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Quasiparticle localization transition in dirty superconductors
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In this paper, a delocalization-localization transition within a superconducting state is explored. The sym-
metries of the Bogoliubov deGennes Hamiltonian endow the two associated superconducting phases—the
thermal metal and the thermal insulator—and the critical point between them, with properties that are in stark
contrast with analogous phases in normal systems. Here, for systems preserving spin-rotational invariance and
time-reversal symmetry in three dimensions, the transition is shown to be of a different universality class from
its normal partner by extracting and comparing the localization length exponent. The density of states, which
may be regarded as the ‘‘order parameter’’ for the field theory describing the superconducting system, is
studied for its unusual properties about criticality.
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I. INTRODUCTION

The problem of Anderson localization in normal diso
dered electronic systems has been studied for years, an
continued to pose intriguing puzzles.1 Recently, the question
of whether an analogous transition can occur in the beha
of low-energy quasiparticle excitations about a superc
ducting ground state has come to light~see, e.g., Ref. 2–8.!
In fact, the stability of two very distinct superconductin
phases that may be characterized by their trans
properties—one with extended quasiparticle states at
Fermi energy and the other with localized states—has b
established~see, e.g., Ref. 4!. Here, it is the transition poin
between these two phases, and its critical properties,
forms the subject of our attention.

While one can afford to ask of the superconducting s
tems the same questions that have been addressed in n
systems, the former displays refreshingly new physics
shows both conceptual and qualitative differences from
latter. To begin with, quasiparticle excitations in superco
ducting systems do not conserve charge, and thus one ca
study the transition through charge dynamics. This abse
of U~1! symmetry in the Bogoliubov deGennes Hamiltonia
which we employ to describe the excitations in question,
marked consequences. As emphasized by Ref. 10, it g
rise to a host of new universality classes, with critical exp
nents whose values are significantly different from those
their normal partners. In particular, the density of sta
~DOS! exhibits astonishing features. In this paper, we
plore these surprises in the context of superconducting
tems that respect spin-rotational@SU~2!# invariance and
time-reversal~T! symmetry.

A variety of superconductors described by the Bogoliub
deGennes Hamiltonian exhibit the prospect of making t
transition realizable in physical systems. To repeat the
ample offered of the dirtyd-wave superconductor,5 consider
a system of impure superconducting sheets withd-wave pair-
ing coupled to one another. At the nodal points, one
low-energy quasiparticle excitations, and in fact, due to d
order, one even expects a finite DOS at the Fermi ener9

For low interplane coupling strength or high impurity co
0163-1829/2001/64~17!/174511~11!/$20.00 64 1745
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centration, one would expect these states to be localized,
upon increasing the coupling or lowering the disorder, o
could conceive of accessing a critical point beyond wh
these states become extended. Here, we study such a tr
tion on more generic grounds by numerical analyses, and
exploiting previous field-theoretic analyses,4,2 both of which
quite dramatically bring out features of superconducting s
tems that are not present in their normal partners.

We review the framework used to describe quasipart
excitations in the absence of interactions. We expand
some details of the two phases, the ‘‘thermal metal’’ and
‘‘thermal insulator.’’ Then, in order to keep our paper se
contained, we elaborate on the field-theoretic and numer
methods. We proceed to discuss the field-theoretic and
merical predictions for the localization length exponentn
associated with the thermal metal-thermal insulator tran
tion, and show that they both confirm the existence o
universality class associated with the presence of super
ducting order, withn,nn , wherenn is the corresponding
exponent for normal systems. We then study the uniq
properties of the DOS at criticality. Finally, we mention th
characteristics of transitions in superconducting systems
sides those that respect SU~2! andT symmetry, and possibili-
ties for experiment.

II. MODELS AND SYMMETRIES

A. The superconducting Hamiltonian

Quasiparticle excitations about the superconduct
ground state are well described within the framework of
Bogoliubov deGennes~BdG! Hamiltonian. For the spin-
singlet paired superconductor, which we focus on here,
BdG Hamiltonian has the form

H05H11H2 ,

H15E ddxcs
†~x!S F2 i\¹W 2

e

c
AW ~x!G2

2m
2EF1V~x!D cs~x!,
©2001 The American Physical Society11-1



ra

n
ti

t
e
n
e
im
s
re
r-
ha

tly
ra

in
v
le

pi
e

rg
-

pi
g

on
al

ch

c
the

ap
re

ion

ed
o
ss
s at
und

dis-
e-

a-

ex-
nt
a-
at
has
ons.
rmal

spin
o
-

ell
ith

in
u-
op-
for-

ate

SMITHA VISHVESHWARA AND MATTHEW P. A. FISHER PHYSICAL REVIEW B64 174511
H25E ddxddx8„c↑
†~x!D~x,x8!c↓

†~x8!

1c↓~x!D* ~x,x8!c↑~x8!…,

wherec† andc are electron creation and annhilation ope
tors respectively,m the mass,EF the Fermi Energy,V(x) a
random potential describing impurities in the system, a
A(x) a vector potential describing any external magne
field. The lattice version ofH0, which is more tractable for
numerics, has the form

H0L5(
i j

F t i j (
a

cia
† cj a1~D i j ci↑

† cj↓
† 1H.c.!G . ~1!

From Hermiticity, one requires the conditiont i j 5t j i* , while
spin-rotation invariance requiresD i j 5D j i . The BdG Hamil-
tonian contains anomalous terms that reflect the fact that
excitations do not conserve charge, and hence break th
sociated U~1! symmetry. As a result, the BdG Hamiltonia
lives in an ‘‘extended particle-hole space’’ with twice th
degrees of freedom of normal electronic systems. More
portantly, the absence of U~1! charge conservation endow
the BdG Hamiltonian with symmetry properties that a
completely different from normal systems. It is this diffe
ence that plays the key role in giving rise to properties t
are unique to superconducting systems.

The symmetries of the BdG Hamiltonian have recen
been studied in the context of mesoscopic systems and
dom matrix theory.10 Within the class of models described
Ref. 10, the Hamiltonians that we study in this paper ha
SU~2! andT symmetry; they describe systems that are sing
paired and have no spin-orbit scattering, thus having s
rotational invariance, and in addition, they have tim
reversal invariance.

Since the quasiparticles conserve both spin and ene
one can explicitly write Eq.~1! in terms of conserved quan
tities by defining a new set of fermionicd operators:

di↑5ci↑ , di↓5ci↓
† . ~2!

Thus one makes a particle-hole transformation on the s
down operators, but leaves the spin-up operators unchan
The Hamiltonian of Eq.~1! now takes the form

HL5(
i j

di
†S t i j D i j

D i j* 2t i j*
D dj[(

i j
di

†Hi j dj , ~3!

where time-reversal invariance requirest i j and D i j be real.
Spin-rotational invariance now requires

syHi j s
y52Hi j* , ~4!

where sy is the standard Pauli matrix. Spin conservati
along thez direction is evident from the fact that the physic
spin is related to the number operator for the ‘‘d particles’’
by

Si
z5

\

2
~di

†di21!, ~5!

and thatHL of Eq. ~3! conserves particle number.
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The HamiltonianHL , in principle, may be diagonalized
by solving the eigenvalue equation

(
i

Hi j Fu~ j !

v~ j !
G5EFu~ i !

v~ i !
G , ~6!

whereu andv describe the wave-function amplitudes at ea
site. Given Eq.~6!, one can construct the following state

isyFu~ j !*

v~ j !* G5F v* ~ i !

2u* ~ i !
G , ~7!

with eigenvalue2E; SU~2! invariance requires a symmetri
dispersion about the Fermi energy, and eigenvalues of
BdG Hamiltonian come in pairs (E,2E). In principle, these
amplitudes would feed into a self-consistent form for the g
function, which we however do not require, and therefo
neglect, in extracting critical properties such as localizat
length exponent.

We now draw attention to the physical situation describ
by the wavefunctions of Eq.~6!, and the relation they bear t
the phase transition of interest. To begin with, in gaple
superconductors, which we focus on here, one finds state
and about the Fermi energy. These states have a profo
impact on thermodynamic and transport properties, as
cussed previously.4,5 Moreover, the transport properties d
pend crucially on the nature of the eigenstates of Eq.~6! at
E50, which in turn is determined by the spatial configur
tion of the random potentialV(x) and the gap-functionD(x).
In particular, depending on whether these eigenstates are
tended or localized, one can conceive of two very differe
superconducting phases—the ‘‘thermal metal’’ that is c
pable of transporting energy, and the ‘‘thermal insulator’’ th
cannot conduct energy over large length scales. In fact, it
been shown that both phases are stable in three dimensi4

Thus, one can characterize the two phases by the the
conductivity k. In systems with SU~2! symmetry, since the
same quasiparticles that carry energy also carry spin, the
conductivity ss , may also be used to describe the tw
phases, and is related tok via an analog of the Weidemann
Franz law in the thermal metal:

k

Tss
5const. ~8!

Note however, that as the quasiparticles do not carry w
defined charge, the Weidemann-Franz law breaks down w
regards to electrical conductivity.

The two distinct superconducting phases at hand are
analogy with, but quite different from, the metallic and ins
lating phases in normal systems. We study the critical pr
erties of the transition between the two phases using the
malism and physical setup described below.

B. A field-theoretic formulation

As with the case of Anderson localization,11,1 the problem
of quasiparticle localization within the superconducting st
can be described within a field-theoretic framework.2,4 To
briefly review its key features~as presented in Ref. 4!, start-
1-2
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QUASIPARTICLE LOCALIZATION TRANSITION IN . . . PHYSICAL REVIEW B64 174511
ing with the Hamiltonian of Eq.~1!, one can derive a usefu
field theoretic action from which one can extract a rich va
ety of properties of superconducting systems. Coupling
fermionic degrees of freedom in Eq.~1! to an infinitesimal
Zeeman fieldh ~which acts as a chemical potential for thed
quasiparticles!, and employing the replica method to calc
late disorder averages, an effective action can be obtai
Fluctuations about the saddle point of this action may
captured near two spatial dimensions by a nonlinear sig
model (NLsM ) treatment, yielding for the final form of the
action,

SNLsM5E ddxF 1

2t
Tr~¹W U.¹W U†!2hTr~U1U†!G . ~9!

Here, t is a dimensionless coupling constant that has
physical interpretation of inverse-spin conductance, i.e.,t
5(p/2)ss . U(x) is a matrix with symplectic Sp(2n) group
structure, wheren is the number of replicas.

The actionSNLsM given above is quite different from th
analogous action describing normal systems. The fi
theory, referred to as the ‘‘the principle chiral Sp(2n)
model,’’ has its first term invariant under the global ‘‘rota
tion’’ U→A†UB, where A†,BPSp(2n), thus possessing
Sp(2n)3Sp(2n) symmetry. The second term in the actio
reduces the symmetry to an Sp(2n) symmetry as it only
allows invariance underU→A†UA. A knowledge of this
symmetry structure proves to be very useful in deriving cr
cal properties.

As done for electrical conductivity in normal systems, w
employ a scaling theory for the inverse-spin conductivityt,
and analyze the critical point separating the thermal m
and the thermal insulator. Specifically, we extract the loc
ization length exponent and the unusual singular behavio
the DOS at the Fermi energy.

C. Hamiltonian for numerics

The predictive power of the effective field theory of th
previous section lies in the fact that some results deri
from it are universal to all Hamiltonians satisfying the a
propriate symmetries. In practice, we find that in obtain
the localization length exponent, an analog of the tig
binding Anderson model commonly used for numerics12,13

shows crisp data with much less noise than other models
we have studied. We focus on the same model for the den
of states since the localization length numerics enables u
identify the critical point quite accurately. With reference
Eq. ~1!, the couplings take the form

t i j 55
1

A2
, i j ,nn

Vit , i 5 j

0, otherwise;

~10!
17451
-
e

d.
e
a

e
/

ld

-

al
l-
of

d

-

at
ity
to

D i j 55
1

A2
, i j ,nn

ViD , i 5 j

0, otherwise;

~11!

where nn denotes nearest neighbors, andVit and ViD are
on-site random variables chosen from a uniform probabi
distribution ranging from2W to 1W. Different disorder
distributions, such as a Gaussian probability distribution,
differing disorder strength inVit andViD give the same val-
ues of critical exponents. We work with a three-dimensio
cubic lattice described by Eq.~1!, and having real couplings
with the specific form

HL5
1

A2
@ t ^ sz1D ^ sx#. ~12!

Here, thes ’s denote Pauli matrices, andt andD are matrices
with off-diagonal terms set to unity, and diagonal terms ta
ing on valuesA2Vit andA2ViD .

D. The transfer matrix

While we obtain the DOS from the Hamiltonian of Eq
~12! by the straightforward process of exact diagonalizati
we extract the localization length exponent by means o
transfer matrix formulation that caters to Eq.~12! and tre-
mendously reduces the dimensions of the matrices invol
in numerical work.

To describe its principle, consider a quasi-on
dimensional strip ind dimensions with cross-sectional are
Ld21, and in-going and out-going states at either end of t
long strip as shown in Fig. 1. One might formally obtain t
scattering matrixS for the in-going and out-going states u
ing the definition

S5 lim
T→`

exp
2 iHT

\
. ~13!

The scattering matrix, in the specific basis of in-going a
out-going states can be written in terms of reflection a
transmission matricesr and t, respectively:14

S5S r t 8

t r 8
D . ~14!

Given this form of the scattering matrix, one can easily d
rive the transfer matrixT that has the property

FIG. 1. A quasi-one-dimensional setup for transfer matrices.
going and out-going wave-function amplitudes at either end

denoted bycW in andcW out , respectively.
1-3
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cW L5TcW R . ~15!

The symmetries of the BdG Hamiltonian imply that th
transfer matrix too has very specific symmetry propert
that distinguish it from those of normal systems.15

The transfer matrixT can be constructed by multiplying
set of transfer matrices, each appropriate for a slice of
strip shown in Fig. 1,

cW i 11,R5TicW i ,R , ~16!

T5)
i 51

N

Ti . ~17!

The form of the transfer matrix that we use for numeric
calculation does not make the symmetry of the BdG Ham
tonian manifest, but it is tailored specifically for a tigh
binding Hamiltonian such as the one described in Eq.~1!. We
begin by writing the Schrodinger Eq.~6! as a difference
equation

AiDW i1Bi ,i 11DW i 111Bi ,i 21DW i 215EDW i , ~18!

whereDW i denotes the wave-function amplitudes on each s
in the spinfuld-quasiparticle eigenbasis, andAi and Bi ,i 11
are 2L232L2 matrices of the form

Ai5F t i i D i i

D i i 2t i i
G , ~19!

Bi ,i 115F t i ,i 11 D i ,i 11

D i ,i 11 2t i ,i 11
G , ~20!

where thet i j andD i j ’s are now matrices coupling slicesi and
j in the manner described by Eq.~18!. To obtain the transfer
matrix, we rewrite Eq.~18! as

DW i 115Bi ,i 11
21 ~E2Ai !DW i2Bi ,i 11

21 Bi 21,iDW i 21 . ~21!

For our model, the interslice coupling has the simple fo

Bi ,i 115
1

A2
@ I ^ sx1I ^ sz#, ~22!

which satisfies the special property

Bi ,i 115Bi ,i 11
21 . ~23!

Using Eq.~21!, we are now in a position to define a transf
matrix as follows:

S DW i 11

DW i
D 5TiS DW i

DW i 21
D , ~24!

whereTi has the relatively simple form

Ti5S Bi ,i 11~E2Ai ! 2I

I 0 D , ~25!
17451
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and the multiplicative property of Eq.~17!. With this transfer
matrix at hand, which very closely resembles standard o
used for the Anderson model,12,13 we can extract the local
ization length for different values of energyE and disorderW
in a manner completely analogous to the numerical treatm
of the Anderson model. As we are interested in the beha
of states at the Fermi energy, we set the energyE, to zero.

The procedure for extracting the localization length
quite standard, and has been elaborated on in great dep
many works.16,13 But to briefly outline the method, one be
gins with an orthonormal basis of vectorsôi(0) in the space
of the transfer matrix, representing the right-most states
Fig. 1. One then assumes that for a given disorder stren
W, and widthL, there exists a set of eigenmodesŵi(L,W)
that describes typical eigenmodes for a quasi-o
dimensional system ofN slices, whereN is large enough to
represent the average behavior of the random disorder,
that these modes decay or grow in magnitude as exp(6giN)
upon multiplication with the corresponding transfer mat
T5) i 51

N Ti . One further assumes that when the set of ba

vectorsôi(0), each of which may be represented as a lin
combination of theŵi(L,W), is multiplied byT, the resulting
vectorsvW i(1) ~where the dependence onL andW is implicit!,
are each composed of the appropriate linear combinatio
modesŵi(L,W) now weighted by the corresponding grow
factors exp(6giN). The lengthN is numerically restricted by
the exponentially growing magnitude of the vectorsvW .

Since all vectors have now grown fastest along the fas
growing mode, sayŵ1(L,W), the magnitude and direction o
any one of these modes, sayvW 1(1), are expg1N and along
ŵ1(L,W), respectively. Projecting out the componentvW 1(1)
from the next vectorvW 2(1) gives a resultant vectoroW 2(1)
whose magnitude is roughly expg2N. Thus, by such a
‘‘Gram-Schmidt’’ orthogonalization procedure for the who
set of vectorsvW i(1), oneobtains a set of orthogonal vecto
oW i(1) with associated Lyapunov exponents

g i~1!5
lnuoW i~1!u

N
, ~26!

which give the characteristic inverse-localization lengths
sociated with each mode. To reduce computational effort,
consider just the positive Lyapunov exponents correspond
to exponentially growing states. As we are restricted in o
length sizeN, to obtain a fair estimate of the typicalg i ’s, we
repeat the procedure of transfer-matrix multiplication, no
using as our initial basis vectors the normalized setôi(1)
which more or less point along the ideal basisŵi(L,W). An
average value 1/M( j 51

M g i( j ) obtained fromM such itera-
tions provides the desired estimate of the idealg i ’s. We as-
sociate the characteristic localization lengthl(L,W) with the
slowest decaying mode, and thus with the inverse of
smallest positive Lyapunov exponentgmin(L,W).

In the quasi-one-dimensional case, all modes are ex
nentially decaying or growing~corresponding to in-going o
out-going states, respectively! since even the slightest diso
1-4
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QUASIPARTICLE LOCALIZATION TRANSITION IN . . . PHYSICAL REVIEW B64 174511
der is enough to localize states. But in the three-dimensio
limit, where the two-dimensional cross-sectional area
comes large, we know that the modes ought to experien
transition from extended to localized behavior as a funct
of disorder. To determine the critical disorder strengthWc for
this transition, the nature of the modes in three-dimensi
and the localization length for an infinite-size system
given disorder strength, one can use a finite-size sca
analysis of the quasi-one-dimensional system. The sca
function that we will use to do so is the dimensionless
rameter

L~L,W!5
l~L,W!

L
. ~27!

We now turn to the critical properties of the phase transit
between the thermal insulator and thermal metal.

III. CRITICAL PROPERTIES

As in disordered electronic systems, we have seen in
II B that the thermal metal, the thermal insulator, and
critical point separating them may be characterized by th
transport properties. The replica-field theory of Eq.~9!, with
its dimensionless couplingt, provides a powerful means o
studying this transition. An analysis of the action in Eq.~9!
shows that in 21e dimensions, wheree51 for our system,
an unstable fixed pointtc describes the critical point betwee
the thermal metal and thermal insulator. One can study
scaling behavior oft with system sizeL ~see Fig. 2! by
deriving a form for the scaling functionb(t)5dt/d ln L,
which we present explicitly in the following section. Ne
tc , for t.tc , the couplingt grows larger withL, and thus
exhibits a stable thermal insulator, while fort,tc , a smaller
and smaller value oft with increasing length scale signals
thermal metal.

A. Localization length exponent

Theb function for the Sp(2n) sigma model of the action
of Eq. ~9! can be found in Ref. 17, and it is given to cub
order ~two loop! in coupling t by

b„t;Sp~2n!…52et1~2n11!1
1

2
~2n11!2t31O~ t4!,

~28!

wheree5d22, andn denotes the number of replicas. In th
limit n→0, at the critical point where theb function van-
ishes, its derivative gives the inverse localization length
ponent:

FIG. 2. Behavior of coupling constantt with increasing system
sizeL.
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1O~e3!. ~29!

In contrast, normal systems with time-reversal symme
and spin-rotational invariance may be identified with t
Sp(4n)/Sp(2n)3Sp(2n) model of Ref. 17, and its assoc
atedbn function has the form

bn52et1~4n11!t21~8n212n!t31O~ t4!. ~30!

The localization length exponent derived from Eq.~30! has
the value

1

nn
5e1O~e3!, ~31!

quite different from the value ofn in Eq. ~29!. The numerical
evidence to follow supports the field-theoretic result that
value of the localization length exponentn for the supercon-
ducting system withT and SU~2! is considerably lower than
the analogous exponentnn for normal systems.

1. Numerical treatment

The standard numerical technique that we employ for
tracting the localization length exponentn, shows that in
three dimensions for energy valueE50 about the Fermi
energy, it takes on the value 1.1560.15.

The finite-size scaling technique can be summarized
follows: scaling arguments require that the only releva
length scale in the system be the localization lengthj(W) of
the infinite-sized system, and thus we have

l~L,W!

L
5L~L,W!5hS j~W!

L D , ~32!

whereh is a scaling function yet to be determined. Close
the critical pointWc , we have the localization lengthj of the
infinite system behaving as

j;uW2Wcu2n, ~33!

which means that the argumentx of h(x) in Eq. ~32! blows
up at the critical point. However,L is well behaved and
finite; this is only possible if we have

lim
x→`

h~x!5const, ~34!

where the constant refers to independence with respectL
for large L. Thus, the critical valueLc is common to all
sufficiently large system sizes. Using Eq.~33!, we rewrite
Eq. ~32! as

ln L~L,W!5 f @L1/n~W2Wc!#. ~35!

Linearizing the functionf about the critical fixed point
(Wc , ln Lc) yields

ln L~L,W!5 ln Lc1A~W2Wc!L
1/n. ~36!
1-5
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SMITHA VISHVESHWARA AND MATTHEW P. A. FISHER PHYSICAL REVIEW B64 174511
To procure the value ofn, we use an iterative procedure13

that is equivalent to the widely used procedure of Ref. 12
performing a least square fit to obtain actual values ofj(W).
We rewrite Eq.~36! as

ln L5AL1/nW2~2 ln Lc1AL1/nWc!

5a~L !W2b~L,Lc ,Wc!,

assume an initial value for the critical point (Wc , ln Lc) from
Fig. 4, obtain the functionsa(L) andb(L,Lc) by curve fit-
ting, extractA andn, determine the value of the critical poin
thus obtained, and repeat the procedure till convergenc
achieved~which happens rather quickly!. If scaling is valid,
we can collapse our data onto curves of lnL(W,L) vs
L1/n(W2Wc).

In our transfer-matrix calculations, we choose syste
whose cross-sectional areas have linear dimensions oL
54,6,8,10, and our transfer matrices have dimensionsL2

34L2 with the given values ofL. We choose the number o
transfer matrices to be multiplied together by ensuring t
the basis vectors do not grow upto a magnitude greater
105 upon being multiplied by the set of transfer matrices. W
utilize a total of 2000 slices in the quasi-one-dimensio
system for each value ofL andW. Figure 3 shows the plots
for L(L,W) as a function of disorder forL54,6,8,10. For
fixed disorderW, an increasingL(L,W) with increasing sys-
tem sizeL indicates the extended regime, while a decreas
L(L,W) shows that the system is in the localized regime.
comparison to the Anderson model for normal systems
away from the Fermi energy in models with superconduct
order,~as in Ref. 8, which thus explores the same univers
ity class as that of normal systems!, our simulations require a
much smaller number of transfer matrices for relative
noise-free data. We believe that this really is a conseque
of the relatively low critical-disorder strength.

Figure 4 shows the data for the iterative procedure wh
gives the value for the localization length exponent

FIG. 3. The scaling functionL(L,W) plotted as a function of
disorder for different system sizes.
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n51.1560.15. ~37!

Finally, Fig. 5 indeed demonstrates clean data colla
close to the critical point.

2. Summary of results

Both field theory and numerics concur with the fact th
the localization length exponent in the superconducting s
tems is significantly lower than that of their normal partne
clearly indicating presence of a universality class. Ane ex-
pansion in d521e dimensions of the action in Eq.~9!
shows that the superconducting system has a localiza
length exponentn of @e1e2/21O(e3)#21 in contrast to ann
of (e1O(e3))21 for normal systems. The field theory woul
thus predictn5 2

3 versusnn51 in 3-dimensions. In compari
son, one obtains the numerical estimaten51.1560.15 ver-
susnn51.5460.08 @Ref. 12# in three dimensions.

FIG. 4. The scaling function lnL(L,W) plotted as a function of
disorder for different system sizes.

FIG. 5. Collapse of data for lnL(L,W) given the valuen
51.13 for the localization length exponent.
1-6
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We must remark that the system sizes and compu
power utilized in our numerical studies were relatively lo
compared to the current cutting-edge procedures. As a lo
work has gone into refining techniques with regard to norm
systems~e.g., Ref. 12!, it is well worth employing them to
study this phase transition and analogous ones in super
ducting systems with other symmetries.

B. Density of states

The quasiparticle DOS in dirty superconducting syste
exhibits some of the most stunning differences from norm
systems. In normal systems, both in the Anderson metal
the Anderson insulator, i.e., in the absence of interactio
the DOS remains a smooth continuous function across
Fermi energy. In contrast, in gapless superconductors
respect SU~2!, well within the thermal metal, quantum
interference effects cause a singularity at the Fermi ene
that manifests itself as aAE cusp in three-dimensiona
systems.5 Deep in the thermal insulator, the density of sta
exhibits a power law that vanishes at the Fermi energy w
the formr;uEua, wherea51 for systems possessing tim
reversal invariance.5 About the critical point, the DOS onc
again shows power-law singularities, the details of which
discuss below. The curious form of the DOS~shown in Fig.
6! has profound impact on thermodynamic properties, an
particular, manifests itself in quantities such as specific h
and spin susceptibility.

1. Discussion of critical behavior

The field theoretic action of Eq.~9! not only offers con-
crete predictions for the DOS, if one were to use Wegne
analogy with magnetic systems,11 it provides an intuitive pic-
ture for the behavior about criticality. To elaborate, the q
siparticle DOS at the Fermi energy, which also gives a m
sure of the magnetization, acts as the ‘‘order parameter
the field theory~see, e.g., Ref. 5.! It is given by

r5 lim
n→0

r0

4n
^Tr~U†1U !&, ~38!

wherer0 is the bare DOS, and n the number of replicas. T
field h, which has units of energyE, couples to the DOS in
the action of Eq.~9!, and might be equated with the magne
field in the magnetic analog.

With a little indulgence, one can go further with paralle
between the field theory and the magnetic systems, as
suggested for normal systems:11

FIG. 6. Behavior of DOS: a! Well within the thermal metal; b!
At criticality; c! Well within the thermal insulator.
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Field theory ofSNLsM Magnetic systems

Distance from criticality Reduced temperature

D5(W2WC) /WC t

DOS,r Magnetization,m

Energy,E Magnetic field,h

x̃5dr/dE Magnetic susceptibility,x

In normal systems, the analogy is clouded by the fact t
the DOS is a continuous function of energy and disord
respectively. One can reconcile with this if the DOS obey
power-law form with exponent zero, and in fact, one c
show this to be the case on field-theoretic grounds.11 But in
superconducting systems, as we shall see, the analogy
through in quite a striking manner, with a whole slew
nontrivial critical exponents:

r~D,E50!;uDub,

r~D50,E!;uEu1/d,

x̃;uDu2g,

j;uDu2n,

where we have used the notation of the tables above, andj is
the localization length andn the associated exponent d
scribed in the previous section.

In order to derive expressions forb, d and n, we start
with the ‘‘free-energy density’’f, obtained from the action o
Eq. ~9!:

f 5
1

Ld
lim
n→0

ln Zn

n
, ~39!

Zn5Zn5E dŨe2SNLsM, ~40!

wheredŨ, the integral volume element, takes into accou
the symplectic group structure of the matrices in the act
SNLsM , n denotes the number of replicas,Z denotes the par-
tition function of single system, and the overbar aboveZn

refers to the average over disorder. Near criticalityf s the
singular part of the free-energy density, is expected to sc
as follows:

f s~D,E!5j2df̃ ~jyE!, ~41!

wherey describes the scaling form ofE, and Eq.~33! gives
the behavior of the correlation lengthj;uDu2n. Differenti-
ating the free energy with respect toE results in the follow-
ing form for the DOS:

r~D,E!5j2d1yF6~jyE!, ~42!

whereF1 corresponds to behavior forD.0, andF2 for D
,0. To obtainb, we setE50, and compare the form of th
resulting order parameterr(D,E50) in the above table,
yielding
1-7
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b5n~d2y!. ~43!

Here, we requireF2(0) to be finite, andF1(0)50.
To extractd, we impose the physical constraint thatr be

well behaved and finite at criticality. This requires thatr(D
→0,E) be independent of the diverging correlation leng
and thus yields

1

d
5

d

y
21. ~44!

Finally, taking a derivative ofr in Eq. ~42! with respect toE
gives us the following expression forg,

g5n~2y2d!. ~45!

2. Results

To obtain estimates of critical exponents from fiel
theoretic results in 21e dimensions, we use the value (e
1e2/2)211O(e3) obtained forn in the previous section
and the value 1/d5e/41O(e3) from Ref. 5. Equations
43–45 then enable us to determine the critical exponenb
andg via the relationship 4d/e14. Specifically, in the case
of three-dimensions, substituting the valuee51, we obtain
the rough estimatesy512/5, d54, n52/3, b52/5, andg
56/5.

Shifting our focus to numerical results, the method
exact diagonalization reveals that the superconducting
tem at hand does indeed show singular behavior in the D
at the Fermi energy. In the data shown below, we have o
more modeled the superconducting Hamiltonian after Eq.~3!
using periodic boundary conditions. Systems of linear
mensionL have required matrices of dimension 2L332L3,
and we have explored system sizes with linear dimens
L54,6,8.

Figure 7 shows the progression of the behavior of
DOS with increasing disorder strength. As seen in the
panel of Fig. 7, the DOS shows a power-law behavior of

FIG. 7. Progression of DOS as a function of energy for vario
disorder strengths.
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form r;uEu about the Fermi energyEF consistent with ex-
pectations for the thermal insulator.

Figure 8 shows a zoom of the DOS aboutEF for disorder
close to the critical strengthWC , for which we have an es
timate from the localization length study of the previous s
tion. One can easily discern that the DOS plummets do
quite markedly, and does indeed exhibit singular power-l
behavior.

A plot of the DOS at the Fermi energy~Fig. 9! shows that
even relatively small system sizes provide numerical con
mation of the fact thatr(E50) acts as the order paramet
for the field theory of Eq.~9!; the DOS atEF is finite for low
disorder, and it slowly drops to zero beyond a critical dis
der strength. As discussed in the preceding section,
would in fact expect the DOS for an infinite-sized system
behave asr(D,E50);uDub, whereD is the distance from
criticality within the thermal metal. Scaling arguments f
extractingb require

rL~D,E50!5uDubY~LDn!, D,0, ~46!

s FIG. 8. Zoom of DOS aboutE50 for W54.24.

FIG. 9. DOS atE50 as a function of disorder strength.
1-8
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whererL is the DOS associated with a system of linear
mensionL, andY is a scaling function. One can rewrite th
above equation in a form more conducive to numerics
follows:

rL~D,E50!5L2b/nỸ~DL1/n!, ~47!

whereỸ is yet another scaling function with limiting behav
ior Ỹ(x→`)5uxub, reproducing the required dependence
r(D,E50) on D for infinite system size.

Figure 10 exhibits the plots ofrL as a function of disorde
for different system sizesL, and we make use of this data
procure the value ofb in Eq. ~47!. To extractb, we perform
a fit takingWc , n andb as variable parameters. Exploitin
the universal nature of the functionỸ in Eq. ~47!, we find the
appropriate values ofr obtained by linear interpolation for
given set of system sizes and fixed argument inỸ, and plot
these on a log-log scale versus system size; the slope
linear fit of such a set of points determinesb. The actual
value ofb is obtained by performing the above procedure
different values of the argument ofỸ and taking the averag
of the b ’s thus obtained.

The set of valuesb50.15, Wc54.67, andn51.25 result
in the data collapse shown in Fig. 11. In comparison,
remarked at the beginning of this section, the field theor
result predicts thatb50.4. Once more, as in the case of t
localization length exponent, we comment on numerical
curacy; other simulations using exact diagonalization, for
stance, those catering to specific physical situations,18 have
used larger systems sizes and number of realizations
would be well-worth employed here. However, the abo
numerics conveys quite clearly that the DOS at critica
exhibits a power-law suppression about the Fermi ene
and thatr(E50,W) acts as an ‘‘order parameter’’ with
nontrivial exponentb ~as seen previously in Ref. 19,5! in
surprising contrast to normal systems which haver(E,Wc)
smooth aboutEF , and a vanishing exponentb.

FIG. 10. DOS atE50 for various disorder strengthsW, and
system sizesL.
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IV. OTHER SYSTEMS

We have studied the thermal metal-thermal insulator tr
sition in superconducting systems with SU~2! and T, and
discussed the dirtyd-wave superconductor as a possib
physical realization. Superconducting systems with ot
symmetries too promise such a transition.

The properties and phases of superconducting syst
with spin-rotational invariance, but no time-reversal inva
ance are rather similar to our case that preserves both s
metries. The thermal metal and the thermal insulator are b
stable only in three-dimensions, and the transition can
occur in lower dimensions where quasiparticle excitatio
are always found to be localized at large enough len
scales. Due to the absence of time-reversal symmetry,
Hamiltonian of Eq.~1! now has imaginary couplings. A
described in detail in previous work,5 in this symmetry cat-
egory, the pinned vortex state of a type IIs-wave supercon-
ductor appears to be a fine candidate for exhibiting the th
mal metal-thermal insulator transition. Low-energ
quasiparticles bound to the core of the vortices can tun
from one vortex to another, and as the magnetic field is
creased, the density and tunneling strength also increase
conjectured that there could exist a critical magnetic fi
Hc4, within the vortex phase at which the low-energy sta
can permeate through the medium to form extended sta
Field-theoretic methods have analyzed the properties of th
systems, and in particular, have shown that in parallel to
case withT, the density of states at the critical point has t
power-law behaviorr;uEue/2, whereE is the energy ande
5d22.

The presence of spin-orbit scattering or of triplet pairi
introduces new ingredients. It breaks spin-rotational symm
try, and as in the case of normal systems, field-theoretic
guments predict the presence of a delocalization-localiza
transition not only in three-dimensions but also
two-dimensions.6 Hamiltonians for such systems can be d
scribed in terms of Majorana fermions, and their formu
tion, among other things, is highly conducive to numeric

FIG. 11. Data collapse ofr(E50,W) given the form Eq.~47!,
and the critical exponentb50.15.
1-9
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work. Heavy fermion systems, where spin-orbit scattering
prominent, can potentially provide a physical realization.

Finally, the tantalizing prospect of a Hall effect in supe
conducting systems has been explored in systems with o
symmetries as well, i.e., those with SU~2!.7 Indeed, as in
normal systems, sophisticated methods such as emplo
the network model and supersymmetric spin chains, h
shed light on these systems. Superconductor with uncon
tional dx22y21 idxy pairing symmetry is capable of exhibi
ing a phase with nonvanishing spin and thermal Hall cond
tances.

V. EXPERIMENT

The transport properties of normal systems have b
probed in great depth, and now we see that superconduc
systems could potentially offer an equally rich range of e
periments in the thermal metal-thermal insulator transiti
In the previous section, we have mentioned a variety of
perimental candidates for study, such as the dirtyd-wave, the
type II s-wave, heavy fermion, and other superconduct
systems. These systems must share the feature of ga
superconductivity; one requires states at the Fermi ene
since it is these states that determine transport properties
distinguish the thermal insulator from the thermal metal. A
sociated with each system, a tunable parameter such as
order or magnetic field ought to be able to access the pha
As was previously discussed in detail,5 the type II s-wave
superconductor in the vortex phase offers promise as a li
candidate for observing the transition since in principle, o
need only tune the magnetic field, and generally the vor
phase exists over a large range of field.

As seen earlier, in contrast to normal systems, the den
of states shows singular behavior about the Fermi energy
both phases and at the critical point. We saw that for syst
with T and SU~2!, it obeys a power-law behavior of the form
r(E);uEua, wherea5 1

2 well within the thermal metal,a
51 deep in the thermal insulator, and field theory predi
a5e/4 at the transition, withe51 for three-dimensiona
systems. This singular behavior ought to be reflected in t
modynamic quantities such as specific heat and spin sus
ue

ev
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tibility, and in tunneling experiments. In particular, the tem
perature dependence of the thermodynamic quantities w
have a formC;T11a for the specific heat, andx;Ta for
the spin susceptibility. Recent experiments of cuprate su
conductors have observed a suppression of the specific
close to the Fermi energy.20 However, measuring the differ
ing behaviors to determine the phase might prove tricky,
pecially since we have neglected various effects such as
teractions that could come into play.

For systems that preserve spin-rotational invariance, q
siparticle excitations about the superconducting ground s
not only conserve energy, but also spin; the spin-conducta
ss could be employed to determine whether the system
habits the thermal metal or thermal insulator. In the therm
metallic phase, a magnetic-field gradient would cause
spinful quasiparticle to diffuse across the sample, while
the thermal insulator, they would be unable to conduct sp
A variety of refined spin-injection techniques have been
veloped in semiconductors to measure spin dynamics~see,
e.g., Ref. 21!, but by no means would it be a simple task
cater these experiments to superconductors.

We believe that by far, thermal-conductivity measur
ments would offer most promise in probing the therm
metal-thermal insulator transition. For all superconduct
systems with their differing symmetries, the thermal cond
tivity k, distinguishes the two phases in that the ratiok/T
tends to a finite constant in the thermal metal, and to zero
T→0 in the thermal insulator. Along the lines of earlie
experiments,22 it would be extremely interesting to observ
the transition by applying a small thermal gradient acros
superconducting sample and measuringk/T as a function of
a tunable parameter.
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