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In this paper, a delocalization-localization transition within a superconducting state is explored. The sym-
metries of the Bogoliubov deGennes Hamiltonian endow the two associated superconducting phases—the
thermal metal and the thermal insulator—and the critical point between them, with properties that are in stark
contrast with analogous phases in normal systems. Here, for systems preserving spin-rotational invariance and
time-reversal symmetry in three dimensions, the transition is shown to be of a different universality class from
its normal partner by extracting and comparing the localization length exponent. The density of states, which
may be regarded as the “order parameter” for the field theory describing the superconducting system, is
studied for its unusual properties about criticality.
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[. INTRODUCTION centration, one would expect these states to be localized, and
upon increasing the coupling or lowering the disorder, one
The problem of Anderson localization in normal disor- could conceive of accessing a critical point beyond which
dered electronic systems has been studied for years, and h&¢ese states become extended. Here, we study such a transi-
continued to pose intriguing puzzlé®Recently, the question tion on more generic grounds by numerical analyses, and by
of whether an analogous transition can occur in the behavigPxploiting previous field-theoretic analys&&poth of which
of low-energy quasiparticle excitations about a superconduite dramatically bring out features of superconducting sys-
ducting ground state has come to ||que' e.g., Ref. Z_B tems that are not present in their normal partners.
In fact, the stability of two very distinct superconducting \We review the framework used to describe quasiparticle
phases that may be characterized by their transpoﬁxcitations in the absence of interactions. We expand on
properties—one with extended quasiparticle states at thgome details of the two phases, the “thermal metal” and the
Fermi energy and the other with localized states—has beerthermal insulator.” Then, in order to keep our paper self-
establishedsee, e.g., Ref.)d Here, it is the transition point contained, we elaborate on the field-theoretic and numerical
between these two phasesl and its critical propertiesy théﬂethOdS We proceed to discuss the field-theoretic and nu-
forms the subject of our attention. merical predictions for the localization length exponent
While one can afford to ask of the Superconducting Sys.aSSOCiated with the thermal metal-thermal insulator transi-
tems the same questions that have been addressed in norfin, and show that they both confirm the existence of a
systems, the former displays refreshingly new physics thagniversality class associated with the presence of supercon-
shows both conceptual and qualitative differences from thélucting order, withv<<v,, wherev, is the corresponding
latter. To begin with, quasiparticle excitations in supercon-exponent for normal systems. We then study the unique
ducting systems do not conserve charge, and thus one canroperties of the DOS at criticality. Finally, we mention the
Study the transition through Charge dynamics_ This absenc@'\aracteristics of transitions in Superconducting Systems be-
of U(1) symmetry in the Bogoliubov deGennes Hamiltonian, Sides those that respect @JandT symmetry, and possibili-
which we employ to describe the excitations in question, ha§es for experiment.
marked consequences. As emphasized by Ref. 10, it gives
rise to a host of new universality classes, with critical expo-
nents whose values are significantly different from those of
their normal partners. In particular, the density of states A. The superconducting Hamiltonian
(DOYS) exhibits astonishing features. In this paper, we ex-
plore these surprises in the context of superconducting sy
tems that respect spin-rotationfBU(2)] invariance and

I. MODELS AND SYMMETRIES

Quasiparticle excitations about the superconducting
%’round state are well described within the framework of the
Bogoliubov deGennegBdG) Hamiltonian. For the spin-

time-reversalT) symmetry. . : .
. . . singlet paired superconductor, which we focus on here, the
A variety of superconductors described by the Bogollubode(g5 Hffmiltonianphas the form

deGennes Hamiltonian exhibit the prospect of making this
transition realizable in physical systems. To repeat the ex-
ample offered of the dirtg-wave superconductdrconsider Ho=H1+Hp,
a system of impure superconducting sheets dittave pair-

ing coupled to one another. At the nodal points, one has e
low-energy quasiparticle excitations, and in fact, due to dis- [_iﬁﬁ_ —,&(x)
order, one even expects a finite DOS at the Fermi er?ergy.r_| :J ddXCT(X) c

For low interplane coupling strength or high impurity con- v

2
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e des ot ot The HamiltonianX, , in principle, may be diagonalized
szf dxdx" (c1 () A(x,x")c (X") by solving the eigenvalue equation
+¢,(X)A*(x,x")ci (X)), u(j) u(i)
L()A*(X,X")eq(X")) ORTH al ©
wherec’ andc are electron creation and annhilation opera- ] v(j) v(i)

tors respectivelym the massEg the Fermi EnergyV(x) a
random potential describing impurities in the system, ancﬁ
A(x) a vector potential describing any external magnetic
field. The lattice version of{y, which is more tractable for
numerics, has the form oY

hereu andv describe the wave-function amplitudes at each
te. Given Eq(6), one can construct the following state

u(j)* v* (i)
()] [—ur())
) ) with eigenvalue— E; SU(2) invariance requires a symmetric

dispersion about the Fermi energy, and eigenvalues of the
* BdG Hamiltonian come in pairsg, — E). In principle, these

From Hermiticity, one requires the conditiap=t* , while . i i
Y q =t amplitudes would feed into a self-consistent form for the gap

spin-rotation invariance requirels; = A;; . The BdG Hamil- functi hich h p i . d theref
tonian contains anomalous terms that reflect the fact that the/'ct'on, Which we however do not require, an eretore
eglect, in extracting critical properties such as localization

excitations do not conserve charge, and hence break the h ¢
sociated W1) symmetry. As a result, the BdG Hamiltonian engtn exponent. . . N .
We now draw attention to the physical situation described

lives in an “extended particle-hole space” with twice the ) :

degrees of freedom of normal electronic systems. More im-by the wavefunc'qpns of I.Eqﬁ)’ and the rela_ltlon_they bear to

portantly, the absence of (1) charge conservation endows the phase transmon'of interest. To begin Wlth,. in gapless

the BdG Hamiltonian with symmetry properties that aresuperconductors, which we focus on here, one finds states at
and about the Fermi energy. These states have a profound

completely different from normal systems. It is this differ- " th d ; dt " " di
ence that plays the key role in giving rise to properties thafMPact on thermodynamic and transport properties, as ais-

are unique to superconducting systems. cussed prgviousl‘ir:r’ Moreover, the transport properties de-
The symmetries of the BAG Hamiltonian have recentlypend crucially on the nature of the eigenstates of [y at

been studied in the context of mesoscopic systems and raﬁ_=0,fv;/1hich ig turn is de_;elrmineddbry: the s;;atial_ cgnfigura-
dom matrix theory® Within the class of models described in t1oN Of the random potential(x) and the gap-function (x).

Ref. 10, the Hamiltonians that we study in this paper have" Particular, depending on whether these eigenstates are ex-
SU(2) andT symmetry; they describe systems that are single{ended or localized, one can conceive of two very different

paired and have no spin-orbit scattering, thus having Spinguperconductlng .phases—the “therrl"nal metql" that 'f ca-
rotational invariance, and in addition, they have time-Pable of transporting energy, and the “thermal insulator Fhat
reversal invariance cannot conduct energy over large length scales. In fact, it has

Since the quasiparticles conserve both spin and energ een shown that both phases are stable in three dimerfsions.
one can explicitly write Eq(1) in terms of conserved quan- hus, one can characterize the two phases by the thermal

tities by defining a new set of fermionit operators: conductivity x. In systems with S(2) symmetry, since the
same quasiparticles that carry energy also carry spin, the spin

di;=Cip, dil:CiTi' 2) conductivity o, may also be used to describe the two

. , . phases, and is related tovia an analog of the Weidemann-
Thus one makes a particle-hole transformation on the spinEranz 1aw in the thermal metal:

down operators, but leaves the spin-up operators unchanged.
The Hamiltonian of Eq(1) now takes the form

()

HOL: ; t” 2 CiTaCja‘F (AijCiTTCL + HC)
a

To. const. (8)
Note however, that as the quasiparticles do not carry well
_ i ) i defined charge, the Weidemann-Franz law breaks down with
whfare t|m.e-revclersallmvanance reqt_unejsand Ajj be real. regards to electrical conductivity.
Spin-rotational invariance now requires The two distinct superconducting phases at hand are in
YH. oY= — H* analogy with, but quite different from, the metallic and insu-
o'Hjjo07= i (4) lati : o i
ating phases in normal systems. We study the critical prop
where ¢V is the standard Pauli matrix. Spin conservationerties of the transition between the two phases using the for-
along thez direction is evident from the fact that the physical malism and physical setup described below.
spin is related to the number operator for the Particles”

ti' Ai'

7oA -t

by B. A field-theoretic formulation
i As with the case of Anderson localizatioht the problem
SZ:§(di di—1), (5)  of quasiparticle localization within the superconducting state
can be described within a field-theoretic framewdfkTo
and thatH, of Eq. (3) conserves particle number. briefly review its key featuregas presented in Ref)4start-
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ing with the Hamiltonian of Eq(1), one can derive a useful i

field theoretic action from which one can extract a rich vari- ‘\L*

ety of properties of superconducting systems. Coupling the =2 - 5 R.out
fermionic degrees of freedom in E@l) to an infinitesimal o L«  Rin

Zeeman fieldy (which acts as a chemical potential for ttie e

quasiparticles and employing the replica method to calcu-
late disorder averages, an effective action can be obtained. - | A quasi-one-dimensional setup for transfer matrices. In-
Fluctuations about the saddle point of this action may beg L '

. - . . . oing and out-going wave-function amplitudes at either end are
captured near two spatial dimensions by a nonlinear sigm _oted by andd... respectivel
model NLoM) treatment, yielding for the final form of the Win Your: Tesp y

action,
1 .
—, ij,nn
J2
P T : Ajj= v o (11)
SNLO’M: d X 2_tTr(VUVU )—77TI’(U+U ) . (9) A |—J

0, otherwise;

Here, t is a dimensionless coupling constant that has the\:Nhere nn denotes nearest neighbors, sfjdand Vi, are
P ; . piing . on-site random variables chosen from a uniform probability
physical interpretation of inverse-spin conductance, i.&., 1/

= (/2 Ulx) i trix with lectic S distribution ranging from—W to +W. Different disorder
= (ml2)os. U(x) is a matrix with symplectic Sp(@ group  gisyintions, such as a Gaussian probability distribution, or
structure, whera is the number of replicas.

The actionSy, . given above is quite different from the differing disorder strength iv;; andV,, give the same val-

analogous action describing normal systems. The fiel@es of critical exponents. We work with a three-dimensional
theory, referred to as the ‘the principle chiral Sp(2 ubic lattice described by E@l), and having real couplings

model,” has its first term invariant under the global “rota- with the specific form

tion” U—ATUB, where A", Be Sp(2n), thus possessing 1

Sp(2n) X Sp(2n) symmetry. The second term in the action H =—[t®c*+A®d"]. (12
reduces the symmetry to an Sp(2symmetry as it only V2

allows invariance undet) —A'UA. A knowlgdge .Of th's. . Here, theo's denote Pauli matrices, anéndA are matrices
symmetry structure proves to be very useful in deriving criti-\ ith off-diagonal terms set to unity, and diagonal terms tak-

cal properties. .

Aps d%ne for electrical conductivity in normal systems, we'"9 N values|2Vic and 2V,
employ a scaling theory for the inverse-spin conductivjty
and analyze the critical point separating the thermal metal
and the thermal insulator. Specifically, we extract the local- While we obtain the DOS from the Hamiltonian of Eq.
ization length exponent and the unusual singular behavior of12) by the straightforward process of exact diagonalization,
the DOS at the Fermi energy. we extract the localization length exponent by means of a

transfer matrix formulation that caters to Ed.2) and tre-
mendously reduces the dimensions of the matrices involved
C. Hamiltonian for numerics in numerical work.

The predictive power of the effective field theory of the T0 describe its principle, consider a quasi-one-
previous section lies in the fact that some results derive(ﬂi'”jﬁ’ns'on‘?1| strip ind dimensions with cross-sectional area
from it are universal to all Hamiltonians satisfying the ap-L° ~» @and in-going and out-going states at either end of this
propriate symmetries. In practice, we find that in obtaining!ond strip as shown in Fig. 1. One might formally obtain the
the localization length exponent, an analog of the tight-Scattering matrxSfor the in-going and out-going states us-
binding Anderson model commonly used for numéAdé  ing the definition
shows crisp data with much less noise than other models that _iHT
we have studied. We focus on the same model for the density S= lim exp
of states since the localization length numerics enables us to Tooo h
identify the critical point quite accurately. With reference to
Eq. (1), the couplings take the form

D. The transfer matrix

(13

The scattering matrix, in the specific basis of in-going and
out-going states can be written in terms of reflection and
transmission matricesandt, respectively:*

i IJ nn IS ( rot ) ( )
’ 1 == . 14
2 ’
tj= \\5— o (10) v
it 1= Given this form of the scattering matrix, one can easily de-
0, otherwise; rive the transfer matriX that has the property
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gL =Tig. (15) and Fhe muItipIicati\_/e property of E4L7). With this transfer
matrix at hand, which very closely resembles standard ones
The symmetries of the BdG Hamiltonian imply that the used for the Anderson modtt®we can extract the local-
transfer matrix too has very specific symmetry propertiedzation length for different values of ener§yand disordeW
that distinguish it from those of normal systefis. in a manner completely analogous to the numerical treatment
The transfer matrid’ can be constructed by multiplying a of the Anderson model. As we are interested in the behavior
set of transfer matrices, each appropriate for a slice of thef states at the Fermi energy, we set the endgio zero.
strip shown in Fig. 1, The procedure for extracting the localization length is
quite standard, and has been elaborated on in great depth in
Jis1r=Titi r, (16)  many works:®**But to briefly outline the method, one be-
gins with an orthonormal basis of vectag0) in the space
N of the transfer matrix, representing the right-most states in
T:iﬂl Ti. (17 Fig. 1. One then assumes that for a given disorder strength

W, and widthL, there exists a set of eigenmod&g(L,W)

The form of the transfer matrix that we use for numericalthat describes typical eigenmodes for a quasi-one-
calculation does not make the symmetry of the BdG Hamil-dimensional system dfl slices, whereN is large enough to
tonian manifest, but it is tailored specifically for a tight- fepresent the average behavior of the random disorder, and
binding Hamiltonian such as the one described in@y.We that these modes decay or grow in magnitude as-exi)
begin by writing the Schrodinger Ed6) as a difference  UpPON multiplication with the corresponding transfer matrix
equation T=II'L,T;. One further assumes that when the set of basis

R . R R vectorso;(0), each of which may be represented as a linear
AD;+B;;+1Di+1+B;;i-1D;-1=ED;, (18)  combination of thaw;(L,W), is multiplied byT, the resulting
é/ectorsﬁi(l) (where the dependence brandW is implicit),

Whereﬁi denotes the wave-function amplitudes on each slic ) . L
are each composed of the appropriate linear combination of

in the spinfuld-quasiparticle eigenbasis, ard andB; ;.

are A.2x 2L2 matrices of the form modesw; (L, W) now weighted by the corresponding growth
factors expt=yN). The lengthN is numerically restricted by
ti Ay the exponentially growing magnitude of the vectors
i~ —— (19 Since all vectors have now grown fastest along the fastest

growing mode, sayv;(L,W), the magnitude and direction of
any one of these modes, séy(l), are expsN and along
w;(L,W), respectively. Projecting out the component1)

from the next vectow,(1) gives a resultant vectar,(1)
whose magnitude is roughly eyN. Thus, by such a
“Gram-Schmidt” orthogonalization procedure for the whole

set of vectors i(1), oneobtains a set of orthogonal vectors
5i+1=Bi7,il+1(E_Ai)|5i_BiTiIJrlBifl,i[Sifl- (21)  0i(1) with associated Lyapunov exponents

tiivn Aiiva

Bii+1= : (20

Aiivr —tije

where thetj; andA;;'s are now matrices coupling sliceand
j in the manner described by E@.8). To obtain the transfer
matrix, we rewrite Eq(18) as

For our model, the interslice coupling has the simple form Injo;(1)|
v()=—g (26)
1

Bi,i+1:T[| ®o‘+l®o’], (22 which give the characteristic inverse-localization lengths as-
2 sociated with each mode. To reduce computational effort, we
which satisfies the special property consider just the positive Lyapunov exponents corresponding
to exponentially growing states. As we are restricted in our

Biii1=B 1. (23)  length sizeN, to obtain a fair estimate of the typical’s, we

. . N . repeat the procedure of transfer-matrix multiplication, now
Using Eq.(21), we are now in a position to define a transfer using as our initial basis vectors the normalized G¢t.)

matrix as follows: which more or less point along the ideal basigL,W). An
average value MEJM:ﬂ/i(j) obtained fromM such itera-
, (24)  tions provides the desired estimate of the idgg. We as-
sociate the characteristic localization lengiti, W) with the
slowest decaying mode, and thus with the inverse of the
smallest positive Lyapunov exponem,i,(L,W).
In the quasi-one-dimensional case, all modes are expo-
= ( Biiva(E=A) = I) (25) nentially decaying or growingcorresponding to in-going or
I 0/’ out-going states, respectivelgince even the slightest disor-

>

D1

whereT; has the relatively simple form
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THERMAL METAL THERMAL INSULATOR 1 62
;=6+—+O(63). (29

0 t

C
) . o ) In contrast, normal systems with time-reversal symmetry
sizel. Sp(4n)/Sp(2n) X Sp(2n) model of Ref. 17, and its associ-

) ) . ) ~atedp, function has the form
der is enough to localize states. But in the three-dimensional

limit, where the two-dimensional cross-sectional area be- Bn=—et+(4n+1)t?+(8n%+2mt3+ O(t*). (30)

comes large, we know that the modes ought to experience a

transition from extended to localized behavior as a functionThe localization length exponent derived from E80) has
of disorder. To determine the critical disorder strengthfor  the value

this transition, the nature of the modes in three-dimensions

and the localization length for an infinite-size system of 3

given disorder strength, one can use a finite-size scaling V_n:€+o(€ ), (31)

analysis of the quasi-one-dimensional system. The scaling

function that we will use to do so is the dimensionless pa-uite different from the value of in Eq.(29). The numerical

rameter evidence to follow supports the field-theoretic result that the
value of the localization length exponenfor the supercon-
AL, W) ducting system withT and SU2) is considerably lower than
ALW)=—. (27)  the analogous exponenf, for normal systems.

We now turn to the critical properties of the phase transition 1. Numerical treatment

between the thermal insulator and thermal metal. The standard numerical technigue that we employ for ex-
tracting the localization length exponent shows that in
three dimensions for energy valie=0 about the Fermi
energy, it takes on the value 1:49.15.

As in disordered electronic systems, we have seen in Sec. The finite-size scaling technique can be summarized as
Il B that the thermal metal, the thermal insulator, and thefollows: scaling arguments require that the only relevant
critical point separating them may be characterized by theilength scale in the system be the localization lerg{t¥) of
transport properties. The replica-field theory of ), with  the infinite-sized system, and thus we have
its dimensionless coupling provides a powerful means of
studying this transition. An analysis of the action in E@). N(L,W)
shows that in 2~ e dimensions, where=1 for our system, L
an unstable fixed poirit, describes the critical point between
the thermal metal and thermal insulator. One can study theshereh is a scaling function yet to be determined. Close to
scaling behavior oft with system sizel (see Fig. 2 by  the critical pointW, , we have the localization lengthof the

lll. CRITICAL PROPERTIES

&W)
L

: (32)

=A(L,W)=h(

deriving a form for the scaling functio(t)=dt/dInL, infinite system behaving as
which we present explicitly in the following section. Near
te, for t>t., the couplingt grows larger withL, and thus E~W=W|™, (33

exhibits a stable thermal insulator, while fiort., a smaller ) )
and smaller value of with increasing length scale signals a Which means that the argumenbf h(x) in Eq. (32) blows
thermal metal. up at the critical point. HoweverA is well behaved and

finite; this is only possible if we have

A. Localization length exponent lim h(x) = const (34)

The B function for the Sp(®) sigma model of the action X
of Eq. (9) can be found in Ref. 17, and it is given to cubic

; . where the constant refers to independence with respéct to
order (two loop) in couplingt by

for large L. Thus, the critical valué\. is common to all

sufficiently large system sizes. Using E®3), we rewrite
1 2,3 4 Eq. (32 as

B;Sp(2n))=—et+(2n+1)+ §(2n+1) t°+ O(t%),

(28) In A(L,W)=f[LY"(W-W,)]. (35)

wheree=d— 2, andn denotes the number of replicas. In the Linearizing the functionf about the critical fixed point
limit n—0, at the critical point where thg function van-  (W,,InA/) yields

ishes, its derivative gives the inverse localization length ex-

ponent: INA(L,W)=InAs+AW—W)LY. (36)
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FIG. 4. The scaling function IA(L,W) plotted as a function of

FIG. 3. The scaling functiom (L,W) plotted as a function of
disorder for different system sizes.

disorder for different system sizes.
v=1.15+0.15. (37

Finally, Fig. 5 indeed demonstrates clean data collapse
close to the critical point.

To procure the value of, we use an iterative proceddte
that is equivalent to the widely used procedure of Ref. 12 of
performing a least square fit to obtain actual value§(dY).
We rewrite Eq.(36) as

2. Summary of results
INA=ALYW—(— InA.+ALY"W,)

:a(L)W_ b(L1A01WC)y

Both field theory and numerics concur with the fact that
the localization length exponent in the superconducting sys-
tems is significantly lower than that of their normal partners,
assume an initial value for the critical point,In A from  clearly indicating presence of a universality class. ABx-

Fig. 4, obtain the functiona(L) andb(L,A.) by curve fit-  pansion ind=2+e¢ dimensions of the action in Eq9)

ting, extractA andv, determine the value of the critical point shows that the superconducting system has a localization
thus obtained, and repeat the procedure till convergence length exponent of [ e+ €%/2+ O(€)]~* in contrast to av,,
achieved(which happens rather quicklylf scaling is valid,  of (e+O(€e®)) ! for normal systems. The field theory would
we can collapse our data onto curves ofAlW,.L) vs thus predictv= % versusy,,=1 in 3-dimensions. In compari-
LY"(W—W,). son, one obtains the numerical estimate1.15+0.15 ver-

In our transfer-matrix calculations, we choose systemsusv,=1.54+0.08[Ref. 12 in three dimensions.
whose cross-sectional areas have linear dimensionk of
=4,6,8,10, and our transfer matrices have dimensidn% 4
X 412 with the given values of. We choose the number of
transfer matrices to be multiplied together by ensuring that
the basis vectors do not grow upto a magnitude greater thau
10° upon being multiplied by the set of transfer matrices. We x
utilize a total of 2000 slices in the quasi-one-dimensional °°f ° 7
system for each value d&f andW. Figure 3 shows the plots
for A(L,W) as a function of disorder fot=4,6,8,10. For or * ]
fixed disordeW, an increasing\ (L, W) with increasing sys-
tem sizel indicates the extended regime, while a decreasing -os} % .
A(L,W) shows that the system is in the localized regime. In
comparison to the Anderson model for normal systems, or _|
away from the Fermi energy in models with superconducting < s
order,(as in Ref. 8, which thus explores the same universal- °
ity class as that of normal systemeur simulations require a x
much smaller number of transfer matrices for relatively . . .
noise-free data. We believe that this really is a consequenc: - & -+ -2
of the relatively low critical-disorder strength.

Figure 4 shows the data for the iterative procedure which FIG. 5. Collapse of data for IN(L,W) given the valuev
gives the value for the localization length exponent =1.13 for the localization length exponent.

(W, InA)=(4.18,-0.46);v=1.13;1=4"6 +,80;10X

e

n A(LW)
o

. . . .
2 4 6 8 10 12
L' w—w))
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DOS pos pos Field theory ofSy sm Magnetic systems
Distance from criticality Reduced temperature
- - DOS, p Magnetizationm

. W<<W, b.W=W, . W>>W, Energy,E Magnetic field,h
X=dp/dE Magnetic susceptibilityy

FIG. 6. Behavior of DOS: aWell within the thermal metal; o
At criticality; c) Well within the thermal insulator.
In normal systems, the analogy is clouded by the fact that

We must remark that the system sizes and computing’® DOS is a continuous function of energy and disorder,
power utilized in our numerical studies were relatively low 'eSpectively. One can reconcile with this if the DOS obeys a
compared to the current cutting-edge procedures. As a lot gfower-law form with exponent zero, and in fact, one can
work has gone into refining techniques with regard to normafhow this to be the case on field-theoretic groutidBut in
systems(e.g., Ref. 12, it is well worth employing them to Superconducting systems, as we shall see, the analogy goes
study this phase transition and analogous ones in supercoflrough in quite a striking manner, with a whole slew of
ducting systems with other symmetries. nontrivial critical exponents:

p(A,E=0)~[Al%,
B. Density of states

The quasiparticle DOS in dirty superconducting systems p(A=0E)~[E[*",

exhibits some of the most stunning differences from normal

systems. In normal systems, both in the Anderson metal and ;(~|A|_7,
the Anderson insulator, i.e., in the absence of interactions,
the DOS remains a smooth continuous function across the E~|Al7Y,

Fermi energy. In contrast, in gapless superconductors thath h dth tati f the tabl b 5
respect SI), well within the thermal metal, quantum- where we have used the hotation of the tables a ove; )
interference effects cause a singularity at the Fermi energ helt:oga_llzeﬁlon 'ef?gth an@_ the associated exponent de-
that manifests itself as a/E cusp in three-dimensional cr||ne0r(;rért t§ E)jreer\i/\l/gu:xsigtslgi%ns ft, & and v, we start
systems. Deep in the thermal insulator, the density of statesWith the “free-energy derF:sity‘I' obtainéd from th'e action of
exhibits a power law that vanishes at the Fermi energy witt]E ): '

the formp~|E|*, wherea=1 for systems possessing time- q-

reversal invariance About the critical point, the DOS once 1 Inz

again shows power-law singularities, the details of which we f=—lim—_—, (39)
discuss below. The curious form of the D@hown in Fig. L9 o N

6) has profound impact on thermodynamic properties, and in

particular, manifests itself in quantities such as specific heat = ~ _s
and spin susceptibility. Z,=Z =f dUe™ “nLom, (40

1. Discussion of critical behavior wheredU, the integral volume element, takes into account
the symplectic group structure of the matrices in the action
SSNL,,M , n denotes the number of replicégdenotes the par-
tition function of single system, and the overbar ab@/e

The field theoretic action of Eq9) not only offers con-
crete predictions for the DOS, if one were to use Wegner’

analogy with magnetic systenfsit provides an intuitive pic- . o
9y g 4 “p P refers to the average over disorder. Near criticafitythe

ture for the behavior about criticality. To elaborate, the qua- - Lo
siparticle DOS at the Fermi energy, which also gives a meagmgular part of the free-energy density, is expected to scale

sure of the magnetization, acts as the “order parameter” ofS follows:
the field theory(see, e.g., Ref. bltis given b

see, &g, Ref. Bitis given by f(AB)=¢ F(PE), (41)

. Po + wherey describes the scaling form &, and Eq.(33) gives

P= IlmOR(Tr(U +U)), (38 the behavior of the correlation lengé|A|~". Differenti-

" ating the free energy with respect Eoresults in the follow-

wherepg is the bare DOS, and n the number of replicas. TheIng form for the DOS:

field 7 which has units of_ energl, couples to the DOS in_ p(AE)=¢ 9TYFE(EE), (42)
the action of Eq(9), and might be equated with the magnetic
field in the magnetic analog. whereF " corresponds to behavior fdr>0, andF~ for A

With a little indulgence, one can go further with parallels <0. To obtaing, we setE=0, and compare the form of the
between the field theory and the magnetic systems, as firsésulting order parametes(A,E=0) in the above table,
suggested for normal systertts: yielding
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FIG. 7. Progression of DOS as a function of energy for various

disorder strengths.

B=v(d—y).

Here, we requird= ~(0) to be finite, andF " (0)=0.
To extractd, we impose the physical constraint thabe
well behaved and finite at criticality. This requires tipd\

(43

—0,E) be independent of the diverging correlation length,

and thus yields

1 d

5y (44)
Finally, taking a derivative op in Eq. (42) with respect tde
gives us the following expression for,

y=v(2y—d). (45)

2. Results

To obtain estimates of critical exponents from field-
theoretic results in 2 e dimensions, we use the value (
+ €2/2) 1+ O(€°) obtained forv in the previous section,
and the value 1=el4+O(e) from Ref. 5. Equations
43-45 then enable us to determine the critical expongnts
and y via the relationship d/e+ 4. Specifically, in the case
of three-dimensions, substituting the valee 1, we obtain
the rough estimateg=12/5, =4, v=2/3, B=2/5, andvy
=6/5.

Shifting our focus to numerical results, the method of

PHYSICAL REVIEW B64 174511

L= 6; DOS data from 1000 matrices; W = 4.24
T T T

0.085
0.05
0.045
0.04
8 0.035
[=]
0.03
0.025
0.02

0.015

0.01
-15

Energy

FIG. 8. Zoom of DOS abouE=0 for W=4.24.

form p~|E| about the Fermi energi. consistent with ex-
pectations for the thermal insulator.

Figure 8 shows a zoom of the DOS abdig for disorder
close to the critical strengtW., for which we have an es-
timate from the localization length study of the previous sec-
tion. One can easily discern that the DOS plummets down
quite markedly, and does indeed exhibit singular power-law
behavior.

A plot of the DOS at the Fermi enerdgizig. 9) shows that
even relatively small system sizes provide numerical confir-
mation of the fact thap(E=0) acts as the order parameter
for the field theory of Eq(9); the DOS akg is finite for low
disorder, and it slowly drops to zero beyond a critical disor-
der strength. As discussed in the preceding section, one
would in fact expect the DOS for an infinite-sized system to
behave ap(A,E=0)~|A|?, whereA is the distance from
criticality within the thermal metal. Scaling arguments for
extractingB require

pL(A,E=0)=|A[PY(LAY),

A <O, (46)

L= 4; DOS data from 1728 matrices

0.7

0.6

_04
E3

exact diagonalization reveals that the superconducting sysg
tem at hand does indeed show singular behavior in the DOSes
at the Fermi energy. In the data shown below, we have once
more modeled the superconducting Hamiltonian after(By.
using periodic boundary conditions. Systems of linear di-
mensionL have required matrices of dimensioh 2x 23,
and we have explored system sizes with linear dimensions
L=4,6,8.

Figure 7 shows the progression of the behavior of the
DOS with increasing disorder strength. As seen in the last
panel of Fig. 7, the DOS shows a power-law behavior of the

0.2

*
* -5
.

3
Disorder, W

= - %

0

had. I S e VY

5 6

0

FIG. 9. DOS atE=0 as a function of disorder strength.
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Data for p(E=0W) andL=4*6+;80 Wc=4.67;v= 1.25;=0.15;L=4%6+;80
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FIG. 10. DOS atE=0 for various disorder strength&/, and FIG. 11. Data collapse gf(E=0W) given the form Eq(47),
system sizes. and the critical exponeng=0.15.
wherep, is the DOS associated with a system of linear di- IV. OTHER SYSTEMS

mensionL, andY'is a scaling function. One can rewrite the v haye studied the thermal metal-thermal insulator tran-

above equation in a form more conducive to numerics aSition in superconducting systems with @Jand T, and
follows: discussed the dirtyd-wave superconductor as a possible
~ physical realization. Superconducting systems with other
pL(AE=0)=L"#"Y(ALY), (47 symmetries too promise such a transition.

_ The properties and phases of superconducting systems
whereY is yet another scaling function with limiting behav- with spin-rotational invariance, but no time-reversal invari-
ior Y(x— o) =|x|#, reproducing the required dependence ofance are rather similar to our case that preserves both sym-
p(A,E=0) onA for infinite system size. metries. The thermal metal and the thermal insulator are both

Figure 10 exhibits the plots gf, as a function of disorder Stable only in three-dimensions, and the transition cannot
for different system sizek, and we make use of this data to occur in lower dimensions where quasiparticle excitations
procure the value of in Eq. (47). To extractB, we perform ~ are always found to be localized at large enough length
a fit takingW,, » and 8 as variable parameters. Exploiting Scales. Due to the absence of time-reversal symmetry, the

the universal nature of the functiohin Eq. (47), we find the Hamiltonian of Eq.(1) now has imaginary couplings. As

appropriate values gf obtained by linear interpolation for a described n detail in previous woPkn this symmetry cat-

) ) , ~ . egory, the pinned vortex state of a typesivave supercon-
given set of system sizes and fixed argumenyjrand plot qctor appears to be a fine candidate for exhibiting the ther-
these on a log-log scale versus system size; the slope for 35| metal-thermal insulator  transition.  Low-energy

linear fit of such a set of points determings The actual  qasjparticles bound to the core of the vortices can tunnel
value of 3 is obtained by performing the above procedure forfrom one vortex to another, and as the magnetic field is in-
different values of the argument &fand taking the average creased, the density and tunneling strength also increase. It is
of the B’s thus obtained. conjectured that there could exist a critical magnetic field
The set of valueg=0.15, W,=4.67, andv=1.25 result  H_,, within the vortex phase at which the low-energy states
in the data collapse shown in Fig. 11. In comparison, agan permeate through the medium to form extended states.
remarked at the beginning of this section, the field theoretic-ield-theoretic methods have analyzed the properties of these
result predicts thaB=0.4. Once more, as in the case of the systems, and in particular, have shown that in parallel to the
localization length exponent, we comment on numerical acease withT, the density of states at the critical point has the
curacy; other simulations using exact diagonalization, for inpower-law behaviop~|E|€?, whereE is the energy and
stance, those catering to specific physical situatfbrrgve =d—2.
used larger systems sizes and number of realizations that The presence of spin-orbit scattering or of triplet pairing
would be well-worth employed here. However, the aboveintroduces new ingredients. It breaks spin-rotational symme-
numerics conveys quite clearly that the DOS at criticalitytry, and as in the case of normal systems, field-theoretic ar-
exhibits a power-law suppression about the Fermi energyguments predict the presence of a delocalization-localization
and thatp(E=0,W) acts as an “order parameter” with a transition not only in three-dimensions but also in
nontrivial exponent3 (as seen previously in Ref. 19,51 two-dimension$. Hamiltonians for such systems can be de-
surprising contrast to normal systems which hay&,W,.) scribed in terms of Majorana fermions, and their formula-
smooth abouEg, and a vanishing exponept tion, among other things, is highly conducive to numerical
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work. Heavy fermion systems, where spin-orbit scattering idibility, and in tunneling experiments. In particular, the tem-
prominent, can potentially provide a physical realization. perature dependence of the thermodynamic quantities would
Finally, the tantalizing prospect of a Hall effect in super- have a formC~T1" ¢ for the specific heat, ang~T¢ for
conducting systems has been explored in systems with othéne spin susceptibility. Recent experiments of cuprate super-
symmetries as well, i.e., those with &) Indeed, as in conductors have observed a suppression of the specific heat
normal systems, sophisticated methods such as employindose to the Fermi enerd{.However, measuring the differ-
the network model and supersymmetric spin chains, haveng behaviors to determine the phase might prove tricky, es-
shed light on these systems. Superconductor with unconveipecially since we have neglected various effects such as in-
tional d,2_2+idy, pairing symmetry is capable of exhibit- teractions that could come into play.
ing a phase with nonvanishing spin and thermal Hall conduc- For systems that preserve spin-rotational invariance, qua-
tances. siparticle excitations about the superconducting ground state
not only conserve energy, but also spin; the spin-conductance
V. EXPERIMENT o could be employed to determine whether the system in-
habits the thermal metal or thermal insulator. In the thermal

The transport properties of normal systems have beepetallic phase, a magnetic-field gradient would cause the
probed in great depth, and now we see that superconductinginfyl quasiparticle to diffuse across the sample, while in
systems could potentially offer an equally rich range of ex-the thermal insulator, they would be unable to conduct spin.
periments in the thermal metal-thermal insulator transitionn variety of refined spin-injection techniques have been de-
In the previous section, we have mentioned a variety of eXyeloped in semiconductors to measure spin dynarfses,
perimental candidates for study, such as the dirtyave, the e.g., Ref. 21, but by no means would it be a simple task to
type Il swave, heavy fermion, and other superconducting:ater these experiments to superconductors.
systems. These systems must share the feature of gaplessye pelieve that by far, thermal-conductivity measure-
superconductivity; one requires states at the Fermi energy,ents would offer most promise in probing the thermal
since it is these states that determine transport properties, apshtal-thermal insulator transition. For all superconducting
distinguish the thermal insulator from the thermal metal. As'systems with their differing symmetries, the thermal conduc-
sociated with each system, a tunable parameter such as dﬁﬁty x, distinguishes the two phases in that the rati@
order or magnetic field ought to be able to access the phasggn s to a finite constant in the thermal metal, and to zero as
As was previously discussed in detaithe type liswave  T_,q in the thermal insulator. Along the lines of earlier
superconductor in the vortex phase offers promise as a “ke|¥xperiment§,2 it would be extremely interesting to observe
candidate for observing the transition since in principle, ongnpe transition by applying a small thermal gradient across a

need only tune the magnetic field, gnd generally the Vorteéuperconducting sample and measurid as a function of
phase exists over a large range of field. a tunable parameter.

As seen earlier, in contrast to normal systems, the density
of states shows singular behavior about the Fermi energy for
both phases and at the critical point. We saw that for systems
with T and SU2), it obeys a power-law behavior of the form
p(E)~|E|*, wherea=3 well within the thermal metalg We thank T. Senthil and I.A. Gruzberg for many an illu-
=1 deep in the thermal insulator, and field theory predictaminating conversation, and D. Whysong for indispensable
a=€l4 at the transition, withe=1 for three-dimensional advice on numerical work. This research was supported by
systems. This singular behavior ought to be reflected in the™NSF Grants Nos. DMR-97-04005, DMR95-28578, and
modynamic quantities such as specific heat and spin suscepHY94-07194.

ACKNOWLEDGMENTS

1p. A. Lee and T. V. Ramakrishnan, Rev. Mod. Ph$3, 287 ’T. Senthil, J. B. Marston, and M. P. A. Fisher, Phys. Re\6@
(1985; B. Huckstein, ibid. 67, 357 (1995, and references 4245(1999; N. Read and A. W. W. Ludwig, cond-mat/0007255

therein. (unpublishedt V. Kagalovsky, B. Horovitz, Y. Avishai, and J. T.
27. Oppermann, Europhys. Let®, 431 (1987); Z. Oppermann, Chalker, Phys. Rev. Let82, 3516(1999; I. A. Gruzberg, A. W.
Nucl. Phys. B280, 753(1988. W. Ludwig, and N. Readid. 82, 4524(1999.
3R. Bundschuh, C. Cassanello, D. Serban, and M. R. Zirnbauer®D. E. Katsanos, S. N. Evangelou, and C. J. Lambert, Phys. Rev. B
Phys. Rev. B59, 4382(1999; Nucl. Phys. B532 689(1998. 58, 2442(1999.
4T. Senthil, M. P. A. Fisher, L. Balents, and C. Nayak, Phys. Rev. °L. P. Gor'’kov and P. A. Kalugin, Pis’'ma Zﬁ.klép. Teor. Fiz41,
Lett. 81, 4704(1998. 208(1985 [JETP Lett.41, 253(1985].

5T. Senthil and M. P. A. Fisher, Phys. Rev.6B, 6893(1999; S. 10A, Altland and M. R. Zirnbauer, Phys. Rev. &5, 1142(1997).
Vishveshwara, T. Senthil, and M. P. A. Fishdsid. 61, 6966 g 3. Wegner, Z. Phys. B5, 207 (1979; A. J. McKane and M.

(2000. Stone, Ann. PhysIN.Y.) 131, 36 (1981); F. J. Wegner, Z. Phys.
6N. Read and D. Green, Phys. ReveB 10 267(2000; T. Senthil B 25, 327(1976.
and M. P. A. Fisheribid. 61, 9690(2000. 12A. MacKinnon and B. Kramer, Z. Phys. B: Condens. Magar1

174511-10



QUASIPARTICLE LOCALIZATION TRANSITION IN . .. PHYSICAL REVIEW B64 174511

(1983; B. Kramer and A. MacKinnon, Rep. Prog. Phy&5, 18, A. Atkinson, P. J. Hirschfeld, and A. H. MacDonald, Phys.

1469(1993; A. MacKinnon, J. Phys.: Condens. Mati&r2511 Rev. Lett.85, 3922(2000.
(1994. 19R. Oppermann, Z. Phys. B: Condens. Maftér 49 (1988.
13T, Heikkila, (unpublishedl 20C. F. Chang, J. Y. Lin, and H. D. Yand, cond-mat/00030ag-
14C. W. J. Beenakker, Rev. Mod. Phy&9, 731 (1997). published.
15p W. Brouwer, A. Furusaki, I. A. Gruzberg, and C. Mudry, Phys. 21p. D. Awschalom and N. Samarth, J. Magn. Magn. Mag8q,
Rev. Lett.85, 1064(2000. 130(1999.
163, Cho, Ph.D. thesis, UC Santa Barbara, 1997. 2235ee for example, N. P. Ong, K. Krishana, Y. Zhang, and Z. A. Xu,
7S, Hikami, Phys. Lett98B, 208 (1981). cond-mat/990416Qunpublishedl and references therein.

174511-11



