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Fractionalization, topological order, and cuprate superconductivity
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This paper is concerned with the idea that the electron is fractionalized in the cuprate high-Tc materials. We
show how the notion of topological order may be used to develop a precise theoretical characterization of a
fractionalized phase in spatial dimension higher than 1. Apart from the fractional particles into which the
electron breaks apart, there are nontrivial gapped topological excitations—dubbed ‘‘visons.’’ A cylindrical
sample that is fractionalized exhibits two disconnected topological sectors depending on whether a vison is
trapped in the ‘‘hole’’ or not. Indeed, ‘‘vison expulsion’’ is to fractionalization what the Meissner effect~‘‘flux
expulsion’’! is to superconductivity. This understanding enables us to address a number of conceptual issues
that need to be confronted by any theory of the cuprates based on fractionalization ideas. We argue that
whether or not the electron fractionalizes in the cuprates is a sharp and well-posed question with a definite
answer. We elaborate on our recent proposal for an experiment to unambiguously settle this issue.
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I. INTRODUCTION

The cuprate high-Tc materials are among the most com
plicated systems studied extensively in solid-state physics
addition to the high-temperature superconductivity itse
they display a wide variety of novel phenomena. Perhaps
most puzzling is the behavior in the ‘‘normal’’ nonsuperco
ducting state above the transition temperature which, be
anything but normal, is difficult to understand within Ferm
liquid theory. The superconductivity is obtained by dopi
‘‘parent’’ compounds that are Mott insulators—rendered
sulating by strong electron-electron interactions. These
ent compounds also display Ne´el antiferromagnetism. A
number of other interesting phases and broken symme
are also often observed, including charge and spin orde
into stripes. In addition, some regions of the phase diag
are very sensitive to the presence of disorder—particularl
low doping and low temperature. Indeed, even a cas
glance at the phase diagram is sufficient to realize the r
ness of phenomena displayed by these materials.

It is hoped by many that underlying this remarkably co
plex behavior might lie a simple explanation which will giv
insight into the mechanism of superconductivity. The ch
lenge is to identify any keyqualitativefeatures of the system
which can be sharply characterized and detected experim
tally. In this paper, we pursue an elegant and simple ex
nation of superconductivity and other properties that is ba
on the idea that the electron is splintered apart~i.e. fraction-
alized! in these materials. The genesis of this idea can
traced back to the original resonant valence band~RVB!
theories,1–3 but recent theoretical work4–8 has led to a unified
theoretical framework for electron fractionalization abo
one spatial dimension~most readily expressed in terms of
Z2 gauge theory7,8!. Remarkably, this points to a novel rou
to superconductivity which dispenses entirely with the not
of electron pairing. Quite generally, to obtain supercond
tivity in a many-body system it is necessary to condens
charged particle. In an electronic system the naive ro
would be to condense the electron, but this is of course
possible as the electron is a fermion. The BCS solution w
0163-1829/2001/63~13!/134521~16!/$20.00 63 1345
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to argue that a weak attractive interaction between the e
trons ~or more precisely between Landau quasiparticl!
binds them into pairs, which condense as a charge 2e boson.
But fractionalization describes an altogether differentroute
to superconductivity, within which the electron splinters in
two pieces, one carrying the Fermi statistics~and spin!—a
direct condensation of the remaining chargee boson leads
directly to superconductivity. Remarkably, although the fra
tionalization route to superconductivity is so very differen
from that in BCS theory, the resulting superconducting ph
itself has identical qualitative properties.7,9 Furthermore, the
fractionalization idea provides appealing explanations
several of the unusual ‘‘normal’’-state phenomena, most
tably the photoemission spectra.

In this paper, we show how a precise meaning may
given to the statement that the electron is fractionaliz
Based on this, we argue that whether or not the elect
fractionalizes in the cuprates is a sharp theoretical ques
that is independent of all kinds of unavoidable material co
plications. Further, we show how this sharp theoretical qu
tion may be answered unambiguously by experiments.The
idea that the electron is fractionalized thus provides a no
pairing route to superconductivity which is directly testab.

We begin by developing a precise theoretical charac
ization of a phase in which the electron is fractionalized.
anticipated in Ref. 5, this is through the notion of ‘‘topolog
cal order’’—a concept that has been elucidated clearly
Wen and Niu10 in the context of the quantum Hall effec
This enables us to address a number of conceptual issues
need to be confronted by any theory of the cuprates base
fractionalization ideas. The crucial property of the fractio
alized phase is the existence of excitations which are fr
tions of the electron. While various such phases with diff
ent fractionalization patterns are theoretically possible,11 the
phase that is of the most interest in the context of the
prates is one in which the electron breaks into a char
boson and a neutral spin carrying fermion. An equally c
cial property of the fractionalized phase is the emergence
a gapped topological excitation—dubbed the vison.7 A pair
of visons can annihilate each other, so that they carry on
©2001 The American Physical Society21-1
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Z2 ~topological! quantum number. The existence of this t
pological excitation is conceptually very important to t
‘‘fractionalization’’ route to superconductivity. The supe
conductor obtained by condensing thechargeof an electron
~once having shed its Fermi statistics! is in the same phase a
the one obtained by condensing Cooper pairs of electron
particular, despite the condensation of a chargee boson, flux
quantization is in units ofhc/2e—this surprising result12,7

requires the presence of topological vison excitations in
fractionalized phase. Indeed, the visons bind to anhc/2e unit
of electromagnetic flux once the system becomes super
ducting.

Any complete theory of the cuprates must necessarily
attention to their layered quasi-two-dimensional~quasi-2D!
structure. Motivated by this, we consider the possible fr
tionalized phases in such a geometry. Interestingly,
qualitatively distinct kinds of fractionalized phases are p
sible. In one, the system behaves as a full three-dimensi
solid, and the fractions into which the electron decays
freely propagate in all three directions. In the other, the d
ferent layers decouple from each other—the fractions of
electron can now propagate freely within each layer but c
not do so in the direction perpendicular to the layers. A nu
ber of experiments suggest that this decoupled quas
fractionalized phase is the one more likely relevant to
cuprates.

Another important issue is the fate of the fractionalizati
at finite temperature.7 One normally associates fractionaliz
tion with a property of the spectrum of the system
Hamiltonian—it is therefore nota priori clear whether it has
any meaning at finite temperature. However, having cha
terized the fractionalized phase by itstopological order
~rather than by its spectrum! we are able to address this issu
For the quasi-2D fractionalized phase, the topological or
in fact does not survive at finite temperature, so that asharp
distinction between fractionalized and unfractionaliz
phases is only possible at zero temperature. Nevertheles
low temperature above the fractionalized phase, the syste
‘‘almost’’ topologically ordered. In the cuprates, we ha
suggested9 that the crossover towards theT50 fractionaliza-
tion occurs at a temperature comparable to the pseudo
temperature. As we will see, this may be exploited to pro
the hidden zero-temperature order in the system.~For the
fully three-dimensional fractionalized phase, on the ot
hand, the topological order survives up to a finite nonz
temperature.7!

If fractionalization occurs at all in the cuprates, it is mo
likely in the underdoped regime. This might appear to ra
serious problems for the fractionalization idea, since it
precisely in the heavily underdoped region at low tempe
ture that a variety of conventional broken symmetry sta
~Néel magnetism or charge and spin stripes! are observed.
Furthermore, this region tends to be very sensitive to dis
der effects. We argue that this is a nonissue. Theoretica
the topological order that characterizes fractionalization
happily coexist with Ne´el magnetism13 or stripes, or other
broken symmetry states. Moreover, it is unaffected by dis
der. Thus, the presence of a conventional broken symm
tells us nothing about whether or not the system is fracti
13452
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alized at zero temperature.If the electron is indeed fraction
alized in the underdoped cuprates, the conventional orde
states seen in that region are complications that distr
from the hidden zero-temperature topological order that
ultimately responsible for the superconductivity.

Historically, theoretical attempts to access fractionaliz
phases above one dimension have focused on ‘‘quantum
ordering’’ various states with conventional well-understo
broken symmetries, most frequently antiferromagnets
superconductors. This has led to a misconception that f
tionalizationrequiresthe close proximity to a ‘‘parent’’ con-
ventional broken symmetry state. This, however, is b
problematic and incorrect. Clearly there can be ‘‘quantu
disordered’’ magnets or superconductors which arenot frac-
tionalized. Moreover, ordered phases which are fraction
ized are certainly possible, at least in principle. As w
emphasize in this paper, the correct way to characterize
fractionalized phase is by specifying itstopological order.
However, the fractionalized phase does often contain in it
seed of broken symmetry, particularly in electronic system
For example, once the electron charge~or spin! has been
liberated from its Fermi statistics, a direct condensation le
naturally to superconductivity~or magnetism!. But note that
here the broken symmetry emerges from the
fractionalization—the latter being the higher energy ph
nomenon. For instance, if fractionalization occurs at all
the cuprates, the energy scale is presumably comparab
the pseudogap temperature9—and the superconductivity is a
emergent low-energy phenomenon. Thus it is more correc
view the fractionalized phase as the ‘‘parent’’ phase to
broken symmetry state—rather than the other way aroun

While the underdoped cuprates are possibly fraction
ized, the empirical evidence seems to suggest that w
heavily overdoped they are not. As we have detailed earli9

the quantum confinement transition where the fractions
the electron get glued back together might well account
the properties in the region between the underdoped
overdoped regimes. A complete theory of this novel quant
phase transition is unfortunately unavailable at present—
instead will briefly discuss some much simpler quantum c
finement transitions.

Most importantly, the theoretical understanding of fra
tionalization developed in this paper enables us to desc
an experimental setup which should enable a direct detec
of the topological order. As we shall see, the hallmark
fractionalization is the expulsion of visons—analogous to
Meissner effect being the hallmark of superconductivity. W
describe a way to prepare and detect a vison in the hole
cylindrical sample. If the ‘‘normal state’’ of the underdope
cuprates is fractionalized, and hence topologically order
the trapped vison will be unable to escape, and can be
tected at a later time. This signature of fractionalization
the ‘‘normal state’’ is directly analogous to fluxoid trappin
in a superconductor. Some of the results of this pap
mainly the proposal for the experiment described abo
were briefly presented in a recent short paper.14

In the rest of the paper, we elaborate on the ideas
results described above. The theoretical formulation we
to describe fractionalization is aZ2 gauge theory. While this
1-2
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FRACTIONALIZATION, TOPOLOGICAL ORDER, AND . . . PHYSICAL REVIEW B63 134521
is mathematically and physically closely related to seve
other formulations, it has several advantages. It works
rectly with the physical excitations in the fractionalize
phase. Moreover, the topological order characterizing
fractionalized phases is most simply discussed in theZ2
gauge theory framework. It also has the advantage tha
generalizes readily to a variety of relevant situations, such
layered systems or a system with broken spin rotation inv
ance.

II. FRACTIONALIZATION AND TOPOLOGICAL ORDER

A. Review of Z2 formulation

In our recent work7 we demonstrated that a general cla
of strongly interacting electron models could be recast in
form of aZ2 gauge theory, which then enabled us to prov
a reliable discussion of issues of electron fractionalization
particular, we demonstrated the possibility of obtaining fra
tionalized phases in two or higher spatial dimensions.
begin with a quick review of this formulation.

The action for theZ2 gauge theory is

S5Sc1Ss1SK1SB , ~1!

Sc52tc(̂
i j &

s i j ~bi* bj1c.c.!, ~2!

Ss52(̂
i j &

s i j ~ t i j
s f̄ ia f j a1t i j

D f i↑ f j↓1c.c!2(
i

f̄ ia f ia ,

~3!

SK52K(
h

)
h

s i j . ~4!

Here,bi
† creates a spinless, chargee bosonic excitation—the

chargon—andf i
† creates the spinon, a fermion carrying sp

1/2 but no charge. When created together, these two ex
tions comprise the electron. The fields i j is a gauge field tha
lives on the links of the space-time lattice~taken as cubic
when in 211 dimensions!, and takes on two possible value
s i j 561. The kinetic term for the gauge field,SK , is ex-
pressed in terms of plaquette products. Here,SB is a Berry’s
phase7 term which depends on the dopingx.

At a formal level, the action above reformulates a syst
of interacting charge-e, spin-1/2 electrons as a system
spinless, charge-e bosons~the chargons! and neutral, spin-
1/2 fermions ~the spinons! both of which are minimally
coupled to a fluctuatingZ2 gauge field. The physical conten
of any gauge field is in its vortex excitations that carry t
gauge flux. We are therefore led to consider vortices in
Z2 gauge field—dubbed the ‘‘vison.’’ Specifically, consid
the product of the gauge fields around an elementar
plaquette, which can take on two values, plus or minus o
When this product is negative, a vison excitation is pres
on that plaquette.

We may therefore regard the action in Eq.~1! above as a
reformulation of an interacting electron system as a theor
interacting chargons, spinons, and visons. At this stage,
is essentially nothing more than a change of variables on
13452
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original electronic system. However, this reformulation is
extremely useful starting point to discuss phases of the
tem where the electron is fractionalized. Both the charg
and spinons carry a unit ofZ2 gauge charge while the viso
carries a unit ofZ2 gauge flux. Thus, upon encircling a viso
the chargon and spinon each acquire a phase ofp. This
long-range interaction has crucial implications for the ph
ics.

There are two qualitatively different phases that are
scribed by theZ2 gauge theory action. In one, the visons a
gapped excitations. In such a phase, the electron splits
two independent excitations—the chargons and the spin
To see this simply, consider the limit when the vison gap
very large so that they may be safely ignored~i.e., K→`).
Thus, when the visons are absent, all the plaquette prod
of the Z2 gauge field equal plus one. One can therefore
s i j 51 on every link. In this case the chargon and spinon c
propagateindependently, and the electron isfractionalized.

The other qualitatively different kind of phase is obtain
if the visons are condensed. The long-range interaction
tween the visons and the chargons~or the spinons! frustrates
the motion of the latter. The result is that they are confin
together to form electrons~or other composite excitation
made out of electrons!. In such a phase, the electron is n
fractionalized. Further, once the vison is condensed, it lo
its legitimacy as an excitation in the system.

Thus the really crucial property of the fractionalize
phase is the presence of the gapped topological vison e
tations. The full excitation spectrum in the fractionalize
phase decomposes into different topological sectors.
fractionalized phase is therefore characterized by the em
gence of a topological quantum number which labels
spectrum of states. Topological excitations are also w
known to occur in states with a broken symmetry—for i
stance, vortices in superconductors. However, the topol
cal excitations in the fractionalized phase occur despite
absence of any obvious broken symmetry.

Nevertheless, the fractionalized phase contains in it
seed of broken symmetry. Once the electron is splinte
into the chargon and the spinon, its electric charge is
longer tied to its Fermi statistics. Instead, the charge is n
carried by the bosonic chargons. The chargons can now
rectly condense, leading to a superconducting state. Sur
ingly, this superconductor is in the same phase as that
tained by the condensation of Cooper pairs of electrons
particular, the superconductor has flux quantization in un
of hc/2e despite its description as a condensate of charge
chargons. This remarkable feature is due to the presenc
the topological excitations—the visons—in the fractionaliz
phase. Indeed, upon condensing the chargon to form the
perconductor, the vison also acquireshc/2e of electromag-
netic flux.

We also remark that the spinons of the fractionalized
sulator go over into the fermionic quasiparticles of the sup
conductor once the chargon is condensed. The action
scribing the spinons is identical to that of the usual BC
quasiparticles—in particular, the spinons are always pai
Thus, the spin physics of the fractionalized insulator is ide
tical to that of the superconductor that derives from it.
1-3
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T. SENTHIL AND MATTHEW P. A. FISHER PHYSICAL REVIEW B63 134521
In the rest of this section, we will develop a precise th
oretical characterization of the fractionalized phase using
notion of topological order.

B. Topological order in the pure gauge theory

We begin by considering the pure gauge theory in
absence of any matter coupling~i.e., coupling to the char-
gons or the spinons!. This is described by the action

SK52K(
h

)
h

s i j . ~5!

For concreteness, we specialize to a two-dimensional sp
square lattice, plus one time dimension. It will often also
convenient to consider the equivalent quantu
Hamiltonian15 in two spatial dimensions:

H52K(
h

)
h

s rr 8
z

2h (
^rr 8&

s rr 8
x . ~6!

Here r ,r 8 label the sites of the 2D square lattice a
s rr 8

z ,s rr 8
x are Pauli matrices that reside on the bonds of

lattice. The first term involves products over spat
plaquettes only. The second term is a ‘‘transverse field’’ t
provides quantum dynamics to the variabless rr 8

z . This term
generates the coupling along the temporal direction in
equivalent classical action above@Eq. 5!#.

It is well known15 that this pureZ2 gauge theory has two
phases. ForK small, there is a phase where static test char
that couple to the gauge field are confined. ForK large, on
the other hand, there is a different phase where such
charges are allowed to be deconfined. This distinction m
be quantified by the behavior of the ‘‘Wilson loop
correlator15—this decays exponentially with the area of t
loop in the smallK phase, but only with the perimeter in th
largeK phase.

A different, but equivalent, view of these two phases is
terms of the vison excitation i.e, the vortex of theZ2 gauge
field. In the perimeter law phase, the vison is a gapped e
tation. In the area law phase, on the other hand, the viso
condensed. This can be understood very explicitly by me
of a duality transformation15,16 to the global Ising model de
scribed by the Hamiltonian

H52h(
rr 8

v r
zv r 8

z
2K(

r
v r

x . ~7!

This global Ising model is defined on the lattice dual to t
original square lattice. Thev r

z ,v r
x are also Pauli matrices

The dual Ising spinv r
z has the physical interpretation of be

ing the vison creation operator.15,7 For smallK, the global
Ising model is in its ordered state, and the visons are th
fore condensed. For largeK, on the other hand, the globa
Ising model is in its disordered phase, and the visons
gapped.

The two phases of the gauge theory Hamiltonian in E
~6! may be distinguished in yet another way—this is throu
the notion of ‘‘topological order.’’ Consider the gauge theo
Hamiltonian on a manifold with a nontrivial topology. In th
13452
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deconfined~large K) phase, as we discuss at length belo
the ground state has a degeneracy~in the thermodynamic
limit ! which depends on the topology of the manifold. In t
confined phase, on the other hand, there is a unique gro
state independent of the topology of the manifold. This i
precise and, as we shall see, powerful distinction between
two phases. Such a distinction was originally pointed out
pure ~non-Abelian! gauge theories in pioneering work by
Hooft.17

This topological characterization of the phases of
gauge theory can be traced to the existence of symm
operations specific to the topology of the manifold. The
topological symmetries are preserved by the ground stat
the confined phase. In the deconfined phase, these topo
cal symmetries are spontaneously broken—this immedia
leads to the ground-state degeneracy on nontrivial manifo
Such a breaking of topological symmetries also character
the fractional quantum Hall fluids, as expounded in a be
tiful paper10 by Wen and Niu. Following the terminology
used in that context, we will refer to the breaking of th
topological symmetry as ‘‘topological order.’’

To fix these ideas, consider a cylindrical geometry. In
deconfined phase of the gauge theory, there are two de
erate ground states. They correspond to whether or n
vison has ‘‘threaded the hole of the cylinder’’~see Fig. 1!.
Deep within the deconfined phase, withK→`, the two cor-
responding gauge field configurations are very simple. S
ting all of the link fieldssz51 is clearly a ground state in
this limit, and corresponds to the absence of threaded vi
since the flux of theZ2 gauge field through any curveC that
encircles the cylinder,

F@C#5PCsL
z , ~8!

equals unity.~HereL labels the bonds that belong toC.! The
ground statewith a threaded vison can be obtained, for e
ample, by changing the sign ofsz on a column of horizontal
bonds that runs the length of the cylinder~see Fig. 2!—in
this stateF@C#521. Similar reasoning implies that on
torus there are four degenerate ground states correspon

FIG. 1. The two degenerate states in a cylinder. The right
has a vison threading the ‘‘hole.’’
1-4
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FRACTIONALIZATION, TOPOLOGICAL ORDER, AND . . . PHYSICAL REVIEW B63 134521
to the vison threading or not threading each of the two ho
In what follows, we will analyze the cylinder in several wa
to get a deep understanding of this phenomenon.

Assume that a vison is initially trapped in the hole of t
cylinder when the gauge theory is in its deconfining pha
We take thex axis of space to be along the length of t
cylinder and they axis to be along the circumference. Let th
length of the cylinder beLx and its circumferenceLy . For
the vison to tunnel out, theZ2 flux tube must penetrate th
cylinder in at least two places~in general some even num
ber!, and these two points of penetration must move ap
~see Fig. 3! until they drop out of the edge of the system. A
there is a finite energy cost for the vison to penetrate
sample in the deconfined phase, the amplitude for this p
cess will be exponentially small inLx . Thus the vison tun-
neling rate varies asG;e2cLx, which goes to zero asLx
→`. Thus, once trapped, a vison in the hole of the cylind
lives forever~in the thermodynamic limit!.

Consider the situation with finiteLx andLy . An operator
that adds~or removes! a vison from the hole can be readi
constructed as follows:

P5Pxs rW,rW1 ŷ
x , ~9!

FIG. 2. Changing the sign ofsz on all the dark bonds adds~or
removes! a vison from the hole of the cylinder.

FIG. 3. Vison tunneling out of the cylinder. The dashed li
represents theZ2 flux line inside the hole. The points of penetratio
are where the line becomes solid. It is assumed that there are
odic boundary conditions along they direction.
13452
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with rW5(x,y0). The operatorP changes the sign of all the
operatorss rW,rW1 ŷ

z that reside on the bonds~see Fig. 2! along
the y direction between some choseny slicesy0 andy011.
Consider now the flux of theZ2 gauge field through any
curve C that encircles the cylinder, as defined in Eq.~8!:
Clearly,P changes the sign of this flux. ThusP is an opera-
tor that adds or removes a vison from the hole of the cy
der.

It is straightforward to see thatP commutes with the
Hamiltonian Eq.~6! of the gauge theory. Thus, it is a sym
metry of the theory. Further, as it corresponds to the ope
tion of adding a vison through the hole, it is a topologic
symmetry. Now consider the limitLx→`. As argued earlier,
in the deconfined phase a vison that is trapped in the h
stays there forever. Consider the ground state with a vi
trapped in the hole. Upon acting on this state with the ope
tor P, it becomes the ground state in the sector with no vis
trapped. Thus, the ground state is not invariant under
action of the operatorP. The topological symmetry has bee
broken spontaneously. Note that the ground states in the
sectors~with or without a vison! are guaranteed to have ex
actly the same energy asP commutes with the Hamiltonian
Thus, the gauge theory in it’s deconfining phase has
degenerate ground states on the cylinder.

Further insight into the ground-state degeneracy and
broken topological symmetry is obtained by the followin
considerations. Imagine changing the value ofK to someKb
along all plaquettes at somey slice, say,y5y0. Assume that
the gauge theory in the bulk is in its deconfining phase~i.e.,
the bulk value ofK is very large!. In the limit thatK in the
bulk is `, there can be no gauge flux penetrating the bulk
the system. We may then setsz51 for all bonds except
those along the ‘‘cut.’’ The remaining degrees of freedo
live on the cut~the dark bonds in Fig. 2!. The Hamiltonian
describing them is clearly just a one dimensional transve
field Ising model:

H52Kb(
x

sx
zsx11

z 2h(
x

sx
x , ~10!

wheresx
z is theZ2 gauge field on the bond at sitex along the

cut. For smallKb , this Ising model is in its disordered phas
The ground state is therefore unique. With increasingKb this
edge global Ising model undergoes a phase transition to
ordered state witĥ sx

z&Þ0. The ground state is therefor
twofold degenerate. The two degenerate ground states c
spond precisely to whether or not a vison is trapped in
hole of the cylinder. This can be seen in several ways—
instance, by noting that the operatorP introduced above is
precisely the global spin flip operator of the edge Isi
model. Further, the domain walls in the ordered state of
edge Ising model correspond to plaquettes where a vison
penetrated the cylinder. In the ordered phase, such dom
walls, and hence the visons, cost finite energy. In the dis
dered state, the domain walls have proliferated—this may
interpreted as a proliferation and condensation of vis
along the edge.
ri-
1-5
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The phase transition discussed above is thus an edge
finement transition. The topology of the manifold in whic
the deconfined phase ‘‘resides’’ changes from a rectangl
a cylinder as the couplingKb is increased. We will discus
such topology-changing phase transitions further in Sec.

Yet another route to understanding the topologi
ground-state degeneracy of the deconfined phase is to
ploy the duality transformation of the full gauge theory to t
global Ising model as discussed in the beginning of this s
section. For this purpose, it is convenient to consider an
nulus~see Fig. 4! which is topologically equivalent to a cyl
inder. This can be obtained from the gauge theory define
infinite two-dimensional space by simply setting some of
plaquette strengths to zero. First, imagine settingK50 for a
single plaquette in the center. This creates a ‘‘hole’’ in t
system. Similarly, at the outer boundary of the sample, ag
setK50 for all plaquettes. This captures the finiteness of
sample. For concreteness, we consider a circular disk o
dius R.

Now we employ the duality transformation to get a re
resentation of the system as a global Ising model. The ho
the center of the sample goes over into a single site of
dual lattice. The restriction thatK50 at the hole then implies
that the transverse field at this site on the dual spin is exa
zero. Similarly, at the outer boundary of the sample,K50
implies that the transverse field on the dual Ising spins o
side the disk radius is zero. This implies that these dual s
outside the disk radius are all lined up together.18

Before continuing, it is necessary to take note of one ot
subtle feature of the duality transformation. Two states of
dual global Ising model that only differ by an overall sp
flip are not to be counted as two distinct states of the ga
theory ~as may be seen from, for instance, the treatmen
the duality transformation in Ref. 7!. This can be taken car
of simply by fixing the direction of the frozen spins outsid
the disk radius to be, say, up~see Fig. 5!.

We may now discuss the ground-state degeneracies o
gauge theory using the dual global Ising model. First c
sider the confining phase of the gauge theory. This is
ferromagnetic phase of the dual global Ising model. The
rection of the boundary spins fixes the direction of the fer
magnetic ordering. Thus, all the spins in the interior, inclu
ing the one corresponding to the hole, point in the
direction. There is no ground-state degeneracy.

FIG. 4. TheZ2 gauge theory on an annulus with a hole at t
center. This corresponds to settingK50 for the ‘‘hole’’ plaquette
and for all the plaquettes outside the disk radius.
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Now consider the deconfining phase. This correspond
the paramagnetic phase of the dual global Ising model.
dual spin correlations decay exponentially. Thus the order
of the boundary spins has little influence on the ‘‘hole’’ sp
at the center. The latter is therefore essentially free to p
in any direction. This then corresponds to the expected
degenerate ground states. To make this more precise,
sider modeling the bulk system by a continuum scalar fi
theory with a Gaussian action,

S5E dtd2x@~¹f!21~]tf!21m2f2#. ~11!

This Gaussian theory is expected to correctly describe
physics of the paramagnetic phase of the global Ising mo
The coupling to the ‘‘hole’’ spin is through an Ising ex
change term,

Shole5E dtvzf~0W ,t!. ~12!

Here vz represents the ‘‘hole’’ spin and we have taken t
location of the hole to be at the origin. Note that the ‘‘hole
spin has no dynamics—this is due to the absence of
transverse field on that spin in the lattice model.

The action above must be supplemented with a bound
condition arising from the fixed direction of the spins outsi
the disk radius. This is simply the condition that

f~xW ,t!5f0 , ~13!

for uxW u5R with f0 a positive constant.
As the fieldf is massive, it can be safely integrated out

get an effective action forvz. The result for largeR is, sim-
ply,

Se f f52pRE dtx~R!vz, ~14!

wherex(R) is the static susceptibility of the Ising parama
net. This is readily computed to be

FIG. 5. The dual global Ising model on the annulus. The Is
spins outside the disk radius are frozen in the up direction. T
Ising spin in the hole has no transverse field on it.
1-6
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x~R!5E d2q

4p2

eiqW •RW

q21m2
~15!

5
1

2p
K0~mR! ~16!

;A 1

8pmR
e2mR, ~17!

where the last expression is valid forR..1/m. The effec-
tive action above for the ‘‘hole’’ spin may be readily con
verted into an effective Hamiltonian

He f f5Gvz, ~18!

with G;f0(AR/m)e2mR. Thus there are two low-energ
states with a splitting;ARe2mR→0 asR→`.

For large but finiteR, the energy eigenstates are eige
states ofvz. But if the system is prepared in one eigenstate
vx, it takes a very long time~of order 1/G) to tunnel to the
other eigenstate.

Physically, the operatorvz adds or removes a vison from
the hole of the annulus. The two eigenstates ofvx correspond
to a vison being either present or absent from the hole. In
confined phase, the ‘‘hole’’ spin is frozen in the up directio
The vison is therefore condensed in the hole, as it is in
rest of the sample. In the deconfined phase, a trapped v
~the ‘‘hole’’ spin in an eigenstate ofvx) stays in the hole for
a time that diverges exponentially as the sample radiuR
goes to infinity.

C. Effect of matter fields

In the discussion above, we considered the phases o
pureZ2 gauge theory and the topological distinction betwe
them. We now put back the coupling to the chargons a
spinon fields. In the presence of such ‘‘matter’’ couplin
there continues to be a sharp distinction between the de
fined and confined phases. However, as is well known,15 the
behavior of the Wilson loop is no longer sufficient to disti
guish the two phases once matter coupling is included.
we will see below, there is nevertheless a topological disti
tion between the two phases.19

Consider the properties of the system in a cylindrical
ometry. Assume that the system is in its deconfined ph
This implies that the vison is a gapped excitation. Con
quently, a vison, once trapped in the hole of the cylind
will stay there for a long time~of order ecLx) as argued
previously. In the state with no vison threading the hole
the cylinder, the chargons and spinons are subject to peri
boundary conditions on encircling the cylinder. If, on t
other hand, a single vison threads the cylinder, the charg
and spinons are subject to antiperiodic boundary conditio
This difference in the boundary conditions leads to aslight
difference between the energies of the two states~with or
without a vison threading the hole!. However, this energy
differencevanishesin the thermodynamic limit. Thus, th
ground state is twofold degenerate in the thermodyna
limit.
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To put some meat into these observations, we restrict
tention to the ground states in the two topological sect
with or without a vison in the hole, and denote these asu↑&
and u↓&, respectively. The Hamiltonian when projected
this subspace may be written

Hpro j5Gtx1htz, ~19!

whereu↑& andu↓& are the two eigenstates of the Pauli mat
tz. Clearly, the Pauli matrixtx is the operator20 that adds or
removes a vison from the hole. The first term therefore c
responds to the tunneling of the vison, with tunneling ra
G;e2cLx as established in the previous subsection. The te
proportional totz comes from the difference in energy b
tween periodic and antiperiodic boundary conditions for
chargons and spinons. The dependence of the splittingh on
the dimensions of the system is determined by the prope
of the spectrum of the chargons and the spinons. In the
sulating phases of interest, the chargon is always gappe
the spinon is also gapped, then it is easily seen thah

;e2 c̃Ly. Note that this splitting vanishes exponentially in th
cylinder circumferencewhile the vison tunneling rate van
ishes exponentially in the cylinderlength. In a fractionalized
phase with linearly dispersing gapless spinons~as happens in
the nodal liquid or thed-RVB state!, the splitting vanishes
only ash;LxLy /Ly

3 . The inverse dependence on the line
system size may be guessed by scaling considerations
deed the low-energy theory is simply a Dirac theory for t
nodal spinons. This theory is critical with a dynamic critic
exponentz51. Consequently, the energyh vanishes in-
versely with the linear system size. This argument may a
be verified by an explicit tedious computation21 on a repre-
sentative lattice model.

The projected Hamiltonian has two eigenvalues

E656Ah21G2. ~20!

Clearly, the splitting between these two levels goes to zer
the thermodynamic limit leading to two degenerate grou
states.

It is important to note that the termhtz which arises due
to the presence of matter coupling explicitly breaks the
pological symmetry discussed in the previous subsection.
deed, in the restricted space above, the topological symm
is implemented by the operatortx. This no longer commutes
with the Hamiltonian when matter fields are present. Ho
ever, the commutator goes to zero as the system size go
infinity. Thus, we may view the operation of threading
vison through the hole as becoming a good~topological!
symmetry in the thermodynamic limit, which is then spon
neously broken. While this is, in principle, a correct point
view, it is not entirely satisfying.

The more crucial point to note is that there are two d
tinct topological sectors in the cylinder~with or without a
vison! in the deconfined phase even in the presence of
chargons and spinons. This is simply the statement th
trapped vison stays there forever in the deconfined phas
the confined phases, on the other hand, a trapped viso
absorbed by the vison condensate, and is very quickly l
Therefore, there is no topological quantum number label
1-7
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T. SENTHIL AND MATTHEW P. A. FISHER PHYSICAL REVIEW B63 134521
the states~other than those associated with any conventio
broken symmetry that may be present!.

It is also useful to consider the system in an annulus
ometry with a finite-sized hole at the center. Here again
the deconfined phase, a vison that is trapped in the hole s
there forever~when the outer radius of the annulus goes
infinity!. However, now there is a finite energy differen
between the states with and without a trapped vison du
the change in the boundary conditions on the chargons
spinons upon encircling the hole. Thus the inability of t
trapped vison to escape is really the hallmark of the fracti
alized phase. The experiment proposed in Ref. 14 that
elaborate on in Sec. VIII probes precisely this property.

Before concluding this section, we note that a groun
state degeneracy of 4 on a torus was suggested22 to exist for
certain states described by specific RVB wave functions.
same result was shown4 to obtain in the phases of frustrate
spin models that show fractionalization. In these fraction
ized phases, there are neutral spin-1/2 excitations that h
Bosestatistics. Evidently, in this case, fractionalization h
liberated the spin from the Fermi statistics of the electr
Despite the similarity in the ground-state degeneracy,
topological order that characterizes this phase isdistinct
from that of the phases of primary interest in this paper. T
may be seen by usinggedankenflux-trapping experiments o
the kind discussed in Ref. 14~see also Ref. 11!.

III. LAYERED SYSTEMS

Among the many unusual properties of the cuprate m
rials is the stark difference between the in-plane andc-axis
transport. Both at optimally doped and in the slightly und
doped regime, the normal state often exhibits ‘‘metallic’’
plane transport—with the resistance dropping up
cooling—which coexists with insulatingc-axis transport. As
emphasized by Anderson,23 this behavior is difficult to rec-
oncile with a conventional Fermi liquid picture of the norm
state, particularly in the low-temperature limit~accessed by
suppressing the superconductivity with strong field! where
in-plane coherence of Landau quasiparticles would be
pected to eventually lead to coherentc-axis motion as well.
Motivated by this puzzling behavior, we consider in this se
tion issues of fractionalization in an anisotropic layered s
tem. Quite strikingly, we argue that two distinct fractiona
ized phases are possible—one which exhibits deconfinem
of spinons and chargons in all three spatial directions,
another quasi-two-dimensional fractionalized phase in wh
the spinons and chargons are deconfined within each l
but cannot propagate coherently between layers. In this
tion we restrict attention to zero temperature, turning brie
to the effects of thermal fluctuations in Sec. IV.

For simplicity, we will follow the strategy adopted in Se
II, and initially consider the pureZ2 gauge theory—
appropriate to the layered geometry—before incorpora
the spinons and chargons into the theory. To this end, c
sider the Hamiltonian for aZ2 gauge theory defined on a 3
cubic lattice appropriate to an anisotropic layered system
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H52Kxy(
Pxy

)
Pxy

s rr 8
z

2K'(
Pmz

)
Pmz

s rr 8
z

2h (
^rr 8&

s rr 8
x .

~21!

Here the first term is a sum over all plaquettes in thex-y
plane~normals along thez axis! and the second term is a su
over all other plaquettes~normals lying in thex-y plane, with
m5x,y). For simplicity we have taken the transverse fie
strength to be the same for all links of the 3D spatial latti

As defined, this Hamiltonian depends on just two dime
sionless parametersKxy and K' measured in units of the
transverse fieldh. The ground-state phase diagram in th
two-dimensional space of couplings can be readily infer
by considering various simplifying limits. For exampl
whenK'50 the trace oversx on the interlayer links can be
trivially performed, and the model reduces to a set of dec
pled ~211!-dimensional gauge theories, one for each lay
Then, each layer has two phases—a confined phase for s
Kxy and a deconfined phase for largeKxy , as depicted sche
matically in Fig. 6. Away from the intervening transition
one expects the distinction between these two phases to
vive for small nonzeroK' . In both phases, vison loops pro
liferate betweenthe layers, so that the spinons and chargo
which carry theZ2 charge cannot move coherently along t
c axis. For smallKxy the vison loops can also freely pen
etrate the layers, so that spinons and chargons are confin
all spatial directions. But the phase with largeKxy ~and small
K') is most unsual: Since the interlayer vison loops are
pelled from the layers, the in-plane motion of the spino
and chargons is coherent, but they are nevertheless con
along thec axis.

To see how this unusual quasi-two-dimensional dec
fined phase survives with small nonzeroK' , we consider
other limiting regimes of the phase diagram. Along the dia
onal with K'5Kxy[K, the Z2 gauge theory Hamiltonian
describes an isotropic three-dimensional situation wh
phase diagram is well understood—there is a first-order tr
sition atK5Kc of order 1 separating the fully confined pha

FIG. 6. Schematic phase diagram of theZ2 gauge theory in a
layered geometry. The solid line is a first-order phase transition
1-8
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FRACTIONALIZATION, TOPOLOGICAL ORDER, AND . . . PHYSICAL REVIEW B63 134521
at smallK from a three-dimensional deconfined phase. In
deconfined phase all large vison loops are expelled, and
spinons and chargons can propagate coherently in all t
directions.

Now consider the limit of infinitely largeKxy . When
Kxy5`, the Z2 flux is forbidden from penetrating thexy
plaquettes~thereby restricting the vison loops to lie betwe
successive layers!. It is therefore possible to choose a gau
in which sz51 on all links lying in thexy plane. The system
then decouples into a set of 2D subsystems, which re
between adjacent layers. Consider specifically the Ham
tonian for a single such 2D subsystem, which depends on
gauge fields residing on the interlayer links which can
labeled conveniently by a 2D square lattice of sites deno
r:

H2d52K' (
^rr8&

s r
zs r8

z
2h(

r
s r

x . ~22!

Notice that the plaquette product term has reduced to a n
neighbor Ising coupling in this subsystem Hamiltonian.
deed,H2d is precisely a 2D transverse field quantum Isi
model, which exhibits two phases as the ratioK' /h is var-
ied. The two phases are separated by a~211!-dimensional
Ising phase transition. It is clear that the interlayer vis
loops of the original anisotropic gauge theory are sim
domain walls separating regions with positive and nega
Ising ordering,sz561. In the ferromagnetically ordere
phase of the transverse field Ising model with largeK' the
interfacial energy is nonvanishing. It follows that large inte
layer vison loops are excluded—this is the 3D deconfin
phase as depicted in Fig. 6. But for smallK' in the paramag-
netic phase of the Ising model, the interfacial energy v
ishes. In this case, the interlayer vison loops unbind
proliferate. This is the anisotropic quasi-2D deconfin
phase~discussed above at largeKxy andK'→0). For large
but finite Kxy both deconfined phases will continue to exi
Piecing together the above results, one arrives at the
phase diagram for the anisotropic layeredZ2 gauge theory,
as drawn schematically in Fig. 6.

In passing we note that phases very similar to the dec
pled layered phase discussed above have been conside
other contexts in the literature. For a U~1! lattice gauge
theory, precisely such a phase was argued to exist when
spatial dimension of each layer is at least 3 in Ref. 24. I
different context, recent work25 has examined the stability o
‘‘decoupled Luttinger liquid’’ phases in quasi-one
dimensional systems. In the context of cuprate physics,
possibility of such decoupling of the layers has been emp
sized by Anderson.23

It is illuminating to briefly consider the topological orde
ing that characterizes the three phases. In the 3D decon
phase, since the vison loops are fully expelled, one expec
twofold ground-state degeneracy when periodic bound
conditions are imposed in any one of the three spatial di
tions, say, along thec axis ~with open boundary condition
along the other two directions!. As discussed for the 2D
gauge theory in Sec. II above, in the thermodynamic lim
the two states correspond to the presence or absence
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vison loop threading the ‘‘hole’’ in the cylinder. When th
transverse linear dimensionL is finite, there will be a small
splitting of order exp(2cL2), due to the tunneling of an in
terlayer vison loop. More generally, in ad-dimensional de-
confined phase, one expects a tunnel splitting varying
exp(2cLd21). As emphasized by Wen,5,10 the power in the
exponent is particular to topological ordering, and should
contrasted to the exp(2cLd) splitting between the two state
of a model with a local order parameter such as
d-dimensional transverse field quantum Ising model. Wh
periodic boundary conditions are taken along all three spa
dimensions, the ground-state degeneracy in the 3D de
fined phase is of course 2358.

In the confined phase of the 3D gauge theory the gro
state is uniquely independent of the boundary conditio
indicative of the absence of any topological ordering. But
topological ordering that characterizes the quasi-2D dec
fined phase is somewhat subtle. With periodic boundary c
ditions only along thec axis the ground state is unique, du
to the proliferation and condensation of interlayer visons
this phase. This can also be understood more formally
follows: Consider the operationsz→2sz, which changes
the sign of all the interlayer bonds between~any! two adja-
cent layers. This is the precise equivalent for thec direction
of the operatorP introduced in Eq.~9! of Sec. II, and clearly
changes the sign of theZ2 flux enclosed by any curve tha
encircles the cylinder. Thus this operation adds or remove
vison from the hole of the cylinder. As before, it commut
with the full Hamiltonian. But notice that in theKxy→`
limit, this transformation is simply a global Ising spin flip fo
the 2D interlayer Hamiltonian given in Eq.~22!. In the
quasi-2D deconfined phase, the interlayer quantum Is
models are disordered. This implies that the ground stat
invariant under the operation of threading a vison throu
the hole of the cylinder, and is hence unique.

Next consider the topological order in the quasi-2D d
confined phase when periodic boundary conditions are
posed in the plane, say, just along they direction. To under-
stand the resulting ground-state degeneracy, it is simples
first consider a model withtwo layers only, which can be
conveniently visualized as two concentric cylinders w
y-periodic boundary conditions around the cylinder. Mor
over, we specialize to theKxy→` limit which precludes
visons loops from penetrating either layer. One then expe
that there should be 2254 low-energy states which belong t
topologically distinct sectors. These are distinguished by
presence or absence of a vison loop threading through
bore of either concentric cylindrical shell. To establish th
these four states are in fact degenerate~in the thermody-
namic limit! first note that the symmetry operation whic
adds a vison to both shells simultaneously@implemented in
each layer as in Eq.~9! of Sec. II#, commutes with the two-
layer gauge theory Hamiltonian. This implies that these fo
states are in any case pairwise degenerate. It remains t
tablish, though, that the state with no visons has the sa
energy as the state in which~only! one of the two cylindrical
shells has a threading vison. To see this, note that the op
tion which threads a vison through one layer only is equi
lent ~at Kxy5`) to changing fromy-periodic to antiperiodic
1-9
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T. SENTHIL AND MATTHEW P. A. FISHER PHYSICAL REVIEW B63 134521
boundary conditions in the interlayer 2D quantum Isi
model of Eq.~22!. Since this Ising model is in its disordere
phase in the quasi-2D deconfined phase, the energy ch
will clearly be exponentially small in the cylinder diamet
@exp(2cLy)#. This vanishes in the thermodynamic lim
thereby establishing the degeneracy of all four states. F
layered system withN layers, the ground-state degenera
with y-periodic boundary conditions in the quasi-2D deco
fined phase is simply 2N.

Upon inclusion of the spinon and chargon matter fie
which carryZ2 charge, the nature of the topological orderi
effects the interlayer and intralayer confinement. In the
deconfined phase the chargons and spinons can prop
coherently in all three spatial directions. As before, with p
riodic boundary conditions, they are sensitive to the prese
or absence of visons trapped in the holes. In the confi
phase free spinons and chargons cannot exist. But in
quasi-2D deconfined phase, although the spinons and c
gons can propagate coherently in plane, they are confine
reside in one layer only. The interlayerc-axis transport of the
chargons and spinons is fully incoherent. In this quasi-
phase it is possible to integrate out the gauge fields resi
on the vertical links~trivially so whenK'→0). At second
order in the ratio of the interlayer spinon and chargon h
ping amplitudes to the transverse field,h, one generates in
terlayer electron and pair hopping terms as well as inter-la
magnetic exchange interactions. As the chargons ca
propagate along thec axis, one would expect qualitativel
different interlayer and intralayer charge transport at fin
temperatures in this novel quasi-2D fractionalized phase.
now turn to a brief discussion of finite-temperature effect

IV. FINITE-TEMPERATURE EFFECTS

In previous sections, we have discussed a precise the
ical characterization of quantum phases~in d>2) where the
electron is fractionalized. There is a sharp distinction
tween fractionalized and unfractionalized phases at zero t
perature. Does this sharp distinction survive at finite nonz
temperatures? One normally thinks of fractionalization
terms of the spectrum of excitations of the Hamiltonian d
scribing the system. It is then not clear what meaning it
at finite temperature. However, characterizing the fraction
ized phase by its topological order enables us to address
issue.

We again start by considering the pureZ2 gauge theory in
two spatial dimensions. As with conventional broken sy
metries, thermal fluctuations play an important role in sy
metry restoration when a topological symmetry is sponta
ously broken. Moreover, broken topological symmetries
likewise less robust against thermal fluctuations in low
mensions. Since the visons are~gapped! pointlike excitations
in the topologically ordered 2D deconfined phase with afi-
nite energy gap, there will be a nonvanishing density of
sons created thermally at any nonzero temperature. This
immediately destroy the topological order. The situation
loosely analogous to the quantum Ising model in 1D, wh
breaks the Ising spin-flip symmetry only exactly at zero te
perature. The topological symmetry restoration due to
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thermally excited visons is perhaps easiest to understan
the 2D annulus geometry. There, at zero temperature the
topologically ordered sectors correspond to the presenc
absence of a vison trapped in the hole of the annu
Clearly, at finite temperature a vison trapped in the hole
the annulus can be thermally excited into the bulk, and
then leave the sample at the outer edge of the annulus—
process interconnects the twoT50 states with broken topo
logical symmetry.

In the presence of chargon and spinon matter fields
energy cost of a vison is still finite, so quite generally the 2
topological order will be destroyed atTÞ0. Nevertheless, as
discussed in Ref. 14 and Sec. VIII, by performing measu
ments at ‘‘short’’ enough time scales it should be possible
detect the presence of theT50 topological order at tempera
tures well below the vison gap.

Remarkably, the topological order in the deconfined ph
in three spatial dimensions survives thermal fluctuatio
intact.7 Since the gapped vison excitations areloops in this
case, they are much more difficult to thermally excite.
deed, the energy cost of a loop grows linearly with its leng
L, as does the entropy associated with the loop. Thus, at
enough temperatures the free energy tension of the loop
be positive, effectively suppressing long unbound loo
Again, this reasoning remains valid in the presence of c
pling to matter fields. As the temperature is raised eventu
the vison loop entropy will dominate, and the system w
undergo a true finite-temperature phase transition atT5Tc
Þ0 that restores the topological symmetry. ForT,Tc in this
3D topologically ordered phase, the free energy of twohc/2e
magnetic monopole ‘‘test’’ charges will grow linearly wit
their separation—hc/2e magnetic monopoles are thus co
fined. However, anevennumber of magnetic monopoles—
with flux an integer multiple ofhc/e—is not a source of
vison flux and so costs only a finite energy. Thus, it is onl
Z2 magnetic charge which is confined in the 3D topolo
cally ordered state. This should be contrasted with the si
tion in a 3D superconductor, which confines magnetic mo
poles with any magnetic charge—a U~1! magnetic
confinement.

Finally, we address the effects of thermal fluctuations
the quasi-2D deconfined phase that can occur in a laye
system~such as the cuprates!. Here, the topological order is
due to the suppression of vison loops penetrating through
layers. But the energy cost for a vison loop to pass throug
layer is finite, and so will occur with nonvanishing density
any finite temperature. Thus, strictly speaking, quasi-2D
pological order in a layered system will be destroyed at a
non-zero temperature, just as in the 2D case.

In Ref. 14, we described in detail an experimental sig
ture of this quasi-2D topological order, which should allo
for its detection if present in the underdoped cuprates.
elaborate on this further in Sec. VIII. The presence ofT
50 quasi-2D topological order should also lead to drama
differences between the low-temperature in-plane andc-axis
transports.

V. COEXISTENCE WITH OTHER BROKEN SYMMETRIES

If fractionalization of the electron occurs at all in the c
prates, it does so in the underdoped portion of the ph
1-10
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diagram. Furthermore, the fractionalized phase is pres
ably of the quasi-2D kind discussed at length in Sec. III. T
implies that the associated topological order, strictly spe
ing, exists only at zero temperature. On the other hand,
pirically, it is precisely in the heavily underdoped region
low temperature that a variety of conventional broken sy
metry states are observed. The undoped cuprates show´el
antiferromagnetism. At intermediate doping, charge and s
stripe instabilities have been reported. Furthermore, this
gion is often also thought to be disorder dominated. Th
observations raise the following conceptual questions: C
fractionalization coexist with conventional broken symm
try? Is fractionalization possible in a disordered syste
Armed with the precise theoretical characterization of
fractionalized phase expounded in this paper, we now
cuss the former question. The effect of disorder is conside
in the following section.

Once the electron has splintered into the chargons and
spinons, various kinds of charge ordering determined by
strong Coulomb interactions between the chargons are
tainly possible. Away from a doping level that is comme
surate with the underlying lattice, such a charge-ordered
sulating state will break lattice translational and rotatio
symmetries. Thus, it is obvious that fractionalization can
exist with charge order.

A more interesting issue, first raised by Balentset al.,6 is
the possibility of the coexistence of fractionalization and a
tiferromagnetism or other kinds of magnetic order. In pr
ciple, this can be induced by interactions between the gap
spinons in the nodal liquid or d-RVB state. If such a fra
tionalized antiferromagnet~dubbed AF* ) does exist, what is
its precise distinction with the conventional Ne´el antiferro-
magnet~dubbed AF!? Consider, in particular, the situatio
where the antiferromagnetic ordering wave vector conne
two antipodal nodal points of the spinons. Then, in the pr
ence of Ne´el ordering, the spinons acquire an energy gap
this case, there would seem to be no distinction between
and AF* at low energies. Indeed, both phases would h
gapless spin-wave excitations with a linear dispersion.

The distinction is actually topological—the phase AF*
has a topological order~and the related vison excitations!
that is not shared by the phase AF. This may again be s
by asking for the ground-state degeneracy on, say, a toru
size L3L. ~For simplicity, we specialize to two spatial d
mensions.! Due to the long-range Ne´el order, there will be
the usual tower of states26 scaling as

ES5
lS~S11!

L2
, ~23!

whereS is the total spin of the state, andl is a constant.
These states should exist in both AF and AF* . But the phase
AF* must have an additional fourfold degeneracy cor
sponding to trapping or not trapping a vison in each hole
the torus. Once a vison is trapped in a hole of the torus
tunnels out at a rateG;e2cL. The presence of a vison in th
hole does not affect the magnons at any energy~as they are
created by operators bilinear in the spinons!, but it does af-
fect the boundary conditions of the gapped spinons. T
13452
-
s
k-

-
t
-
e
in
e-
e
n

-
?
e
s-
d

he
e
r-

-
n-
l
-

-
-
ss

-

ts
-

n
F
e

en
of

-
f
it

is

results in a differenceh;e2 c̃L between the energies of state
with and without a vison trapped in a hole. Thus, as e
plained in Sec. II, there are four states with a splitting th
vanishesexponentiallywith L. This is to be contrasted with
the tower of states above which approach zero as 1/L2. Fur-
thermore, all these four states will haveS50.

As noted above, the heavily underdoped cuprates exh
several kinds of conventional broken symmetry—includi
the Néel ordering at zero doping, and charge and spin stri
at finite doping. The discussion above shows that it is th
retically possible that the fractionalization and the associa
topological order coexist with these coventional broken sy
metries. This is conceptually very important—the fraction
ization of the electron provides a direct route to superc
ductivity that does not invoke ideas of pairing. If the heav
underdoped cuprates are fractionalized, then the Ne´el antifer-
romagnetism and the striping, while interesting phenome
are side issues not directly related to the origin of the sup
conductivity.

VI. DISORDER

One of the remarkable aspects of superconductivity is
relative insensitivity of the Meissner effect to microscop
details, such as the symmetry of the underlying crystal str
ture or the presence of impurities and defects. Provided
superfluid density is nonvanishing, expulsion of magne
flux ~and of vorticity! persists. As we now discuss, the top
logical order that characterizes a fractionalized phase is l
wise insensitive to impurity scattering. Since the essence
fractionalization is the expulsion of topological visons, ju
as the essence of superconductivity is the expulsion of v
ticity, this insensitivity to dirt is perhaps not surprising.

We focus our discussion on the deconfined phase in
spatial dimensions. To address the issue of the stability
topological order to dirt we consider the pureZ2 gauge
theory in Eq.~5!, since coupling in the chargons and spino
will not change the essential energetics of the visons. I
spatially inhomogeneous system with impurities present,
coupling constantsK andh in theZ2 gauge Hamiltonian will
vary randomly. The dual global Ising model in Eq.~7! like-
wise becomes random—a two-dimensional transverse fi
quantum Ising model with quenched random bond streng
Upon inclusion of a doping-dependent Berry’s phase term
the gauge theory, the Ising bond strengths can be nega
which leads to frustration. With one electron per site the d
global Ising model is actually fully frustrated, and with ra
domness present will effectively be a two-dimensional qu
tum Ising spin glass.27 But recall that the deconfined phas
actually corresponds to theparamagneticphase of the dua
global Ising model—the phase in which the visons~the Ising
spins! are gapped out rather than condensed. The Ising p
magnetic phase is clearly stable in the presence of ran
bonds. Frustration from the negative Ising bonds will lik
wise not destroy the paramagnet, and might in fact actu
enhance it’s stability. As mentioned above, inclusion of m
ter couplings will not modify this. We thereby establish th
important conclusion: Topological order that characteriz
electron fractionalization in two dimensions is robust a
1-11
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survives in the presence of impurity scattering. The 3D a
quasi-2D deconfined phases considered in earlier section
likewise stable to dirt. This fact is critical when one cons
ers searching for signatures of topological order in the v
underdoped cuprates, which are often riddled with defe
and charge inhomogeneities~e.g., stripes!.

VII. TOPOLOGY-CHANGING PHASE TRANSITIONS

In recent work we have suggested that the unus
normal-state properties of theoptimally doped cuprates
might possibly be due to a direct quantum phase transi
between ad-wave superconductor and a Fermi liquid. A
discussed in Ref. 9, this strong coupling phase transi
should be thought of as a ‘‘quantum confinement criti
point.’’ On the deconfined side of the transition the electr
fractionalizes into chargons and spinons, and a subseq
condensation of the bosonic chargon leads to supercon
tivity. At the quantum critical point the chargons and spino
become confined together recovering the electron, and
enters a Fermi liquid phase. Unfortunately, the critical pro
erties of this most interesting confinement transition are v
difficult to access. In this section we revisit the two mu
simpler quantum confinement transitions mentioned in S
II and III, and briefly address their critical properties. Sin
topological order present in the fractionalized phase dis
pears upon undergoing a confinement transition, these ca
thought of as ‘‘topology-changing’’ phase transitions.

A. Two dimensions

Perhaps the simplest possible topology-changing ph
transition is the one explored briefly in Sec. II. For a 2
cylindrical sample in a deconfined phase with a ‘‘cut’’
weakened bonds running parallel to the axis of the cylind
there are two phases:~i! a topologically ordered phase with
twofold degenerate ground state when the bonds along
cut are strong and~ii ! a phase with a unique ground state a
no topological order when the bonds are weak. In the la
phase, the chargons and spinons cannot propagate cohe
across the cut, and are thus deconfined on a topologic
trivial manifold ~the 2D plane!, in contrast to the former cas
where the chargons and spinons can be taken coher
around the cylinder.

As detailed in Sec. II, for the pureZ2 gauge theory which
is deep within the deconfined phase, the effective 1D the
across the cut is simply the 1D transverse field quan
Ising model. The quantum confinement transition cor
sponds to the ferromagnetic to paramagnetic transition in
Ising model, and is in the universality class of theD51
11 dimensional classical Ising model.

In the presence ofgappedchargon and spinon matte
fields one does not expect the universality class of this tr
sition to be modified. But more interesting behavior becom
possible in a ‘‘nodal liquid’’ ~or d-wave RVB! phase in
which the deconfined spinons are gapless at the four n
points. In this case one can readily write down an effect
field theory that should describe the critical properties of t
boundary confinement transition, by coupling the spin of
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~111!-dimensional quantum Ising model to the spinon ho
ping across the cut. Schematically, the effective act
should take the form

S5E dxdydt@Lspinon1LIsing1Lint#, ~24!

with a 211 Dirac form for the spinons,28

Lspinon5Q~y!c1
†]c11Q~2y!c2

†]c2 , ~25!

wherec1 and c2 are nodal spinors on the two sides of th
boundary, and

LIsing5d~y!@~]mf!21rf21uf4# ~26!

is a soft-spin 111 quantum Ising model (m5x,t). The
~schematic! form of the boundary coupling is

Lint5tbd~y!f@c1
†c21c.c.#. ~27!

When r ,0 the Ising field picks up a nonzero expectati
value ^f&Þ0, and the spinons can propagate coheren
across the cut. Forr .0 the Ising model is disordered, an
one can integrate out thef field, generating a spin exchang
interaction across the boundary—the spinons are confine
either side of the boundary, however. The boundary confi
ment transition occurs atr 50 ~within mean-field theory!.

The critical properties can be accessed by considerin
simple renormalization group~RG! transformation which
rescales both spatial coordinates and time by the same fa
When tb50, the theory decouples into a~critical! massless
~211!-dimensional free Dirac theory and a critical~111!-
dimensional Ising model. The relevancy of a small intera
tion across the cut can then be deduced in terms of the s
ing dimension of the Dirac field (Dc51) and the Ising field
(Df51/8):

]tb /] l 5~222Dc2Df!tb . ~28!

Thus, the spinon hopping amplitude is actually anirrelevant
perturbation, scaling to zero with eigenvalue21/8. Being
irrelevant, the transport of spinons across the cut right at
confinement transition can be deduced by working pertur
tively in tb .

B. Interlayer confinement transition

The situation is somewhat more interesting when gap
spinons are present at the confinement transition separa
the 3D deconfined phase from the quasi-2D deconfi
phase in an anisotropic layered situation~like the cuprates!.
The simplest situation to consider is that of a layered sys
with two layers only. To access the critical properties it
sufficient to consider the limit thatKxy5`, so that visons
cannot penetrate through either layer. The remainingZ2
gauge degrees of freedom reside on the interlayer bonds,
are described by the~211!-dimensional quantum Ising
model, Eq.~22!. The Ising spin is coupled to the interlaye
spinon hopping. An effective field theory can be easily wr
ten down, taking a very similar form to above, except wit
1-12
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FRACTIONALIZATION, TOPOLOGICAL ORDER, AND . . . PHYSICAL REVIEW B63 134521
Lspinon5c1
†]c11c2

†]c2 , ~29!

where nowc1 and c2 are nodal spinors in the two layer
and

LIsing5~]mf!21rf21uf4 ~30!

is a ~211!-dimensional quantum Ising model (m5x,y,t).
The interaction term is~schematically!

Lint5tbf@c1
†c21c.c.#. ~31!

Once again, as above, one can consider a simple RG tr
formation which leaves the massless 211 Dirac and critical
211 Ising theories invariant. Since the boundary tunnel
interaction is now over the 2D spatial plane, the eigenva
of tb is modified as

]tb /] l 5~322Dc2Df!tb , ~32!

with Dc51 as above, but nowDf'0.52 is the scaling di-
mension of the spin field for the 211 critical Ising theory. In
this case the interlayer interaction is quite strongly releva
and one will crossover to a strongly interacting critic
theory. One might be able to access this critical point
generalizing the Dirac and Ising theories to generalD5d
11 dimensions, and expanding around a Gaussian th
perturbatively inD542e space-time dimensions.

VIII. DETECTION OF TOPOLOGICAL ORDER

In previous sections, we have discussed how a pre
theoreticalcharacterization of fractionalized phases may
obtained through the concept of topological order. In a rec
paper,14 we proposed an experiment that will directly pro
this topological order. This enables a preciseexperimental
characterization of fractionalized phases. In this section,
will discuss this experiment at length, providing more deta
than available in Ref. 14 and considering extensions.

The crucial property of the fractionalized phase is the
ability of a trapped vison to escape from the cylinder. T
effect described in Ref. 14 is a direct probe of this prope
and involves the following sequence of events~see Fig. 7!.

~a! Start with an underdoped sample in a cylindrical g
ometry, with the axis of the cylinder perpendicular to t
layers. In the presence of a magnetic field, cool into
superconducting phase such that exactly onehc/2e magnetic
flux quantum is trapped in the hole of the cylinder.

~b! Heat the sample to aboveTc .
~c! Now turn off the magnetic field.
~d! Cool the sample back down belowTc .
An alternate experiment is to again repeat the sequenc

events~a!–~d!, but now work at a fixed very low temperatur
and move from the superconductor into the~underdoped!
insulator, and back, by adiabatically tuning some parame

In the nonsuperconducting state at the end of step~b!, the
magnetic flux penetrates into the sample.29 If, however, this
state is topologically ordered, then aZ2 flux, i.e., a vison,
remains trapped.~Recall that the vison is bound to thehc/2e
vortex inside the superconductor.! On turning off the mag-
netic field in step~c!, time reversal invariance is achieve
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What we have done is to prepare the sample in the non
perconducting state with a vison trapped in the hole of
cylinder. This imposes antiperiodic boundary conditions
the chargons and spinons. On moving back into the su
conductor in step~d! where the chargon condenses, the vis
cannot exist by itself and must nucleate anhc/2e unit of
magnetic flux. Thisbreaks the time reversal invariance
achieved in step~c!. The direction of the spontaneous flux
independent of that of the initial flux.

This spontaneous appearance of a magnetic flux is a d
consequence of the inability of the trapped vison to escap
a topologically ordered phase. We have, in effect, used
superconducting state to prepare and detect the vison.30 In
particular, if the nonsuperconducting state does not have
topological order, then there will be no spontaneous flux

In the cuprates, the fractionalization is presumably of
quasi-2D kind discussed in Sec. III. Thus, strictly speaki
the topological order exists only at zero temperature. In t
case, if the experiment is performed by tuning some para
eter to reversibly move across the superconductor-insul
phase boundary at very low temperature, a spontaneous
is certainly expected. This is, however, much more challe
ing than cycling with temperature. What will be the outcom
of the experiment done by varying the temperature? At a
but nonzero temperature, the trapped vison will eventua

FIG. 7. The experiment to detect the topological order. T
sample is superconducting in~A! and ~D! and is ‘‘normal’’ in ~B!
and ~C!. The electromagnetic flux is shown as a solid line. In A
flux of hc/2e is trapped in the hole. On moving to~B!, the electro-
magnetic flux penetrates, but the vison~shown as dashed line! is
still trapped. In~C!, the sample is in zero external magnetic fie
but still has a trapped vison. On moving back to the supercondu
in ~D!, a spontaneous flux ofhc/2e appears—its direction is arbi
trary.
1-13
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escape out of the sample in some timetv . A spontaneous
flux will be seen if the time scale for the experiment
smaller thantv .

Decay of the trapped vison requires thermal activat
across the vison gap in the bulk of the sample. Thus

tv;t0eE0 /kBT, ~33!

where T is the temperature, andE0 is the vison gap. The
prefactort0 is a microscopic time scale that depends mu
more weakly on temperature. Thustv increases strongly with
decreasing temperature.

How big is the vison gap? Alower bound on this gap may
be obtained from the results of angle-resolved photoemis
spectroscopy~ARPES! studies of the underdoped cuprate
One of the most striking features of these experiments is
absence of a quasiparticle peak in the nonsuperconduc
state. This is indeed as expected at low temperatures b
the vison gap in a fractionalized phase. The ARPES inten
continues to be broad all the way up to the pseudogap t
peratureT* . This suggests that the vison gap isat leastas
big asT* . In earlier work,9 we have suggested that the o
served pseudogap crossover in the underdoped cuprate
tually occurs at the scale of the vison gap, i.e.,E0;kBT* .

A reliable estimate of the timetv is difficult in view of the
exponential sensitivity to the ratio of the vison gap to t
temperature. But the discussion above does suggest thtv
can be enhanced enormously by enhancing the ratioT* /Tc
and performing the experiment at temperatures close toTc .
A promising candidate material would therefore
Bi2Sr2CaCu2O81x ~Bi2212!. In the heavily underdoped re
gime when Tc;10 K, a value ofT* ;300 K has been
reported.31

A number of other equally robust predictions can be ma
for small modifications of the experiment, as also discus
in Ref. 14. In particular, if the experiment is done with a
initial flux of nhc/2e, a spontaneous flux ofhc/2e will be
observed forn odd at the end of the experiment, while n
spontaneous flux will be observed forn even. This even-odd
effect may be useful to rule out other mundane explanati
of the effect, such as the presence of unknown stray m
netic fields in the sample at the end of step~c!. A further
observation is that the effect will not be observed if the a
of the cylinder isparallel to the layers. This is because, wi
quasi-2D fractionalization, vison loops are condensed in
region between the layers. A vison that is initially trapp
parallel to the layers will then be quickly absorbed by th
vison condensate and escape.

Two holes and quantum tunneling of visons

It is also extremely interesting to consider the situat
where there aretwo holes drilled into the sample separat
by a distancel much smaller than the sample radiusR. To
begin with, we specialize to a strictly two-dimensional sy
tem. Imagine starting in the superconducting state wit
singlehc/2e flux quantum trapped in one of the two hole
Upon moving to the nonsuperconducting state either by h
ing or by other means, the magnetic flux penetrates into
sample. But again, if this nonsuperconducting state is fr
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tionalized, the vison will be expelled from the bulk of th
sample. However, in this case, the vison can tunnel back
forth between the two holes. Consider this experiment d
at zero temperature by moving reversibly between the su
conducting and nonsuperconducting phases. Then the tun
ing of the vison from one hole to the other is entirely qua
tum mechanical.It is therefore not possible even in principl
to predict with certainty which hole the vison will be in afte
a given amount of time. The best that can be done is
predict the probability of the vison being in any given ho
Now, on reentering the superconducting state, the vi
again acquires anhc/2e unit of electromagnetic flux. How-
ever, the resultinghc/2e vortex can no longer tunnel s
readily between the two holes. Now a measurement of
flux trapped will see ahc/2e unit of flux in one or the other
hole.

Thus the two-hole experiment offers an opportunity
probe quantum tunneling phenomena at a macroscopic s
The superconductor is used to prepare and detect the p
ence of a vison. Once the nonsuperconducting state is
pared in a state with a vison in one hole, it evolves quant
mechanically into a state which is a linear superposition
the two states with the vison being in either hole. Movi
back into the superconductor nucleateshc/2e flux which can
be used to detect the presence of a vison. The relation o
observed probability for the flux being in either hole to t
original vison wave function~in the nonsuperconducting
state! depends on the details of the dynamics of the syst
and we will not discuss it here.

In the more complicated situation with several layers,
visons in each layer can tunnel independently between
two holes. At the end of the experiment, one frozen-inhc/2e
flux line will still be observed. This will pass through one o
the two holes in each layer. The detailed shape of the
line is an intriguing question that we leave open for t
present.

IX. CONCLUSIONS

In this paper, we have addressed a number of concep
issues related to the possibility of electron fractionalizat
in spatial dimensions higher than 1. Before concluding,
summarize some of the main results.

The precise theoretical characterization of a fractionaliz
phase is through the notion of topological order. Apart fro
the fractional particles into which the electron breaks ap
there are nontrivial gapped topological excitations—the
sons. The full excitation spectrum therefore decomposes
different topological sectors. If a vison is initially trapped
the ‘‘hole’’ of a cylindrical sample that is fractionalized,
stays there forever.

Motivated by the strongly anisotropic behavior of the c
prates in the nonsuperconducting states, we considered
possible fractionalized phases in a layered geometry. In
estingly, there are two kinds of fractionalized phases. In o
the system behaves like a full three-dimensional solid w
the chargons and spinons being able to freely propagate i
three directions. In the other phase, the different layers
couple from each other. The chargons and spinons are
1-14



e
as

e
, t
it
al
gi

ith
th
de
ze

io

tu
e
e-
e

th
tl
te

ge
ca

is

er-
ens-
ear

e
s—
e of
to

ta-
-

ble
x-

for
hn
d
sly

05,

FRACTIONALIZATION, TOPOLOGICAL ORDER, AND . . . PHYSICAL REVIEW B63 134521
confined in each layer, but are confined in the direction p
pendicular to the layers. It is this quasi-2D deconfined ph
that is quite possibly relevant to the cuprates.

We also considered the effect of a nonzero temperatur
the topological order. For the quasi-2D deconfined phase
topological order does not, strictly speaking, survive at fin
temperature. However, at temperature scales much sm
than the zero-temperature vison gap, it is ‘‘almost’’ topolo
cally ordered. In the cuprates, we have suggested9 that the
vison gap sets the scale for the pseudogap crossover.

We argued that the fractionalization could coexist w
various conventional broken symmetries and even in
presence of disorder. Again, the notion of topological or
gives a precise characterization of ordered fractionali
phases~such as the phase AF* ) which distinguishes them
from the corresponding ordered phases without the fract
alization.

We also briefly discussed some toy examples of quan
confinement transitions. The motivation was that precis
such a transition might possibly control the finit
temperature properties of the cuprates in the region betw
the under and overdoped regimes.

One of the main points made in this paper is that
electron fractionalization idea provides a simple but direc
testable explanation of the superconductivity in the cupra
We now briefly review the basis for this statement.

~i! Fractionalization of the electron liberates its char
from its Fermi statistics. The resulting charged boson
N

un

th
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then directly condense, leading to superconductivity. This
an alternative to the pairing route to superconductivity.

~ii ! Despite the alternate mechanism, the resulting sup
conductor is in the same phase as one obtained by cond
ing Cooper pairs of electrons. That this is true may app
surprising given that what is condensing is a charge-e boson
~rather than a charge-2e one!. In particular, the flux quanti-
zation is in units ofhc/2e. This remarkable feat is mad
possible by the presence of gapped topological excitation
the visons—in the fractionalized phase. Thus the existenc
these excitations is crucial for the fractionalization route
superconductivity.

~iii ! The experiment we propose directly detects the s
bility of a trapped vison in the ‘‘normal’’ state of the cu
prates.

In view of the above, we believe that it should be possi
to definitively establish or rule out the fractionalization e
planation of cuprate superconductivity.
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