physics of electron fractionalizati
which follows from theZ2 gauge theory in the simplest o
cases with an even number of particles per site in the p
ence ofs-wave pairing correlations, we turn now to a muc
more interesting and challenging situation: correlated M
insulators with one electron per unit cell in the presence
local d-wave pairing correlations. As we shall see, in th
case theZ2 gauge theory has two simple limiting regimes—
one describing ad-wave superconductor and the other a co
ventional antiferromagnetic insulator. But in the interesti
crossover regime between these two limits, a number
other phases can be readily described within theZ2 gauge

FIG. 2. Schematic zero temperature phase diagram in theK –tc

plane for locals-wave pairing with an even number of electrons p
unit cell.
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theory. Besides a spin-Peierls ordered phase, the theory g
a simple description of thenodal liquid, an exotic fraction-
alized insulator with gapless fermionic quasiparticles. W
one electron per unit cell,confinementtransitions out of the
d-wave superconductor or nodal liquid are inextricab
linked to breaking of translational symmetry.

The full theory of interest can be written as

S5Sc1Ss1SB , ~92!

Sc522tc(̂
i j &

s i j cos~f i2f j !, ~93!

Ss52(̂
i j &

s i j ~ t i j
s f̄ i f j1t i j

D f i↑ f j↓1c.c.!2(
i

f̄ i f i . ~94!

As shown in Eqs.~70! and~72!, with odd integerN0 there is
an extra Berry’s phase term in the action,

SB52 i
p

2 (
i , j 5 i 2 t̂

~12s i j !. ~95!

It is instructive to consider various limiting cases d
scribed by the above action. First consider the limittc50.
ThenSc50, and thef fields may be trivially integrated out
Surprisingly, the partition function for the remaining sp
sector of the theory is formally equivalent to the Heisenb
antiferromagnetic spin model. To demonstrate this we fi
trace over the two allowed values of theZ2 gauge fields i j
on each link. Consider first thespatial links, which enter the
action in the form,

Ss
r5 (

^rr 8&
(

t
s rr 8A rr 8

t , ~96!

A rr 8
t

52t rr 8
s

~ f̄ r f r 81c.c.!2t rr 8
D

~ f r↑ f r 8↓2~↑→↓ !1c.c.!.
~97!

For notational simplicity we have suppressed thet index on
the fermion fields. Tracing over thes rr 8 fields for each~in-
dependent! spatial link and exponentiating the result gen
ates a term in the action of the form,

Sr52 (
^rr 8&

(
t

ln cosh~A rr 8
t

!. ~98!

SinceA is bilinear in the fermion fields, upon expanding
powers ofA one generates a series of terms that invo
multiples of four spinons.

Now consider the trace ofs i j along the temporal links
Recall that the effect of the gauge fields i , j 5 i 2 t̂ along the
temporal links is precisely to impose the constraint Eq.~37!
on the Hilbert space in a Hamiltonian formulation. With th
f fields integrated out, attc50, this constraint reduces t
requiring

~21!nf521 ~99!

at each site of the spatial lattice. Due to Pauli exclusion
is equivalent to the constraint thatnf51 at each site. Thus
after tracing out thes field, the Hamiltonian obtained from
Sr is constrained to operate on a Hilbert space with exa
es

g
t

-

e

is

ly

one spinon per site. This Hamiltonian consists of a sum
terms for each nearest neighbor spatial link. With the ad
tional requirement of spin rotation symmetry, the Ham
tonian must take the form of the Heisenberg spin Ham
tonian,

H5J (
^rr 8&

Sr•Sr 8 . ~100!

This can be verified directly fromSr by expanding out the
ln cosh term, and re-expressing the spinon operators in te
of the spin operators,Sr5 f r

†sf r . This leads to an explicit
expression for the exchange interaction:

J5
1

e S ~ ts!21
~ tD!2

4 D , ~101!

wheree is the discrete time slice defined in Eq.~73!.
A few comments are in order on this result. It is certain

obvious from the Hamiltonian in Eq.~4! that killing the su-
perconductor at half filling by lettingu→` will lead to an-
tiferromagnetism. Our point here is, however, different. It
interesting~and reassuring! to see this emerge directly from
theZ2 gauge theory action itself, especially as some appro
mation has gone into deriving theZ2 action from the micro-
scopic Hamiltonian@i.e., ignoring the amplitude flucutation
about the saddlepoint, as discussed below Eq.~55!#. Also,
this gives us an alternate way of motivating the Z2 gauge
theory starting directly with the Heisenberg magnet.

Recovering the Heisenberg antiferromagnet in the lim
tc→0 also provides a way to obtain a rough estimate for
saddlepoint parameterx0. First, we note thatts andtD can be
re-expressed in terms of the parameterst, u, J, D, andx0
using Eqs.~78! and~79!. Although these relations are strictl
valid for s-wave pairing, they suffice to give rough estimat
even for thed-wave case. It is, however, necessary to mod
the equation fortD due to the slightly different decoupling in
thed-wave case~see Appendix B!. Assuming that the saddle
point valueh0;x0, we get

tD;
D

J
ts. ~102!

Combining Eqs.~78! and~102! with Eq. ~101! and assuming
D!J, leads to an estimate forx0,

x0;S tu

J2D 1/3

, ~103!

which is appropriate in the limit of largeu/t. Having esti-
matedx0, one can use Eqs.~77!, ~78! and ~102! to obtain
estimates for the three dimensionless coupling constantstc ,
ts, andtD, respectively. The resulting estimates are given
Eq. ~19!.

Having established the equivalence of the action in E
~92! to the Heisenberg antiferromagnet in the limittc→0, we
briefly consider the opposite largetc limit. With sufficiently
largetc the chargons will condense and, as argued in Sec.
this describes a conventional superconducting phase. But
to the assumed form of the pairing correlations, the pair
symmetry here will bedx22y2. Thus, theZ2 gauge theory in
Eq. ~92! has the remarkable property that it describes a c
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PRB 62 7863Z2 GAUGE THEORY OF ELECTRON . . .
ventional antiferromagnet for small chargon coupling, an
conventionaldx22y2 superconductor in the opposite extrem
We now turn our attention to the exceedingly interest
regime between these two limits.

A. Correlated Mott insulators

When the chargon coupling strengthtc is small, the char-
gons will be gapped out, and the system in an insulat
phase. In this case, it is appropriate to integrate out the c
gon fields to obtain an effective action for the spinons a
the gauge fields. The main result of this integration will be
to generate a plaquette product term of the form

Ss52K(
h

F)
h

s i j G . ~104!

The full remaining action which is valid within the insulatin
phases is then simply

S5Ss1Ss1SB . ~105!

The parameterK depends on the couplingtc , vanishing at
tc50 and increasing monotonically withtc . The transition
to superconductivity will occur whentc;1. Near this limit,
but on the insulating side, the value ofK will also be of order
1. Keeping this in mind, we first find it convenient to analy
the phase diagram of the above action forarbitrary K, incor-
porating later the superconducting phase.

The action in Eq.~105! has three dimensionless couplin
constants,ts, tD, andK. Considerable progress can be ma
in determining the phase diagram by focusing on three
ferent limits. The first, considered above, isK50 where the
model reduces to the Heisenberg spin model. The sec
tractable limit is largeK. If K5` the gauge field is frozen
out and it is possible to choose a gauge withs i j 51 on every
link. Then, the only remaining piece of the action describ
noninteracting spinons with a gaplessd-wave dispersion a
four points in the Brillouin zone. This is the ‘‘nodal liquid’
phase obtained in earlier work9,21 by vortex pairing within a
dual vortex formulation. The nodal liquid is a fractionalize
insulator with deconfined, gapless spinons and gapped c
gons. For large but finiteK and in the absence ofSB , theZ2
gauge theory is in its perimeter law phase. As we show
low, this continues to hold even in the presence ofSB , in
fact, the region of stability of the perimeter phase isen-
hancedby the SB term. Thus, the chargons and spinons
main deconfined and the nodal liquid phase survives
large but finiteK.

As with the fractionalized insulator discussed in Sec.
apart from the chargons and the spinons there is ano
distinct excitation in the nodal liquid phase, theZ2 vortex
configuration in thes field, dubbed the vison. The vison is
gapped excitation in the nodal liquid. As before, due to
minimal coupling of the chargons and the spinons to theZ2
gauge fields, they each acquire a phase ofp upon encir-
cling a vison. There is thus a long-ranged statistical inter
tion between a chargon~or a spinon! and a vison.

The third tractable limit of the action Eq.~105! is smallts

and tD. @Estimates appropriate to the cuprates obtained fr
Eq. ~19! suggest that these couplings will most likely b
much smaller than 1.# In the extreme limit ofts5tD50, we
a
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are left with a pureZ2 gauge theory described bySeff5Ss

1SB . To explore the effects of the Berry’s phase termSB on
the gauge theory, it is useful to pass to the dual represe
tion. Recall that forSB50 the dual theory is simply the
211-dimensional Ising model, with the Ising spin operato
(v i561) creating the vison excitations. To implement t
duality transformation with the Berry’s phase term presen
is convenient to first rewrite it as

SB5 i
p

4 (̂
i j &

~12s i j !S 12)
h

m i j
extD . ~106!

Here m i j
ext can be viewed as an ‘‘external’’Z2 gauge field

living on the links of the dual lattice, which satisfie
)hm i j

ext521 through everyspatial plaquette. In this form
one can readily generalize the duality transformation in A
pendix C to give

Sdual52Kd(̂
i j &

v im i j
extv j , ~107!

with dual coupling satisfying; tanh(Kd)5e22K. Due to the
Berry’s phase term, every spatial plaquette~with normals
along the time direction! in the dual Ising model isfrus-
trated. In the time continuum limit this becomes a 2D qua
tum transverse-field Ising model which isfully frustrated.

The quantum Ising model on a fully frustrated square l
tice has been studied extensively by several authors.16,30 In
particular, Jalabert and Sachdev16 studied the model numeri
cally ~not coincidentally! in the context of frustrated quan
tum Heisenberg spin models. For smallKd the Ising model
exhibits the usual paramagnetic phase, in which the vis
are gapped~uncondensed! with ^v i&50. This corresponds to
the ‘‘low temperature’’ phase of the gauge theory. De
within this phase one can sets i j 51 on all the links, which
implies ~for ts,tDÞ0) that the chargons and spinons arede-
confined. This is the nodal liquid phase discussed earlier. I
noteworthy that the frustration in the Ising model, which is
direct consequence of being in a Mott insulator with o
electron per site,enhancesthe stability of the fractionalized
nodal liquid phase~the paramagnetic phase of the Isin
model!.

As Kd is increased, it has been found16 that the Ising
model orders, breaking the globalZ2 spin flip symmetry. But
due to the frustration, this ordering is accompanied by
spontaneous breaking of translational symmetry. It is con
nient to characterize this symmetry breaking in terms of
gauge-invariant energy densities of the near-neighbor bo
Ei j 52^v im i j

extv j&. It is found that some of the bonds ar
‘‘frustrated’’ with positive Ei j , while the remaining are
‘‘happy’’ with negative bond energies. In the spatially br
ken ordered phases, it is found that these frustrated bo
form lines~see Fig. 3!, which run along the principal axis o
the square lattice~columns or rows!. There are four favored
configurations, corresponding to frustrated bonds along
ery other column or along every other row. Within each
these phases, a particular gauge choice can be made
m i j

ext521 on each frustrated bond. With this choice
gauge, the Ising spins,v i , exhibit global ferromagnetic or-
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dering. Altogether, the ground state is thus eightfold deg
erate and breaks theZ2 spin flip, translational and rotationa
symmetries.

In general, several other ordered phases of the fully fr
trated Ising model are possible; some of these are explore
the Landau theory of the first reference in Ref. 30. Th
phases may perhaps be stabilized by very largeKd , and/or
longer ranged interactions beyond the simplest nearest ne
bor model studied in Ref. 16. We will not consider the
other possibile phases in the present paper.

What are the effects of a small nonzerots and tD which
couple the spinons to theZ2 gauge field? In the context o
quantum antiferromagnets, Sachdev and co-workers16,17have
suggested that thespatial ordering of the Ising model corre
sponds to a spin-Peierls ordering. This interpretation app
to be consistent within our present framework. Specifica
associated with each frustrated bond in the Ising model,
corresponding frustrated plaquette on the dual lat
‘‘pierced’’ by that bond. The expectation value of th
plaquette product in the gauge theory will therefore
modulated in these ordered phases, with^)hs i j &'2Ei j .
Upon including the coupling to the spinons, this modulati
of the energy density will, in general, induce a modulation
various other physical quantities. In particular, the quant
expectation valuêSr•Sr 8& evaluated for each bond will b
spatially modulated—bonds which ‘‘cross’’ the frustrate
lines of the dual lattice will have a different value for th
expectation value from other bonds. Presuming the spin
tation invariance remains unbroken, this state correspond
a spin-Peierls phase which we denote asSP. The ‘‘singlet
bonds’’ in this phase are arranged in a columnar fash
running perpendicular to the lines of frustrated bonds in
dual Ising model as depicted in Fig. 3.

Since the Ising spins in the fully frustrated Ising mod
order ferromagnetically in these modulated phases~with an
appropriate gauge choice form i j

ext) implying a vison conden-
sation,^v i&Þ0, confinement is expected. To see this, co
sider evaluating the Wilson loop correlator defined in E

FIG. 3. One possible ordered low temperature phase of the f
frustrated transverse field Ising model in two spatial dimensio
The thick lines represent the frustrated bonds. The dashed
denote the links of the dual lattice where the corresponding ‘‘sin
bonds’’ live.
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~89!. In the dual frustrated Ising model, this corresponds
changing the sign of all the Ising couplings on bonds wh
pierce throught the loop. Being ferromagnetically order
this will cost an energy~action! proportional to the area o
the loop, the signature of confinement. Thus, as expected
spin-Peierls state is a conventional insulator, with confin
spinons and chargons. The gapped spin-one excitations m
by breaking the singlet bonds can then be thought of a
~confined! pair of spinons.

The three limiting cases discussed above suggest
phase diagram shown in Fig. 1 for the action in Eq.~105!.
Consider first the regime with smallts andtD. At very small
K a conventional antiferromagnetic insulator is expect
With increasingK there is presumably a phase transition in
a conventional spin-Peierls insulator with confined charg
and spinons. Upon further increasingK, the spin-Peierls
phase undergoes adeconfinementtransition into the fraction-
alized nodal liquid phase. For largets and tD, the antiferro-
magnet and nodal liquid phases will still be present in
limit of very small and largeK, respectively. But it is not
clear which phases will be present when all three of
coupling constants are of order 1. In particular, it is uncle
whether it is possible to have a direct second order ph
transition from the antiferromagnet into the nodal liquid
whether there will always be an intervening~spin-Peierls!
phase.

We now discuss the implications of these results for
phase diagram of the fullZ2 gauge theory in which the
charge degrees of freedom are present and superconduc
is possible. Of primary interest is the evolution from th
antiferromagnet to thed-wave superconductor upon increa
ing the chargon coupling,tc . A transition into the supercon
ductor is expected to occur at some critical chargon c
pling, tc* , of order one. For smallertc in the insulating
regime, the dimensionless couplingK will at most be of or-
der 1. One can imagine two qualitatively distinct possibiliti
upon tuning towards the superconductor from the insulat
phases. First, it may be that even whentc increases totc* , the
value ofK will remain smallerthan the critical value neede
for deconfinement,Kc . In this case, all the intermediat
phases between the antiferromagnet and the supercond
will be conventional confined phases. This is illustrated
Fig. 4. Alternately, it may be thatK exceedsKc before the
onset of superconductivity. This would imply the existen
of the deconfined nodal liquid phase intervening between
d-wave superconductor and a conventional insulator. Thi
illustrated in Fig. 5.

Which one of these two possibilities is realized will pr
sumably depend sensitively on microscopic details. Inde
sinceK is of order 1 whentc approachestc* , it seems likely
that the onset of superconductivity will occur close to t

ly
s.
es
t

FIG. 4. Schematic zero temperature phase diagram showing
possible scenario for the evolution from the antiferromagnet~AF! to
the d-wave superconductordSC. In this scenario, all the insulating
phases are conventional. The thick lines indicate confinement o
chargons and spinons. For concreteness, we have chosen to d
a particular sequence of confined phases, namely, a transition
AF to a spin-Peierls~SP! insulator, and a further transition todSC.
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boundary between the confined and deconfined insula
phases. But in any event, our analysis has firmly establis
the possibility of the deconfined nodal liquid phase. It r
mains a challenge to determine whether this exotic fracti
alized insulator is realized in the cuprates.

In Sec. V, we will describe much of the physics discuss
here in a dual formalism in terms of vortices rather than
chargons. This will provide considerable further insight, a
make connections with earlier approaches.

V. DUAL VORTEX REPRESENTATION

For a system of interacting bosons in two spatial dim
sions, it is well known that the insulating phases can
described as a condensate of vortices in the many par
wave function. More formally, it is possible to set up a du
description where the vortices, rather than the particles,
the fundamental degrees of freedom such that the insula
phase is a vortex condensate while the superfluid phase i
vortex vacuum. For the electronic systems considered in
paper, it is natural to attempt to do the same, and work w
a dual description in terms of vortices in the Cooper p
phase,w, and the spinons. Since the Cooper pair has cha
2e, these are thehc/2e vortices which occur in a conven
tional superconductor. Besides providing additional insi
into the mechanism and nature of electron fractionalizati
passing to a dual vortex description enables us to make
tact with earlier work which describes fractionalization
terms of vortex pairing.

We will start with the full chargon–spinon actionS5Sc
1Ss1SB discussed in Sec. IV, and perform a duality tran
formation to trade the chargon fields for thehc/2e vortices.
This differs somewhat from the conventional dual
transformation14 from bosons to vortices due to the couplin
of the chargons to theZ2 gauge field.

To understand how to deal with the chargon coupling
the s field, it is useful to first review the well-known self
duality of theZ2 gauge theory with Ising matter fields in
11 dimensions. This is done in detail in Appendix C. T
duality proceeds by first rewriting the partition function
terms of aZ2 current for the Ising matter fields and theZ2
gauge field,s i j . The Z2 current lives on the links of the
lattice and can take one of two values, 0 or 1. It is conser
modulo 2 at each site of the lattice. This conservation l
can be implemented by writing theZ2 current as the flux of
a dualZ2 gauge field, denoted asm i j . ~This is completely
analogous to the duality of the three-dimensional class
XY model.! Eliminating theZ2 current in favor of the dua
gauge field gives an action written entirely in terms of tw
Z2 gauge fields (s i j andm i j ) which are duals of each othe
The originalZ2 gauge field,s i j may be eliminated by ex
pressing its flux as the current of a dual Ising matter field,
vison v i . The resulting theory has the same form as

FIG. 5. The other qualitatively different scenario for the evo
tion from the antiferromagnet to thed-wave superconductor. In thi
case, upon increasingtc , a transition to the fractionalized noda
liquid ~NL! phase occurs before the onset of superconductivity
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original Z2 gauge theory with matter fields, but is dual to
To obtain a dual representation of the system of charg

and spinons coupled to theZ2 gauge fields i j , we need to
combine the dual representation of theZ2 gauge theory with
the standard duality transformation of theXY model. As
shown in detail in Appendix D, this is readily done. For th
time being, we will only consider the situation with loca
d-wave pairing and an odd number of electrons per unit c
The result is a lattice action in terms ofhc/2e vortices,
which are minimally coupled to a fluctuatingU(1) gauge
field a whose circulation is the total electrical current.
addition, thehc/2e vortices are minimally coupled to aZ2
gauge fieldm i j . The full action is given by

S5Sv1Sa1Ss1SCS1SB , ~108!

Sv52tv(̂
i j &

m i j cosS u i2u j1
ai j

2 D , ~109!

Sa5
k

8p2 (
h

~D3ai j !
2, ~110!

Ss52(̂
i j &

s i j @ t i j
s f̄ i f j1t i j

D f i↑ f j↓#2(
i

f̄ i f i , ~111!

SCS5( i
p

4 S 12)
h

s D ~12m i j !. ~112!

Here eiu i creates thehc/2e vortex, andf i is the spinon as
before. The first term represents single vortex hopping, w
the second is a kinetic term for theU(1) gauge fieldai j . The
flux of a is the total electrical current, in particular a flux o
2p through a spatial plaquette adds an electric charge of
chargon. Together these two terms comprise the usual d
vortex representation of a set of charge 2e Cooper pairs,
except that here the vortices are minimally coupled to
additional Z2 gauge fieldm i j . This leads to a vortex–spino
coupling mediated bySCS. This term has a structure ver
similar to a Chern-Simons term~although it is for the group
Z2) and, as discussed below, plays a similar role. The B
ry’s phase termSB is the same as before.

The full dual action is invariant under a localU(1) gauge
transformation,

u i→u i1L i , ~113!

ai j →ai j 2
L i2L j

2
. ~114!

This is standard in the dual vortex description ofXY models
in three dimensions. The corresponding conserved charg
the vorticity. The action has an additionalZ2 gauge symme-
try under which

eiu i→e ie
iu i, m i j →e im i j e j , ~115!

with e i561. We emphasize that this gauge symmetry
distinct from the localZ2 gauge symmetry of the spinon
chargon action, but in fact is dual to it.
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To get some intuition about the termSCS, it is instructive
to replace the vortex hopping term in the action by a Villa
potential,

etv cosQ i j→ (
Jv52`

`

e2Jv
2/2tveiJvQ i j , ~116!

where Q i j 5u i2u j1(ai j /2)1(p/2)(12m i j ) is the gauge
invariant phase difference. Here the integer fieldJv that lives
on the links of the lattice represents the three current of
hc/2e vortices. After this replacement it is possible to expl
itly perform the summation over the gauge fieldm i j . For
each link of the lattice this contributes a term to the partit
function of the form, 11(21)Jv)hs, which vanishes unles

~21!Jv5)
h

s. ~117!

Thus, the Chern–Simons term has effectively attached aZ2
flux of the gauge fields—a vison—to eachhc/2e vortex. As
discussed in Sec. III, this composite comprised of anhc/2e
vortex bound to theZ2 vison is nothing but the familiar BCS
vortex. Due to the attached vison, when a spinon is ta
around the BCS vortex it acquires the expectedp phase
factor.

Alternatively, it is possible to perform an ‘‘integration b
parts’’ onSCS which effectively exchanges the role ofs and
m, and then perform a summation overs. This leads to the
additional constraint,

~21!Jf5)
h

m, ~118!

with Jf the spinon three current. AZ2 flux in the gauge field
m has thereby been attached to each spinon. More preci
since the spinon number is only conserved modulo 2 du
the anomalous pairing term, theZ2 flux is attached wheneve
an odd number of spinons propagates. The net effect of t
Z2 Chern–Simons term is to implement mathematically
long-ranged statistical interaction between BCS vortices
spinons. This kind of flux attachment may be familiar
many readers for theU(1) group from theories of the quan
tum Hall effect. But since the spinon number itself is n
conserved, implementing this statistical interaction with
U(1) Chern–Simons term is problematic. It is a remarka
aspect of the duality transformation in Appendix D, that th
Ising-like Chern–Simons terms emerges so naturally.

A. Phases

We now analyze the phases in this dual vortex desc
tion, focusing on the most interesting case of an odd num
of electrons per site with locald-wave pairing correlations
In the vortex description the superconducting phase co
sponds to a vortex vacuum, and the insulating phases
vortex condensates. We consider first two simple limiti
cases, first the superconductor with vanishingly small vor
hoppingtv→0, and then the insulator withtv→`.

Whentv is zero the summation over the gauge fieldm can
be performed, giving the constraint)hs51. It is then pos-
sible to pick a gauge withs i j 51 on every link. The resulting
action has two pieces,Sa which describes the gapless sou
e

n
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to
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mode of the superconductor~gapped when long-ranged Cou
lomb interactions are included! and the spinon pieceSs .
With s i j 51 the spinons can freely propagate and descr
the gapless nodal quasiparticles. A correct description o
conventionald-wave superconductor is thereby recovered

Consider next the opposite limit withtv→`. In this re-
gime thehc/2e vortices will condense,̂eiu i&Þ0. The dual
Anderson–Higgs mechanism leads to a mass term for
gauge fieldai j , indicative of a charge gap. With one electro
per unit cell the resulting phase is thus a Mott insulator.
the absence of any gapped charge excitations (D3a50), it
is possible to choose a gauge withai j 50 on every link. The
vortex hopping term becomesSv52h( i j m i j with a nonzero
‘‘field:’’ h5tvu^eiu i&u2. When this field is large one can se
m i j 51 on each link, so that the Chern–Simons terms v
ishes. The full action then reduces toSeff5Ss1SB . At this
stage the summation over thes gauge field can be performe
explicitly. As detailed in Sec. IV, the resulting model re
duces to a simple 2D near-neighbor Heisenberg antife
magnet. Thus, we readily recover the simple antiferromag
from the dual representation by condensinghc/2e vortices.

Finally, here in Sec. V we wish to recover a dual descr
tion of the fractionalized nodal liquid. Since the nodal liqu
is electrically insulating it requires vortex condensation. B
as established in Sec. IV, the nodal liquid supports gap
Z2 vortices, the vison excitations. Since the Chern–Sim
term attaches a vison to eachhc/2e vortex, it is clear that to
obtain the nodal liquid thehc/2e vortices cannot be con
densed. But since thesquareof the vison operator is unity
(v i

251), apair of hc/2e BCS vortices does not carry a viso
with it. As we now show, the nodal liquid can be obtain
from the d-wave superconductor bypairing BCS vortices,
and then condensing thehc/e vortex composite.

To this end, we add an extra vortex pair hopping term
the action,

S2v52t2v(̂
i j &

cos~u2i2u2 j1ai j !. ~119!

Here, eiu2i5(eiu i)2, thus creating a pair of BCS vortices
Notice that thehc/e vortex is also minimally coupled to the
U(1) gauge field, as required by the dualU(1) symmetry of
the action, but isnot coupled to theZ2 gauge field,m i j ,
because it carries no vison charge. We now consider tak
t2v large and condensing thehc/e vortex, ^eiu2i&Þ0, keep-
ing the hc/2e vortex uncondensed. Before doing this it
convenient to re-express thehc/2e vortex as

eiu i5v ie
iu2i /2, ~120!

with v i561 the vison operator. Notice that with this iden
tification the fieldu2 can be treated as an angular variab
since the right side is invariant under the combined trans
mation,u2→u212p andv i→2v i . We finally find it con-
venient to absorb the fieldu2i into the gauge fieldai j by the
gauge transformation,

ai j →ai j 1u2i2u2 j . ~121!

In this gauge, the vortex hopping terms become
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Sv52tv(
i j

v im i j v j cosS ai j

2 D , ~122!

S2v52t2v(
i j

cos~ai j !. ~123!

In the insulating phase with larget2v there will again be a
charge gap due to the dual Anderson–Higgs mechan
coming from thehc/e vortex condensate. Above the gap w
be chargeechargons, corresponding to a 2p flux tube inai j .
In the absence of any charged excitations one can seai j
50, and the single vortex hopping term becomes

Sv52tv(̂
i j &

v im i j v j . ~124!

The full effective action isSeff5Sv1Ss1SCS1SB . Whentv
is small the visons will be uncondensed^v i&50. In this limit
the summation over them gauge field can be performed, an
due to the Chern–Simons term leads to the constra
)hs51. One can then choose a gauge withs i j 51 on each
link, which setsSB50. The only remaining term inSeff de-
scribes free propagating spinons. These are the gap
nodons in the insulating nodal liquid.

We thereby recover a decription of the nodal liquid fro
the dual vortex formulation. In addition to the gaple
nodons, the nodal liquid supports two gapped excitations,
chargon and the vison. As is clear from the above analy
the vison is simply a remnant of thehc/2e BCS vortex which
survives into the nodal liquid upon condensation of thehc/e
vortex pair. Physically, since the vorticity is only conserv
modulo 2 ~in units of hc/2e) once the fieldeiu2i has con-
densed, only a conservedZ2 remains from thehc/2e BCS
vortex. As before, the vison picks up ap phase change whe
it is transported around either a spinon or a chargon. To
this, note that a chargon corresponds to ap flux in ai j /2 and
the nodon~spinon! a p flux in m i j . As seen in Eq.~122!, the
vison is minimally coupled tobothof these gauge fields, thu
acquiring a sign change upon encircling the spinon or ch
gon.

It is worth emphasizing that a clear mechanism for vor
pairing can be found from the analysis in Sec. IV. Since
chargons and visons~or vortices! have a long-ranged statis
tical interaction, motion of the charge is greatly impeded
the presence of unpaired visons. On the other hand, onc
hc/2e vortices are paired, the charge can move coheren
Thus, the presence of a large kinetic energy makes vo
pairing energetically favorable.

It is finally worth mentioning that in the limitSs50 one
readily recovers the fully frustrated Ising model conside
in Sec. IV. To see this, note first thatSB can be rewritten in
the form of a Chern–Simons term withm replaced bymext,
where)hmext521 through all spatial plaquettes. WithSs
50, one can then perform the summation over thes gauge
field, and this setsm i j 5m i j

ext. The remaining term inSeff is
the fully frustrated Ising model,

Sv52tv(̂
i j &

m i j
extv iv j . ~125!
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VI. DOPING

Our analysis has so far focused only on situations with
integer number,N0, of electrons per unit cell. Finite dopin
leading to nonintegerN0 does not crucially modify our dis-
cussion of fractionalization issues. Indeed, both confined
fractionalized insulating phases can exist for nonzero dop
At a qualitative level, in both kinds of insulating phases, t
main effect of nonintegerN0 will be to induce charge order
accompanied by translational symmetry breaking. The p
cise nature of this charge order presumably depends on
details of the system, and may be sensitive to the presenc
long-ranged Coulomb interactions.

Formally, noninteger values ofN0 can be incorporated
into either the particle or vortex representations as follow
In the particle representation, as discussed in Sec. II,
main effect of nonintegerN0 is to modify the Berry phase
term to

SB52 i (
i , j 5 i 2 t̂

N0S 2p l i j 2
p

2
~12s i j ! D . ~126!

Here,l i j is an integer defined on each temporal link given

l i j 5IntFF i j

2p
1

1

2G , ~127!

where F i j 5f i2f j1(p/2)(12s i j ) is the gauge-invarian
phase difference between two sites. WhenN0 is not an inte-
ger, this Berry phase term leads tocomplex Boltzmann
weights in the partition function sum. This is not too surpr
ing: even in the absence of any gauge field coupling,
partition function for simple Boson–Hubbard models at
bitrary chemical potential involves complex weights.

The presence of such complex weights does not pos
problem for the existence of the fractionalized insulator. W
recall that the fractionalized phase is obtained when
gauge fields i j is in its perimeter phase. Deep in this phas
we may sets i j '1 on each space-time link so that the Ber
phase termSB becomes independent ofs i j . The resulting
action then describes a lattice model of bosonic chargon
filling N0 and the fermionic spinons, decoupled from o
another. Thus the chargons and spinons will still be dec
fined. However, the ground state will generally exhib
charge ordering accompanied by broken translational inv
ance. Confined conventional insulating phases at noninte
N0 clearly also exist.

Numerical simulations of theZ2 gauge theory at arbitrary
N0 to determine the precise nature of the charge orderin
these insulating phases will be seriously hampered by
presence of these complex weights in the partition functi
Fortunately, in the dual vortex representation, nonintegerN0
enters in a more innocuous manner. To generalize the du
transformation to arbitraryN0 is straightforward, because th
Villain representation of the chargon hopping term in E
~D4! is simply modified to read

k

2 (̂
i j &

~Ji j 22pNi j !
2. ~128!

Here,Ni j 5N0 for temporal links, and is zero otherwise. Pr
ceeding with the duality transformation gives the action,
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S5Sv1Ss1SCS1S̃a , ~129!

where the first three terms are the same as before in
~108!. The last term, which was equal toSa1SB for integer
N0, becomes instead

S̃a5
k

8p2 (
h

~D3ai j 22pNi j !
2. ~130!

Notice that in this dual representation,N0 acts like an exter-
nal ‘‘magnetic field’’ piercing each spatial plaquette.

For the particular case of odd integerN0, it is instructive
to see how the termSB may be recovered. To that end, w
define a new ‘‘external’’ gauge fieldaext on the links of the
dual lattice such that

D3ai j
ext52pNi j . ~131!

We now absorbaext into a by the shift a→a2aext. This
eliminatesaext so thatS̃a→Sa , but modifies the vortex hop
ping term which becomes

Sv52tv(̂
i j &

m i j cosS u i2u j1
ai j 1ai j

ext

2 D . ~132!

For odd integerN0 ~say,N051) one may choose

ai j
ext52pni j , ~133!

with integer ni j , which satisfiesD3ni j 5N051 for every
spatial plaquette and is zero for all other plaquettes. W
this choice we may write

Sv52tv(̂
i j &

m i j m i j
extcosS u i2u j1

ai j

2 D , ~134!

where m i j
ext5(21)ni j . Notice that the flux)hm is 21 for

every spatial plaquette and zero for other plaquettes. If
now perform the shift,m→mmext, the fieldmext is eliminated
from Sv but reappears inSCS(mmext). But upon noting the
form of the Berry’s phase term in Eq.~106!, one can easily
demonstrate thatSCS(mmext)5SCS(m)1SB . We thereby re-
cover the earlier Berry’s phase form for the case with o
integerN0.

The dual representation for arbitraryN0 is simpler look-
ing than the one in the particle formulation, and is proba
better suited to discuss issues such as the nature of ch
ordering at finite doping. In particular, if we ignore the co
pling to the spinons and set)hm51, the remaining partition
function sum involves onlyreal weights, and can presum
ably be evaluated numerically.

VII. OTHER EXOTIC FRACTIONALIZED PHASES

Here in Sec. VII we will briefly explore the possibility o
obtaining other fractionalized phases different from the o
discussed so far. The most interesting phase that emerge
novel fractionalizedsuperconductor; we will describe its
properties in both the particle and vortex formulations.
q.

e

d

y
rge

s
is a

A. Particle description

We have already argued that when the chargee chargons
condense, the resulting phase is a conventional super
ductor. This is perhaps surprising, since in a conventio
BCS description the order parameter carries charge 2e. One
might ask whether it is possible to have a superconduc
phase in which the chargonpairs ~i.e., the Cooper pairs!
have condensed, while single chargons have not. As we
demonstrate, such a superconducting phase, which we de
asSC* , can exist and has a surprisingly simple description
terms of ourZ2 gauge theory. For simplicity, we will initially
present the discussion fors-wave pairing with an even num
ber of electrons per unit cell.

The appropriate action from Eqs.~84! and~87! in Sec. III
takes the formS5Sc1Ss1SK . As discussed there, the k
netic term for the gauge fieldSs , although not present in the
original action, will in any case be generated upon integr
ing out high-energy modes. To access the chargon pair c
densate phase, it is extremely convenient to add an exp
pair hopping term to the action,Spair from Eq.~91!. For large
pair-hopping amplitude,t2, the chargon pairs will condense
leaving the single chargons uncondensed,

^e2if&Þ0, ^eif&50. ~135!

This still breaks the globalU(1) charge symmetry, and s
describes a superconductor, but one with rather exotic p
erties. To examine this phase it suffices to taket2→` which
allows one to set 2f i equal to 2p times an integer or,
equivalently,

f i5
p

2
~12si !, ~136!

with the value of the Ising spins,si561, arbitrary. In this
limit, the chargon creation operator equals the Ising sp
eif i5si . After integrating out the massive spinons, th
leaves an effective theory of the form

SI 2gauge522tc(̂
i j &

sis i j sj2K(
h

F)
h

s i j G , ~137!

with tc the chargon ‘‘hopping’’ strength.
This theory, which describes Ising spins ‘‘minimall

coupled’’ to aZ2 gauge field, has been extensively studi
by Fradkin and Shenker31 as a toy model of confinemen
The phase diagram in thetc–K plane is shown in Fig. 6. In
theK→` limit the model reduces to a global Ising model f

FIG. 6. Schematic zero temperature phase diagram for theZ2

gauge theory coupled to matter fields described by the action of
~137!.
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the spins. With increasingtc there is an Ising transition into
a phase witĥ si&Þ0 ~the Higgs phase!, which corresponds
to the chargon-condensedSC phase. Along thetc50 axis the
pure Z2 gauge field exhibits a confinement transition w
decreasingK. Fradkin and Shenker argued that the Higgs a
confined phases could be continuously connected by no
the absence of a phase transition along thetc5` andK50
lines. Moreover, as detailed in Appendix C, this model is
fact self-dual, and maps into an equivalent model with n
parameters reflected across the dashed line.

The phase with largeK but small tc corresponds to the
exotic new superconducting phase,SC* . In this phase there
are four deconfined massive excitations:~i! the spinon,~ii !
an hc/2e U(1) vortex,~iii ! the Ising spinsi and ~iv! the Z2
vortex in the gauge fields, the vison. In striking constrast t
a conventional superconducting phase, inSC* the U(1) and
Z2 vortices can exist asseparateexcitations, and arenot
confined to one another. In order to distinguish thishc/2e
vortex from the BCS vortex, we will refer to it as anhc/2e
vorton. The Ising spin excitations is a remnant of the char
gon. In the paired-chargon condensateSC* phase, the globa
U(1) charge symmetry is not fully broken; there is an u
brokenZ2 ‘‘charge’’ symmetry (si→2si) corresponding to
an invariance under a sign change of the chargon oper
Although the electricalU(1) charge of the chargon is no
conserved, the chargon number is conserved modulo
reflection of this unbroken Ising symmetry. Indeed, one c
define a conserved Ising charge asQ25(21)N561, where
N is the chargon number operator. Since the Ising spin
erator changes the sign ofQ2, the massive spin excitatio
carries the conservedZ2 electrical charge of the chargon. W
refer to this excitation as an ‘‘ison.’’

To gain some physical insight into this strange ison p
ticle, consider what happens when an electron is added
superconductor. The electron creation operator can be
composed into the product of a spinon and a chargon,

cia
† 5bi

†f ia
† 'si f ia

† . ~138!

The second equality is valid within the two superconduct
phases. In the conventional superconductorSC, the ison is
also condensed,̂si&Þ0, so that the electron is essential
equal to the spinon. Thus the spin of the added electro
carried away by the spinon, the conventional BCS quasip
ticle, whereas the electrical charge is carried by the cond
sate. On the other hand, inSC* , adding an electron not only
increases the conserved spin by 1/2, but changes the
servedZ2 ‘‘electrical charge.’’ The spin andZ2 charge are
carried away by twoseparate massive excitations—the
spinon and ison. Thus, theSC* phase exhibits an exotic form
of spin-charge separation.

It is again important to ask about geometric phase fac
acquired when any of the four massive excitations inSC*
encircle another. First, note that both the ison and the sp
are minimally coupled to the gauge fields. Consequently,
they both acquire a phase factor ofp on encircling theZ2
vortex, namely, the vison. The ison, being a remnant o
chargon, also acquires a phase ofp on encircling anhc/2e
vorton. Thus the pairs,~spinon, vison!, ~ison, vison!, and
~ison, hc/2e vorton! acquire phase factors ofp upon encir-
cling one another. Equivalently, there are long-ranged sta
d
g

-

or.

a
n

p-

-
a

e-

g

is
r-
n-

n-

rs

n

a

s-

tical interactions between any two members of a pair.
other pairs of excitations do not acquire any geometri
phase factors. Note in particular thatthe hc/2e vorton, being
unbound from the Z2 vison, does not have a long-range st
tistical interaction with the spinon inSC* . This distinguish-
ing feature will have several important consequences in
dual vortex description developed in the next section.

The transition fromSC* to SC occurs on condensing th
ison so that single chargons are themselves condensed.
that ison condensation leads to confinement of the exc
tions; it has long-ranged statistical interactions with t
hc/2e vorton and the vison~i.e., theZ2 vortex!. The result is
the BCShc/2e vortex, as discussed earlier in Sec. III.

The transition fromI* into SC* upon increasingt2 can be
understood as a superconductor–insulator transition
charge 2e chargon~or Cooper! pairs. Note that a direct tran
sition from the conventional insulatorI to SC* is not generi-
cally possible.

Figure 7 is a schematic phase diagram exhibiting the f
phases,SC, SC* , I, andI* , as well as the intervening tran
sitions. Of the four, it is only in the band insulatorI that
spinons are confined. In the other three phases theZ2 vortex
is gapped out and uncondensed. These three phases e
excitations with ‘‘fractionalized’’ quantum numbers. It is th
condensation of theZ2 vortex which leads to confinemen
leaving only the electron in the spectrum.

1. Odd number of electrons per unit cell

We now briefly consider the superconducting phases w
odd integer filling, but still presumings-wave pairing. Since
chargon pairs are condensed in bothSC andSC* , it suffices
again to consider very large pair hopping amplitude,t2.
Moreover, with condensed chargon pairs, the chargon op
tor can be replaced by the Ising spin,bi

†5si561, the ison,
as discussed above. After integrating out the gapped spin
the effective theory again reduces to the Ising matter-p
gauge theory as in Eq.~137!, but with the addition of the
Berry’s phase term,SB ,

Seff522tc(̂
i j &

sis i j sj2K(
h

F)
h

s i j G1SB@s i j #.

~139!

Note that theSC* phase is realized only for largeK, as
discussed above. In this limit, as we have emphasized sev
times, the effects of the Berry phase termSB are expected to
be innocuous. Thus,SC* will continue to exist even in the
presence ofSB . To see this in more detail, it is once aga
illuminating to pass to a dual representation, which e
changes the isons for the visons,

FIG. 7. Schematic zero temperature phase diagram displa
the four phasesSC, SC* , I, andI* .
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Sdual52Kd(̂
i j &

v im i j v j2td(
h

)
h

@m i j
extm i j #, ~140!

with tanh(td)5e24tc and tanh(Kd)5e22K. Herem i j is a dy-
namicalZ2 gauge field and, as before,m i j

ext is an ‘‘applied’’
field with )hm i j

ext521 through all spatial plaquettes. Th
theory is a directZ2 analog of aU(1) superconductor in the
presence of an applied magnetic field.

Consider briefly the phase diagram in thetc–K plane. A
schematic phase diagram is shown in Fig. 8. Progress ca
made in various limiting regimes. ForKd50 the theory re-
duces to a pureZ2 gauge theory with gauge field,m̃ i j

5m i j
extm i j . Sincem i j

ext plays no role in this limit, the resulting
phases are identical to that with even integerN0 analyzed in
Sec. VII A. In particular, for largetc , we have a conven
tional superconductorSC with brokenZ2 gauge symmetry,
while for small tc , we get the exotic superconductorSC* .
These phases survive for smallKd . It is easy to establish the
absence of phase transitions fortc5` and K50. For td

5`, on the other hand, one can setm i j 5m i j
ext, and the model

reduces to the fully frustrated Ising model. As discussed
tensively in Sec. IV, the results of Ref. 16 show the existe
of an ordered phase for largeKd where translational symme
try is spontaneously broken. In general, this is expected
lead to spin-Peierls order. In this case, though, the s
Peierls order coexists with superconductivity. We will d
note this phase asSC–SP. Several other ordered phases a
presumably also possible although we will not discuss th
here.

In the SC–SP phase the external gauge field ‘‘pe
etrates’’ with m i j 'm i j

ext, and the Ising model is frustrated
But as td is reduced, it eventually becomes favorable
‘‘screen’’ out this external field, and enter a Meissner pha
with ^)hm i j &'1. When this happens the broken trans
tional symmetry disappears, along with the frustration, a
one enters intoSC.

2. d-wave pairing and doping

The discussion above generalizes readily to the cas
d-wave pairing. In particular, adSC* phase where chargo
pairs, but not single chargons, have condensed is an allo
phase in the model. Its properties are the same as thos
thes-wave case above, except that the spinons have a ga
d-wave dispersion. Also possible is adSC phase coexisting
with spin-Peierls order, just as in thes-wave case.

FIG. 8. Schematic zero temperature phase diagram for the
perconducting phases with an odd number of electrons per unit
TheSC–SP phase is discussed in the text. The precise topolog
the phase diagram when the couplingstc andK are both of order 1
is not firmly established.
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In the presence of finite doping with nonintegerN0, in
either thes-wave or thed-wave case, theSC* phase is ex-
pected to survive, since theSB term is innocuous in this
phase. The conventional superconducting phases will
more sensitive to the value ofN0: several additional super
conducting phases with broken lattice symmetries are p
sumably possible.

B. Vortex description

We now show how the superconductorSC* may be de-
scribed in the dual vortex formulation. The discussion in S
V was based on the action in Eq.~108! for the spinons and
hc/2e vortices. The symmetries of the action allow the a
dition of ‘‘kinetic’’ terms for both Z2 gauge fieldss andm.
Once again, although not present in the original action, th
terms will be generated upon integrating out high ene
modes,

Ss52Ks(
h

)
h

s i j , ~141!

Sm52Km(
h

)
h

m i j . ~142!

It is of interest to explore the phase diagram for arbitra
positive values of the couplingsKs andKm . We will show
that the superconductorSC* emerges quite naturally fo
large Ks and Km . As shown below, an important physica
consequence of the addition of theseKs andKm terms is that
the Chern–Simons termSCS is no longer effective in attach
ing flux to the vortices and the spinons. Note that, in t
absence of flux attachment, the fieldeiu i creates a ‘‘naked’’
hc/2e vortex, i.e., anhc/2e vorton. Attaching flux of the
field s, i.e., a vison, converts this into a regularhc/2e BCS
vortex.

For ease of presentation, we specialize on the case
s-wave pairing and an even number of electrons per unit c
In that case, the termSB may be dropped from the action
Further, the spinons are gapped and can be integrated
This will lead to an innoccuous renormalization of the val
of Ks .

In the vortex description, superconducting phases co
spond to vortex vacuua. To analyze these, it is then ap
priate to imagine integrating out the vortices. This will reno
malize the value ofKm ~or generate it if not presen
originally!. The resulting action has only the terms,

S5Sa1Ss1Sm1SCS. ~143!

The termSa leads to a gapless linear dispersing excitation~in
the absence of long-ranged Coulomb interactions!, and cor-
responds physically to the sound modes of the superc
ductor. The remaining three terms only involve the twoZ2
gauge fieldss andm. As shown in Appendix C, this action i
equivalent to that of theZ2 gauge theory with Ising matte
fields. If we choose to integrate out them, it is exactly the
same as the Ising effective action derived in Sec. VII A
discuss the superconducting phases. Alternatively, we
integrate out thes field to obtain the dual theory as in Eq
~140!,

S5Svis1Sm , ~144!
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Svis52Ks
d(

i j
v im i j v j . ~145!

Here tanh(Ks
d)5e22Ks, so thatKs

d is the coupling dual to
Ks . Once again,v i creates a vison, whoseZ2 current is
equal to the flux of thes field. On the other hand, the vorte
configurations of the gauge fieldm correspond to theison
excitations.

As discussed earlier, theZ2 gauge theory with matte
fields has two phases: a Higgs-confined phase and a de
fined phase. The Higgs-confined phase describes the con
tional superconductorSC, and is perhaps easiest to unde
stand in the limit in which bothKm andKs

d are small. With
smallKm the gauge field is in its confining phase, so that t
charges coupling to the gauge fieldm are confined. There ar
actually two different particles minimally coupled tom—the
hc/2e vorton and the vison, with creation operatoreiu i and
v i , respectively. As before, the confined vorton–vis
bound state is the conventionalhc/2e BCS vortex.

The deconfined phase describes the exotic supercond
SC* . In this phase, test charges that couple tom are decon-
fined. This implies that thehc/2e vorton and the vison are
not bound together, and can propagate as indepen
gapped excitations, in agreement with the earlier discuss
In effect, withinSC* the Chern–Simons term has been re
dered ineffective and does not attach flux. Also, configu
tions with p flux in the gauge fieldm, corresponding to the
ison, exist as finite energy excitations. Thus, as before,
conclude that there arefour gapped excitations inSC* —the
hc/2e vorton, the spinon, the vison, and the ison.

Note that a transition fromSC* to an insulator obtained
by condensing thehc/2e vortons@which are the fundamenta
U(1) vortices in this phase# leads naturally to the fraction
alized insulatorI* . This is because the vison is unboun
from the hc/2e vorton in SC* , so that condensation of th
latter leaves the former uncondensed. Indeed, the distinc
citations in the resulting insulator are the chargons,
spinons, and the visons, as appropriate toI* . Thus, the ex-
otic insulatorI* may either be reached fromSC by condens-
ing hc/e vortices or fromSC* by condensing hc/2e vortons.
In either case, the vison remains uncondensed.

This completes the dual description ofSC* . Complica-
tions such asd-wave pairing or arbitrary fillingN0 can be
handled straightforwardly in this dual formulation as we
although we shall not do so here.

VIII. EXTENSION AND GENERALIZATIONS

A. General spatial dimension

TheZ2 gauge theory formulation~in the particle represen
tation! is readily generalized to arbitrary spatial dimensio
The cases of physical interest are 3D and 1D, which
discuss in turn. For simplicity, we will restrict our attentio
to situations with integer filling per unit cell. The most im
portant effect of spatial dimensionality enters into the pro
erties of the pureZ2 gauge theory with action,

S5Ss1SB , ~146!

with SB included when there is an odd number of electro
per unit cell.
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1. dÄ3

In 3D and in the absence ofSB , the Z2 gauge theory
again has two phases distinguished by the behavior of
Wilson loop correlator~area law versus perimeter law!. As in
2D, the presence ofSB will enhance the stability of the pe
rimeter phase, but the area law phase will still be pres
The presence of the perimeter law phase implies the e
tence of 3D insulators with electron fractionalization. But
constrast to 2D, the flux tubes in theZ2 gauge field, the
visons, are not pointlike excitations, but become exten
string-like excitations in 3D. The area law phase again d
scribes various confined insulating phases. Whether the p
ence ofSB leads to broken translational symmetry as in 2D
an interesting unanswered question. Note, however, tha
3D it is not possible to pass to a dual global Ising model.
fact, the pureZ2 gauge theory~in the absence ofSB) is in
fact self-dual12 in three spatial dimensions.

To discuss the superconducting phasesSC andSC* , it is
necessary to understand the properties of theZ2 gauge theory
coupled to Ising matter fields. In the absence ofSB , it is
known31 that in three spatial dimensions, there are again t
phases, the Higgs-confined phase and the deconfined p
These correspond toSC andSC* , respectively. Their distin-
guishing properties will be qualitatively similar to the 2
case. As in 2D, we expect that the main effect ofSB would
only be to make possible the existence of anSC phase with
broken translational symmetry.

In layered quasitwo dimensional systems, fractionaliz
insulating phases in which each layer is decoupled from
others are possible, and exist as distinct phases from
isotropic ones discussed above. Such phases are curr
under further investigation.

Finally, it is worth emphasizing that while the extensio
to 3D is straightforward in the particle representation, t
dual vortex representation necessarily involves string-l
vortex degrees of freedom.

2. dÄ1

In one spatial dimension~1D!, the Z2 gauge theory is
always in its area law phase, with or without theSB term.
Thus, our formulation is incapable of describing electr
fractionalization in one dimension. Evidently, fractionaliz
tion in d51 must have different physical origins than ford
.1. To highlight this point, note that 1D fractionalizatio
can becontinuous, as exemplified by the spinless Luttinge
liquid which supports charge-carrying excitations with e
sentially arbitrary~even irrational! charge. Ford.1, on the
other hand, fractionalization isdiscrete—the fractionally
charged excitations carry a definite rational fraction of t
electron charge. As in the fractional quantum Hall effect, t
discreteness can be traced to the binding~and condensation!
of a discrete number of vortices. These physics appear t
qualitatively different from the ‘‘solitonic’’ mechanism re
sponsible for fractionalization in 1D.

B. Finite temperature

In our formulation there is a sharp distinction betwe
fractionalized and confined phases at zero temperat
which is independent of whether or not the phases in qu
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tion have any sort of conventional long-ranged order. It
extremely interesting to ask whether this sharp distiction s
vives at finite temperature. Consider first the deconfin
phases in 2D. In these phases, the point-like vison excitat
are gapped at zero temperature. However, since the en
cost to create a vison is finite, at any nonzero tempera
there will be a nonvanishing density of thermally excit
visons. In the absence of other kinds of order~e.g., mag-
netic!, this low temperature regime will be smoothly co
nected to the high temperature limit, without an interven
finite temperature transition. Thus, in 2D the sharp disti
tion between fractionalized and confined insulators doesnot
survive at finite temperature.

But in 3D, the vison excitations in the deconfined pha
arestring-like extended objects, with an energy cost prop
tional to their length. Consequently, at low temperatures
bitarily large vison loops will not be thermally excited—th
vison loops will be ‘‘bound.’’ As the temperature increase
there will be a transition at which the vison loops unbind a
proliferate. Thus,the fractionalized insulator in three spatia
dimensions undergoes a finite temperature phase trans
associated with the unbinding of vison loops. A defining
characteristic of the low temperature phase is that vi
loops will cost afree energylinear in their length. Equiva-
lently, hc/2e ~or Z2) magnetic monopole ‘‘test charges’’ ar
confined even at finite temperature, with an infinite free
ergy cost to separate them. A confinement of monopole
also one of the characteristics of a 3D superconductor,
quite remarkably the confinement here is occuring in a ‘‘n
mal’’ nonsuperconducting phase. The conventional insu
ing phases with confinement at zero temperature, on
other hand, will not exhibit finite temperature transitio
~other than those associated with the loss of conventio
long-ranged order, e.g., magnetic!.

To understand the origin of these results, we briefly d
cuss the properties of the pureZ2 gauge theory~with no
matter fields! in 311 space-time dimensions in more deta
At zero temperature the theory is self-dual:12 the duality
transformation interchanges the ‘‘electric’’ and ‘‘magnetic
fields of the gauge theory. ForK.Kc when the gauge theor
is in its deconfining phase, the theory has string-like vis
excitations~which areZ2 magnetic flux tubes! with a finite
energy cost per unit length. ForK,Kc the gauge theory
confines with area law Wilson loops, but there are nevert
less string-like excitations in this phase as well. These ca
understood via duality, which interchanges the area and
rimeter law phases; the string-like excitations in the area
phase are simply flux tubes of thedual Z2 gauge field. Physi-
cally, these dual tubes are ‘‘electric flux tubes’’ responsi
for the confinement of electric charge in the area law pha
Specifically, when two testZ2 electric charges separated by
distanceR are introduced into the system, the resulting el
tric flux is concentrated in a tube that extends from one
charge to the other with an energy cost proportional toR, the
linear confinement. Similarly, in the perimeter phase, d
test charges (Z2 monopoles! that act as sources for the vison
are confined.

Now consider the properties of the gauge theory at fin
temperature. The phase diagram is well known32 and is
shown in Fig. 9. There are three finite temperature pha
For K.Kc , at small but nonzero temperatures, large~‘‘mag-
s
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netic’’! vison loops are bound as their energy cost is prop
tional to their length. Similarly, forK,Kc at low tempera-
tures, large electric flux loops are bound. At hig
temperature, for anyK, both kinds of loops are unbound. Th
transition from the low temperature to the high temperat
phase is therefore associated with the unbinding of~electric!
magnetic vison loops forK ~lesser! greater thanKc .

In the low temperature phase forK,Kc , the free energy
of an isolated static test electric charge diverges so that
charges are confined. In the high temperature deconfi
phase, the free energy cost is finite. Formally, the pureZ2
gauge theory has aglobal Ising symmetry at finite tempera
ture which is broken in thehigh temperature phase. As
shown by Polyakov,32 a convenient characterization of th
transition is through the following operator:

Lr5 )
n50

M21

s rW1ntW ,rW1(n11)tW ~147!

for each siterW of the spatial lattice. HeretW is a vector along
the ~imaginary! time direction of length the time slice. Th
product is over all the temporal links at that site, andM is the
number of time slices. This operatorLr is often referred to as
the Polyakov loop. The free energyF(r ,r 8) to introduce two
test charges at sitesr, r 8 is directly related32 to the correlator
of Lr through

e2F(r ,r 8)/T5^LrLr 8&. ~148!

Thus, test charges will be confined if this correlator goes
zero at large distances; on the other hand, if this correla
goes to a constant, the test charges will be deconfined.
thermore, consider the following transformation on t
gauge fields:

s rW1n0tW ,rW1(n011)tW→es rW1n0tW ,rW1(n011)tW , ~149!

wheree561 independentof r, andn0 is fixed. The action
of the pure gauge theory is invariant under this transform
tion, implying a global Ising symmetry of the theory. Th
operatorLr , however, transforms as

Lr→eLr . ~150!

FIG. 9. Schematic finite temperature phase diagram for the p
Z2 gauge theory in three spatial dimensions. Upon including
coupling to the chargons and the spinons, the finite tempera
transition for K,Kc is smeared and becomes a crossover on
while the one forK.Kc continues to exist.
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ThusLr is an order parameter for this global Ising symmet
In the low temperature phase forK,Kc , Lr has no expec-
tation value, the global Ising symmetry is unbroken, and
charges are confined. At high temperatures, however,Lr ac-
quires an expectation value breaking the global Ising sy
metry, and the test charges are deconfined.

For K.Kc , the self-duality of theZ2 gauge theory im-
plies the existence of a dual global Ising symmetry, with
order parameter that is the dual analog of the Polyakov lo
In the low temperature phase, this dual global symetry
unbroken: in this phase dual test charges~i.e.,Z2 monopoles!
are confined. At high temperatures this dual global symme
is broken and the dual test charges are deconfined.

Consider next the effects of coupling matter fields~the
chargons and the spinons! to the Z2 gauge field. As these
carryZ2 gauge electric charge, it is easy to see that the ac
is no longer invariant under the transformation in Eq.~149!.
Indeed, this transformation is equivalent to changing
boundary conditions on the chargon fields from (b) periodic
to antiperiodic, and vice versa for the spinons. Moreover
the matter coupling is weak, the matter fields may forma
be integrated out33 to leave behind a ‘‘magnetic field’’ term
that couples linearly to the Polyakov loop order paramete
the global Ising symmetry. There is then no longer any tr
sition separating the low and high temperature regim
Physically, this is exactly as expected: forK,Kc , the elec-
tronic system is in aconventionalconfined insulating phas
at zero temperature.

On the other hand, since the chargons and spinons donot
carry anydual Z2 magnetic charge, the dual global Isin
symmetry remains even in their presence. The finite temp
ture transition forK.Kc should thus remain in tact. Conse
quently, we arrive at the striking conclusion that the thre
dimensional fractionalized insulator undergoes a fin
temperature transition associated with the unbinding of vi
loops. This conclusion will not be affected by the Berry
phase termSB , which is quite innocuous in the fractiona
ized insulator.

C. Spin-rotation noninvariant systems

TheZ2 gauge theory formulation~in either the particle or
vortex representations! works equally well in the absence o
spin rotation invariance. In particular, fractionalized pha
continue to exist even when spin is not a good quant
number.~Spinless fermion systems can also be handled w
no fundamental modifications.! For these reasons, we hav
avoided the term spin-charge separation, in favor of the m
general term electron fractionalization.

D. Analogies with nematics

Certain aspects of our formulation might be familiar fro
theclassicalstatistical mechanics of nematics. The order p
rameter for a nematic is a headless three component ve
Lattice models of nematics are usually formulated in ter
of an ordinary three component vector, the headless na
being incorporated through a localZ2 gauge symmetry
which inverts the local vector order parameter. Here,
briefly explore the analogies between theclassicalphases of
nematic systems and thequantumphases discussed in th
paper.
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The analogy is closest if we considers-wave pairing with
an even number of electrons per unit cell and, further, in
grate out the spinons to work with just the chargons and
s field. The action describing the system is then

S522tc(̂
i j &

s i j cos~f i2f j !2K(
h

)
h

s i j . ~151!

As formulated, this describes aquantumproblem of char-
gons coupled to a fluctuatingZ2 gauge field in two spatia
dimensions. But alternately, we may view it as aclassical
Hamiltonian for a three-dimensionalXY nematic. Indeed, an
O(3) version of the same model was introduced a few ye
ago by Lammert, Rokhsar, and Toner34 to describe nematic
ordering in three dimensions. Further, they argued that t
lattice gauge nematic model admits three distinct phases
ordered nematic phase, andtwo isotropic phases. The nem
atic phase breaks the rotational symmetry and theZ2 gauge
symmetry. For anXY system, this is the direct analog of th
superconducting phase. Moreover, the physicalhc/2e vorti-
ces of the superconductor correspond directly to the ‘‘dis
nations’’ in the nematic fluid.

The two isotropic phases in the nematic a
distinguished34 by the free energy cost per unit length
externally impose a disclination line through the system.
particular, in the conventional isotropic phase, the free
ergy cost per unit length is zero~as the length goes to infin
ity!. The disclinations are condensed. But, in the unconv
tional isotropic phase34, the free energy cost per unit lengt
is a constant~as the length goes to infinity!. In the context of
this paper, the isotropic phases correspond to insula
phases. As we have elaborated at length, there are two i
lating phasesI andI* which are distinguished by whethe
or not the visons~which are the relics of thehc/2e vortices
in the insulating phases! are condensed. Thus, the conve
tional insulator corresponds, in the nematic analogy, to
conventional isotropic phase. Note that the energy cost
vison ~which is the action cost per unit length of the worl
line! is zero in this phase. Similarly, the fractionalized ins
latorI* corresponds to the unconventional isotropic phase
the XY nematic. InI* the visons have finite energy cos
again just like the disclination lines in the unconvention
isotropic fluid.

The phase transition betweenSC and either insulating
phase is second order. In contrast, for theO(3) nematic sys-
tem considered in Ref. 34, the transition between the n
atically ordered phase and the conventional isotropic phas
first order, while that to the other isotropic phase is seco
order. This difference is due to theXY symmetry of the
superconducting system, as opposed to theO(3) symmetry
of the nematic.

For the more general situation, with coupling to th
spinons or with an odd number of electrons per unit cel
direct correspondence with the nematic system no lon
holds. Nevertheless, we believe that the discussion in
subsection may help~some! readers get further intuition an
insight into our formulation.

IX. RELATION TO PREVIOUS APPROACHES

We now comment on the connection between theZ2
gauge theory and earlier approaches to electron fractiona



th

r-
w
f
re
th
–

nt

hi
to
ve
is

tro
he
q
h
th
s

em
th
o
t

r-
e

of
pa

rm

w
s
in

c
t

fu
a
e-

e

le

osite

y
ses,
al-
-
in
as-

s to

of
V

on
tical

e
m

x
f

7874 PRB 62T. SENTHIL AND MATTHEW P. A. FISHER
tion. We begin by making contact with earlier papers on
nodal liquid. Earlier formulations of the nodal liquid~in
Refs. 9 and 10! focused on the importance of ‘‘vortex pai
ing’’ as a means to describe charge fractionalization in t
dimensions. In Ref. 9 a theory was formulated in terms o
vortices in a local superconducting pair field, and it sha
many features with the approach taken here, particularly
dual formulation detailed in Sec. V. In Ref. 10, Chern
Simons theory was used to convert spinful electrons i
bosons, and a dual formulation was developed in terms
vortices in these bosonic fields. TheZ2 gauge theory and its
dual Ising Chern–Simons vortex theory developed in t
paper not only ties together both earlier approaches in
unified framework, but allows for a more direct quantitati
analysis of ‘‘microscopic’’ models. We now describe th
connection in a bit more detail.

In Ref. 9 a spinon operator was defined as an elec
with its charge screened by ‘‘one half’’ of a Cooper pair. T
latter coincides precisely with the chargon introduced in E
~28!, showing the equivalence of the spinons as well. T
importance of the long-ranged interaction between
spinon andhc/2e vortex was emphasized in Ref. 9. It wa
suggested that this interaction could be implemented by
ploying a U(1) Chern–Simons term to attach flux to bo
species of particles. But since the spinon number is not c
served, it was suggested that the flux could be attached to
~conserved! z component of the spin. Moreover, it was a
gued in Ref. 9 that due to the statistical interactions, cond
sation of hc/2e vortices should lead to confinement
spinons. In the dual vortex formulation presented in this
per the statistical interaction between vortex and spinon
described in terms of a novel Ising-like Chern–Simons te
It is important to stress that thisdoes notrequire the spin of
the spinon to be conserved, in contrast to theU(1) approach,
since the Ising-flux is attached to the conservedZ2 charge of
the spinons. Moreover, the Ising formulation clearly sho
that condensation of thehc/2e vortices, or the visons, lead
to confinement of spinons and chargons. In the global Is
model for the visons witĥv i&Þ0, the linear confinement is
due to the required line of negative Ising couplings conne
ing the two spinons. In theZ2 gauge theory formulation, i
follows from the area law for the Wilson loop.

In Ref. 10, a theory was developed by converting spin
electrons into spinful bosons, using Chern–Simons to att
flux to the electronsspin, and then passing to a dual repr
sentation of vortices in these bosonic fields, denotedFa with
spin labela5↑,↓. A lattice version of this theory can b
written in terms of the phases,ua , of the vortex field opera-
tors,Fa5eiua, with effective Euclidian action,

S52tv(̂
i j &

cos~u ia2u j a1ai j
a !1Scs~as!. ~152!

Here,i , j are label sites of the 211 space-time lattice,tv is a
dimensionless vortex hopping term andScs is a Chern–
Simons terms involving the fieldas5a↑2a↓. The curl ofaa

corresponds to the conserved electrical current of the e
trons with spina. In Ref. 9, two different composite ‘‘pair’’
vortex operators were considered:

Fr5F↑F↓5eiur; Fs5F↑F↓
†5eius, ~153!
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which are minimally coupled toar/s5a↑6a↓, respectively.
The action can be re-expressed in terms of these comp
phase fields using the relation

u↑↓5
1

2
~ur6us!1

p

2
v, ~154!

giving

S52tv(̂
i j &

v iv j cos@~u i
r2u j

r1ai j
r !/2#cos@~u i

s2u j
s1ai j

s !/2#.

~155!

Here, the Ising spinsv i561 are the visons. The primar
emphasis of Ref. 10 was an analysis of fractionalized pha
such as the nodal liquid. It was emphasized that fraction
ization occurs when̂v i&50, and breaking the Ising symme
try with ^v i&Þ0 corresponds to confinement. Deep with
the deconfined phase it is possible to integrate out the m
sive visons, which generates local terms such as

Shc/e52t2v cos~u i
r2u j

r1ai j
r !, ~156!

which describes the hopping of thehc/e vortex pair,Fr ,
and

Sspinon52ts cos~u i
s2u j

s1ai j
s !. ~157!

Due to the Chern–Simons terms above, this correspond
the hopping of fermionic spinons which carrySz51/2.

The relationship between this formulation, in terms
‘‘electron’’ vortices, and the dual vortex theory of Sec.
constructed in terms of BCShc/2e vortices is at first not
apparent. But consider introducing a vortex operator,F
5eiu, whosesquareequals thehc/e vortex pair operator,
F25Fr . This requires that

u5
1

2
ur1

p

2
~12v !, ~158!

which implies

F5veiur/2. ~159!

As definedF carries vorticityhc/2e, and can tentatively be
identified as the BCS vortex. To complete this identificati
it is necessary to show that there is a long-ranged statis
interaction between thishc/2e vortex and the spinon. Evi-
dence for this is provided by the following argument. W
first imagine explicitly adding the vortex hopping ter
Sspinonto the action in Eq.~155!. We then absorb the fieldus

into as. We may now re-express the action of Eq.~155! in
terms ofu i :

S52tv(̂
i j &

m i j cos~u i2u j1
1
2 ai j !1Sspinon, ~160!

with

m i j 5cosS 1

2
ai j

s D . ~161!

Here, we have definedai j 5ai j
r . In the presence of the vorte

hopping termSspinon above, if we specialize to the limit o
large ts , it is legitimate to restrictai j

s to be 2p times an
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integer. With that restriction the gauge fieldm i j 561, reduc-
ing to an IsingZ2 gauge field. Now, imagine putting a sta
tionary spinon on one site of the original spatial lattice.
this dual vortex representation this corresponds to a plaqu
with D3as52p or, equivalently to a product)hm i j 521
for all plaquettes pierced by the spinon ‘‘world line.’’ Sinc
the hc/2e vortex is minimally coupled tom i j , this estab-
lishes that it does indeed acquire a minus sign upon be
transported around a spinon. In the dual vortex formulat
in Sec. V, ap-flux tube inm i j is attached to each spinon b
the Ising-like Chern–Simons term. To complete the mapp
between these two formulations requires, finally,

fermionization of the spinon creation operator,eiu i
s

@fermi-
onic due to the Chern–Simons termScs(a

s)] effectively re-
placing it with spinful fermionsf ia .

Finally we comment briefly on the relationship with the
ries based on slave boson/fermion approaches to elec
fractionalization. A number of authors have examined in
lating Heisenberg antiferromagnetic spin models in the h
of finding phases with deconfined spinon excitations throu
these approaches. However this program has generally
quite unsuccessful—theU(1) or SU(2) gauge symmetry in-
troduced in the slave-boson or fermion representations
mately leads only to confined phases. A notable excep
however is the work of Read and Sachdev15 on large-N
Sp(2N) frustrated antiferromagnets and related quant
dimer models.17 Under certain special conditions, these a
thors demonstrated the existence of quantum disord
phases with deconfined spinons in their theory. It is wo
pointing out that fractionalization is achieved when theU(1)
gauge symmetry@introduced by the Schwinger boson repr
sentation of theSp(2N) spins# is broken down toZ2 by
condensation of pairs of bosons. The fully frustrated tra
verse field Ising model appears in that description as we17

Slave boson representations of electron operators h
been used extensively to discuss spin-charge separatio
sues in dopedt-J models. However, the resultant compa
U(1) or SU(2) gauge theories presumably always lead
confinement, unless the gauge symmetry is broken dow
Z2. This may be achieved by pairing the spinons.18 Indeed,
the slave-boson mean field treatments of thet-J model do
find pairing of spinons below a finite temperature at lo
doping. As we have emphasized in this paper though, eve
the undoped limit and without frustration, the Heisenbe
spin model may be rewritten in terms of fermionic spin
operators coupled to a fluctuatingZ2 gauge field. Equiva-
lently spinon pairing terms may be added to the Hamilton
describing the Heisenberg magnet without altering any of
physical symmetries. We have shown that electron fracti
alization is definitely possible once charge fluctuations
incorporated into the description.

X. CONCLUSION AND DISCUSSION

A. Summary

The primary focus of this paper was to explore the pos
bility of electron fractionalization in strongly correlated ele
tron systems in spatial dimension greater than 1, and in
presence of time reversal symmetry. We based our dis
sion on a particular class of microscopic models designe
tte
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capture the physics essential to the cuprates, although
decription of fractionalization is more general. Starting fro
these models, we developed a new gauge theory of stro
correlated systems consisting of chargee, spin-zero bosons
~the chargons! and charge zero, spin 1/2 fermions~the
spinons!, both minimally coupled to a fluctuatingZ2 gauge
field. Remarkably, the spin sector of the theory at half filli
and in the absence of charge fluctuations is formallyidenti-
cal to a spin one-half Heisenberg antiferromagnet. In t
limit the Z2 gauge field enforces the constraint that t
spinon number on each site isodd, physically equivalent to
the single occupancy constraint, imposed with additional
needed redundancy in earlierU(1) gauge theory formula-
tions of the Heisenberg model.

Charge fluctuations, however, are naturally incorpora
into our Z2 gauge theory, and when they become large
theory describes adx22y2 superconductor. Analysis of th
theory in the intermediate region reveals that there are
qualitatively different routes for the evolution from the an
ferromagnet to the superconductor. One route is through c
ventional insulating phases in which fluctuations of theZ2
gauge field confines together the chargon and the spin
leaving only the electron in the spectrum. But a more int
esting possibility takes one through phases in which the e
tron is fractionalized, and the chargons and spinons exis
deconfined excitations. Withdx22y2 pairing, this fractional-
ized insulator is the nodal liquid,9,21 with gapless spinon ex
citations at four points of the Brillouin zone. It seems like
that the ultimate transition from the insulating phases to
dx22y2 superconductor occurs close to the boundary betw
the confined and deconfined insulating phases. Thus, w
of these two qualitatively different routes is realized in a
particular experimental system could depend sensitively
microscopic details.

In addition to the chargons and spinons, the 2D no
liquid supports Ising-like point excitations, the visons, whi
correspond to vortices in theZ2 gauge field. These gappe
vison excitations play a central role in our analysis of fra
tionalization, as becomes clear upon passing to a dual
scription in terms ofhc/2e BCS vortices~of a conventional
superconductor! and the spinons. In this dual framework, th
nodal liquid can be accessed by a pairing and condensa
of the hc/2e vortices, as emphasized in ealier work.9,10 This
reveals that the vison excitations are simply the remnan
the unpairedhc/2e vortices which survive in the insulating
nodal liquid.

The utility of the vison excitations goes far beyond givin
a simple description of the nodal liquid. Indeed, the pureZ2
gauge theory in 211 space-time dimensions is dual to th
global 211 dimensional Ising model, and the Ising spins a
simply the vison creation operators. Remarkably, an unus
Berry’s phase term in the gauge theory corresponds sim
to frustration in the dual Ising model, with full frustration a
half filling. The fully frustrated quantum Ising model aros
in earlier work by Sachdev and co-workers16,17 in their
analysis of frustrated magnets. Ordering the dual Ising mo
by condensation of the visons generally will break trans
tional symmetry and lead to conventional confined insulat
phases such as the spin-Peierls phase. In three spatial di
sions~3D!, the visons become loop-like excitations, and a
closely related to vortex-line excitations which occur in
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conventional superconductor. Surprisingly, this implies t
a 3D fractionalized insulator ‘‘survives’’ at finite tempera
ture, being separated from the high temperature regime
finite temperature phase transition. As in a conventional
perconductor, the 3D fractionalized insulator confineshc/2e
monopole excitations even at nonzero temperature.

Within the Z2 gauge theory approach, a conventional s
perconductor is described as a condensate of chargee char-
gons. A superconducting phase involving condensation
chargon pairs~i.e., Cooper pairs! without condensation o
single chargons was shown to exist, this has several ex
properties distinguishing it from the conventional superc
ductor.

B. Experiments

We close with a very brief discussion of some of t
experimental signatures of electron fractionalization. As
will see, experimental detection of fractionalization may
quite subtle. Further theoretical understanding of fraction
ized phases leading to detailed experimental predictions
clearly called for. Our discussion will necessarily be brie

1. Two-dimensional nodal liquid

Earlier work on the nodal liquid9,21 outlined a number of
experimental signatures of the two-dimensional nodal liqu
and we have little to add here. As pointed out in the ear
papers, perhaps the most telling indication will be in an
resolved photoemission~ARPES! which directly measures
the electron spectral function as a function of the momen
k, and frequencyv. As the electron is fractionalized into th
chargon and the spinon in the nodal liquid, its spectral fu
tion will not have a sharp quasiparticle peak even at z
temperature. Note that bound states of the chargon and
spinon~which could lead to sharp spectral features! are not
expected here at low energies as the spinons are gaples

2. SC*

We have discussed the basic physics of the exotic su
conductorSC* obtained by condensing chargon pairs in S
VII. There are several qualitative experimental distinctio
between this phase and the conventional supercondu
which we now briefly discuss. The most striking is again
the electron spectral function as measured in ARPES.
discussed in Sec. VII, the electron decays into a spinon
an Ising part of the charge, the ison excitation. Thus,
expect that the electron spectral function doesnot have a
sharp quasiparticle peak in theSC* phase. Again, since th
isons are massive excitations while the spinons are gap
bound states of the two are generally not expected at
energies. The presence of gapped ison excitations would
affect the thermodynamics, and contribute to the therm
conductivity at some intermediate temperatures. Howe
these signatures are likely to be quite subtle. A striking t
oretical feature ofSC* is that the conventional BCShc/2e
vortices are splintered into pieces, theU(1) ‘‘vorton’’ car-
rying the circulating electrical currents, and theZ2 vison.
Since the spinons do not have a long-ranged statistical in
action with thehc/2e vorton, it is tempting to speculate tha
t
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the structure of the core states in such a vorton would
qualitatively different from that of anhc/2e vortex in a con-
ventional superconductor.

The experiments on the cuprates mostly do see a s
quasiparticle peak35 inside the superconducting state~al-
though there is some recent controversy36 as to what extent
this is true along the nodal directions!. Given the current
experimental status, we therefore guardedly identify the
perconducting phase in the cuprates withdSC and not
dSC* . However dSC* is nevertheless interesting to con
sider on theoretical and conceptual grounds.

3. Three-dimensional effects

In striking contrast to a two-dimensional nodal liquid,
genuinely three-dimensional nodal liquid has a finite te
perature phase transition associated with the unbinding
vison loops. This phase transition could lead to observa
singularities in the measured properties of the system.
due to the highly anisotropic nature of the cuprates, it
perhaps more natural to speculate that a fractionalized p
would consist of decoupled 2D systems, with a confinem
of spinons within each layer. Clarification of such interlay
confinement physics will be necessary in order to disentan
the subtle interlayer behavior of the cuprate materials, b
in the normal and superconducting phases.
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APPENDIX A: PATH INTEGRAL

We now derive a path integral expression for the partit
function of the spinon–chargon Hamiltonian. A crucial ro
is played by the constraint on the Hilbert space, which na
rally introduces anZ2 gauge field.

To this end, we work with fermionic coherent states bu
from the spinon operators,f̂ a and f̂ a

† , which are defined in
standard fashion,

u f a&5e2 f a f̂ a
†
u0&, ~A1!

^ f̄ au5^0uef̄ a f̂ a, ~A2!

where the spinonoperatorsare denoted with ‘‘hats,’’ andf̄ a
and f a are Grassman numbers. The bra and ket states
noted with a ‘‘0,’’ are fermionic Fock states with no spinon
present. Here we have suppressed the dependence of th
mion operators and Grassman fields on the spatial coo
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nate,r. In the charge sector of the theory we choose a b
of states diagonal in the phasef of the chargon field, de-
noteduf&.

The partition function in Eq.~42! can then be expresse
as

Z5E d f̄ad faE
0

2p

dfe2 f̄ a f a^2 f̄ a ;fu~e2eHP!Mu f a ;f&,

~A3!

with e5b/M and P the projection operator defined in Eq
~38!. Inserting the resolution of the identity between ea
time slice gives

Z5)
t51

M E d f̄tad ftadfte
2 f̄ t f t21Mt , ~A4!

with matrix elements

Mt5^ f̄ t ;ftue2eHPu f t ;ft21&, ~A5!

and appropriate boundary conditions on the fields,f M11
[2 f 1 andf0[fM .

The matrix elements can be readily evaluated for smae
by inserting a complete set of states diagonal in the char
number,N. Using the definition of the projection operator
Eq. ~38! gives

Mt5
1

2 (
st561

(
Nt52`

`

eiNt[ft2ft211p/2(12st)]ef̄ tst f tEt ,

~A6!

with

Et5e2eH(Nt ,ft , f̄ t ,st f t). ~A7!

Upon making the change of variables in the Grassm
functional integral,

st f t→ f t , ~A8!

the full partition function can finally be re-expressed as

Z5E )
t51

M

d f̄td ftdft (
Nt52`

`

(
st561

e2S, ~A9!

with

S5St
f 1St

f1e(
t51

M

H~Nt ,ft , f̄ t f t!, ~A10!

with

St
f 5 (

t51

M

@ f̄ t~st11f t112 f t!#, ~A11!

and

St
f52 i (

t51

M

NtFft2ft211
p

2
~12st!G . ~A12!

Throughout, we have suppressed the explicitr and a sub-
scripts on the fields, displaying only the time-slice depe
dences.
is

h

n

n

-

APPENDIX B: Z2 GAUGE THEORY WITH Dx2Ày2

PAIRING

We will now provide an outline of a microscopic deriva
tion of theZ2 gauge theory in the presence ofdx22y2 pairing
correlations. We begin with the Hubbard-type Hamiltonia
Eq. ~4!, discussed in Sec. I:

H5H01HJ1HD1Hu . ~B1!

The crucial difference with thes-wave case is in the structur
of the ‘‘pairing’’ term HD .

We now follow exactly the same strategy as in thes-wave
case, defining chargon and spinon operators. A path inte
representation of the partition function is readily set up w
the main difference being in the pairing term which becom

SD5e (
^rr 8&,t

D rr 8~br* br 81c.c.!Brr 8 , ~B2!

Brr 8[D rr 8~ f̄ r↑ f̄ r 8↓2~↑→↓ !1c.c.!. ~B3!

We have suppressed thet index on all fields. It will be
convenient to use a slightly different decoupling of theHJ
term. We write

e2SJ5E @dx rr 8dx rr 8
* dh rr 8dh rr 8

* #e2Shs, ~B4!

Shs5Shs@x#1Shs@h#, ~B5!

Shs@x#5e (
^rr 8&,t

J@2ux rr 8u
22~x rr 8 f̄ ra f r 8a1c.c.!#,

~B6!

Shs@h#5e (
^rr 8&,t

J@2uh rr 8u
2 ~B7!

1~h rr 8arr 8~ f r↑ f r 8↓2 f r↓ f r 8↑!1c.c.!]. ~B8!

Herearr 8511 for bonds along thex direction, and equals
21 for bonds along they direction. Note thatShs@x# is the
same as before. This decoupling of the spin–spin interac
is standardly used in theSU(2) gauge theory formulations o
the t-J model. We emphasize though that our formulati
has, as we will show, only anZ2 gauge symmetry. We now
shift the two Hubbard-Stratonovich terms:

x rr 8→x rr 82
t

J
br* br 8 , ~B9!

h rr 8→h rr 81
D

J
~br* br 81c.c.!. ~B10!

The shift of x is as before, and eliminates the spinon
chargon interaction coming from rewriting the electron ho
ping term. The shift ofh eliminates the pairing term. The ne
spatial part of the action is then

Sr5e (
^rr 8&

2J~ ux rr 8u
21uh rr 8u

2!1Scr1Ssr
1 1Ssr

2 ,

~B11!
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Scr52e (
^rr 8&

$@2tx rr 812D~h rr 81h rr 8
* !#br* br 81c.c.%,

~B12!

Ssr
1 52e (

^rr 8&

Jx rr 8 f̄ ra f r 8a1c.c., ~B13!

Ssr
2 5h rr 8D rr 8~ f r↑ f r 8↓2 f r↓ f r 8↑!1c.c. ~B14!

The shift in h also generates a Cooper pair hopping te
cos(2fr22fr8) with a negative hopping amplitude of orde
D2/J. This is not expected to be important for the issues
fractionalization that we primarily wish to discuss. So w
will for the most part drop it.

The x,h integrals may be done by saddlepoint—a u
form, real saddlepoint solution̂ x rr 8&5x0 , ^h rr 8&5h0
breaks theZ2 gauge symmetry. Parametrizing the fluctu
tions about it byx rr 85x0s i j , h rr 85h0s i j as before, we
arrive at the Ising gauge theory appropriate for thedx22y2

superconductor.

APPENDIX C: ISING SELF-DUALITY

We will now review the self-duality of theZ2 gauge
theory with matter fields in 211 dimensions. As a limiting
case, we recover the duality of the pureZ2 gauge theory to
the global Ising model. The theory is defined by the latt
action

S@s,s#5Ss1Ss , ~C1!

Ss52J(
i j

sis i j sj , ~C2!

Ss52K(
h

)
h

s i j . ~C3!

The constantsJ,K are assumed to be positive. The indic
i , j label the sites of a three-dimensional cubic lattice. It
convenient to first rewrite thesis i j sj term on each bond
using the following identity:

eJsis i j sj5A (
ni j 50,1

exp@22Jdni j ~C4!

1 i
p

2
ni j ~si2sj112s i j !]. ~C5!

Here tanh(Jd)5e22J, andA5coshJ. From now on, we will
drop the constantA since it just contributes to an overa
multiplicative constant to the partition function. Theni j take
the values 0,1. Upon using this identity for every bond, a
doing the sum oversi , we get

exp~2Ss!5Trs i j
Trni j F)i

cosS p

2
~DW .nW ! D G ~C6!

3expS 22Jd(
i j

ni j 1(
i

i
p

2
ni j ~12s i ! D .

~C7!
f

-

-

e

s

d

HereDW .nW is the lattice divergence of the link variablen. We
now notice that the cosine can be written as

cosS p

2
~DW .nW ! D5~21!~DW .nW /2)d@~21!DW .nW ,1#, ~C8!

whered(m,n) is the Kronecker delta function for two inte
gersm,n. The term multiplying the delta function is a tota
derivative that contributes zero on summing over all sit
we will therefore drop it. Note that the delta function im
poses conservation modulo 2 of the link variableni j at every
site. This conservation can be made more explicit by de
ing a Z2 currenta:

a i j 5~21!ni j . ~C9!

We now solve the current conservation condition by writi
the Z2 currenta on any link as the flux of a dualZ2 gauge
field m through the plaquette of the dual lattice pierced
this link:

a i j 5~21!ni j 5)
h

m i j . ~C10!

Them i j are understood to be defined on the links of the d
lattice, and the plaquette product for them is around the
appropriate plaquette of the dual lattice. Note that this
directly analogous to the standard duality transformation
the XY model.

We next solve for theni j in terms of them i j :

ni j 5

12)
h

m i j

2
. ~C11!

The ni j may now be eliminated from the action in favor o
the m i j . The result ~after dropping overall multiplicative
constants! is the following identity:

(
si

eJ( i j sis i j sj5(
m

exp~2Sm2SCS!,
~C12!

Sm52Jd(
h

)
h

m i j , ~C13!

SCS5(̂
i j &

i
p

4 S 12)
h

m D ~12s i j !. ~C14!

The last term has a structure similar to a Chern–Sim
term, but for the groupZ2. Its exponential is actually invari-
ant unders↔m. This can be seen as follows. Write

e2SCS5)̂
i j &

S)
h

m D (12s i j /2)

, ~C15!

5)̂
i j &

e~ ip/4! (^ i j &[D3(12m)](12s i j ).

~C16!

In the last equation,D3m is the lattice curl ofm on the
plaquette of the dual lattice pierced by^ i j &. If we now per-
form a lattice integration by parts, we get
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exp(̂
i j &

2 i
p

4
~12m i j !@D3~12s!# ~C17!

5expF2(̂
i j &

i
p

4 S 12)
h

s D ~12m i j !G , ~C18!

where now the sum is over linkŝi j & of the dual lattice.
The full partition function can then be written as

Z5Trs,m exp~2Ss2Sm2SCS!. ~C19!

The duality of the full action is now apparent. In partic
lar, the action is invariant under the exchanges↔m, Jd↔K.
To make the duality even more explicit, we again use
identity, Eq.~C12!, to write

(
s

exp~2Ss2SCS!5(
v i

expS Kd(
i j

v im i j v j D ,

~C20!

wherev i561 and tanh(Kd)5e22K. The partition function
now becomes

Z5Trt,meKd( i j v im i j v j 1Jd(h)hm i j , ~C21!

which is exactly of the same form as in terms of the origin
variables (si ,s i j ), but with the dual couplings (Jd ,Kd), thus
establishing the self-duality of the theory.

As a special case, consider the limit whenJ50. Then the
action in Eq.~C1! is that of the pureZ2 gauge theory. Unde
the duality transformation, we now get the form of Eq.~C21!
but with the dual couplingJd5`. This means that the fluc
tuations of the dual gauge fieldm are frozen; we may choos
a gauge in whichm i j 51 on every link. The dual action the
simply reduces to that of a global Ising model for thev i with
the dual couplingKd .

APPENDIX D: DUALITY OF THE MODEL WITH
COMBINED U„1… AND Z2 INVARIANCES

We will now perform a duality transformation on th
chargon–spinon actionS5Sc1Ss1SB derived in Sec. II to
work instead with vortex variables instead of the chargo
For simplicity, we will restrict ourselves to situations with a
integer number of electrons per unit cell. In this case,
Berry phase termSB is independent of the chargon pha
field f i . In Sec. VI, we provided the generalization nece
sary to handle a noninteger number of electrons per unit c
All of our transformations focused entirely on the term in t
action involving the chargon variables. This is simply a ch
gon hopping term:

Sc52(̂
i j &

s i j ~ tcbi* bj1c.c.!, ~D1!

52(̂
i j &

2tc cosS f i2f j1
p

2
~12s i j ! D . ~D2!

Note that in the absence ofs i j , this is just the action for the
three-dimensionalXY model. The duality transformation fo
the 3D XY model is standard; here we will generalize it
include theZ2 gauge fields i j .
e

l

s.

e

-
ll.

-

Consider the partition function obtained by integrati
over the chargon fields in the above action:

Zhol@s#5E
0

2p

)
i

df ie
2Sc. ~D3!

As with the duality transformation of theXY model, it will
be convenient to work with the Villain form of the action

S@f,J,s#5(̂
i j &

kJi j
2 /21 iJ i j S f i2f j1

p

2
~12s i j ! D ,

~D4!

whereJi j are integer valued fields that live on the links of th
lattice, and are to be summed over in the partition functi
As usual, this is strictly justified only in the limittc!1 when
tc5exp(2k/2), although we do not expect any modificatio
to the physics by relaxing this assumption. TheJi j have the
interpretation of being the total conserved electrical curr
on any link. This can be made more explicit by performi
the integrals overf i which imposes the current conservatio
condition

D•J50. ~D5!

The symbol on the left-hand side is the lattice divergence
the link variableJi j . We proceed, as usual, by solving th
current conservation condition by writing

2pJi j 5DW 3aW . ~D6!

The quantityaW lives on the links of the dual lattice, and i
constrained to be 2p times an integer. The right-hand side
the lattice curl of this variableaW on the plaquette of the dua
lattice pierced by the link̂i j &. The chargon action now take
the form

S@a,s#5(
h

k

8p2
~D3a!21

i

4 (̂
i j &

~D3a!~12s i j !.

~D7!

Here the first term is a sum over plaquettes of the dual
tice, and the lattice curl in the second term is on the plaqu
pierced by the link^ i j &. Now note that ass i j 561, the
exponential of the second term can be written

)̂
i j &

~21!(D3a/2p)(12s i j /2).

It is useful now to separate the integera/2p into its even and
odd part by writing

a52p~2A1s!, ~D8!

whereA is an integer ands50,1. Then, we have

)̂
i j &

~21!(D3a/2p)(12s i j /2)5)̂
i j &

S)
h

~21!sD (12s i j /2)

,

~D9!

where the product inside the brackets denotes the pro
over the links of the plaquette of the dual lattice pierced
^ i j &. We now define

m i j [~21!s5122s. ~D10!
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Note thatm i j lives on the links of the dual lattice and take
values61. The product above can then be written

expF i
p

4 S 12)
h

m D ~12s i j !G . ~D11!

Note thatm satisfies

)
h

m5~21!Ji j , ~D12!

where the plaquette product on the left-hand side is on
plaquette of the dual lattice penetrated by the link^ i j &. Thus,
the conservedZ2 charge current determines the flux ofm.

The action now becomes

S5(
h

k

8p2 FD3S 2A1
12m

2 D G2

1SCS, ~D13!

SCS5 i (̂
i j &

p

4 S 12)
h

m D ~12s i j !. ~D14!

At this stage,A is constrained to be integer valued. We im
pose this integer constraint onA softly by adding a term

2tv(̂
i j &

cos~2pAi j !. ~D15!

Here the sum is over the links of the dual lattice. The act
can now be rewritten in terms ofa52p@2A1(12m/2)#:

S5Sv1Sa1SCS, ~D16!

Sv52tv(̂
i j &

m i j cosS ai j

2 D , ~D17!

Sa5(
h

k

8p2
~D3a!2. ~D18!
V.

u

e

n

It is convenient to extract a ‘‘matter field’’ from theai j by
letting

ai j →ai j 12~u i2u j !. ~D19!

This changesSv to

Sv52tv(̂
i j &

m i j cosS u i2u j1
ai j

2 D , ~D20!

but leaves all the other terms unchanged. The fieldeiu i may
be interpreted as anhc/2e vortex creation operator. Severa
symmetries of the action above are apparent. It is invar
under a localU(1) gauge transformation,

u i→u i1L i , ~D21!

ai j →ai j 2
L i2L j

2
. ~D22!

This is standard in the dual vortex description ofXY models
in three dimensions. However the action has an additionaZ2
gauge symmetry under which

eiu i→e ie
iu i, ~D23!

m i j →e ie jm i j , ~D24!

with e i561. ThisZ2 gauge symmetry is actually dual to th
one in the chargon-spinon action. Note that the action
scribes the vorticeseiu i minimally coupledto the fluctuating
U(1) gauge fielda, and also to the fluctuatingZ2 gauge field
m. The fieldm is in turn coupled to the fields by the term
SCS.

This completes the duality transformation to the vort
description. Adding together the spinon action and the Be
phase termSB gives the full dual action of Sec. V.
,
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