
Journal of Statistical Physics, Vol. 103, Nos. 3�4, 2001

Measuring Fractional Charge in Carbon Nanotubes
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The Luttinger model of the one-dimensional Fermi gas is the cornerstone of
modern understanding of interacting electrons in one dimension. In fact, the
enormous class of systems whose universal behavior is adiabatically connected
to it are now deemed Luttinger liquids. Recently, it has been shown that
metallic single-walled carbon nanotubes are almost perfectly described by the
Luttinger Hamiltonian. Indeed, strongly non-Fermi liquid behavior has been
observed in a variety of DC transport experiments, in very good agreement with
theoretical predictions. Here, we describe how fractional quasiparticle charge,
a fundamental property of Luttinger liquids, can be observed in impurity-induced
shot noise.

KEY WORDS: Carbon nanotubes; Luttinger liquids; charge fractionalization;
shot noise; non-equilibrium measurements.

1. INTRODUCTION

The study of interacting electrons in one dimension has opened a panoply
of surprises which often seem counter-intuitive from the perspective of
higher dimensions. The generic behavior of one-dimensional metals is that
of the Luttinger liquid.(1, 2) In a Luttinger liquid, interactions conspire to
host bizarre phenomena such as the separation of spin and charge, as well
as anomalous power-law dependences in the resistivity and density of
states. Perhaps the most fundamental difference between the Luttinger liquid
and higher-dimensional metals lies in the nature of its quasiparticles. The
Luttinger quasiparticles are ``fractionalized,'' and indeed the elementary
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charged quasiparticle carries not the quantum of charge ``e'' of the electron,
but instead, a fraction ``ge.''

While the exploration of Luttinger liquid physics began more than half
a century ago, (1, 2) it has only found its way into the experimental realm
in the past decade. The quantum Hall system with its chiral edge states
has championed displaying Luttinger liquid features.(3) In particular, it has
provided the definitive confirmation of the existence of fractional charge
through shot noise measurements.(4) However, the challenge of finding a
truly one-dimensional (1D) system of interacting electrons has persisted.
A variety of transport experiments(5�9) now convincingly demonstrate that
single-walled carbon nanotubes (SWNTs) behave as Luttinger liquids, as
predicted theoretically.(10, 11)

Here, we show that even the simple set-up of a clean armchair nanotube
with a single weak impurity is capable of flaunting a hallmark of Luttinger
liquids, namely charge fractionalization. To understand the physical meaning
of charge fractionalization, consider a simple thought experiment in which
electrons are sequentially transferred from a metallic electrode onto the end
of a nanotube through a large contact barrier. With a sufficiently high
barrier, the rate of charge addition can be made very low, so that each inci-
dent electron can be considered individually. Immediately after the addition
event, the added charge e travels as a solitonic pulse away from end of the
nanotube (incidentally, the added spin ��2 travels as separate slower soliton
behind the charge). This charge e soliton may be regarded as the remnant
of the electron in the nanotube. Upon reaching an impurity, however, the
true nature of the charge excitations of the Luttinger liquid becomes evident.
In a non-interacting system, an incident particle either transmits (with
probability T ) or reflects (with probability R=1&T ). In the nanotube,
the charge e soliton can still transmit (with probability T ), but the alter-
native possibility (which is the leading-order scattering process occurring
with probability r1&T for a weak impurity) is to ``splinter'' into two
solitons: a backscattered piece of charge ge and a transmitted piece of charge
(1& g) e. The dimensionless ``Luttinger parameter'' g (g<1 for repulsively
interacting Fermi systems) depends on the nature of the interactions in the
system. In carbon nanotubes, theoretical estimates give gr0.210, in good
agreement with transport measurements.(5�9)

Unfortunately, the difficulty of the necessary time-resolved measure-
ments makes the above thought experiment impractical. Nevertheless, as
shown in the next section, the mathematics of Luttinger liquid theory
leaves no room to doubt that such strange scattering events indeed occur.
In this paper, we determine the consequences of these processes for shot
noise. Strikingly, we find that at low enough temperatures, fluctuations in
the net current incident on the weak barrier have the shot noise form
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appropriate for Poisson distributed scattering events of particles of charge ge.
Measurements of such shot noise are more tractable, and can provide
definitive proof of charge fractionalization.

As elucidated in what follows, to experimentally observe the described
shot noise, we propose a four terminal set-up capable of measuring correla-
tions in current CI , and the voltage drop V across an impurity placed along
the nanotube. In the limit of zero temperature, we derive the relationship
CI=4g2(e3�h) V; CI is related to the backscattered current IB via CI=
geIB , while IB is given by IB=4g(e2�h) V. Thus one can extract the charge
fraction g. The SWNT, with its estimated value gr0.2 far from unity,
makes for an exquisite playground to test the predicted Luttinger liquid
physics, specifically, the fractionalization of charge.

2. FORMALISM

To extract the non-equilibrium physics of the set-up described above,
we formulate an effective time-dependent theory for the bulk of the nano-
tube and for the impurity site. The effective theory of the clean single-walled
nanotube in consideration may be described by the low energy physics
of the (N, N ) armchair tube. In the absence of interactions, this involves
two gapless one-dimensional metallic bands modeled by free fermions with
linear dispersion:(10)

H0=:
i, :

| dx vF [�-
Ri: i�x�Ri:&�-

Li: i�x�Li:] (1)

where vF is the Fermi velocity, R and L label the right and left movers
respectively, i=1, 2 label the bands, and := A , a the electronic spin. In
this section, we set �=e=1.

The bosonized version of the fermionic operators has the form
�R�Li:tei(,i:\%i:). A more convenient basis, which we employ extensively,
involves a spin and channel decomposition for % : %i, \�_=(%i A \% i a )�- 2
and %+\ =(%1+\%2+)�- 2 with +=\, _, and a similar one for ,. The new
fields obey the canonical commutation rules [,a(x), %b( y)]=&i?$ab

3(x& y), with a, b=(\+, \&, _+, _&). As discussed in ref. 10, interac-
tions effectively involve just the charge density, \=(2�?) �x%\+ . The entire
Hamiltonian density (H=� dx H), with interactions taken into account,
then has the bosonized form:

H=:
a

va

2?
[ g&1

a (�x%a)2+ ga(�x,a)2] (2)
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with g\+#g=vF�v\+<1, and ga=1, va=vF for a{\+. In terms of the
right- and left-moving chiral modes 8R�L

a = ga,a\%a , one has associated
densities nR�L

a =\(1�?) �x 8R�L
a .(12) The above Hamiltonian density now

takes the diagonal form:

H=:
a {

?va

4ga
[(nR

a )2+(nL
a )2]= (3)

with corresponding equations of motion

(�t\va�x) nR�L
a =0 (4)

Thus, the density propagates as a one-dimensional acoustic plasmon
with renormalized velocity v\+ . The parameter g depends on the ratio of
the Coulomb energy between particles and the Fermi energy, and in a
SWNT has the approximate value of 0.2.(10)

We now consider the effect of a single weak impurity at the origin
(x=0). In this limit, a small portion of quasiparticles backscatter, and the
role of fractional charge is most transparent. In the generic case involving
no spin polarization or spin flip, local weak backscattering processes may
be described by:

Himp =:
: { :

i=1, 2

u i[�-
Ri:(0) �Li:(0)+h.c.]+u3[�-

R1:(0) �L2:(0)+h.c.]

+u4[�-
R2:(0) �L1:(0)+h.c.]= (5)

where := A , a , ``h.c.'' denotes Hermitian conjugation, u1 and u2 are weak
intra-subband scattering potentials, and u3 and u4 describe the inter-sub-
band scattering. Processes associated with u1 and u2 conserve all particle
numbers while the u3 and u4 scattering terms do not conserve \- and
_-particle numbers (these arise physically for impurities which break the
sublattice-reflection symmetry of the graphene lattice).

We note that the bosonized version of Eq. (5) may be expressed in
terms of right and left moving creation and annihilation operators e\i8a

R�L

that describe the freely propagating chiral excitations of the system;
the impurity site can create, destroy, or backscatter these excitations.
Most importantly, every scattering process possesses a term of the form
e\i8R

\+e�i8L
\+, reflecting the fact that a quasiparticle characterized by the

creation operator e&i8\+
R�L

is always backscattered. As detailed in ref. 12, the
operator ei8\+

R�L
creates a kink of magnitude ?g in 8R

\+ at x=0, or
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equivalently, a peak in nT
\+ of magnitude g. Therefore, the magnitude of

the fractional charge associated with the impurity backscattering is ``ge.''
Finally we consider the real time, finite temperature action applicable

at the impurity site. The manner in which we employ it parallels the
treatment in ref. 13. We integrate out the ,a variables from the bulk
Hamiltonian (though, where appropriate, we integrate out %a variables
instead), and then integrate out fluctuations away from the impurity as in
ref. 14. Using the Keldysh approach, (15) we write the partition function in
terms of time dependent backward and forward paths %\#%\ 1

2%� :

Z=| `
a

D%+
a D%&

a eS (6)

with a=(\+, \&, _+, _&). The action S=S0+S1+S2 is given by

S0 = &:
a _

1
?ga

| d| | coth \ |
2kT + |%� a(|)|2+

2i
?ga

| dt %� a(t) %4 a(t)&
S1= &i :

js
| dt[ f (1+

js (t))& f (1&
js (t))] (7)

S2=i
2
? | dt[A(t) %�4 \+(t)+'(t) %4 \+(t)]

Here, S0 describes the unperturbed system. S1 is derived from the impurity
Hamiltonian of Eq. (5). The 1\

js operators are defined for j=1 } } } 4 and
s=\1:

11s =%\+ +s%_++%\&+s%_&

12s=%\+ +s%_+&%\&&s%_&
(8)

13s=%\+ +s%_++,\& +s,_&

14s=%\+ +s%_+&,\& &s,_&

where the \ superscripts which denote backward and forward paths are
suppressed for all variables. S2 originates from coupling the physical
current to an external source of voltage A4 .

3. PHYSICAL PROPERTIES

An analysis of the nanotube with a single impurity, schematically
shown in Figs. 1 and 2, serves to bring out striking Luttinger liquid
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Fig. 1. Quasiparticle transport in a nanotube with a single impurity. The current enters the
nanotubes through the external contacts A and B while the two voltage probes L and R serve
to measure the voltage drop across the impurity. Chiral modes are shown for clarity of expres-
sion, but they cannot be probed separately as the voltage probes couple to both right- and
left-movers.

features. However, in the absence of the impurity, the conductance measured
across the external contacts A and B, which we assume to be adiabatic, is
G=4(e2�h), (16) appropriate for a non-interacting one-dimensional system
with four channels for conductance. Effectively, this is due to the fact that
though an isolated nanotube would have an associated conductance 4g(e2�h),
the external metallic contacts are three-dimensional Fermi liquids, and the
observed conductance involves electrons backscattering at the interface.(16)

Weak backscattering in the presence of the impurity causes a reduc-
tion in the conductance. For a temperature kT>>(�vF�l) (k is Boltzmann's
constant), where l is the distance from the impurity to the nearest contact
(A or B), the reduction has the form $G(T )B&u2T 22&2, where
2= 1

4 (g+3), and ``u'' is the impurity strength.(12) Given the estimate g=0.2
for the nanotube,(10) $G(T )BT &0.4 ought to be observable across a wide
temperature range. Similar considerations for the limit of large tunneling
barrier, where only few electrons tunnel through, show that an infinite wire
reflects electrons completely at T=0. However, at finite temperature it
exhibits the temperature dependence GBT 2*&2, where *= 1

4 (1�g+3).

Fig. 2. Experimental set-up: a nanotube with an impurity at point ``O'' is connected in series
with an ammeter and a d.c. source supply. The current enters into the nanotube through the
external contacts A and B. A voltmeter is connected across probes L and R.
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As seen in Figs. 1 and 2, the current contributing to the conductance
involves right moving quasiparticles emerging from the left lead, and left
movers from the right lead. As emphasized by the chiral decomposition of
the previous section, the quasiparticles carry fractional charge ge, and a
portion of them is backscattered into the lead from which they emerge. In
the presence of an externally applied potential, the right and left moving
chiral modes maintain a difference in chemical potential, V1&V2&V. The
potential difference V12=V1&V2 between the chiral modes arises in the
presence of an external bias voltage. In the absence of the impurity, the
current I0 flowing across the wire is given by I0=4g(e2�h) V12 . Unfor-
tunately, unlike in the quantum Hall case, where the right- and left-movers
are spatially separated, and V12 is measurable, (4) here the leads couple to
both modes. Thus, V12 cannot be measured, and the ideal conductance
4g(e2�h) cannot be extracted.

The voltage drop V is caused by the backscattering of quasiparticles.
The net current traversing the wire in the presence of the impurity is given
by

I=I0&IB

=4g
e2

h
(V12&V ) (9)

where V is the voltage drop across the impurity, and IB=4g(e2�h) V is the
backscattered current. Also, as we work in the weak backscattering limit,
we have IB<<I0 . Equation (9) can be either derived from the action of
Eq. (7) by calculating the average current I=(2e%4 �?) as the functional
derivative &i($Z�$') , or by simple consideration of chiral mode properties,
as in the case of spinless fermions.(12) In our set-up, we find that V12=
(��e) A4 , and V is the expectation value of the voltage operator given by

V� =
1
4

h
e

:
js

u j sin(1 js+ gA) (10)

with 1 's defined in Eq. (8).
The role of fractional charge is made manifest in the shot noise

generated by the quasiparticles striking the impurity. To derive the general
behavior of CI at finite temperature, we define the correlation function CO

in the quantity ``O,''

CO (|)= 1
2 | dt ei|t([O(t), O(0)]) (11)
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and use Eq. (7) as in ref. 13 to obtain a relation between current and volt-
age fluctuations, CI and CV respectively. At low temperature, and in the
limit of zero frequency, this becomes

CI=\4ge2

h +
2

CV (|)+2kT
dI

dV12

&\4ge2

h + 2kT
dV

dV12

(12)

We then perturbatively calculate the voltage correlations to lowest non-
vanishing order in the impurity scattering potential to obtain

CV (| � 0)=
h
4e

coth \geV12

2kT + (V� ) (13)

We observe that the noise due to voltage fluctuations is partitioned
between four channels. Putting together Eqs. (9), (12) and (13), we obtain
the desired form of CI :

CI (| � 0)= ge coth \geV12

2kT + IB+2kT
dI

dV12

&2kT
dIB

dV12

(14)

Setting T=0, we see that CI has the celebrated shot noise form geIB .
It exhibits crossover from shot noise to thermal noise when the condition
geV12r2kT is satisfied. Eq. (14) offers a tractable starting point for experi-
mental data analysis.

4. EXPERIMENT

A possible experimental configuration which realizes Fig. 1 is shown in
the four-probe geometry of Fig. 2. As elucidated in what follows, two sets
of measurements, one in the absence of the impurity and one in its
presence, enable one to extract the shot noise CI of Eq. (12), and the volt-
age V of Eq. (9) generated across the impurity. These two quantities in
turn suffice to extract the charge fraction ``g.'' In the proposed set-up, an
external supply maintains a voltage bias between the ends of the nanotube
and drives the current through it, while an ammeter measures this net
current I. A voltmeter across LR measures the difference in potential
VLR=VL&VR (see Fig. 2). As measurements involve both the absence and
the presence of the impurity, this impurity would have to be created in a
controlled way such as by means of an AFM tip. (9)

The conditions in which the experiment ought to be performed are
rather specific, but feasible. We assume that the probes L and R are non-
invasive in their contribution to voltage drops, and that backscattering at
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all leads is small. The small backscattering condition is equivalent to the
requirement that the two-terminal resistance of the entire wire is close to
the ideal value of h�4e2

r6.25k0. We also require the further condition
eV12 , kT>>�v\+ �l . This ensures that the one-dimensional physics of the
tube is probed as opposed to that of the three-dimensional external con-
tacts, in essence that quasiparticle propagation is not coherent across the
entire system. Finally, we make the reasonable assumption that heat
generated in the external circuit is removed by phonons, hence maintaining
steady temperature T, and that the noise in it has the current-independent
Johnson�Nyquist form Cext tkT�Rext , where Rext is the resistance of the
external circuit.(17)

Determining CI , the noise across the impurity, proves a tricky task
due to multiple noise sources, and particularly due to possible correlations
with scattering at the leads. But taking into account the conditions
assumed above for l and for the transmission at the leads, as well as the
fact that the weak impurity also has large transmission, we find the noise
to be additive. In other words, one can measure the current noise in the cir-
cuit in the presence and absence of the impurity, C imp

I and C 0
I respectively,

keeping the mean current in the circuit fixed. Then, the shot noise across
the impurity would just be their difference; CI=C imp

I &C 0
I .

One could determine the voltage V generated across the impurity by
merely measuring the voltage VLR of Figs. 1 and 2 across it if the leads L
and R coupled to right- and left-movers (see Figs. 1 and 2) symmetrically.
However, as shown below, even if this coupling is asymmetric, for fixed
current I, the voltage V is simply the difference between the voltages VLR

and V 0
LR measured across LR in the presence and in the absence of the

impurity, respectively. To see this, let aR and 1&aR be the fractions with
which the right lead couples to the right- and left-movers respectively, and
similarly for the left lead. We assume aR and aL are voltage-independent,
a reasonable assumption given the extremely large (O(eV )) electronic
energy scales involved in the microscopic matrix elements which determine
this coupling. With reference to the voltages shown in Fig. 1, we then have

VR =aR(V1&V )+(1&aR) V2

VL=aLV1+(1&aL)(V2+V ) (15)

VLR=V+(aL&aR)(V1&V2&V )

with the total current in the circuit given by

I=4g
e2

h
(V1&V2&V ) (16)
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In the absence of the impurity, setting V=0, we have

V 0
LR=(aL&aR)(V 0

1&V 0
2) (17)

and the corresponding current

I0=4g
e2

h
(V 0

1&V 0
2) (18)

Finally, for fixed current I=I0 , Eqs. (15)�(18) give the required form for V,

V=VLR&V 0
LR (19)

Now, in the limit kT<<V12 (which is of comparable magnitude to the
actual applied voltage), Eq. (14) takes the form CI= geIB . Since IB=
(4ge2�h) V, we have

CI=4g2 e3

h
V (20)

Equation (20) enables an experimental determination of ``g,'' given the
measured quantities CI and V. We emphasize that the physical appearance
of ``g2'' in Eq. (20) has two distinct physical origins. As seen from the
relation IB=(4ge2�h) V, one factor of g simply reflects the reduced intrinsic
conductance of the Luttinger liquid. The second factor of g (in CI= geIB)
directly follows from the fractional charge ge of the current-carrying
solitons. It is in this sense that Eq. (20) is a direct measure of fractional
quasiparticle charge.

In the quantum Hall system, determining fractional charge and observing
crossover from shot noise to thermal noise were performed in a clear-cut
fashion through finite temperature measurements(4) that conformed to the
noise described by the analog of Eq. (14). Here, precise quantities cannot
be extracted due to the facts that aR and aL of Eqs. (15) and (17) are
unknown, and that V12 cannot be measured. However, measurements at
different values of the average current I, and less easily at different tempera-
tures T, would not only probe quasiparticle charge, they would also display
the clear dependence of noise on thermal effects. Also, while a gate voltage
across the Hall bar allowed one to tune the backscattering strength
elegantly, here one could change the barrier strength described in Eq. (5)
in a less straightforward way by studying different impurities.
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6. CONCLUSION

The single-walled armchair nanotube hosts a fine arena for observing
many of the intriguing features of a four channel Luttinger liquid. Its con-
trast with Fermi liquids becomes strikingly apparent when its transport
properties in the presence of an impurity are compared with Landauer
transport theory.(18) Non-equilibrium measurements serve to bring out the
fractional nature of the charge carried by the quasiparticle excitations in
the nanotube.

Rapid progress in experimental techniques offers scope for studying
interacting one-dimensional systems in interesting geometries. For instance,
a finite length tube would exhibit resonances in spectral features.(10)

A nanotube bearing two (or more) impurities could display resonant
tunneling and plateaus in conductance, as observed in thin wires.(19)

Fabrication of nanotubes with crossed geometries(20) allows for observing
quantum statistics of the constituent particles via the Hanbury Brown�
Twiss effect as was studied in the quantum Hall system by Henny et al.,
who used a four terminal geometry to measure shot noise and demonstrate
the fluctuation-dissipation relation.(21)
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