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Quantum confinement transition in a d-wave superconductor
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We study the nature of the zero-temperature phase transition betwkemee superconductor and a Mott
insulator in two dimensions. In this “quantum confinement transition,” spin and charge are confined to form
the electron in the Mott insulator. Within a dual formulation, direct transitions filemave superconductors at
half-filling to insulators with spin-Peierlgas well as othgrorder emerge naturally. The possibility stfiped
superconductorss also discussed within the dual formulation. The transition is described by nodal fermions
and bosonic vortices, interacting via a long-ranged statistical interaction modeled by two coupled Chern-
Simons gauge fields, and the critical properties of this model are discussed.
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[. INTRODUCTION gions of the highf. phase diagram. Focusing on the zero-
temperature transition out of the superconductor on the
In recent years, due to remarkable experimental prodressyinderdoped side, it must be characterized as either a conden-
the cuprate superconductors have revealed a host of mystgation ofhc/e or hc/2e vortices. In the former case, a frac-
rious phases as their chemical doping is varied. Indeed, #ionalized insulator at zero temperature results. In the latter
would seem as though these materials exhibit many of theéase, we have a more conventional, confined phase. The
wide range of behaviors possible for low-dimensional,same can be said of the corresponding transition on the over-
highly correlated electron systems. Centrally located withindoped side. In both cases, the finite doping of the system
the phase diagram and adjacent to many of these puzzlingresents significant theoretical challenges. A key feature of
regions is thed-wave superconductor. Beginning in this the cuprates is the close proximity betweed-aave super-
well-understood phase, one may develop theoretical descrigonducting phase and a Mott insulating phase. Here, we put
tions of other nonsuperconducting phases. Of particular inaside the issue of finite doping and work at half-filling, look-
terest are th& =0 quantum phases, both in the very under-ing at direct transitions between cawave superconductor
doped and heavily overdoped regimes. The schematiand a confined Mott insulator. One microscopic model which
situation is shown in Fig. 1. has shown a quantum transition between these two phases at
When describing a two-dimensional superconductor, tohalf-filling is the t-U-W model, studied numerically by As-
pological defects in the Cooper pair wave functitBiCS sad and co-workef Here, we work instead with a dual
vorticeg are of particular importance. Being bosonic, onceLandau-Ginzberg model which enables us to access theoreti-
they proliferate, they condense af=0, destroying cally this transition by approaching from the superconduct-
superconductivity. In this way, a description of quantum ing phase. Our hope is to capture some of the physics of the
phases with strong pairing correlations but lacking the phasgonfinement transition in the cuprates, at whichever doping it
coherence that is superconductivity emerges quite naturallgccurs (see Fig. 1 In particular, we seek to answer two
as vortex condensates|f the superconductor isl wave, broad questions regarding the nature of such a transition.
there is the additional complication of low-energy quasipar- First, in terms of phenomenology, what sort of states
ticles. As recently emphasiz&dhere is a statistical interac- might we find when separate spin- and charge-carrying exci-
tion between these spin-carrying quasiparticles and the votations are confined to form electrons? As we shall see, a
tices, making the resulting theory strongly interacting. remarkable feature of superconductivity with one electron
Singlet-paired superconductors can be recast in a spirPer unit cell is that in the dual theory, the vortices are fully
charge-separated forfrithe condensate carries all the charge
but no spin, while the quasiparticles are electrically neutral T
with spin 1/2. Most other well-understood phases of elec-
trons (such as the Fermi liqujdare spin-charge confined. It
was recently arguédhat many puzzling aspects of the cu-
prate phase diagram could be understood in terms of the
fractionalization and confinement of electrons. In this ap-
proach, the regions containing the pseudo@am supercon-
ducting phase are characterized by the presence of spin-
charge separatioitelectron fractionalization and can be
thought of as condensates dfc/e vortices! while the
heavily overdoped regions are spin-charge-confirtex2e
vortex condensates. Between the two, a quantum confine-
ment transition might cause critical behavior over wide re- FIG. 1. Schematic phase diagram for the higheuprates.
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frustrated. When the vortices proliferate and condense, thise written down, but this state is unphysical and should be
frustration leads to the existence of multiple vortex condenvremoved from the working Hilbert space. In other words, we
sates which break spatial symmetries. In particular, we finadnay make this change of variables only if we additionally
vortex condensates which destroy superconducti@hd, at  impose aconstraintthat the sum of the number of chargons,
half-filling, describe Mott insulatojsas well as vortex con- N, (canonically conjugate to the chargon phasé, ,N;]
densates which preserve superconductivity. As a conse=ig,, ), and the number of spinonp,=f;rafm, on each
quence of the vortex frustration, we find direct transitionssite is an even integer:

from superconducting states to insulating states which spon-

taneously break rotational and/or translational symmetries, as (—1)Nrter=1, 3)

well as the existence of superconducting states which have, . . . - .
nontrivial spatial structure. Although we work at exactly one?Fhls constraint can be implemented within a Euclidean path

electron per unit cell, where the vortex theoryfigly frus- integral representation, resulting in a theory of spinons and

trated, it is hoped that even away from half-filling the quali- chargons coupled to2, gauge field" It should be noted that

tative features of our results will remain valid, in particular, f[he constraint used here is not the same as Gutzwiller pro-

the tendency toward spatial modulation near half-filling. injection, and does not disallow doubly occgpled sites.
general, we hope that our explorations of frustrated vortex .F.or an odd r'1umber of electrons per l.m't .Ce” ahdave
systems can yield insights into quantum phases of electrorf@/1iNg correlations, the appropriate action in e gauge
which are complicated by the presence of competing inter- eory s
actions.

Second, as a specific example, we look at the critical
properties of the the confinement transition between a spa-
tially modulatedd-wave superconductor and a Mott insulator S.= —tcz ij (b} bj+H.c), (5)
with the same broken translational symmetry. Characterized (i)
by the presence of long-ranged statistical interactions, which
affect the confinement of spin and charge, this quantum criti- S=-> O‘ij(tisjf_ifj +tﬁfmf”+c.c.)— ST, (6

(1) i

S=S.+S+Sg, (4)

cal point should have interesting universal properties. Within
a special region of parameter space, we explore this transi-

tion analytically using renormalization groyRG) methods. K
Before we begin to address these questions, we first lay Se=—15 E (I=oy), (7)
out the basics of the model under consideration. This model h=i=r

was introduced in Ref. 4 and many of its justifications andwherei andj label sites on a cubic space-time lattice. The
consequences can be found therein. Here, we provide only|ging gauge field minimally coupled to the chargons and

whirlwind tour of its derivation and usefulness. spinons,; , can take values 1, andSg is a Berry’s phase
term.
Il. MODEL: Z, GAUGE THEORY One may arrive at this action by making the above-

. . . mentioned change of variables in a Hubbard-type Hamil-

We begin by formally writing the electron creation opera- yonian, as described in Ref. 4. Alternatively, this model can
tor as a product ofwo operators, one of which carries the g (aken as a starting point for describing systems with local
spin of the electron and the other the charge. These operatotg, et pairing correlations as well as Mott insulating tenden-

are defined with the singlet-paired superconductor in mind. Ijes To exhibit the reasonableness of this model, consider
we write the Cooper pair creation operatoreéi§, we con- e fimits of infinite and vanishing,. For t.—o, the

struct our spinless chargeboson(called a “chargon’) from  posonic chargons will condense and egauge field will
the Cooper pair as become frozen withr;;=1, which frees the spinons. This
bf =g gler2= it —_— 1 phase is simply thel-wave superconductor. The action re-
P SETT=ET S =24 @ duces toS=S;, which is just the Bogoliubov—de Gennes
The chargon is “half a Cooper pair” in the sense that the@Ction, with the spinons becoming the B@$vave quasipar-
squareof b/ creates a Cooper pair. The neutral spin-1/2ficles. In the opposite limit;—0, the chargons are gapped
particle (called a “spinon”) is obtained by removing the into an insulating state. A.=0, the chargons may be trivi-

charge from the electron: ally integrated out. The remaining action is juStSg
+Sg. Itis shown in Ref. 4 that the partition function for this
frT =b,c;r _ 2) remaining spin theory is formally equivalent to that of the

Heisenberg antiferromagnetic spin model. Therefore, we see
As we shall see shortly, this spinon can be thought of as ¢he attractiveness of this model for the cuprate system, which
neutralized BCS quasiparticle. With these definitions, wealso exhibits both superconductivity and antiferromagnetism.
may perform a change of variables in a suitable HamiltoniarMany other additional properties of this action between these
describing electrons and Cooper pairs, resulting in a theortwo limits are elucidated in Ref. 4, in particular, the presence
of chargons and spinons. However, the Hilbert space of chaef both spin-chargeonfinedand deconfinechases.
gons and spinons is much larger than that of electrons; for The charge sector in E¢4) is described in terms of the
instance, the state with a single spinon but no chargons camsonic chargons, minimally coupled t&Za gauge field. In
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two spatial dimensions, vortices in the boson many-bodypoint pertaining to the high-, phase diagram have been in-
wave function are point like. This allows for a particularly troduced in Ref. 6. First, we will use Landau theory to find
elegant dual description where the vortex rather than th@hases related to thé-wave superconductor by a second-
chargon is the fundamental degree of freedom. In this dualerder phase transition. Then, we will consider a special case
ity, the condensate of chargofithe superconductpiis the  where we recover a () symmetry for the spinons and will
vacuum of vortices; the condensate of vortices is an elecase quantum field theory methods to extract some analytic
tronic insulator, where the chargons are gapped. Within theritical properties of the transition between deconfined and
vortex theory, the superconductor is trividdeing just the confined phases.
vacuum and is therefore a good place to plant our feet. From
this vantage, we look out of the superconductor at the neigh- |, pUAL-VORTEX THEORY AT HALE-FILLING
boring insulating phases. The duality transformation, on the
lattice, in the presence of thé, gauge field, has been ex-  Concentrating on the vortices for the time being and
plicitly implemented in Ref. 4. The full resulting action at working at half-filling, the dual theory for the charge sector
half-filling is becomes

S=S5+S5,+ S+ Scs, (8) ajj

lv 2772 (12
> +§| Xa—2nw7*. (12

L,=—t, cos( 0;— 0+
ﬁ

SU:_IUZ Mij COS( 0i_0j+
m 2

' 9  To obtain a low-energy effective theory, we work with a
“soft-spin” model where the vortex creation opera®f is
replaced by a complex fiel®. In the interest of exploring

K R . ;
S = AXa; —2m72, 10 the simplest case we set the charge per unit cell to be exactly
¢ 8 zm: | i =27 (19 e. In the dual theory, this corresponds to setting
T ((Vxa);)=2m7. (13)
Scs= 2 lz(l—H o)(l—mn. (1D o _ _
o In this section, we drop fluctuations of the gauge figlénd

The spinon actiorS, is unchanged. Heree'® creates an consider a Landau mean-field approach. This is justified

hc/2e vortex and the flux of the (1) gauge fieldga;; , is the when th? on-site repulsion beEweian the electrahss Iarg.e.
total electrical current. In particular, a flux of2through a '€ vortices now see exactliv (<a/2);= flux per spatial
spatial plaquette represents a charge.ofhe termsS, and ~ Plaquette, and we are left with the two-dimensiofiaD)
S, together form the usual dual-vortex representation fofUlly frustrated quantunXy model:
charge-2 Cooper pairs except that here the vortices are
minimally coupled to the additionalz;) gauge fieldu;; = S:j dr E 9,® |2~ E ter (DXD, +c.C)
+1. The BCS vortex and the spinon are relative semions; 7o rrh '
upon circling a vortex, the spinon wave function picks up a
minus sign. The ternfS.s is the Z, analog of a Chern-
Simons term for the tw&, gauge fields and mediates this
statistical vortex-spinon interaction. The spinons “seeZ.a
flux [Igo=—1 attached to eachc/2e vortex, while the wherer labels sites on the 2D square lattice dual to the
vortices see a flux ofl ;u=(—1). This flux attachment original electron lattice and the sign df ,, around a
may be familiar to many in the context of the quantum Hallplaquette is— 1. The sites of the dual lattice are at the cen-
effect, where the gauge fields involved are for thél)U ters of the plaquettes of the original lattice, and in units of
group. Because of the anomalou$f*” terms in the action, the lattice constanta=1), F=(x,y) with x andy integers.
spinon number is not conserved, and the usual Chern-Simons We proceed, following closely the work of others on the
term cannot be used. fully frustrated quantum lIsing modé&l, by choosing the
In the superconducting state, we are in the vacuum ofauge(to be used in the remainder of this papseen in Fig.
vortices. The spinons see no flux and are free to propagate We may diagonalize the kinetic piece of this action to find
independently of the chargons. However, when single vortitwo low-energy modes, residing atk, k,)=(0,0) and
ces condense, the long-range statistical interaction betwegnr,0), respectively. In real space, thesennormalized
the BCS vortex and the spinon drives spin-charge confinesigenvectors are
ment. In the language of Ref. 4, the condensatioh@Re

221t (14

+ 2 [ |2+ u(| D,
r

vortices is accompanied by a condensation of the visons X?:(1+ J2)—€'™, (15)
(vortices in the Ising fieldg), leading to a confined phase of
electrons. T_ aimx J2)+¢el ™ i

We wish here to explore in some detail the nature of this x; =€7T[(1+y2)+e'™] (xy integers.  (16)

confinement transition, where the freely propagating spin For the purpose of characterizing the low-energy behavior
and charge excitations are ‘“glued together” to form theof this vortex system, we consider fields which are linear
electron. Aspects and implications of this quantum criticalcombinations of these two low-energy modes,
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FIG. 2. Representation of the fully frustrated 2D lattice. Dark
lines show the location of negative or “antiferromagnetic” bonds
(t;»<<0). The two low-energy mod@s? and x,” are shown in(1)
and (2), respectively. Long arrows have length+2/2 and short
arrows have lengt/2. Frustrated or “unhappy” bonds are marked
with a slash.

O(F,7)=Wo(F, )2+ W (F, 1) X7 . (17)

We now have two complex field¥ () andW¥ _(r), which
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S k)

+v4|p1|?| bl > vl (#F $2)*+H.Cl, (23

where r has been rescaled to set the vortex velogify 1.

The terms labeled by, anduv, are the only allowed quartic
terms, and are invariant under independeft)Wransforma-
tions on¢, and ¢,. We have kept the g term because it is
the lowest-order term which breaks this symmetry down to
the global U(1) of Eq(22). This model will be employed to
construct a description of various phases proximate to the
d-wave superconductor within mean-field theory.

We wish to characterize the various states of this vortex
system. It is important to emphasize at this point that not all
vortex condensates destroy superconductivity. Superconduc-
tivity is destroyed when the dual(l) symmetry of the vor-
tex theory[Eg. (22)] is broken. Therefore, it is possible to
have nontrivial vortex condensates which are superconduct-
ing. This leads to two scenarios for the superconductor-
insulator transition at half-filling. First, we may consider su-
perconductors which are described by a vacuum of vortices;
superconductivity is then destroyed when single vortices pro-
liferate and condendén a way which breaks the dual(U)].

Sio= [ dxdr 3 la,ba 101 4u,

describe the low-energy configurations of our vortex systemAlternatively, the superconducting state could itself be a
The phase transitions of the system can be explored withit/(1)-preserving vortex condensate which then undergoes a
Ginzburg-Landau theory. The Ginzburg-Landau Hamiltoniartransition which breaks the dual(l), destroying supercon-
for the two-vortex system must preserve all the symmetriesiuctivity.

of the original lattice Hamiltonian, namely, discretendy
translations, rotations by/2, and the vortex (1) symmetry
(b—e'*®), as well as Hermiticity. In terms of our two

In the following sections, we explore the phases of our
dual-vortex model using the Landau-Ginzburg action of Eq.
(23). Due to the frustration of the vortex theory with one

complex vortex fields, these symmetry transformations tak&lectron per unit cell, the vortex condensates will break lat-

a simpler form when expressed in terms of the fields

b1=Vo+iV,, ¢=To—i¥, (18)
as follows:

Tiir1od; (19

Ty:ip1—ida, ¢ —idy; (20)

Reaid1—€ b1, ¢y—e” ™y (1)

U(l): p,—e'“¢p, (for a=1 and 2. (22)

Allowed terms for the action include
Dz (el )"+ (| 62l?)",
(I: ([l oD,
(1I): [(¢7 ¢2)*+ (h1¢63)]"

(with arbitrary positive integen), and combinations of these
terms. Expanding in powers of the fields, we take as ou
Landau-Ginzburg action

tice symmetries. Some of these spatially ordered states are
superconductors and some are insulators. We will begin
by describing the possible superconducting states within
the dual theory(including a striped superconduct9r and
then move on to a description of the insulating states. Ignor-
ing charge fluctuations in the superconducting stgdsswe
have in arriving at Eq(23)] is not justified, and a good
description of these states would require putting the charge
fluctuations back in. Here, we content ourselves to character-
izing the phases of our vortex system by their broken sym-
metries. We conclude with a summary of the possible tran-
sitions from superconductor to insulator within this mean-
field theory.

A. Superconductors
1. Vortex vacuums

The simplest superconducting phase is just the vortex
vacuum. This is the standard B@Bwave superconductor.
Destruction of superconductivity occurs when single vortices
proliferate out of the vacuum and condense, breaking the
dual U1) symmetry. The effective action for this transition
is Eq.(23).

2. Paired vortex condensates

r Condensation of singlac/2e vortices necessarily breaks
the dual U1) symmetry[Eqg. (22)] destroying superconduc-
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tivity. However, whenpairs of vortices condense, the() maining phasef; becomes constant over the sample, the
can be preserved. Consider the paired vortex condensate dual U1) is broken, and superconductivity is destroyed.

. Therefore, for these spatially ordered superconductgrg,
(93 1) #0, (d1)=(¢2)=0. (24 [Eq. (23] reduces to

We see that in this condensate the du#&l)Us preserved,
and the state is characterized by the phase of the condensate szf d?xd[d, 1|2+ 1| >+u(|4]?)?]. (33
(setting the amplitudé ¢3 ¢1)|=1 for simplicity),

It is worth noting that we have gone from a theory of a single

(¢35 ¢p1)=¢"?, (25  fully frustrated vortex to a theory of a single unfrustrated
vortex via a theory of two vortices. This is possible because
0= 0,(X)— 05(X). (26 in a striped or plaquette superconductor, the unit cell is

doubled. If one started from scratch in constructing a dual
theory of these stripeblaquetté superconductors, the vor-
tices would see # rather thanm flux per (doubled unit cell
and there would be only one low-energy mode.

Here, 6, and 6, are the phases ap, and ¢,, respectively,
and are still free to fluctuate. Only the combinatiér 6,
— 6, is uniform, reflecting the fact that the dually sym-
metry is preservedi.e., ¢, and ¢, are uncondensg¢dThe
only term in the Landau-Ginzburg action which depends on . :
0 is thevg term, giving B. Confined insulators
When single vortices condense at half-filling, we move
from the d-wave superconductor into a confined insulator.
Within our dual formulation, these insulators are described
by condensates which break the dudlllUsymmetry of Eq.
(22). In the case of superconductors which are vortex vacu-
ums, because we hawe/o vortex species, there are many
(28) ways to do this and therefore many possible single-vortex
condensates. We will see that these different vortex conden-
sates correspond to different insulating states of electrons.
™ (29) We return to the case of the striped and plaquette supercon-
2’ ductors after first enumerating the insulating states at the
mean-field level, using the action of E@3).
The most general (1)-breaking vortex condensate is

sz—vgf d?xdrcoq46). (27)

We see that the ground state depends on the sign:of

o
1)8>0:0:n5,

an
U8<O:0:Z+n

with n an integer.
The spatial symmetries in Eg4.9)—(21), written in terms

of the relative phase, are (P1)=|(1)|€'’", (34)
00, (30 (b)=L(br)le" 35
Ty 0—m—0, (3)  where[(1)], [($2)], 61, and 6, are all fixed real numbers.

Within our dual Landau-Ginzburg model, condensing the
o vortices corresponds to setting<O andu,>0. The signs of
Raia:0— 0+ . (32 v, andvg then determine the ground state. kg0, both
vortex species acquire a nonzero amplitu¢ié,)| = |{ ¢,)|
From this we can see that the vortex condensate favored by 0O and their relative phasé,,= 6,— 6, is determined by
vg>0 breaks the lattice rotational symmetry amuk of the  the sign ofvg. On the other hand, i#,>0, the ground states
two translational symmetries. We therefore associate thiare condensates of eithér; or ¢, and the sign ofvg is
condensate with a stripe-type orderingstaiped supercon- irrelevant. Each of these condensates will correspond to a
ductor. This state is particularly interesting given recent ex-different insulating state of the electron system. We consider
perimental results which suggest possible stripes in the sweach case in turn.
perconducting state of ba,Sr,CuQ,.!! The ground state for
vg<0 breaks all of the lattice symmetries; we identify this 1. Keppl=Kep2)| %0
state with a “plaquette” order which will be made more )
explicit in upcoming sections when we discuss the insulating These condensates are favoreduy<0, and the relative
states of the vortex system. For now, we emphasize the poghase 01— 6,) is determined by the sign afg. Taking the
sibility of spatially ordered superconducting states whichmagnitudes(¢s)|=[(¢,)|=1, this term in the action can be
emerge quite naturally within our dual vortex description. rewritten as
Still working in the dual description, these striped and % _
plaguette superconductors are dE:'scribed by anp effective ~val(¢1¢2)*+H.cl=—vgcod461)). (36)
theory of one vortex species, since the paired condensationin terms of this relative phase, the spatial symmetries are
has locked the two original vortices together: the vortexgiven by Eqs(30)—(32) with the replacemen®— 6,,.
phasesd;(x) and 6,(x) = 6(x) — 6 still fluctuate within the a. ,— 6,=n/2. This class of condensates is preferred
superconducting phase, but not independently. When the réyy v5>0. There are four general states, corresponding to
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FIG. 3. (a) The vortex condensates withy,= 7/2, which cor-
respond to<I>(r)=(1/\/§)(X?+X;T). Frustrated bonds are slashed.
(b) Schematic of the four “striped” states corresponding &g
=nm/2 with higher-energyfrustrated bonds slashed.

Il

Il

each of the possible values of We see by the symmetry
transformations in Eqs30)—(32) that each of these states
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FIG. 4. Schematic of the relationship between frustrated bonds
of the dual lattice(slashegl and links of the original lattice where
the corresponding “singlet bonds” residdashed

singlet bonds on the original lattice is illustrated in Fig. 4.
These “striped” vortex phases then correspond to spin-
Peierls (or “bond-density-wave’j order in the insulating
electron system.

b. 6,—6,=wl4+nw/2. These condensates are favored
by vg<0. Here, however, each ground state breaks all of the
discrete lattice symmetries. We proceed as above and obtain
characterizations of these states in terms of the location of
frustrated bonds. The result is a plaquettelike structure, as
seen in Fig. 5.

In terms of the electron degrees of freedom, we would
like to again interpret the frustrated bonds of the dual lattice
as regions where singlet-type bonds of the electron system
reside. The plaquettelike structure of these vortex states may
then correspond to a “plaquette RVB” state of the electron
system, as shown in Fig. 6.

breaks the lattice rotational symmetry as well as breaking

one of the two translational symmetries while leaving the

2. (p)#0, (=0 or (¢))=0,(¢h,)#0

other intact. On these grounds alone, we could guess that
these states correspond to “stripelike” phases. To be more These condensates are preferred in the cased. We
concrete, we may go back to our real-space representatiQay proceed as above in drawing real-space diagrams corre-

for the vortex field®(r) in Eqg. (17) and draw real-space

sponding to these states. We find, as shown in Fig. 7, that

pictures of these lattice states. The values of the fields ghese states have vortex currents around each plaquette, of
various points will be gauge dependent, but the location Oﬁlternating sign.

frustrated bond$which are places of higher energy dengity

In order to interpret this state, we will have to put back in

is gauge independent and therefore a good way to charactefie spinons which have been ignored in the previous discus-

ize the state of the system. This is shown for the cése
= /2, as an example, in Fig(&. Investigations of this sort

sion. The vortex-spinon action is

lead us to conclude that the four ground states of the system
in this case are characterized by “stripes” of energy density

as shown in Fig. ®).
We now turn to a characterization of this system in terms
of the electron degrees of freedom. Because we have broke

the dual Ul) symmetry of the vortices and we are at half-
filling, these states will be Mott insulators. The charge de-

grees of freedom reside on the plaquettes of the dual lattice
and are fixed at one charge efper dual plaquette. It has
been suggestéti* that the frustrated bonds of the dual lattice

should correspond to singlet bonds of the electron system,

since one expects regions of higher energy along the links FIG. 5. The vortex condensate withy,= /4, which corre-
where the electrons spend most of their time. This relationsponds tob,=0.9¢°+0.4y" . Locations where the field is zero are
ship between the frustrated bonds on the dual lattice and thdenoted by a dot. Relatively unhappy bonds are slashed.
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1 I T ¢
T T — ®IlR|E
=+ | RNO|®
' :::.I:::.":::'I:::: PPPPIT- P |
1 F - . FIG. 7. The vortex condensate with,=x°+ix". Since the
F F field is complex, the magnitude is given by the length and the
= = argument by the direction of the arrow at each site. The direction of

) ) vortex current is indicated on the bonds.
FIG. 6. Schematic of states corresponding todhel0 vortex

condensates. Relatively unhappy bonds of the dual lattice arBuctuation3, and ignoring the coupling to the spinons, the
slashed, and links of the original lattice where the singlet-typealternating vortex currents would induce charge-density-
bonds reside are dashed. We associate this structure with wave (CDW) order at wave vectors#, 7). However, with a

“plaquette RVB” state of the electrons. large on-siteU, this state will be greatly suppressed. If we
forbid charge fluctuations, we see that the alternating vortex
S=S,+ St Scs; (37 currents will instead drive a mean field in tAg gauge field:
a'!'!
Suz_tuz ,LLi/J'/COS(ai/—eJ/_% s (38) H ,u,irj::(—l)nf%—l (42)
() o’
with (Vxa)=2mr, (399  (wheren; is the number of spinons in the dual plaquette

denoted by(1), which corresponds to one spinon per unit
P A — cell. Unlike the previously considered vortex condensates
Ss:_% Uij[tijfifjJ“tijfinii]_Z fifi, (40 (with v4<0), at the level of vortex mean-field theory, this
: state has no broken translational symmetriefwever, we
- cannot rule out the breaking of symmetries by the charge and
Ses=2 | Z( 1-I1 w|a-oy), (41)  spin fluctuations.We note that a possible candidate for this
o’ state which has one electron per until cell and uniform en-
wherei,j label sites on the original lattice arid,j’ label ~ €rgy density is the antiferromagnet.
sites on the dual lattice. Looking &,, we see that the
alternating vortex currents would like to induce compensat-
ing fluctuations in either the;.;, or w;/j. fields. Allowing We have seen that our dual-vortex theory describes both
fluctuations of the gauge field (which describes charge standard BCS and striped or plaquetterave superconduct-

C. Summary of vortex theory

TABLE I. Summary of vortex condensates, listing the spatial symmettiasslations in thex or y
directions and rotation by 90°) broken by each. The first two condensates preserve the dual U(1) symmetry
and are therefore superconductors; the remaining three break the @uard are confined insulators.

Vortex condensate Broken spatial symmetries Characterization of phase
7T .
f=n> Rz, Tx, or Ty Striped SC
(@3 ¢1) =€’
T o R Plaquette SC
6= Z +n§
6— gzzng Rap, TxorT, Striped confined insulator
|<¢1>|:|<¢2>| ) )
T R, Plaquette confined insulator
60,— 02—2 +n§
(61)#0, (¢2)=0 Confined
or None insulator

(¢$1)=0, (¢2)#0
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ors as well as a host of confined insulating states. A sumwith more familiar phases of electroffsuch as the spin-
mary of the various vortex condensates is given in Table IPeierls statge as well as phases like the striped supercon-
We now summarize the results of Landau theory for the tranductor. The dual formulation shows us the enhanced chance
sitions from thed-wave superconductor to the confined insu-for striped superconductors near half-filling. In the next sec-
lator at half-filling. tion, we will add back in the spinor®nd, along with them,
We consider first the transition from a vacuum of vorticestheir long-ranged statistical interaction with the vortices
(a superconductoto a U1)-breaking condensate of vortices and extract information about the critical properties of the
(an insulatoy. Within mean-field theory, the nature of the confinement transition using field theory methods.
insulating state is determined by the signs of the coupling

constants in Eq(23), and we have the following possible IV. CONFINEMENT TRANSITION
direct transitions out of the symmetrid-wave supercon- i .
ductor: Having explored the vortex sector of the theory with one
electron per unit cell, we now wish to put the spinons back in
v4<0, vg>0: dSC-spin—Peierls, (43)  and address the critical properties of the confinement transi-
tion. Because we will continue to work at half-filling, the
v4<0, vg<0: dSGC-plaquette RVB, (44 confined states of electrons will be Mott insulators. While

. the theory of vortices and spinons coupledtogauge fields
v4>0: dSC-uniform state of electrons. (45  may in principle be numerically accessible, the action suffers
from the notorious fermion sign problem. Here, we discuss a

One might hope to ascertain which of these insulatingspecial case which will turn out to be accessible to perturba-
states is preferred close todavave superconductor, includ- e RG calculations.

ing f!uctuatipns beyond t_he mean—field Ievel_, by considering Focusing on the spinon Hamiltonigand dropping thé,
the fixed points of the action in E€RJ). In particular, we see gauge field for the time being

that the sign ofv, determines whether we enter one of the

states of broken translational symmet(gpin-Peierls or s o A

plaquette RVB or the state with uniform energy density Hs=— E [t fefett (fgfe +HC)] (48
(possibly the antiferromagnetThe work of Blagoev on e’y

the theory of two-component complex fields with théaed ~ we choose the special case

othen couplings gives a stable fixed point@af<0, to order S 1eAl_

€’ (e=4—D, D=d+1, ind spatial dimensions This sug- =% =t, (49)
gests that the transition dS& spin-Peierls would be pre- with nearest-neighbod-wave pairing amplitude

ferred over dSC— uniform state. This is tantalizing given

the experimental evidence for intervening “stripey” phases t?ri;— +1,
between the superconducting and antiferromagnetic phases '
in the cuprate$? t?F:§,= —t. (50)

In the case of the striped and plaquette superconductors ) 15 . i
when the single-vortex species in EG3) condenses, super- Following Affleck et al,'® we introduce the fields
conductivity in these states is destroyed and we enter a con- f
fined insulating state. Because the relative phés®, is ei(w/S)cry( ;T) for y even,
already fixed within these superconductors, we see from our dry rl
above analysis of the insulating phases that the insulating (dT )2
state is pre-determined. The striped supercondugtdh 6 l + ) for y odd
=nm/2) enters the spin-Peierls insulator, and the plaquette rl
superconductofwith §=m/4+nw/2) enters the plaquette- (whereq, is the usual Pauli matrixthe spinon Hamiltonian
RVB insulator. In other words, these spatially ordered superpecomes
conductors make transitions into insulating states with the
same broken spatial symmetries:

(51)

f
(—igy)e o

He=— > ty(df d./,+H.c), (52)
vg>0: striped SC-spin-Peierls, (46) (rr’)
with
vg<0: plaquette SG:plaquette-RVB. (47)
—t for y andy’ even,
In the preceding section, we have considered states of t = (53

- t otherwise.
electron systems at half-filling neadawvave superconductor

within a dual formulation in terms of vortices. Each phase isThis is the Hamiltonian of fermions hopping in 2D in the
characterized by a dudlortex) order parameter. At one presence ofr flux per plaquette. We have succeeded in find-
electron per unit cell, the frustration of the vortex theorying a Hamiltonian for the spin sector which has a conserved
manifests itself in spontaneously broken spatial symmetriesermion number. The original theofyEq. (4)] can now be
Exploiting the fact that the vortex order parameters breakwritten in terms of these fermion fields, the chargons, and
spatial symmetries has helped us identify these vortex phaséise Z, gauge field. Following a transformation which can get

134510-8
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rid of the Berry’s phase tertfi this theory can be modeled

PHYSICAL REVIEW B 63 134510

full low-energy effective theory where, since the spinon and

numerically with no fermion sign problem. Here, we insteadvortex sectors each display(l] symmetries
proceed to a low-energy continuum Hamiltonian for the spin

sector. To this end, we diagonalizé¢; to find two Dirac
points. These are the usudiwave quasiparticle nodes at
(ky,ky)=(=7/2,= m/2) except that, due to the flux per
plaquette, we have doubled the unit cell and halved the Bril-

louin zone; it now contains only two of these nodes, which

we denoteKl and K,. In terms of long-wavelength fields
residing at these two nodes,

djo(X)= 1o X)€%+ gy o (X) €2 (54)

Pa— €My, (62

¢—e e, (63

we may implement the statistical spinon-vortex interaction
using U1) (rather thanZ,) Chern-Simons gauge fields?
andA?. We proceed to a field theory modeling the confine-
ment transition between a spin-charge-separattavgve
superconductor and a spin-charge-confined Mott insulator.
For simplicity, we consider the vortex theory with only one

(where j=1,2 labels the sublattizethe continuum Hamil- speciegEq. (33)], and thereby consider transitions out of the

tonian is striped-plaquette superconductor given in Eg$) and(47).
The low-energy effective action is
A2X 0] [ TL(—i0) + To(—1dy) 11,
f St 2 = f d2xdr] Lo+ Lo+ Lost Ly, (64)
UL o~ i) + (i) 12, (55) B B
where Ls=ha(§—1gAY) hat kiha( i 0 —ig VA ) s, (65)
1 - L,=1(3,~igAD ¢>+m?[ ¢+ uo(|$[))?  (66)
=—=(71yt7,), 56
V2 Los=ieumAld, AL, 67
1 _ t 2
To=— (74— T75). (57) Lys Uowa‘//a|¢| ) (68)
V2 with
Here, 7 acts in the sublattice space, and we have rotated the
x andy axes at each node by 45°. Just as the Hamiltonian for ac[1N=4], k= ? —1, (69)

v

the d fermions was diagonal in the spin label, so is this one,
and we are left with a theory of four species of Dirac fermi-
ons. Note that the spinon characteristic veloeigyis isotro-
pic in space because of our choige=|t,|.

Defining Dirac matrices in 21 dimensions,

where k is a measure of the velocity anisotropy between
vortices and spinons and will be treated as a perturbation.
We have added the ter), 5 in the interest of including all
possible relevant interactions. The Chern-Simons term
causes a vortex taken around a spinon to acquire a phase of

atnodeK,;: atnodeKj:
Yo=Ty, Yo=Ty, ¢—>exp{ig § /&¢~dr> (j)zeigng, (70)
VI=To, Y1=—T1, and likewise for a spinon after encircling a vortex,
2= V2= T (58) 1/;—>exp<ig 3€ AV.dl | y=6l9"y, (72)

(%)'=7ui {7u7,4=26,, (@teachnode (59 so that the full statistical interaction is achieved when
we proceed to the Euclidean Lagrangian density
L= Tl yoio+vsnalia, (60) gi=m=2ma, a=3 2
EE e (61) (where a is the so-called “statistics angle” and is equal to

1/2 since the vortex and the spinon are relative semidre
The fields ¢, have two componentéorresponding to the theory as written neglects charge fluctuations, which is not
sublattice labgl and summation conventions on the numberjustified within the superconducting phase. The full vortex
of speciesae[1,4] (one for each spin at each of the two theory would include an additional minimal coupling to a
nodes and the spatial dimensiare[1,2] are in use. gauge fielda.l” As seen in the duaXY model, this coupling

We have succeeded in writing a low-energy effectivecauses runaway flows, and is probably best modeled numeri-
theory for the spin sector which is just that of four species ofcally. At this point, we leave out the gauge fieddand its
two-component Dirac fermions. We may now write down aattendant problems, but we will revisit this question shortly.
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When the vortex Lagrangian is taken through criticality 1 . .

(m?<0), the statistical interaction, mediated by the gauge Ev:|(c7#—ie0a“)¢|2+§|v><a|2+ m?| |+ uo(] ¢|%).

fieldsA? andAl‘f, will drive spin-charge confinement. Here, (83

we seek the effect of these statistics on critical properties of ) ] N

the system. In particular, we wish to calculgefunctions ~Recently, much work has gone into tackling the critical prop-

for the couplingsly, vo, , andg, as well as the anomalous erties of thee#0 model;” and we may use these results.

dimensions of the vortex and spinon fields.
We work inD=d+ 1= 3 dimensiongindeed, our Chern-

To first order, then, we find fixed ling parametrized by
values of the statistics angte(or, equivalently, the coupling

Simons flux attachment is not well defined in higher dimen-9)- At lowest nonvanishing order, this line is given by

siong, and define dimensionless couplings
u=A""uKp_3, (73

(749

where factors oKp=[2°"1#PI"(D/2)]"* have been put

U:UQKD=&

in for later convenience. The bare propagators in the Landau

gauge are
o v K
fermions: G§=— e (75
vortices: G — (76)
vakx
gauge fields: S4"= — 2 =(ALAD), (77
(A?A%)=(AYAY)=0. (78)

(The fermion propagator is diagonal in the lalzelso we
have suppressed this indgx.

U* =Ugyal, (84)
v*=0, (85)
(g°)*=g°=m, (86)
e* =€qyal, (87)
K* =K, (88)

where byuy,,, andey,, we mean the values of these cou-
plings at the fixed point of the duaY model.

In order to see whether spinon-vortex velocity anisotropy
grows, we need to take thé function for « to its lowest
nonvanishing order, which is two loops. The result is

d 31 g*
de__ =29 ..

dl ~ 240 2 89

Since the system flows toware=0, it is legitimate to treat
this term as a perturbation, and the theory becomes “relativ-
istic” at the critical point.

We proceed by calculating the anomalous dimensions of
the spinon and vortex fields, to lowest order, near the critical

For theB functions we find, to lowest nonvanishing order point. To that end, we consider the self-energies

(one loop,

ST LA 79
arY” R LA
g+ 80
a - u+---, (80)

dg?
ar o ®1)
OIK—o 82
a_ + ... ( )

We expect that at higher ordergwill enter intodu/dl and

[G*(K) ] 1=[Gg(k)] 1 +=?(k), (90)

[GY(K]™*=[Gg(k) ]~ + X (k). (91)

Near the critical point, the anomalous dimensions are given
by

G?(k)x (92

K[> 70

G(k)= (93

k|2~

(up to additive constants Working at the fixed point
(u,v,0%) = (U*=u?,,, v*=0, g =) and calculating

dv/dl nontrivially, but thatg itself should not renormalize at e spinon and vortex self-energies to two loops in three

any order, following the argument given by Semereiffl 18
The one-loop RG equations forandv have a stable solu-

tion at v=0, so that the theory decouples into separate
spinon and vortex theories. At this order, since the spinon
and vortex sectors decouple, we may ignore the Chern-

Simons gauge fieldgeffectively takingg=0) and include
the effects of charge fluctuations by using the full da
model for the vortex sector:

dimensions, we find

4 (gh*
N¢= ndual_gﬁN"_"" (94)
1(gH*
R 95
773 16m2 (%9
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Since we are in the case with one vortex species, we mafunction. Within our model, it looks as though vertex correc-

take the numerical results of Hove and Sittbéor the  tion diagrams will not contribute as much near the critical

anomalous dimension of the vortex field in thél dual XY  point as the direcEG(/,]2 term.

model inD=3: 5,=—0.24. After plugging inN=4 and

g%* = into our result, we find V. CONCLUSIONS

In this paper, we have used a gauge theory of strongly

74=—0.24— %:_0_57, (96)  Interacting electrons to explore the regions near the super-
conducting state in the highz cuprates. This gauge theory
exhibits spin-charge-separated and spin-charge-confined
1 phases. We have seen that the presence of one electron per
ny=~ 2~ ~0.02 7 Unit cell has profound implications for the regions near the

superconducting state. Within a dual description, half-filling
These critical exponents may reveal themselves in mangf electrons corresponds to fully frustrated vortices, leading
quantities. In particular, the spectral function as probed byo a spontaneous breaking of translational symmetries in the
ARPES and the spin-spin correlations probed by NMR orelectron system. From this, we have seen the possibility of
neutron scattering. Within our theory, the low-energy elec-triped superconductivity as well as a host of confined insu-
tron correlator decouples into chargon and spinon pieces fdators descending frord-wave superconducting phases. We

g—0:
(c(0cT(0))=(b(x)bTO)(FT(0). (98

These correlators will exhibit anomalous dimensiogsand
7¢, wWhich can be expanded perturbatively arogfd=0:

M= mxy+ CEg* )2+ -, (99)

6= 1y= C]((Z)(g*)2+ . (100

where we have calculated{?’= —0.03. The anomalous di-
mension for the 3DXY model (appropriate for one vortex
species has been calculated by Hasenbusch anK asing

Monte Carlo method&’ they find 7yy=0.038. The anoma-

have then used Chern-Simons methods to calculate lowest-
order critical properties of the confinement transition be-
tween these phases. Because we have worked at half-filling
of electrons throughout, our results are of particular rel-
evance to the undoped cuprate materials, which may be spin-
charge confined. However, we also hope that the flavor of
our results may be of interest in the heavily overdoped ma-
terials, where the confinement of spin and charge may result
in a Fermi liquid phase.
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